Spatio-temporal variations of water sources and mixing degrees in a floodplain

Guilherme Nogueira¹, Christian Schmidt², Daniel Partington³, Philip Brunner⁴, Jan H. Fleckenstein^{1,5}

- 1- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany; 2- Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
- 3- Flinders University, Adelaide, Australia; 4- University of Neuchâtel, Neuchâtel, Switzerland; 5- BAYCEER, University of Bayreuth, Bayreuth, Germany

Introduction

- Floodplains and riparian zones are characterized by interconnected hydro-biogeochemical processes relevant for the aquatic ecossystem.
- Mixing of different waters in the riparian aquifer can bring reactants in contact and boost (or trigger) mixing-dependent biogeochemical reactions.
- The identification of *mixing hot-spots* (i.e., zones with a more uniform distribution of different water sources) is still difficult.

Methods and Study Area 2

Transient numerical simulations (Hydrogeosphere)

- Previous automated calibration (PEST) (Nogueira et al., under review).
- Validation against stream discharge and GW-heads.

Hydraulic Mixing Cell (HMC) method (Partington et al., 2011)

- Water fractions (i.e., stream f_{SW} , groundwater f_{GW} , from soil surface f_{FD}) computed for every cell in each time-step according to water fluxes between model cells.
- Validation of HMC results against river water fractions (F_{RIV}, Cl⁻ mixing model) on riparian wells. (*Trauhtetal., 2018*)

• The development of *mixing hot-spots* and its relation with flow dynamics can be related to turnover of groundwater-borne solutes in the riparian zone.

3 Integrating numerical modelling and HMC results

Validation of flow simulations

HMC fractions and geochemical hyporheic zone (HZ, $f_{SW} \ge 0.5$)

Nearly constant distribution of HMC fractions in the riparian aquifer over time. Up to 90% of the total volume of the domain present $f_{SW} \ge 0.1$. Up to 10% present $f_{SW} \ge 0.9$. Around 80% of HZ volume comprised by stream water (f_{SW}); a thin *mixing zone* Geochemical hyporheic zone around 50% of total volume of domain

Mixing degrees and mixing hot-spots (d_h)

Increasing in d_h in discharge events mainly related to peak prominences (R^2 =0.96).

Implications and Outlook 5

High mixing degrees and mixing-dependent denitrification fringe (groundwater NO_3^- + stream DOC) (Gassen et al., 2017)

Mixing hot-spots (d_h) comprise on average 10% of the domain.

• Widespread occurrence of infiltrating SW nearby the stream, with barely no mixing with other water sources, and a relatively thin SW-GW mixing zone.

• *Mixing hot-spots* comprise 10% of the floodplain on average, but could be nearly 1.5 time higher after discharge events.

• Discharge events mainly increase SW-GW mixing at greater distances from the stream; Near the stream, the mixing decreases with stream discharge due to increasing SW influx and reduced transit-time (i.e., short exposure-time).

Contact: Guilherme Nogueira

Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany, guilherme.nogueira@ufz.de

<u>References</u>: Gassen, N., Griebler, C., Werban, U., Trauth, N., Stumpp, C., 2017. High Resolution Monitoring Above and Below the Groundwater Table Uncovers Small-Scale Hydrochemical Gradients. Environ. Sci. Technol. 51, 13806–13815. https://doi.org/10.1021/acs.est.7b03087

Partington, D., Brunner, P., Simmons, C.T., Therrien, R., Werner, A.D., Dandy, G.C., Maier, H.R., 2011. A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface watergroundwater flow models. Environ. Model. Softw. 26, 886–898. <u>https://doi.org/10.1016/j.envsoft.2011.02.007</u>

Trauth, N., Musolff, A., Knöller, K., Kaden, U.S., Keller, T., Werban, U., Fleckenstein, J.H., 2018. River water infiltration enhances denitrification efficiency in riparian groundwater. Water Res. 130, 185–199. <u>https://doi.org/10.1016/j.watres.2017.11.058</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement Nº 722028 (ENIGMA ITN)

See this poster in HD: https://ibb.co/7N79Tvw