Hydroinformatik II - SoSe 2024

HyBHW-S2-01-V06: Übungen: Übersicht und Werkzeuge

Prof. Dr.-Ing. habil. Olaf Kolditz

¹Helmholtz Centre for Environmental Research – UFZ, Leipzig

²Technische Universität Dresden – TUD, Dresden

³Center for Advanced Water Research – CAWR

⁴TUBAF-UFZ Center for Environmental Geosciences – C-EGS, Freiberg / Leipzig

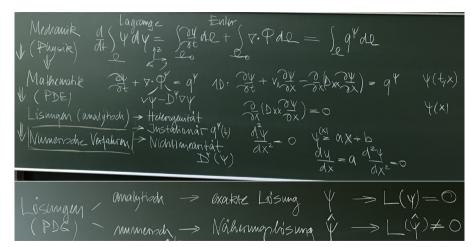
Dresden, 21.06.2024

Zeitplan: Hydroinformatik II - SoSe 2024

Datum	HI	- II	Thema	Тур
14.06.2024	14	2-01	Einführung in die Lehrveranstaltung - Teil 2	L
14.06.2024	15	2-02	Werkzeuge Tools	L
14.06.2024	16	2-03	Grundlagen: Kontinuumsmechanik	L
21.06.2024	17	2-04	Grundlagen: Hydromechanik	L
21.06.2024	18	2-05	Grundlagen: Partielle Partialgleichungen	L
21.06.2024	19	2-06	Übung: Analytische Lösungen	E
28.06.2024*	20	2-07	Grundlagen: Näherungsverfahren	L
28.06.2024*	21	2-08	Übung: Jupyter Diffusionsprozess	E
02.07.2024*	22	2-09	Numerik: Finite-Differenzen-Methode (explizit)	L
02.07.2024*	23	2-10	Numerik: Finite-Differenzen-Methode (implizit)	L
12.07.2024	24	2-11	Übung: Finite-Differenzen-Methoden	E
12.07.2024	25	2-12	Grundlagen: Gerinnehydraulik	L
12.07.2024	26	2-13	Übung: Gerinnehydraulik	Е
19.07.2024	27	2-14	Ausblick: Grundwassermodellierung	Е
19.07.2024	28	2-15	Klausur/Beleg: Besprechung zur Vorbereitung	L

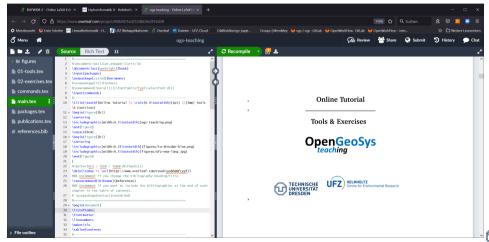
^{*}online Vorlesung

Fahrplan für heute ...


1 Zwischenfazit: Theoretischer Teil

- 2 Tutorial
- **3** Tools

Hydroinformatik II - Theorie


Zwischenfazit

Hydroinformatik II - Tutorial

Lehre-Webseite → Tutorial https://www.overleaf.com/read/vyxbhdmfczpf

Werkzeuge

Editor: Notepad++

Compiler: MinGW (C++)

Repository: Git

Python: Simulation und (einfache) Grafik

Jupyter-Notebook: Workflows

• (Visualisierung: ParaView)

Werkzeuge

Übersicht

Editor: Notepad++

Compiler: MinGW (C++)

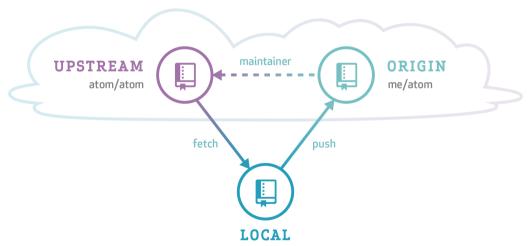
Repository: Git

• Python: Simulation und (einfache) Grafik

Jupyter-Notebook: Workflows

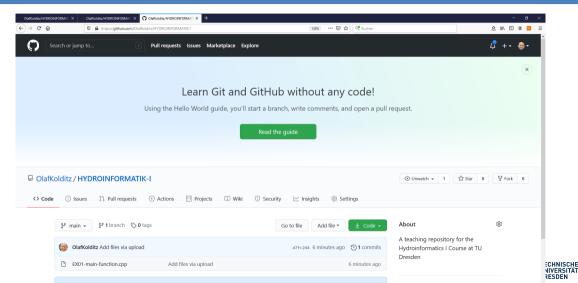
(Visualisierung: ParaView)

GitHub


GitHub

- "GitHub ist ein netzbasierter Dienst zur Versionsverwaltung für Software-Entwicklungsprojekte ..."
- Webseite: https://github.com/
- Vorteil: Webbasiert (und damit Plattform-unabhängig)
- ... wir nutzen GitHub zum archivieren unserer Übungen (>> Demo)
- Webseite:

https://github.com/OlafKolditz https://github.com/OlafKolditz/ HYDROINFORMATIK-II



GitHub Prinzin

GitHub

Repository für Übungen - https://github.com/OlafKolditz/HYDROINFORMATIK-II

git

Versionsmanagement

- Versionsmanagement für Repositories (github)
- Tutorial, Abschnitt 1.1


```
//Go to the directory where do you want clone the repository

cd my-repositories

git clone https://github.com/OlafKolditz/HYDROINFORMATIK-II.git

//There will be a local copy of the repository in
//my-repositories/HYDROINFORMATIK-II
```

There will be a created subdirectory: my-repositories/HYDROINFORMATIK-II

Go to the subdirectory: my-repositories/HYDROINFORMATIK-II

```
//Go the directory where your local repo copy is
cd ~/my-repositories/HYDROINFORMATIK-II

//Check, if there are new files in the repository
git fetch --all
//Copy/Update new files from the repository
git pull
```

Listing: Updating from an existing repository

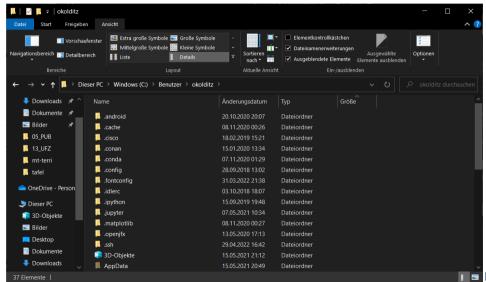
Python

Python: About

- "Python is a programming language that lets you work more quickly and integrate your systems more effectively."
- Webseite: https://www.python.org
- Vorteil: funktioniert auf allen Rechnern (>> Demo)



Python: Installation



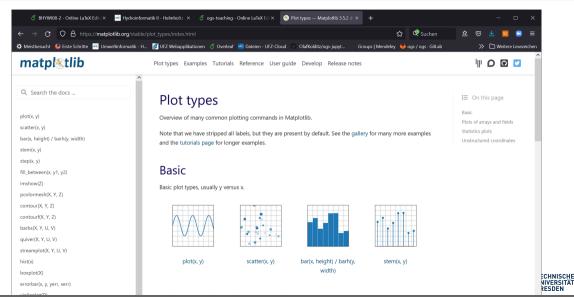
Python: Installation

PATH

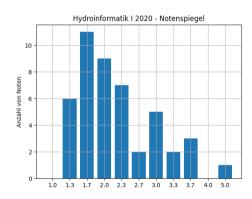
Python: Installation

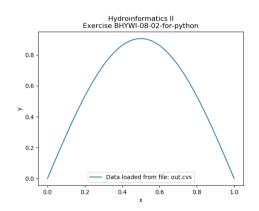
Python: Module installieren

matplotlib


```
python -m pip install -U pip
python -m pip install -U matplotlib
```

Listing: Installieren von der Konsole


```
Fingabeaufforderung
Microsoft Windows [Version 10.0.18363.1082]
(c) 2019 Microsoft Corporation, Alle Rechte vorbehalten.
:\Users\okolditz>pvthon -m pip install -U pip
 EPRECATION: Python 2.7 reached the end of its life on January 1st, 2020. Pl
 se upgrade vour Python as Python 2.7 is no longer maintained, pip 21.0 will
 lrop support for Python 2.7 in January 2021. More details about Python 2 sup
 rocess/#python-2-support pip 21.0 will remove support for this functionalit
Requirement already up-to-date: pip in c:\python27\lib\site-packages (20.2.4)
 :\Users\okolditz>python -m pip install -U matplotlib
 PRECATION: Python 2.7 reached the end of its life on January 1st, 2020. Pl
 se upgrade vour Python as Python 2.7 is no longer maintained, pip 21.0 will
 rop support for Python 2.7 in January 2021. More details about Python 2 sup
 rt in pip can be found at https://pip.pvpa.io/en/latest/development/release
 rocess/#nython-2-support nin 21.0 will remove support for this functionality
Collecting matplotlib
 Downloading matplotlib-2.2.5-cp27-cp27m-win amd64.whl (8.7 MB)
     |########################## 8.7 MB 3.3 MB/s
Requirement already satisfied, skipping upgrade: cvcler>=0.10 in c:\python27\
lib\site-packages (from matplotlib) (0.10.0)
Requirement already satisfied, skipping upgrade: six>=1.10 in c:\python27\lib
\site-packages (from matplotlib) (1.12.0)
Requirement already satisfied, skipping upgrade: pytz in c:\python27\lib\site
packages (from matplotlib) (2019.3)
Requirement already satisfied, skipping upgrade: numpy>=1.7.1 in c:\python27\
```



matplotlib https://matplotlib.org/

Python: Ploting (matplotlib)

Python: Plotting bar charts

Übung: Hydroinformatik-I-Noten.py

```
1 from matplotlib.ticker import FuncFormatter
import matplotlib.pvplot as plt
 import numpy as np
year = np.arange(11)
6 publications = [1,1,7,4,8,7,6,7,3,2,3]
7 fig, ax = plt.subplots()
8 ax.set title('Hydroinformatik I 2019 - Notenspiegel')
9 ax.set vlabel('Anzahl von Noten')
plt.bar(vear, publications)
plt.xticks(year, ('1.0', '1.3', '1.7', '2.0', '2.3', '2.7', '3.0', '3.3', '3.7',
       '4.0'. '5.0')
12 plt.arid(True)
13 plt.show()
```

Listing: Python example for bar charts: Hydroinformatik-I-Noten.py

Diffusionsgleichung: Analytische Lösung Tutorial: Abschnitt 2.2

- Repo: BHYWI-08-02-E-Script
- C++ Variante
- C++ / Python Variante
- Python Variante

MinGW + Python: Function plotter (analytical solution) #1

Übung: BHYWI-08-02-E-Script: Skript

```
echo Compilation
```

- g++ main.cpp
- g echo Execution
- 4 a.exe
- s echo Plotina
- 6 data from file.pv
- 7 echo End

Listing: Script file for entire workflow

MinGW + Python: Function plotter (analytical solution) #2

Übung: BHYWI-08-02-E-Script: C++

```
1 #include <cmath>
2 #include <fstream>
  #define PT 3.14159265358979323846
  int main(int argc, char *argv[])
5
    //1-Definitionen
    int numPoints = 1000:
    double x,y,alpha=1.,t=0.01;
    std::ofstream out file:
    out file.open("out.csv"):
10
    //2-Berechnung
11
    for (int i = 0; i < numPoints+1; ++i)
13
      x = double(i)/double(numPoints);
14
      v=sin(PI*x) * exp(-alpha*PI*PI*t):
15
      out file << x << "," << y << std::endl;
16
    //3-Ausgabe
19
```

Listing: C++ program for analytical solution

MinGW + Python: Function plotter (analytical solution) #3

Übung: BHYWI-08-02-E-Script: File reading and data plotting

```
import matplotlib.pyplot as plt
  import csv
4 \times = \Gamma 
5 V = \Gamma \overline{1}
6 with open('out.csv','r') as csvfile:
      plots = csv.reader(csvfile, delimiter=',')
      for row in plots:
           x.append(float(row[0]))
           v.append(float(row[1]))
plt.plot(x,y, label='Data loaded from file: out.cvs')
plt.xlabel('x')
14 plt.vlabel('v')
15 plt.title('Hydroinformatics II\nExercise BHYWI-08-02-for-python')
16 plt.legend()
plt.savefig("diffusion-equation.png.png")
18 plt.show()
```

Listing: File reading and data plotting

Python:

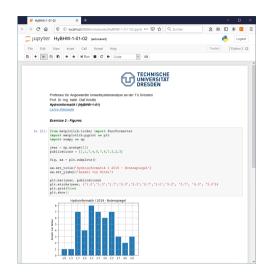
Übung: BHYWI-08-02-E-Script: Python version

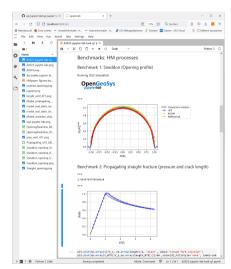
```
import math
import matplotlib.pylab as plt
^{3} PT = 3.14159265358979323846
4 \text{ numPoints} = 10
5 \text{ alpha} = 1.0
6 t = [0.1, 0.5, 1.0, 2.0]
7 \times = \Gamma
8 V = \Gamma \overline{1}
9 for n in t:
       for i in range(0.numPoints+1):
            x.append(float(i)/float(numPoints))
11
            y.append(math.sin(PI*x[i]) * math.exp(-alpha*n*n))
       plt.plot(x,y,color='red',marker="o")
13
       x = \Gamma 
14
       V = \Gamma I
16 plt.xlabel('x')
plt.ylabel('u')
plt.savefig("diffusion-equation.png")
19 plt.show()
```

Listing: Analytical solution

Jupyter

- Jupyter Notebook
- Jupyter Lab
- Browser-basiert


Jupyter


- "The Jupyter Notebook · The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, ..."
- Webseite: https://jupyter.org/
- Vorteil: funktioniert auf allen Rechnern
- ... ein Teil unserer (neuen) Übungen machen wir mit Jupyter Notebooks (>> Demo)

Jupyter: Example

Nächste Veranstaltung am 27.05.2022 ist online

Hausaufgaben

- git und python Übungen selbständig wiederholen
- Installation Jupyter Notebook (siehe Tutorial) https://jupyter.org/install

