

SEVAMOD2 Basic information

Funding

- Funding period: April 1, 2020 December 31, 2023, ca. 515 T€
- Federal Ministry for Education and Research of Germany (Project ID 01DK17022)
- Co-funding by Ministry of Environment RA (60% of costs for chemical analyses, ca. 48 T€)

Goals

- Monthly sampling for chemical analyses and plankton
- Nutrient budget for Lake Sevan and nutrient management concept
- Coupled physical-ecological 1D eutrophication model for Lake Sevan (nutrients, plankton, oxygen)
- Use of satellite-based remote sensing for estimation of water quality of Lake Sevan
- Evaluation of alternative management scenarios and identification of major water quality threats for Lake Sevan including the preparation of a policy brief
- Capacity Building in Armenia for use of satellite remote sensing and lake modelling
- Publication of the project results including realization of a final public project workshop in 2023

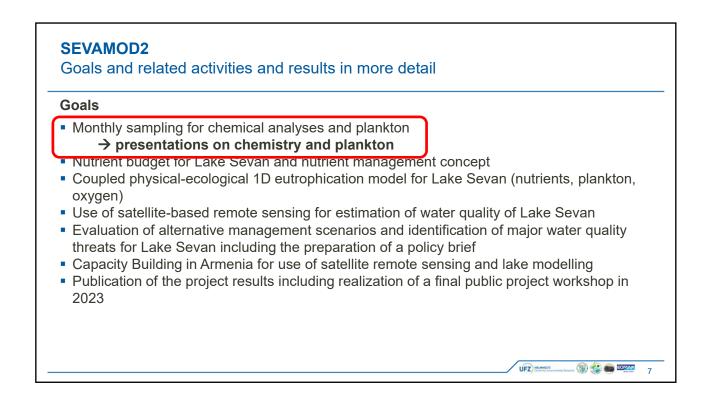
2

SEVAMOD2 Project partners

- Scientific Centre of Zoology and Hydroecology NAS RA, Institute of Hydroecology and Ichthyology (SCZHE), Yerevan, Armenia
- Center for Ecological Noosphere Studies NAS RA (CENS), Yerevan, Armenia
- Hydrometeorology and Monitoring Center SNCO of the Ministry of Environment RA (HMC), Yerevan, Armenia
- EOMAP, Seefeld, Germany
- Helmholtz Centre for Environmental Research – UFZ, Department Lake Research, Magdeburg, Germany

UFZ HELMHELT

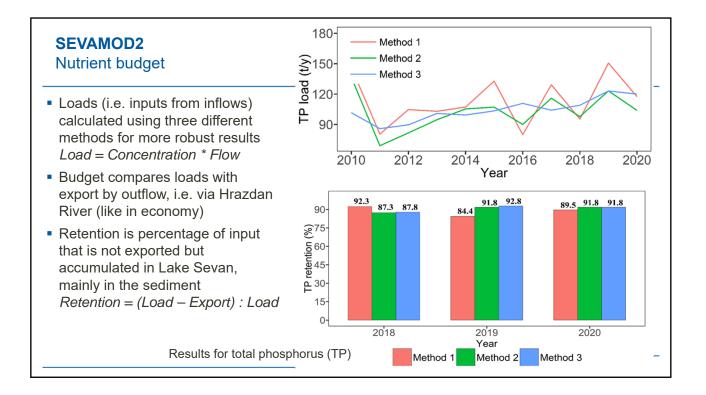
SEVAMOD2


Goals and related activities and results in more detail

Goals

- Monthly sampling for chemical analyses and plankton
- Nutrient budget for Lake Sevan and nutrient management concept
- Coupled physical-ecological 1D eutrophication model for Lake Sevan (nutrients, plankton, oxygen)
- Use of satellite-based remote sensing for estimation of water quality of Lake Sevan
- Evaluation of alternative management scenarios and identification of major water quality threats for Lake Sevan including the preparation of a policy brief
- Capacity Building in Armenia for use of satellite remote sensing and lake modelling
- Publication of the project results including realization of a final public project workshop in 2023

SEVAMOD2


Goals and related activities and results in more detail

Goals

- Monthly sampling for chemical analyses and plankton
- Nutrient budget for Lake Sevan and nutrient management concept
- Coupled physical-ecological 1D eutrophication model for Lake Sevan (nutrients, plankton, oxygen)
- Use of satellite-based remote sensing for estimation of water quality of Lake Sevan
- Evaluation of alternative management scenarios and identification of major water quality threats for Lake Sevan including the preparation of a policy brief
- Capacity Building in Armenia for use of satellite remote sensing and lake modelling
- Publication of the project results including realization of a final public project workshop in 2023

UFZ HELMHELTZ

8

SEVAMOD2

Goals and related activities and results in more detail

Goals

- Monthly sampling for chemical analyses and plankton
- Nutrient budget for Lake Sevan and nutrient management concept
- Coupled physical-ecological 1D eutrophication model for Lake Sevan (nutrients, plankton, oxygen)

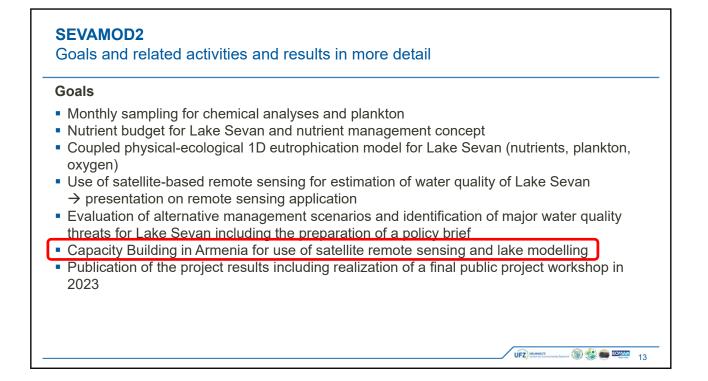
\rightarrow presentation on model and results of simulations

- Use of satellite-based remote sensing for estimation of water quality of Lake Sevan
- Evaluation of alternative management scenarios and identification of major water quality threats for Lake Sevan including the preparation of a policy brief
- Capacity Building in Armenia for use of satellite remote sensing and lake modelling
- Publication of the project results including realization of a final public project workshop in 2023

🛞 🍪 🛑 ஊ 10

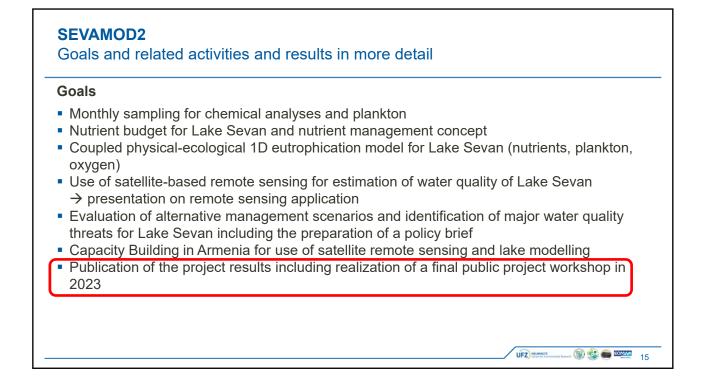
UFZ HELMHELT

SEVAMOD2 Goals and related activities and results in more detail Goals Monthly sampling for chemical analyses and plankton Nutrient budget for Lake Sevan and nutrient management concept • Coupled physical-ecological 1D eutrophication model for Lake Sevan (nutrients, plankton, oxvaen) Use of satellite-based remote sensing for estimation of water quality of Lake Sevan \rightarrow presentation on remote sensing application Evaluation of alternative management scenarios and identification of major water quality threats for Lake Sevan including the preparation of a policy brief Capacity Building in Armenia for use of satellite remote sensing and lake modelling • Publication of the project results including realization of a final public project workshop in 2023 🛞 🍪 💼 🏧 11 LIFT HELMHELTZ

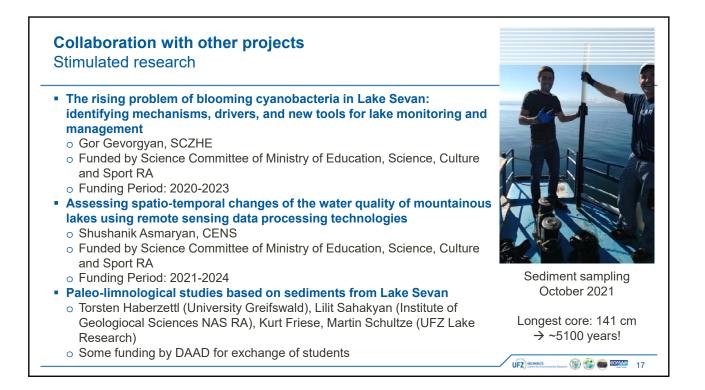

SEVAMOD2 Goals and related activities and results in more detail

Goals

- Monthly sampling for chemical analyses and plankton
- Nutrient budget for Lake Sevan and nutrient management concept
- Coupled physical-ecological 1D eutrophication model for Lake Sevan (nutrients, plankton, oxygen)
- Use of satellite-based remote sensing for estimation of water quality of Lake Sevan
 → presentation on remote sensing application
- Evaluation of alternative management scenarios and identification of major water quality threats for Lake Sevan including the preparation of a policy brief
- Capacity Building in Armenia for use of satellite remote sensing and lake modelling
- Publication of the project results including realization of a final public project workshop in 2023


l2

UFZ HELMHELTZ


Capacity building 11 training stays of one month in Germany

Name, Institution	Training host	Subject (number of stays)
A. Misakyan, ArmHydromet	UFZ, Department Lake Research	Introduction into lake limnology + lake modelling (3)
A. Hayrapetyan, SCZHE	UFZ, Department Lake Research	Advanced data evaluation (1)
G. Gevorgyan, SCZHE	UFZ, Department Lake Research	Advanced data evaluation (1)
A. Hovsepyan, SCZHE	UFZ, Department Lake Research	Advanced methods of phytoplankton analysis (1)
T. Khachikyan, SCZHE	UFZ, Department Lake Research	Advanced methods of phytoplankton analysis (1)
A. Khlghatyan, CENS	EOMAP	Remote sensing (2)
R. Avetisyan, CENS	EOMAP	Remote sensing (1)
A. Hovsepyan, CENS	UFZ, Department Lake Research	Introduction into lake limnology (1)
		ÚFZ) 11

Publications		
•	Gevorgyan, G., Rinke, K., Schultze, M., Mamyan, A., Kuzmin, A., Belykh, O., Sorokovikova, E., Hayrapetyan, A., Hovsepyan, A., Khachikyan, T., Aghayan, S., Fedorova, G., Krasnopeev, A., Potapov, S., Tikhonova, I., (2020): First report about toxic cyanobacterial bloom occurrence in Lake Sevan, Armenia. International Review of Hydrobiology 105:131-142	
•	Shikhani M, Mi C, Gevorgyan A, Gevorgyan G, Misakyan A, Azizyan L, Barfus K, Schulze M, Shatwell T, Rinke K (2021) Simulating thermal dynamics of the largest lake in the Caucasus region: The mountain Lake Sevan. Journal of Limnology 81(s1):2024	
•	Gabrielyan B, Khosrovyan A, Schultze M (2022) A review of anthropogenic stressors on Lake Sevan, Armenia. Journal of Limnology 81(s1):2061	
•	Gevorgyan G, von Tuempling W, Shahnazaryan G, Friese K, Schultze M (2022) Lake-wide assessment of trace elements in surface sediments and water of Lake Sevan. Journal of Limnology 81(s1):2096	
•	Dadi T, von Tümpling W, Mi C, Schultze M, Friese K: Assessment of phosphorus behavior in sediments of Lake Sevan, Armenia. Journal of Limnology 81(s1):accepted	
•	Hayrapetyan A, Gevorgyan G, Schultze M, Shikhani M, Khachikyan T, Krylov A, Rinke K: Contemporary community composition, spatial distribution patterns, and biodiversity characteristics of zooplankton in the large alpine Lake Sevan, Armenia. Journal of Limnology 81(s1):in revision	

8

