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A B S T R A C T

By adding attributes of space and time to the spectral traits (ST) concept we developed a completely new way of
quantifying and assessing land use intensity and the hemeroby of urban landscapes. Calculating spectral traits
variations (STV) from remote sensing data and regressing STV against hemeroby, we show how to estimate
human land use intensity and the degree of hemeroby for large spatial areas with a dense temporal resolution for
an urban case study. We found a linear statistical significant relationship (p = 0.01) between the annual am-
plitude in spectral trait variations and the degree of hemeroby. It was thereof possible to separate the different
types of land use cover according to their degree of hemeroby and land use intensity, respectively. Moreover,
since the concept of plant traits is a functional framework in which each trait can be assigned to one or more
ecosystem functions, the assessment of STV is a promising step towards assessing the diversity of spectral traits in
an ecosystem as a proxy of functional diversity.

1. Introduction

The shape and surface of our cultural landscapes are driven by a
multitude of factors and stressors, particularly urban areas representing
a land use type with probably the highest density and intensity of
multiple land uses (Elmqvist et al., 2013). Land use intensity is defined
as the extent of land being used including the land used for growing
crops, clearing land, planting trees, draining a wetland or sealing the
surface (Haase, 2014). Land use intensity is also an indication of the
amount and degree of development of the land in an area, and a re-
flection of the effects and environmental impacts generated by that
development (Boone et al., 2014). Both land use intensity and popu-
lation density can vary greatly over time and are unstable patterns
(Haase and Schwarz, 2015). Depending on the economic and demo-
graphic development of a region (or a city) they can dynamically grow,
decline or experience regrowth again, which is what the literature re-
fers to as ‘urban shrinkage’ and regrowth after shrinkage (Wolff et al.,
2016).

Urban land use intensity and population density as expressions of
urbanization and land development processes have a considerable im-
pact on the environment (e.g. Knapp et al., 2017). One consequence is

that urban ecosystems largely vary in terms of naturalness (Haase,
2014; Kowarik, 2011). A measure describing the impact and the degree
of all human interventions on ecosystems is the hemeroby index (Jalas,
1953, 1955). It is an index that is associated with naturalness as a
complementary term, with a high degree of hemeroby equating to a
high human influence and thus low naturalness (Hill et al., 2002). The
concept of hemeroby was used by Sukopp (1972) to describe the human
influence on urban vegetation. The hemeroby index ranges from the
ahemerobic degree (no anthropogenic impact on biocenosis) to the
metahemerobic degree (biocenosis completely destroyed by e.g. 100%
soil sealing; see e.g. Walz and Stein, 2014).

Kowarik (1988) used hemeroby to quantify the impact of human
interventions on ecosystems. Later, hemeroby was used by e.g.
Steinhardt et al. (1999), Walz and Stein (2014) and Lausch et al. (2015)
for land use classifications and the assessment of the impact of land use
on the biosphere (mainly on vegetation). Walz and Stein (2014) im-
pressively documented this hemeroby classification of land use in-
tensity using a range of GIS vector data (ATKIS). However, since large
land classifications such as ATKIS (for Germany), Corine Land Cover or
Urban Atlas (both with European coverage) just to name a few, only
represent one specific moment in time (e.g. Corine Land Cover is
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provided by the EEA for 1990, 2000, 2006 and 2012 and ATKIS for
cities in 2005 and 2014), they are limited in their scope and not very
appropriate for monitoring the variability of vegetation over a growing
season.

Therefore, new approaches based on temporal high-resolution re-
mote sensing data are required. Remote sensing is effective in mon-
itoring short-and long-term processes, patterns and thus also the con-
sequences of human use on land and particularly on vegetation – e.g.
plant species decline – and on soil, namely soil compaction or water-
logging (Lausch et al., 2013(2); Rocchini et al., 2010). Because the
analysis of land use intensity has received much less attention than the
analysis of land use conversion, only a handful of studies used remote
sensing data for land use intensity (Erb et al., 2013; Kuemmerle et al.,
2013) or grassland-use intensity (Giménez et al., 2017). In the recent
study by Estel et al. (2016) land use intensity was assessed based on
categorical remote sensing Data (CORINE) and economic input/output
statistics for the whole of Europe except cities. To our knowledge,
studies investigating and quantifying land use intensity and thus he-
meroby change to the terrestrial land surface in its spatio-temporal
short-term change neither exist for open landscapes nor for urban areas.

As a foundation for the remote sensing based analysis of land use
intensity we use the indicators spectral traits (ST) and spectral traits
variations (STV) by): “ST are anatomical, morphological, biochemical,
biophysical, physiological, structural, phenological or functional, etc.
characteristics of plants, populations and communities that […] can be
directly or indirectly recorded using remote-sensing techniques in
space. […] STV are changes to Spectral Traits (ST) in terms of phy-
siology, senescence and phenology, but also caused by stress, dis-
turbances and the resource limitations of plants, populations and
communities […]”. Cabrera-Bosquet et al. (2011) used ST to derive
biomass, nitrogen content as well as growth parameters from isolated
plants. Variation (STV) in remotely-sensed biochemical traits (e.g. the
content of nitrogen, lignin or cellulose) has successively been used to
assess forest canopy functioning, including water stress, pressure from
pests/ infestations, and canopy fluxes in nutrients and carbon
(McManus et al., 2016). Other studies showed that both ST and STV can
be analysed with remote sensing indices (e.g. Normalized Difference
Vegetation Index; NDVI) in order to determine the plant’s nitrogen
status, to differentiate between different ecosystem functional types or
to determine an ecosystem’s net exchange of CO2 (Alcaraz et al., 2006;
Morgan et al., 2016; Wang et al., 2012). This is also true for disturbance
events. Lu et al. (2011) concluded “that [the] NDVI can be used as a
secondary trait for large-scale drought resistance screening”. The
spectral traits approach is thus a powerful interface linking spectral
remote sensing data with important ecosystem characteristics like
stress, disturbances or resource limitations (Lausch et al., 2016
(1) & amp).

The traits of a species impact its fitness, and thus its potential to
grow, reproduce and survive (Violle et al., 2007). Consequently, traits
enable an assessment of the reasons behind spatial and temporal
changes in individual plants, communities, ecosystems and beyond
(Garnier et al., 2016). A reduction in the number of traits occurring in a
species community (which can accompany the loss of species) has been
shown to reduce the stability of ecosystems and the efficiency of eco-
system functioning (e.g. nutrient cycling) (Cardinale et al., 2012). As a
consequence, the provision of those ecosystem services that are the
product of ecosystem functions (e.g. soil formation) can be reduced
(Lavorel, 2013). Traits and their diversity (‘functional diversity’) are
dependent on numerous interactions and different drivers or stressors,
meaning that “a particular disturbance regime – comprising disturbance
type, intensity, frequency and severity – will lead to a specific plant
assemblage with traits pre-adapted to this disturbance regime”
(Bernhardt-Römermann et al., 2011 p. 778). This also applies to
human-induced stressors. For example, Garnier et al. (2007) established
a direct link between the spatial variation in plant traits and human
land-use regimes in agricultural and pastoral systems. Other reasons for

a variation of traits in the spatial dimension include different soil or
topography patterns and biotic interactions (e.g. intra- and interspecific
competition) (Garnier et al., 2007; Lausch et al., 2013(1)). Temporal
variations in plant traits can be attributed among other things to their
reaction to anthropogenic stressors, seasonal biorhythms (Lausch et al.,
2015), natural stressors such as pests (Fassnacht et al., 2014; Lausch
et al., 2013(1)) or resource limitations such as soil moisture stress on
plants (Lausch et al., 2013(2)). Traits thereby react to both short-term
and long-term processes and provide a proxy to the variation of pro-
cesses occurring in the landscape (Lausch et al., 2016(2)).

Urban areas differ from other land-use types (such as forests or
agricultural land-use types) with respect to the dominant environ-
mental conditions. Urban landscapes are usually more heterogeneous
(Niemela, 1999), with many of them being warmer than the sur-
rounding landscapes due to the urban heat island effect (Oke, 1982),
with drier soils, the isolation of green spaces from sealed structures and
frequent disturbances acting as environmental and anthropogenic
stressors (Kowarik, 2011). Consequently, urban and non-urban vege-
tation differ in the presence and abundance of certain traits (Knapp
et al., 2008). One example is the photosynthetic pathway of plant
species (C3- vs. C4- vs. CAM-photosynthesis), with higher frequencies of
C4-species in urban compared to non-urban areas, as a reaction to
urban heat and drought (Knapp et al., 2012). These changes in the
representation of traits across different land-use types together with the
rich variety in different land use regimes make urban areas important
regions for testing the ST/STV approach.

We understand urban land use intensity as a driver that homo-
genizes vegetation diversity by controlling the environmental boundary
conditions and thus the diversity of traits that can persist in intensively
used urban habitats. We therefore expect land use regimes that are
associated with a higher use intensity to show less diversity in spectral
traits in the urban biosphere (Fig. 1).

When aiming to better understand coupled human environment
systems in the city, a temporally and spatially explicit picture is ne-
cessary for well-informed management approaches. Since there is no
procedure for the spatially and temporally explicit assessment of urban
land use intensity, the goals of this paper are:

- to develop an approach for the analysis of urban land use intensity
and the degree of hemeroby by using remote sensing techniques that
work independently of categorical land use data and fixed bound-
aries and time frames.

- to develop the respective indicators that will be able to identify and
quantify ST and STV over space and time.

- to reveal gaps and limitations of this approach and the newly de-
veloped indicators using the case study urban region of Leipzig,
Germany.

Our underlying hypothesis is that the higher the land use intensity
and the degree of hemeroby, the lower the spectral trait variations.

2. Study area

The study region is the city of Leipzig, Germany, and its immediate
surrounding landscape (51°20′N, 12°22′E, Fig. 2). The city area is di-
vided into four dominating land use configurations; built-up areas, al-
luvial forest, cropland, and former mining landscapes that have been
transformed into lakes. In between those dominating landform config-
urations, Leipzig exhibits diverse vegetation patterns with small-scale
variation (Haase and Nuissl, 2007). Over the last century, various
contrasting trends in urban construction formed the city of Leipzig.
These trends range from urban shrinkage & growth, suburbanization &
re-urbanization to deindustrialisation & reindustrialization. In the early
1930s, Leipzig was home to over 700,000 inhabitants. Due to an eco-
nomic downturn in the industrial sector, Leipzig’s population went
down to 530,000 by the fall of the Berlin Wall in 1989. This period of

T. Wellmann et al. Ecological Indicators 85 (2018) 190–203

191



shrinkage was characterized by high vacancy rates in the old housing
districts and in the city centre, because those buildings that had been
damaged by the war were not rebuilt and instead prefabricated high-
rise buildings emerged in districts on the outskirts of the city. In the
years following the German reunification, the outflow of people grew.
The negative population balance was accompanied by further sub-
urbanization processes in the form of townhouse complexes and large-
scale infrastructure and production facilities, leaving even larger areas
of the centre empty. Since the early 2000s, these processes have been
turned into reurbanisation. Housing and places for work have returned
to the city centre and the inner city districts that were formerly fallow
grounds with vacant buildings. Residential spaces are faced with infill
development and densification (Wolff et al., 2016; Nuissl and Rink,
2005).

The interaction of the manifold building trends has created a highly

diverse cityscape, in which naturalness and thus hemeroby vary con-
siderably between adjacent areas. In Leipzig, it often only takes a few
steps to move from a place with an entirely destroyed biocenosis to
reach the shores of semi-natural ecosystems. Situated right next to the
city centre for instance is the alluvial floodplain forest (“Auwald”),
which is dominated by ash-, oak-, beech-, lime- and sycamore trees and
protected under the flora-fauna-habitat-directive (FFH). Furthermore,
patches of fallow land are spread across the city. Both ecosystems are
subject to very low management intensity and consequently feature a
comparably natural character. In addition, the old housing districts
feature old-grown vegetation, which is comparably rich in species di-
versity. This illustrates that in Leipzig the typical urban to rural gra-
dient is often overlaid by sharp small-scale variation.

Fig. 1. Conceptual diagram showing the filtering
effect of urban land use intensity (LUI) on traits in
different urban land use classes, represented by an
orthophoto and the complementary RapidEye nor-
malized difference vegetation index (NDVI) values,
set in relation to spectral trait variations (STV) and
hemeroby.
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3. Data and methods

3.1. Overview of the methodological approach

This study analyses STV to determine land use intensity and the
degree of hemeroby of urban surfaces with remote sensing data and a
biotope map as a reference scheme (Fig. 3). In a first step to determine
STV, the STs in every pixel cell of the satellite images (RapidEye) were
calculated. For this purpose we used statistical indices (different prin-
cipal components from a PCA carried out on the spectral RapidEye
bands) and a range of normalized difference vegetation indices (NDVI,
gNDVI, reNDVI). The vegetation indices can be used indicatively for the
traits photosynthesis rate, chlorophyll content or phenological char-
acteristics (Cabrera-Bosquet et al., 2011; Gamon et al., 2016, 1995;
Gitelson and Merzlyak, 1997; Reed et al., 1994). This pixel-based in-
formation was extracted for every pixel of the regions of interest, whose
location was derived from a biotope map (Frietsch, 1997). In every
region of interest the STV were calculated for the 12 DOY (day of year)
with 12 statistical measures assessing different aspects of the (un)equal
distribution of the ST inside the region of interest. The information from
the STV was then aggregated for each of the land use classes for every
time step and plotted for the entire annual course.

3.2. Ground truth

For the selection of regions of interests – we used a biotope map
from 2005 (Frietsch, 1997), containing information about the current
plant communities, abiotic factors and different forms of land use. From

this map we derived the location of our regions of interest, grouped
them according to the current land use regime and assigned the cor-
responding degree of hemeroby to the land use classes (Table 1). In this
way we sampled for a total of 12 land use classes, 20–50 regions of
interest per class based on the biotope map, local expert knowledge and
an orthophoto. The sampling was carried out in a round sample buffer
with a radius of 50 m. The 12 classes were split up into six built-up land
use classes with different building densities and forms, and six vege-
tation-dominated classes covering the most important ecosystems of
Leipzig. The land use classes thereby served as a basis for the larger
purpose of deriving the hemeroby of the respective land surfaces in
future studies without the guidance of a categorical land use product.

3.3. Remote sensing data

The RapidEye satellite fleet offers high temporal- and spatial re-
solution imagery. The sensor acquires data in five spectral bands
(R,G,B, red-edge & near infra-red) with a ground resolution of 6.5 m at
nadir, making it very capable of tracking the spatio-temporal pattern of
small-scale urban environments (Tigges et al., 2013).

For our study, we acquired 24 cloud-free RapidEye images from the
years 2010–2012 (Table 2) and stacked those images according to the
day of year (DOY). This way we generated an intra-annual time series
with 12 images per tile, portraying the annual variability of the urban
ecosystem.

3.3.1. Remote sensing data processing
For the atmospheric correction of the acquired satellite data we

Fig. 2. (A) Location of the study region Leipzig in Germany, (B) RapidEye image of Leipzig showing the city borders, (C) and an overview of the main land use classes that are embeddeed
in the urban land use matrix of Leipzig.
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deployed the widely used tool ATCOR 2 (Richter, 2011; Scatozza,
2013). From the pre-processed data we then calculated six indices
combining multiple RapidEye bands into one single band file, to avoid
constraints caused by multidimensionality (Table 3). We tested 3 var-
iations of normalized difference vegetation indices and the first 3

components from a principal component analysis (PCA) in terms of
their suitability to depict spectral traits variations. In our study the
NDVI proved to be the most robust index and was therefore chosen to
calculate the STV indicators. Overall, the NDVI was comparable to
gNDVI and reNDVI with the advantages that it offered a greater

Fig. 3. Flowchart of the methodical approach for the
quantification of urban-land use intensity and he-
meroby on the basis of spectral trait variations (STV).
Spectral traits were calculated separately with each
of the six different remote-sensing indices (three
different normalized difference vegetation indices
(NDVI) and three different combinations of principal
components from a principal component analysis
(PCA)) for the regions of interest (ROI) of the re-
garded land use classes (LUC). Inside the regions of
interest spectral trait variations were then calculated
with each of the twelve different indicators. We then
identified the best performing combination of remote
sensing and statistical indicator based on expected
spectral trait variation behavior and used only these
for further analysis.

Table 1
Classification of the individual land use classes according to their degree of hemeroby and their corresponding degree of naturalness and their human impact (modified after Lausch et al.,
2015; Sukopp and Kunick, 1976)

Land use class types Land use classes Degree of hemeroby Degree of naturalness Human impact

Built-up urban land Inner city business district 7. Metahemerobic Artificial Excessive
Crafts and industry 7. Metahemerobic Artificial Excessive
High-rise buildings 6. Polyhemerobic Close to artificial Very strong
Perimeter development 6. Polyhemerobic Close to artificial Very strong
Townhouses 6. Polyhemerobic Close to artificial Very strong
Allotment gardens 5. α-Euhemerobic Far from natural Strong

Vegetation-Grassland Park meadows 5. α-Euhemerobic Far from natural Strong
Extensively managed meadows 4. β- Euhemerobic Far from natural Moderate/Strong
Fallow ground 3. Mesohemerobic Semi-natural Moderate

Vegetation-Agriculture Agricultural Fields 5. α-Euhemerobic Far from natural Strong
Fields fallow in winter 5. α-Euhemerobic Far from natural Strong

Vegetation-Forest Alluvial hardwood forest 3. Mesohemerobic Semi-natural Moderate

Table 2
Image acquisition dates of the RapidEye remote-sensing data.

Month DOY Acquisition dates Leipzig
south

Acquisition dates Leipzig
north

January 26 26.01.2012 26.01.2012
March 60 01.03.2011 01.03.2011

81 22.03.2011 22.03.2011
April 111 21.04.2011 21.04.2011
May 135 14.05.2012 20.05.2011
June 154 03.06.2011 03.06.2011

178 27.06.2011 27.06.2011
July 206 24.07.2012 26.07.2011
August 232 20.08.2011 20.08.2011
September 265 22.09.2010 25.09.2011
October 305 31.10.2012 29.10.2011
November 326 21.11.2012 21.11.2012

Table 3
Remote-sensing indices calculated for the RapidEye data in the urban study region of
Leipzig.

Type of Index Index Name Abbreviation Reference

Vegetation
Indices

Normalized difference
vegetation index

NDVI Tucker, (1979)

Green normalized
difference vegetation
index

gNDVI Gitelson et al.
(1996)

Red edge normalized
difference vegetation
index

reNDVI Gitelson and
Merzlyak, (1994)

Statistical
Indices

Principal component
analysis

1st component Jolliffe, (2002)
2nd component
1st and 2nd
component
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contrast between the classes, while the principal components from the
PCA did not foster any meaningful results.

3.3.2. Spectral trait-based indicators for urban land use intensity with
remote sensing

For the analysis of spectral trait variations, we used 12 statistical
indices of 3 different types. The first type of indices is computed on a
grey level co-occurrence matrix (GLCM), the second group are measures
of spatial autocorrelation and the third group consists of a set of de-
scriptive statistics (see Fig. 4, Table 4).

A GLCM is a reliable way of spatial texture evaluation for remote
sensing data (Guo, 2004; Marceau et al., 1990), e.g. the evaluation of
remote sensing measured NDVI. The procedure assesses the texture of
an image by calculating the number of occurrences of specific value
combinations between adjacent pixels, evaluating the distribution of
remote sensing measured NDVI values in every region of interest. Based
on this frequency matrix we calculated eight indicators, introduced by
Haralick et al. (1973) (Table 4).

The descriptive statistics that we calculated included the median,

standard deviation, and the Shannon index of NDVI values and two
measures of spatial autocorrelation (Geary’s C and Moran’s I) (Table 4).
The last two indices describe the degree of relation that the values of a
variable feature based on their location (Geary, 1954; Moran, 1950).

All the indicators mentioned in Table 4 were tested if they could
reproduce anticipated STV behavior of the test sites. This was done for
every of the above mentioned indicators with all remote sensing in-
dices, making 72 different testing combinations. Out of these combi-
nations we chose GLCM Variance and Correlation as final indicators for
the calculation of STV.

3.4. Relating spectral trait variations (STV) with hemeroby

To derive meaningful information from our analysis of spatio tem-
poral variability we calculated a first indicator, the annual amplitude in
STV. For each of the hemeroby classes featured in this study (Table 1)
we derived the mean annual amplitude in STV of every land use class
exhibiting the regarded degree of hemeroby. This was done by sub-
tracting the lowest from the highest GLCM Variance or Correlation

Fig. 4. Schematic explanation of the quantification of human use intensity using statistical indicators, (A) on monotemporal RapidEye remote-sensing data, analysing the spatial
variability inside a region of interest, (B) on multitemporal RapidEye imagery, assessing the temporal aspect of variability and (C) an integrated scheme, where both temporal and spatial
spectral trait variations (STV) are analysed over the course of a year (cf. DOY− day of year) based on RapidEye derived NDVI images to assess the degree of hemeroby and urban land use
intensity.
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value. Fallow ground, forest, extensively managed and park meadows
were measured with GLCM Correlation and the other factors in GLCM
Variance (for normalization, the value range for the GLCM Correlation
indicators was fitted by a factor of 1000). Based on these figures we
fitted a linear model (1). As the dependent variable we used the mean
annual amplitude in STV and the degree of hemeroby as the in-
dependent variable

A-STVi = α+ β Hi + ε (1)

A-STV: Mean annual amplitude in STVH: Degree of hemeroby
To test for statistical significance we used a one-sided analysis of

variance (ANOVA) test with a significance level of 0.05%. The expert-
based, empirically tested biotope map of the city of Leipzig was used as
the ground truth for the modeled degree of hemeroby.

In order to avoid misinterpretation, it is important to state that we
looked at pure lawn spaces within a larger park and not at the entire
park unit. Thus, we could exclude the effects of designed structural
diversity and complex configuration of different types of green in such
parks. Second, we are looking at the spectral diversity of the land
surface and not at species diversity.

4. Results

4.1. Quantification of urban land use intensity by remote sensing for all
land use classes

The framework outlined above is able to detect STV in the urban
environment to a degree where we can draw conclusions about the
degree of hemeroby of the ecosystem in question directly from remote-

sensing data. With this we can show that higher urban land use in-
tensity causes a reduction in the variety of spectral plant traits both in
the spatial and in the temporal dimension.

From the linear model, we can deduct that for a difference of 38 in
annual STV amplitude (measured in GLCM Variance), there is a re-
duction of 1 degree of hemeroby (Fig. 5). We found the relation to be
statistically significant with a p value of 0.01.

A-STV = 285− 38.5* H+ ε (2)

A-STV = Annual amplitude in spectral trait variationH = Degree of
Hemerobyε = Error term

We achieved this relation by using the NDVI as an indicator for the
spectral traits’ photosynthesis rate, chlorophyll content, greenness
content or phenological status. Thereof we calculated the spectral trait
variations (STV) with the indicators GLCM Variance and GLCM
Correlation. While GLCM Variance proved to be best suited in built-up
land use classes, GLCM Correlation was better for land use classes solely
with vegetation.

For the regarded urban land use classes, we find that the STV con-
tained in different land use classes varies substantially. This is true for
their mean annual STV, the amplitude as well as the annual course of
the STV. This is primarily due to the fact that land use management
schemes systematically vary between different land use forms. The
vegetation that is found between sealed surfaces in rather densely-po-
pulated areas is thereby of pronounced importance because while it
delivers vital ecosystem services it is subject to a variety of stressors.
This underpins the fact that an integrated view of the city’s ecosystems
is necessary, that is not limited to the classical green infrastructure, but
rather includes the dynamics of change across the entire city in a
continuous temporal and spatial scope to draw conclusions about the
nature of urban ecosystems.

4.2. Quantification of urban land use intensity by remote sensing for single
land use classes

4.2.1. Urban built land
For the built land use classes (Fig. 6), STV between the different

building- densities, shapes and sizes varied substantially, demonstrating
that even in densely-populated and therefore intensely-used areas,
different types of vegetated areas can exist in a relatively small space
(Fig. 7). Fig. 7 showed that land use classes with the same degree of
hemeroby are discernibly clustered together. These two major group-
ings are high-rise buildings, perimeter development and townhouses on
the one hand featuring polyhemerobic habitats, and industrial and
inner city business areas on the other, featuring metahemerobic habi-
tats with (almost) exclusively sealed surfaces and a completely da-
maged biocenosis. Both the mean and the annual amplitude follow the
trend that lower values represent a higher degree of hemeroby. (The
exception of the allotment gardens will be discussed in the course of
this section and in Section 5)

The main determinants for the STV in built-up areas are the degree
of surface sealing, defining the general available space for plants, and
secondly the anthropogenic management techniques. This means that
higher levels of unsealed surfaces or greenness do not directly translate
into higher STV. For instance, even though they are subject to less
surface sealing the newly build townhouse areas feature lower STV
compared to the perimeter development areas. This is due to higher
green space management intensity and the fact that these areas feature
large sections of fastidiously cut lawn and not yet old but fast-growing
tree species. Comparable management schemes between neighboring
gardens lead to the situation that adjacent RapidEye pixels are spec-
trally very similar resulting in less spatial STV. This also holds true for
the temporal STV dimension, since multiple phenology related traits are
absent in the presence of management schemes such as cutting,
weeding, watering, fertilization and the application of pesticides. In

Table 4
Statistical indicators that have been tested in this study for the quantification of spectral
trait variations.
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contrast to this, the perimeter development areas feature large old-
growth trees with other green areas in their back yards, leading to a
higher annual amplitude in STV. The higher share of deciduous trees in
comparison to evergreen lawn can also be derived from the fact that the
STV recorded in winter are higher for the areas with townhouses and
lower for perimeter development areas.

For the built-up land use classes in question we find a strong re-
lationship between spatial and temporal STV. It is true that the higher
the classes’ annual STV mean, the higher the annual amplitude. The
industrial class, on the one hand, is absent of vegetation and lacks an
annual amplitude, because the measured variance solely originates
from either the buildings, the background noise from the sensor or

illumination effects. The polyhemerobic land use classes on the other
hand, feature both a much higher mean and amplitude. The amplitude
thereby particularly depends on the green space management intensity.
This exemplifies how the connection between spatial and temporal
variability is related to both the degree of sealing and green space
management.

4.2.2. Grassland
Our results for the grassland classes followed our hypothesis that the

higher the land use intensity and the degree of hemeroby, the lower the
spectral trait variations. For the most intensively managed grassland
type we measured the lowest variations in spectral traits (park

Fig. 5. (A) All analysed urban land use classes with their corresponding degree of hemeroby and their annual amplitude in spectral trait variations (STV) measured in GLCM Variance;
fallow ground, forest, extensively managed- and park meadows were measured with GLCM Correlation. For normalization, the value range was fitted by a factor of 1000. (B) The mean
annual amplitude of spectral trait variation (STV) in relation to the degree of hemeroby of the analysed urban areas, with a fitted linear model in red and the confidence interval in grey,
showing that for every degree of hemeroby we measure 38.5 less in the annual amplitude in spectral trait variations (STV); the degree of hemeroby Metahemerobic and ß-Euhemerobic
were measured in GLCM Correlation, the rest in GLCM Variance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

T. Wellmann et al. Ecological Indicators 85 (2018) 190–203

197



meadows) and for the least intensively managed grassland we measured
the highest variations (fallow ground) (Fig. 8).

The low STV for intensively managed meadows can predominantly
be traced to the monoculture planting scheme and the high cutting
frequency, which serve as important filters for many plant traits such as
variation in growth height, different leaf forms or traits that are related
to different stages of the phenological cycle. The extensively managed
meadows feature lower levels of management intensity and higher
spectral trait variations, especially in summer. This is primarily due to a
lower cutting frequency, allowing plants to run through larger parts of
their natural life cycle. In this respect, the phases of flowering and
maturity are particularly important as it is during these phases that
different plant species produce unique traits such as different flower
colours and forms or different seed sizes. Spectral trait variation for the
two classes under investigation is very similar in spring (DOY 60,
80 & 110) and during the autumn/winter time frames (DOY 220–320),

which could be attributed to cutting taking place in both meadow types.
This observation emphasizes just how great the need is for spectral trait
diversity analysis to feature multi-temporal data that covers all major
phenological stages and abrupt changes due to human influences.

We measured the largest spectral trait variations on fallow land that
has only been subjected to human actions in the past or is only affected
by the surrounding urban landscape (e.g. soil sealing, contamination,
eutrophication and the restriction of dispersal vectors). These systems
are able to develop a wide variety of plant traits from a range of dif-
ferent plants that are part of the grassland mosaic. These include dif-
ferent forms of leaves − broad-leafed and coniferous species; different
growth heights − from grass to shrubs or even trees; and different
forms of flowering. This variety is then reduced in the summer months
when deciduous plants also feature a large set of traits, and flowering
plants exhibit the traits of flowering and their seeds.

Fig. 6. Orthophoto and the corresponding NDVI values quantified by RapidEye data for urban built land use classes.

Fig. 7. Spectral trait variations (STV) of six urban built land use classes and their corresponding hemeroby values. The GLCM variance values are given over the course of a year
(DOY = day of year).
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4.2.3. Farmland
Mechanized agriculture can be seen as an intense repetitive intra-

annual land use intensity gradient that basically consists of ploughing,
seeding and harvesting and produces different spectral traits over the
course of the year. To account for different cultivation schemes, we
subdivided our sampling areas into fields that show photosynthetically
active vegetation in winter and those that do not. Due to crop rotation,
it is very likely that the same plant grows on the field in successive
years. Since we aggregated remote sensing data from two years, we
suggest that the effect caused by different plants in terms of their STV is
smaller than the general repetitive character of the system.

In spring, STV are higher in those fields with plant cover in winter
compared to those fields without (Fig. 9) (DOY 26 is an exception that is
likely to be caused by illumination effects). In late spring/early summer
time frames, when the newly planted fields start to grow, both curves
align with one another. Between DOY 180 and DOY 200 in late July and
August, both index curves drop significantly (Fig. 9). This sharp drop
relates to the main harvesting time, when most of the plants are
eliminated. Subsequently, farmers mulch and plough under the crop
residues, eliminating the vegetation and subsequently any remaining
traits. Since this procedure is thought to greatly eliminate any crop
pests, it is fair to assume prompt and rather consistent action of the

Fig. 8. Spectral trait variations (STV) of three urban grassland types and their corresponding degree of hemeroby. The GLCM correlation values over the course of a year are shown.

Fig. 9. Spectral trait variations (STV) for fields, subdivided into fields that are cultivated in winter and those that are not. The GLCM correlation values over the course of a year are
shown.
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farmers, showing that STV analysis from remote sensing data can trace
specific human management intervention. The rise in GLCM Correla-
tion for the winter recordings (DOY 305 & 326), is very likely to be
caused by illumination effects due to the low sun angle.

4.2.4. Forest
The intra-annual changes observed in STV in Leipzig’s urban forest

can be attributed to natural phenomena, namely the phenological cycle.
Spectral trait variations in the forest are highest in spring, with a slight
increase in autumn (Fig. 10). In the winter and the summer months
spectral trait variations in Leipzig’s forest are comparably lower. In
periods with high GLCM variance values there is a strong shift in var-
ious traits in terms of photosynthetic activity and general chemical leaf
composition. While the spring phenophase is characterized by foliation,
autumn is dominated by foliage discoloration and leaf fall. Since dif-
ferent plants have differently timed onsets for these changes, a het-
erogeneous cover unfolds in spring and autumn. In summer, when all
trees feature a dense canopy and the photosynthesis capacity is con-
sequently higher, the spectral trait variations between adjacent areas
are lower. Since there is only one larger consistently managed forest in
Leipzig with low land use intensity, it is not possible to draw conclu-
sions about the effects of human land use on STV in a forest ecosystem.

5. Discussion

By adding the spatio-temporal component to the ST and STV con-
cept, we developed a framework that analyses land use intensity and its
effects on the degree of hemeroby irrespective of the categorical land
use data. This is an important new reference point in the ecology of the
urban landscape and land use intensity assessment. Since the concept of
plant traits is a functional framework in which each trait can be as-
signed to one or more ecosystem functions (Lausch et al.,2016; Violle
et al., 2007), the assessment of STV is a promising step not only for
assessing the functional diversity in an ecosystem (Diaz et al., 2004) but
also for improving the interpretation of the effects of human activity on
land and its specific place-based temporal/seasonal impacts on the af-
fected ecosystems (Hill et al., 2002). The use of remotely sensed data
thus opens up the opportunity of spatially continuous comparisons of
entire landscapes over longer periods of time.

From the three vegetation remote-sensing indices (NDVI, NDVIre,

gNDVI) and the three different combinations of principal components
from a PCA, we found that the NDVI is superior to the other indices in
representing spectral traits. The NDVI is a well-proven index that is
sensitive towards a variety of key spectral traits: It correlates with
photosynthetically active radiation (Gamon et al., 1995), allows for the
differentiation between canopy structures and phenological character-
istics (Gamon et al., 1995; Reed et al., 1994) and can differentiate be-
tween different ecosystem functional types or determine an ecosystem’s
net exchange of CO2 (Alcaraz et al., 2006; Morgan et al., 2016; Wang
et al., 2012).

To calculate the distribution of ST, we successfully used the in-
dicators GLCM Correlation and GLCM Variance and were thus able to
determine STV. The other indicators used in this study (Table 4) al-
lowed for no consistent and meaningful linkage between STV and he-
meroby or did not provide as much contrast between the single classes.
We found that GLCM Variance proved to be best in built-up land use
classes, whereas GLCM Correlation was better for land use classes solely
with vegetation. Geary’s C and Moran’s I produced results with ten-
dencies that were very similar compared to GLCM correlation, but
without offering as much contrast between individual classes. The si-
milarity between GLCM correlation and the means of spatial auto-
correlation is very promising and in accordance with the literature,
especially as those measures are independent in their calculation (Van
Der Sanden and Hoekman, 2005).

The STV featured in different types of urban vegetation varies
strongly and depends on human land use intensity and specific man-
agement strategies over the season/year. Results generally follow the
trend that the lower the human green space management intensity, the
higher the STV. This is in accordance with the hemeroby classification
of urban sites introduced at the beginning of the paper. Thus, our STV
analysis is a proof-of-concept for deriving urban land intensity and
hemeroby from remotely sensed data.

We found that the amplitude in STV is of particular importance,
because heterogeneity caused by sealed land is stable over the course of
the year and only changes in vegetation due to stressors or phenology
can cause intra annual change. While this provides a good and effective
starting point, more sophisticated indicators could be calculated in
upcoming studies.

What is also interesting is the large gradient in STV between the
different types of built structures, implying that the ecological diversity

Fig. 10. Spectral trait variations (STV) for the urban forest of Leipzig over the course of a year, the GLCM variance values are shown.
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between primarily sealed land can be very different. The high trait
diversity in the late 19th century districts dating back to the
Wilhelminian period with their large backyards with old mature trees is
very much in accordance with recent literature, stating that both plants
and birds can develop a high diversity in these areas, compared to other
inner-urban areas (Müller, 2009; Strohbach et al., 2009). This high-
lights the need for urban landscape planning that focuses much more on
the qualitative aspects of plant trait diversity, particularly in times of
strong urban growth and the trend towards infill development (Schetke
et al., 2012).

The classification of different types of grasslands using remote
sensing is difficult and has so far only been partly solved (Schuster
et al., 2015). This is also true for the differentiation between different
land use management intensities (Franke et al., 2012). These short-
comings are largely due to the high spectral similarity of grasslands, the
small size of objects to be measured, and the overall small spatial extent
of such land use types (Schuster et al., 2015). With our approach, the
diversity in grasslands could be analysed. Moreover, promising results
in the domains of agriculture and forests indicate that our study can be
transferred into peri-urban and rural areas.

We conclude that in the urban context, less management or reduced
land use intensity result in a higher diversity of spectral plant traits, i.e.
higher functional diversity. As functional diversity supports a range of
ecosystem services such as pollination or wood provision ((Lavorel,
2013) and references therein), the preservation of it should be a central
goal of land management. We therefore see a tremendous need for
strategies and programs that inform policy makers, land owners,
planners and managers about the verified impacts which intensified
management actions, such as mowing, irrigating, and the application of
pesticides and fertilizers have on the diversity of life in cities and the
services it provides for us. Hence, we strongly believe that it is im-
portant to convince urban land owners and other stakeholders to be-
come part of creating change towards a more diverse urban biosphere.

Uncertainties

Scaling is one of the key uncertainties in ecology when comparing
patterns observed on different spatial scales. One example from our
study is the comparison of town house and allotment garden areas,
which both tend to exhibit a matrix of built-up and vegetated structures
that consist of the same compartments, only that in the case of the al-
lotment gardens everything is somewhat smaller. Therefore, the struc-
tures of the allotment garden areas are aggregated into mixed pixels,
meaning that a comparative assessment between differently scaled
biotopes is hard to achieve. What is true for the scaling of such patterns
extends to the scaling of the data derived from these patterns. We
therefore highlight the fact that this assessment is only comparable to
studies featuring equally scaled data (6.5 × 6.5 m). For the analysis of
small-scale structures, finer resolution images are required.

We analysed all 12 land use intensity classes in separate groups,
because of various issues regarding the scaling and as a consequence
thereof, different levels of aggregation. The level of aggregation de-
pends on the relational scaling between the sensor and the object and
therefore changes when objects of different sizes are analysed. While,
for instance, the canopy of a single tree might well fill out an entire
RapidEye pixel, the canopy of a grass stalk only fills out a very minute
portion of one pixel. This results in the fact that grassland pixels are
much more of an aggregation of an uncertain amount of stalks, possibly
belonging to different species that exhibit different traits and other
abiotic components compared to single trees. In contrast, the forest
pixels will show much less aggregation of different individual plants,
featuring varying traits and an abiotic background signal. While the
different degrees of aggregation are already important for mere image
classification, they are even more important when measuring the var-
iance of image regions (Woodcock and Strahler, 1987).

6. Conclusions

With spectral trait variations from a dense remotely sensed time
series we can estimate urban land use intensity and the degree of he-
meroby for large spatial areas. Adding attributes of space and time to
the spectral traits concept opens up the possibility of analysing these
important indicators for urban and open land surfaces in a repeatable,
comparable and cost effective manner.

By expanding the analysis of land use intensity and hemeroby in the
urban environment beyond land cover maps we open up the opportu-
nity of spatially continuous comparisons of entire landscapes over
longer periods of time, irrespective of a classification procedure.
Remotely sensed data still reflects the physio-chemical information of
both the vegetation and the soil layers that were received by the sensor.
Only then properties of the living elements of the site/area can be
analysed and interpreted such as the differentiation of lawns or forests
in a city according to their fitness and greenness which would be not at
all possible using land cover maps.

Upcoming studies should use the spatially continuous spectral data
of remote sensing missions rather than analysing specific patches. For
this purpose, the integration of the presented routine into remote sen-
sing based classification tools would be desirable. At the same time,
more ground truth measurements of traits are necessary to verify re-
mote sensing data. If these obstacles are overcome, the presented pro-
cedure could become an important cornerstone in decision making
processes.
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