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Basics of Finite Element Method

Pre-
processing

Assembly

Solve 
Ax=b

Time loop

Output result

IC BCST

Mesh

Post-Processing
(Visualization)

In simple words, we convert the PDE from  

, so that it is converted to linear equation 
Ax = b: 

, and solve it, so that we get: 

, using the 
topology: 
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Finite element in space
The numerical method of FEM employs the 
Method of Weighted Residuals (MWR) to find the solution 
of a PDE. 
MWR can be divided into 3 steps: 

1) Approximation of the unknown function by a trial 
solution; 

2) Definition of weighting functions; 
3) Derivation of a system of algebraic equations, and 

solve it to find the approximation solution. 

Over all connecting 
mesh nodes

The unknown function

The approximation of the 
unknown function

The unknown
on each mesh 
node

Interpolation functions
(aka. Basis functions)

Let          be the flux vector of conservative quantity  u and q^u
the source/sink term (see our first lecture about 
GROUNDWATER_FLOW process)

Applying the approximation, we get the weak form of the above equation as

In order to get rid of the special derivative of flux term, we apply the Green’s theorem
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Finite element in space

After Green’s transformation, we Temporarily focusing on 
the space approximation, assuming time not changing. 

Approximation of 
unknown u

Approximation of 
the flux of unknown u

So that the above equation becomes

This part is applied on 
element Mass Matrix

This part is applied on 
element  Stiffness Matrix

This part should zero out. 
“When time is infinitely short, how 
much flowing-in should equal to 
how much flowing-out”

“shape-shape” “shape-dshape”

This part is nodal 
based
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Shape functions (1D line element)

First let’s explore how the shape function is calculated for 
a 1D line element. 

A simple approximation of the unknown functio u(x) can 
be obtained by linear approximation. 

On the two ends of the line element, we assume that our 
unknown function produces u1 and u2 at position x1 and x2. 

Write in a linear 
algebra form

Make an inversion of the expression, we get the a1 and a2 value dependency on u1 and u2. 

Wirte back to the 
standard form

Insert back here

Then we get the expression of approximated solution based on the location

N1(x) and N2(x) are the so-called shape functions. 
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Shape functions (1D line element, higher orders)

Linear Quadradic

Approximation

Shape Function
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Shape functions (2D line triangle element)
Approximation:

The interpolation writes as

Write it in the matrix-vector form

Inversion of the above relationship will give

With A the surface area of the triangle

So again our shape function act like

They can be explicitly calculated as

Or in the matrix vector form
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Finite difference in time
We start from the mass transport governing equation

Change over time Dispersion/Diffusion Advection

Source and Rink Term, i.e. 
decay and reaction

Time discretization Spatial discretization

 For the time discretization part, we use 
forward Euler method: 

 For all C values in the spatial 
discretization part, we apply linear 
interpolation btw previous and current 
values: 

 Make a difference of previous and current 
time step value for primary unknown. 

= 1 : C taken from the current time step, AKA implicit scheme. 
= 0 : C taken from the previous time step, AKA explicit scheme. 
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We start from the mass transport governing equation

Change over time Dispersion/Diffusion Advection

Source and Rink Term, i.e. 
decay and reaction

Time discretization Spatial discretization

 For the time discretization part, we use 
forward Euler method: 

 For all C values in the spatial 
discretization part, we apply linear 
interpolation btw previous and current 
values: 

 Make a difference of previous and current 
time step value for primary unknown. 

Finite difference in time
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Handle the time derivative

We know all the previous time step value, so keep known things to the RHS 
and unknown things to the other. 
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Mass Term

Dispersion/
Diffusion

Advection

Handle the space derivative
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Mass Term

Dispersion/
Diffusion

Advection

Mass Matrix

Dispersion Matrix

Advection Matrix

Handle the space derivative
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Mass Matrix

Dispersion Matrix

Advection Matrix K = Disp + Adv

Handle the space 
derivative
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Linear equation
assembly
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Linear equation
assembly
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Linear equation
assembly
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Impose Boundary Condition
Assuming we know the boundary value on one of the node, 
how can we solve the linear equation in a way that we get 
the desired value on this node? 

The procedure is as follows: 

1) Record the index of boundary node, say “i”.

2) RHS vector minus the multiplication of fixed boundary 
node value with the i-th column of LHS matrix. 

3) Record the i-th row and column entry value in LHS as 
TMP.

4) Make i-th row of LHS all zeros. 

5) Make i-th column of LHS all zeros. 

6) Overwrite i-th value in RHS vector as TMP times fixed 
boundary value

7) Overwrite i-th row and column entry value in LHS 
matrix as xii. 
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Impose Boundary Condition
Taking the following linear equation as an example (represent a 1D Groundwater flow): 

1/2 -1/2 0 0 0

-1/2 3/2 -1 0 0

0 -1 4/3 -1/3 0

0 0 -1/3 2/3 -1/3

0 0 0 -1/3 1/3

h1

h2

h3

h4

h5

0

0

0

0

0

=

___ ___ ___ ___ ___

___ ___ ___ ___ ___

___ ___ ___ ___ ___

___ ___ ___ ___ ___

___ ___ ___ ___ ___

h1

h2

h3

h4

h5

___

___

___

___

___

=

After imposing boundary nodes? 

What result do you get by solving this linear equation system? 
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Peclet Number
Peclet number is defined as the ratio of the rate of 
advection to the rate of dispersion/diffusion. 

 Peclet number is dimensionless. 

 Peclet number reflects the ratio of advection versus 
diffusion. If less than one, then diffusion dominated. If 
more than one, then advection dominated. 

 Typically, the characteristic length L refers to the 
length of an element. 

 For the accurate solution of finite element method, 
the Pe number has to be kept to be less than 2. 

Courant Number
AKA Courant–Friedrichs–Lewy condition

 Courant number is also dimensionless

 Cr_max is typically constrained to be 2, i.e. in a given 
time step, one particle should not travel beyond the 
neighbouring element. 

 Necessary condition when using explicit time 
integration scheme with the finite difference 
method. 

1D

2D
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