Physical Limnology 2022

Workshop – Block Course

In 2022, on video only.

The link will be communicated to the enrolled participants closer to the date.

Schedule of lectures: 28^{th} March -5^{th} April 2022

Start time	Mon 28 th	Tue 29 th	Wed 30 th	Thu 31 st	Fri 1 st	Mon 4 th	Tue 5 th
9:00- 10:30	B01+02	L1	B06+07	B08	T2	B11+12	L4
11:00-12:30	B03	B04+05	L2	T1	B09+10	L3	B13+14
afternoon	Ex-B	Ex-B	Ex-B	Ex-B	Ex-B	Ex-B	
		Ex-L		Ex-T		Ex-L	

B Dr. Bertram Boehrer (Helmholtz Centre for Environ. Res. – UFZ, Magdeburg)

L Prof. Andreas Lorke (Univ. Koblenz-Landau, Landau)

T Prof. Marco Toffolon (Univ. Trento, Italy)

Ex exercise sheet to solve

B01 - Stratification and circulation

B02 - Navier Stokes – eq.

B03 – Solutes, solubility

B04 – electrical conductivity, salinity

B05 - density

B06 - stability

B07 – surface waves

B08 – interfacial waves, seiche

B09 – internal waves

B10 – modal decomposition

B11 – Properties of internal waves

B12 - Ray Waves

B13 - Permanent stratification, meromixis

B14 - Climate sensitivity

L1 - Turbulence I: Introduction to turbulence

L2 - Turbulence II: Spectral characteristics and measurements

L3 - Turbulence III: Momentum and mass transport in turbulent boundary layers

L4 - Turbulence IV: Living in turbulence: biological – physical interactions

T1 – models of steady currents in lakes

T2 - introduction to sediment transport

Further Information:

http://www.ufz.de/index.php?de=18470

Bertram.Boehrer@ufz.de