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FOREWORD

I first became familiar with the work of Luis Samaniego in the fall of 2010, when he received the 2010 WRR
Editor’s Choice Award for his development of the Multiscale Parameter Regionalization (MPR) technique. Luis’
work was based on the concept of the Representative Elementary Area (REA) which I had introduced a decade
earlier, but which had been rarely referenced for parameterization of land surface models. In the MPR approach
developed by Luis, the REA concept is one of the key concepts used to estimate effective parameters at multiple
mesoscale resolutions based on the subgrid variability of geophysical predictors. At that time, the MPR approach
was only built into the mHM model originally developed by Luis and his group at the UFZ and successfully
tested in several basins in Germany. Although these concepts were originally applied at a regional scale, I could
clearly see their potential for large scale modeling. In 2013, Luis visited me at Princeton to share the results of the
first implementation of mHM in Germany and to brainstorm on potential cooperation opportunities. This mHM
implementation would evolve to become the basis of the German Drought Monitoring system in place today at the
UFZ. Later, during the Hyper-resolution Global Hydrological Modeling workshop held in Utrecht in 2014, I was
pleased to see the first mHM implementation at the European level; with excellent cross-validation results. In 2016,
Luis was invited to Princeton to deliver a talk entitled, “Towards Seamless Hydrologic Predictions Across Scales.”
Hearing this seminal presentation cemented my trust that Luis’ approach has an extraordinary potential for seasonal
forecasts and climate projections on a continental scale. I encouraged Luis to pursue funding to further develop
his model into a fully operational seasonal forecasting system. With this goal in mind, we jointly work on several
proposals and eventually secured funding from the C3S-Programme (ECMWF) to execute the project “End to End
Demonstrator for Improved Decision Making in Europe (EDgE)”. Based on EDgE results, Luis and I collaborated
on five published papers covering topics related to seasonal forecasting and climate projections. Luis took the lead
on two of them which are re-published in this book. These papers deal with a topic that has been at the center of
my own research career – monitoring, modeling and prediction of droughts at continental and global scales. Luis’
bottom up approach is at the forefront of this field and I am optimistic that his work will mark a striking change for
operational systems and will provide a key contribution to address the immense challenge of delivering a global,
and locally relevant, hyper-resolution system for drought (and flood) prediction and forecasting.

ERIC F. WOOD, NAE, FRSC, ATSE
SUSAN DOD BROWN PROFESSOR (EMERITUS) OF CIVIL AND ENVIRONMENTAL ENGINEERING

Princeton
27th of January of 2020
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PREFACE

My fascination with Nature, science and water goes back to my childhood at the time when my father took me
to the countryside to collect stones, watch big ferns and explore torrential rivers. From him I first learned the
latin names of plants and fungi, and through his microscope, learned that there is much more stuff around us that
we cannot see with the naked eye. At that time, the question that intrigued me most was: where does the water
from a river come from? Years later, severe droughts and floods made me also wonder about the amazing power
of water for sustaining and destroying life. The conscious aspiration to estimate the amount of water flowing at
every moment in a river came much later during my master studies. From this first imagined question to later
learning to calculate the answer and then actually estimating drought impacts, many things had to happen, from
meeting my PhD supervisor (A. Bárdossy) to finding a postdoc job that allowed me develop the necessary tools
(i.e., mathematical algorithms that constitute a model) to answer this question. To cope with this challenge, I
needed to “stand on the shoulders of giants” in the discipline of land surface modeling (S. Manabe, R.A. Freeze,
R.L.Harlan, J.C.I. Dooge, P.S. Eagelson, E.F. Wood) to be able to figure out, for example, how to include the sub-
grid variability in a hydrological model and then to make it applicable everywhere. Furthermore, I needed to write,
from scratch, the first lines of Fortran code for what was to become mHM and then to find a number of bright and
extremely efficient colleagues to help me with this gargantuan enterprise. Later, it was necessary to understand
how the leading experts in continental drought modeling (D.P. Lettenmaier, E.F. Wood, J. Sheffield, among others)
are using statistical concepts to model droughts and then propose new methods so that the model and the drought
indices are transferable across river basins and spatial scales. These were non-trivial tasks to master, but then,
I was fortunate enough to work with a department head (S. Attinger) that believed that my work was promising
and innovative, and hence, provided the resources along this wonderful intellectual adventure. Finally, I should
recognize that this quest would not have been possible without the support and inspiring atmosphere I found at
the Helmholtz Centre for Environmental Research - UFZ, and the infinite love and comprehension of my beloved
family.

LUIS SAMANIEGO

Leipzig
March, 2020
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CHAPTER 1

INTRODUCTION

For most of the history of our species we were helpless to understand how nature works. We took every storm, drought,
illness and comet personally. We created myths and spirits in an attempt to explain the patterns of nature.

—Ann Druyan

1.1 Defining drought

Drought is an Old English word originated from the ancient Germanic root “dreug”, which means a continuous
dry weather injurious to vegetation, leading to a shortage of water in water bodies such as creeks, rivers or lakes.
Because this definition is quite general, there have been many interpretations of this word during the passing of
the centuries which have led to confusion with other terms such as aridity or water scarcity. For these reasons,
the World Meteorological Organization defined drought as “an insidious natural hazard characterized by lower
than expected or lower than normal precipitation that, when extended over a season or longer period of time, is
insufficient to meet the demands of human activities and the environment”. This means that this natural hazard “is
a temporary aberration, unlike aridity, which is a permanent feature of climate” (WMO, 2006). In other words, it
denotes a transient state of the atmosphere or the hydrosphere.

The WMO also defined four types of droughts: meteorological, agricultural, hydrological and socioeconomic.
The first three types define drought as a deficiency below a threshold defined over a predetermined period of time.
The target variables in this case are: precipitation, soil moisture and runoff (Samaniego et al., 2013). The socio-
economic drought refer to the “relationship between the supply and demand for some commodity or economic
good, such as water, livestock forage or hydroelectric power, that is dependent on precipitation” (WMO, 2006).

Drought Modeling and Forecasting, First edition.
By Luis Samaniego Copyright © 2021 Luis Samaniego
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2 INTRODUCTION

Figure 1.1 Ancient Mesopotamian terra-cotta
relief (c. 2250 | 1900 BCE) showing Gilgamesh
slaying the “Bull of Heaven”. This mythological
beast represents the first conceptualization of the
drought (source Royal Museums of Art and History,
Brussels).

Over millennia, this natural hazard could not be understood or de-
fined but rather was associated with mystical connotations. As
a result, drought occurrences became the origin of mythology,
curses, and folklore. To my knowledge, the first personification
of the drought hazard appears in the Epic of King Gilgamesh of
Uruk in Mesopotamia (c. 2000 BCE). In this ancient heroic leg-
end, Gilgamesh braved and defeated drought in the form of the
mythical beast the “Bull of Heaven” (Fig. 1.1). This legend de-
scribes how the bull’s voracious appetite caused the drought and
wreaked havoc on the people in ancient Mesopotamia (Heath-
cote, 2016). Another well know Biblical passage was that of the
Pharaoh’s Dream (Genesis 41), in which seven years of famine
will follow seven years of abundance.

Current research has shown that past mega-droughts changed
the history of mankind by stimulating the expansion and migra-
tions of early modern human populations (Scholz et al., 2007).
Over the course of centuries, several civilizations declined or col-
lapsed due to the onset of long and severe droughts. The main con-
sequences of these catastrophic events are now well documented
by archeologists, for example, the Mycenaean and Hittite empires
c. 1200 BCE (Bryson and Murray, 1977), the Neo-Assyrian Em-
pire c. 609 BCE (Sinha et al., 2011), the Mayan Civilization c.
1000 CE (Evans et al., 2018; Heathcote, 2016), the Aztec Civi-
lization 1454 CE (Therrell et al., 2004), the Khmer Kingdom c.
1300 CE (Stone, 2009).

1.2 From mythology to science

Droughts have always been present during human history. References to the occurrence of this natural hazard
abound in ancient religious books such as the Bible (e.g., in 2 Chronicles 7:13-14) and the Quran (e.g., in chapter
44), and in most cases, as one of the ultimate divine punishments for disobeying gods’ commandments.

In history books, conversely, it is used to describe socio-economic situations characterized by crop failure;
undersupply, shortage or scarcity of agricultural products; famine and mass-migration and as a cause of civilization
collapse.

Despite all the human suffering, the socio-economic losses and the ecological consequences inflicted by the
onset of droughts over the centuries, mankind was hopeless in their attempts to predict and ameliorate the conse-
quences of droughts. In old times, it appeared that the only possible actions to mitigate the pain and loss caused by
this natural event were religious and folkloric rituals. Ancient artists (Tan, 2015; Therrell et al., 2004) and painters,
impressed by the power of the human drama, immortalized such moments on canvas with extraordinary expressive
and melancholic images. Representative examples are “Prayer in Time of Drought” by G. G. Myasoyedov (1881)
or “Gorta” by L. L. Davidson (1846). Common people created maledictions such as “the curse of One Rabbit” by
the Aztecs (Therrell et al., 2004), and priests composed (pro-pluvia) rogations or prayers songs like the “Key to
the Rain, a New Song for a Time of Drought”, published in Prague in 1679 (cited in Brázdil et al., 2018).

The Empiricism, which is the core of the scientific method (Popper, 1935) states that the first logical action
to understand a natural phenomenon should be to obtain quantitative observations of the phenomenon of interest.
This information will, in turn, help to discover patterns and make causal inferences and eventually discover natural
laws describing the phenomenon. This mental setting was –perhaps– the rationale for ancient erudite scholars or
industrious people to keep records of past hydrological events. The first written records of the occurrence of a
drought event date from 206 BCE (Tan, 2015). Later, the Egyptians created sophisticated hydrological metering
systems such as the Nilometer (c. 715), while in Central Europe, landmarks in buildings and “hunger stones” at
the riverbeds became common starting in the 15th century (Benito et al., 2015). The oldest mark appearing in a
hunger stone, that is still readable, dates from the year 1417 at Děčı́-Podmokly in the river Elbe (Brázdil et al.,
2018). Scholars realized that recording drought events was not enough to understand the causes, the extension, and
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the severity of droughts hitting a region of interest. They noticed that the key to understanding this phenomenon
requires a realistic conceptualization of the global hydrological cycle.

The conceptualization of this fundamental cycle, alone, was one of the grand challenges for ancient and Mid-
dle Age philosophers and scientists alike. Understanding the main processes took millennia. Thales of Miletus
(600 BCE) was the first scientific philosopher that asserted that one of the “ultimate stuff of the world” must be
water because it is clearly vital for all known forms of life, it appears in all states of matter, and it covers most of
the Earth’s surface. Anaximander (c. 570 BCE) was the first to describe evaporation as the cause of the movement
from water to the sky, one of the fundamental fluxes of this natural cycle. Xenophobes of Colophon (c. 530 BCE)
contributed with concepts for the role of clouds as responsible for the transport and production of rain, which in
turn feed springs and rivers. Anaxagoras of Clazomenaiz (c. 460 BCE) realized that these various water processes
constitute a closed cycle involving the movement and storage of water (Dooge, 2001).

Figure 1.2 Reverse and erroneous conceptualization of the
water cycle during the Middle Ages. Mundus Subterraneus –
Kircher’s system of springs, rivers and seas (1665 edn. vol. 1,
p. 233)– is an example of a hydrological hypothesis formulated
without observational evidence.

One of the first complete speculations about of the
functioning of the water cycle is attributed to Aristotle
(350 BCE), who considered that the water cycle was
an endless, cyclical, and never changing system, i.e.
in perpetual steady state, with the Sun’s solar radiation
as the main driving force behind the hydrological cy-
cle. This idea prevailed until Vitruvious (1 BCE) stated
that groundwater is the result of precipitation falling in
the mountains, which after being infiltrating the Earth’s
surface, would appear later in streams and springs in
the lowlands. Almost no progress was achieved un-
til the Enlightenment. In this period there were also
plenty of misconceptions about the water cycle. An
example of one of them was provided by Athanasius
Kircher (1665), who hypothesized an explicit explana-
tion of the reverse hydrologic cycle in which springs on
top of the mountains where fed by underground chan-
nels that link them with enormous whirlpools at the
bottom of the seas (see Fig. 1.2). Kircher, like many of
his contemporaries (e.g., Herbinius), could not explain
the role of precipitation in the hydrological cycle.
The first correct inrterpretation of the water cycle
“based on observations” is attributed to Leonardo da
Vinci (c. 1500). Da Vinci was the first scholar to real-
ize that the throughput of the main rivers surpasses by
countless times, the volumes contained in the world’s

oceans. Da Vinci, as one of the luminaries of the Renaissance put forward a paradigm shift: “away from a dom-
inant religion-centered paradigm of the Middle Ages to the science-centered paradigm, based on empiricism and
deduction” (Pfister et al., 2009). Another of Da Vinci’s great innovations was the introduction of the water bal-
ance, relating inputs and outputs of the system. Probably, the anonymous book “Origin of Fountains”, published
in Paris in 1674 constitutes the first quantification of the main water cycle components: precipitation and runoff
(Dooge, 1959). Although these contributions were great scientific advances in understanding the mechanisms of
the hydrological cycle, the goal to understanding the evolution of droughts was still centuries away.

1.3 Socio-economic relevance

As briefly described above and according to numerous in-depth treatises about this topic (e.g., Brázdil et al., 2018;
Bryson and Murray, 1977; Dai, 2011; Diamond, 2011; Heathcote, 2016; Scholz et al., 2007), droughts have been
impactful during human history and for the evolution of ecosystems (Godfree et al., 2019). Estimating the real
economic losses and death tolls attributable to this hazard is quite difficult due to the lack of reliable sources and a
good metric to estimate material cost, not to mention the need to adjust for economic inflation.
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Figure 1.3 Global deaths from natural disasters (1900-2016) (Ritchie and
Roser, 2019) (based on the OFDA/CRED International Disaster Database
urlwww.emdat.be). The size of a bubble represents the total death count per year
by type of disaster. Graph source: OurWorldlnData.org under CC-BY license.

As a result, reliable statistics exist
only from the beginning of the 19th
century. According to Ritchie and
Roser (2019) (see Fig. 1.3), the dead-
liest hazards since 1900 are floods
and droughts. This figure shows
clearly that better planning and in-
frastructure, as well as opportune
international relief assistance, have
greatly contributed to minimizing the
death toll from the 1970s onwards.
Direct weather related hazards (e.g.,
droughts, extreme weather, floods,
extreme temperature and wildfires)
represent about 88% of the death toll
since 1900, and specifically, droughts
and floods about 51% and 30%, re-
spectively. The drought death toll in
these statistics includes the long term

effects of drought-induced famines. According to the EM-DAT database (Guha-Sapir et al., 2015), droughts af-
fected 2.2 billion people worldwide between 1950 and 2014, thus making droughts the second most impactful
natural disaster after floods (3.6 billion people affected). In the same period, the death toll has been 2.21 million
people.

Figure 1.4 Economic losses in US$ due to natural hazards based on Daniell
et al. (2016). Data source: Center for Disaster Management and Risk Reduction
Technology CEDIM, KIT.

According to Daniell et al. (2016),
natural disasters have caused a US $7
trillion loss since 1900. Figure 1.4
depicts the growth of economic losses
based on a sophisticated global anal-
ysis of 35 000 natural disaster events
since 1900. The losses have been es-
timated on a country-by-country ba-
sis including a GDP-deflator based
price index to convert historical costs
to 2015 US dollars. In absolute
terms, economic losses due to natural
hazards have significantly increased
since the 1960s. Around 50% of eco-
nomic losses between 1900 and 2015
have been caused by floods, droughts
and related wildfires. This figure also
indicates that drought related losses
have significantly increased after the
1980s.

In Europe, in particular, Zink et al.
(2016) indicated that “the costs per

drought event during the period from 1950-2014 are estimated to be 621 Mio. EUR, the costliest amongst all
natural disasters that occurred in this region (Guha-Sapir et al., 2015).”

According to the European Commission (as reported in Zink et al. (2016)), “the frequency of droughts has
increased since 1980 and will, very likely, further increase (EEA, 2012). To date, 11% of the European population
and 17% of the area of the EU have been affected by water scarcity (European Commission, 2007, 2010). For
example, the 2003 drought event, which covered major parts of Europe, caused 7,000 fatalities in Germany alone
(European Commission, 2012) and had an agro-economical impact of 1.5 billion EUR. On the European level, the
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death toll was estimated to exceed 70,000 (Robine et al., 2008), and the agro-economical impact was estimated to
be 15 billion EUR (COPA-COGECA, 2003). This severe drought impacted many components of societal life. It
disrupted irrigation, inland navigation, and power plant cooling (Fink et al., 2004; Parry et al., 2007).”

1.4 The grand challenge

For these reasons, droughts have been identified by the IPCC (IPCC, 2007) as the trigger of a web of impacts across
many sectors leading to land degradation, migration (Wilbanks et al., 2007) and substantial socio-economic costs.
Reports cited above, along with the extensive literature available on this subject, clearly indicate that a better un-
derstanding of the evolution of droughts and its implications is of crucial importance for planning activities related
to water resources, land use, infrastructure, power generation, wildfire mitigation, human health and welfare; and
to food security intrinsically related to agricultural production (Samaniego and Bárdossy, 2007). Consequently,
having the ability to globally monitor, model and forecast and/or predict the occurrence of droughts seamlessly,
along several time scales going from weeks to seasons and to decades, constitutes one of the great challenges in
hydro-meteorological sciences (Wood et al., 2011).

The dificulty of this challenge is further complicated by the unprecedented anthropogenically induced climate
change. Not providing satisfactory answers to this challenge would compromise the survival of mankind and quite
likely contribute to a shift in the natural ecosystems towards unknown tipping points. Put differently, reaching those
loci at which a natural ecosystem, driven by massive disturbances such as drought or wildfires, cannot recover its
initial states (Steffen et al., 2018).

Figure 1.5 Number of ISI listed publications listed in the Web
of Sciencewcs.webofknowledge.com under the keywords
“drought”, “flood” and “heatwaves” since 1945 until 2019. No
restriction on disciplines. Date of access 2020/01/19.

Drought events during recent decades such as the
Millennium Drought (2002–10) in Australia (van
Dijk et al., 2013), the 2003 European drought
(Fink et al., 2004; Parry et al., 2007) or the Cal-
ifornia drought (2011-17) (Swain et al., 2014),
and the exorbitant increase in economic losses
(see Fig. 1.4), have motivated extraordinary sci-
entific productivity during the last two decades.
Figure 1.5 shows the evolution of peer-review
scientific articles published in all scientific dis-
ciplines covering every aspect related to three
natural hazards directly linked with the water
cycle over the land surface. It can be noted
that, although the total number of written ar-
ticles on floods are more numerous than those
on droughts, the number of annual publications
on the latter has surpassed that of the former
after 2016. Research on heatwaves and their
impacts is emerging only recently and it is not
extensive yet. Research on these three subjects
has significantly increased during the last two
decades.

This figure also provides a clear starting point for a short recount on the evolution of the state-of-the-art on
modeling the global water cycle. In some sense, the modest progress before the 1980s is a consequence of se-
vere misconceptions undermining the progress in hydrology until as recent as 1965, among them: 1) ignoring the
complexity of the spatio-temporal variability of dominant-hydrological processes which led to “downgrading hy-
drology from a natural science to an appendage of hydraulic engineering” (Yevjevich, 1968), which mainly deals
with “classic problems of water supply and natural hazards reduction” (Eagleson, 1986); 2) the limited scale of
interest, which was primarily that of the catchment (i.e., no more than 100 km2), and with the assumption that “the
atmosphere [is] an independent driver of the hydrological processes” (Eagleson, 1986); 3) the lack of coherent ad-
vancement in the hydrological sciences (Dooge, 1982) whose separate disciplines (Rajaram et al., 2015) dedicated
entire decades to performing research on specific theoretical problems, which on themselves are interesting, but
missed addressing problems such as scalability, transferability, and parameterization (Clark et al., 2016; Samaniego

wcs.webofknowledge.com
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et al., 2017); 4) the lack of global spatial data at high resolution (mostly remotely sensed) such as terrain elevation,
soil texture, land cover, and forcing datasets; 5) the poor technological readiness levels of the software and hard-
ware needed to address the challenge mentioned above (Clark et al., 2017); and finally, 6) the lack of a Popperian
approach for scientific discovery leading to hypothesis driven frameworks that address the scaling and similarity
problems postulated by Dooge (1982) and summarized in Peters-Lidard et al. (2017) and Samaniego et al. (2017).

1.5 Necessary elements for drought modeling

To address this grand challenge, we need to know the past, the current, and the future states of energy and water
fluxes of the atmosphere at given points in time and space as well as to be able to describe the evolution of
the dominant hydrological processes that take place on the Earth’s surface. These are non-trivial tasks, and the
complexity to represent them into models has hindered progress until recently. The frustration of leading scientists
during the 1980s regarding the slow progress in addressing this challenge is clearly expressed by Eamonn Nash,
who said “ I find it difficult to believe that we should enter the third millennium after Christ measuring rainfall in
little buckets and guessing evaporation” (Schultz, 1988).

The advent of the “Electronic Age” (after the 1970s) offered unprecedented possibilities for acquiring global
coverage of key hydrological variables via remote sensors alongside an exponential growth in computing power.
As a result of these positive developments and the advancement in state-of-the-art meteorological and hydrological
theories in the 1990s, the feasibility of addressing this challenge became real for the first time in human history.

Modeling is a complex human activity because of the crucial trade-offs that have to be made to reach a final
objective, in this case modeling the occurrence of hydrological and agricultural droughts. According to Popper
(1935), modeling is an interactive research process that starts with the observation of a natural system (e.g., the
water cycle) aiming for a “mental” abstraction of the main elements that are necessary to faithfully describe the
evolution of the system over time. Abstraction implies a reduction of the system’s complexity, which is often
formalized as a set of equations, which we call a model. Consequently, a model constitutes an elaborate hypothesis
of the dynamics of the system that should be subject to falsification. In other words, its predictions should be
contrasted with new data to establish the ability of the model (i.e., its skill) to reproduce them.

GCMEmission &
scenarios

Initial
conditions

Observations

Hydrological Model Drought Index

Impact
Metrics

End Users

Figure 1.6 Typical drought modeling chain composed of a GCM, a HM, a drought index and an impact metric targeting a
specific need of a group of stakeholders (i.e., end-users such as farmers, water planers, or dam operators). Graphic sources,
GCM grid correspond to the ICON model (www.dwd.de); The hydrological model logo correspond to mHM v5.10 (www.
ufz.de/mhm); and drought index (SMI) is based on Samaniego et al. (2013).

Under the current perspective, the simplest modeling chain required to reconstruct past droughts or to forecast
them at a given location across the globe is depicted in Figure 1.6. It consists of a global climate model (GCM)
(e.g., IFS-v5 ECMWF) to estimate the state of the atmosphere, a hydrological or land surface model (HM/LSM)
(e.g., www.ufz.de/mhm) to simulate the fate of water over the landscape, a drought indicator (e.g., the soil
moisture index (SMI) described in Samaniego et al. (2013)) to quantify the occurrence, extension and intensity of
a drought event, and finally an impact model to estimate its consequences for a specific user, for example, changes
in crop yield (e.g., Peichl et al., 2018), which are necessary for economic planning or food security planning. This

www.dwd.de
www.ufz.de/mhm
www.ufz.de/mhm
www.ufz.de/mhm
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modeling chain requires, of course, additional information such as initial conditions, emission scenarios, and large
amounts of observational data.

Realizing the input data, theories, numerical techniques, and computational capabilities required to develop
this holistic drought modeling chain took five centuries of hard work since the visionary concept introduced by
Leonardo da Vinci. First, all atmospheric physics and chemistry describing the hydrodynamics of a parcel of moist
air needed to be discovered, including Newton’s Laws of motion, the laws of thermodynamics and the fundamental
principles of conservation of mass and energy (Lomonosov, Lavoisier, Noether, Helmholtz).

Figure 1.7 Artistic representation of the Richardson’s central
forecast-factory (A. Lannerback). Dagens Nyheter, Stockholm.
Reproduced from L. Bengtsson, ECMWF, 1984.

The goal of predicting future states of the atmosphere
based on its present state was expressed for the first
time in the Bjerknes’ Manifesto (Bjerknes, 1904).
Bjerknes stated that if physical laws control the states
of the atmosphere, then the “necessary and sufficient”
conditions for a rational solution of the problem of me-
teorological prediction are:

1. One has to know with sufficient accuracy the
state of the atmosphere at a given time.

2. One has to know with sufficient accuracy the
laws according to which one state of the at-
mosphere develops from another.

The knowledge required to achieve this goal (and
in the future to develop a GCM) was synthesized by
Lewis F. Richardson in 1922 seminal book entitled
“Weather Prediction by Numerical Process” (Richard-
son, 1922). This visionary meteorologist attempted,
for the first time, to make a weather forecast by manu-
ally integrating the dynamic differential equations us-
ing finite differences! Its results were not encouraging

but he was certain that “[p]erhaps some day in the dim future it will be possible to advance the computations faster
than the weather advances and at a cost less than the savings to mankind due to the information gained. But that is
a dream” (Richardson, 1922). He even imagined that to model the weather of the whole globe, a central forecast-
factory would be needed (see Fig.1.7). In other words, he conceived the first massively parallel processor made up
of 64 000 computers (i.e., persons performing predetermined computations) (Richardson, 1922, p.219).

The reasons for Richardson’s failure were the poor initial conditions used for the atmosphere and the Earth’s
surface, the poor parameterization used for the hydrologic processes describing the evolution of key state variables
such as soil moisture, and the error propagation in the numerical scheme he applied. The idea was a breakthrough,
but premature. The first applications of Richardson’s blueprint for a GCM were only possible after 1945 with
the advent of the first electronic computers (e.g., the ENIAC), which dramatically increased the speed at which
numerical algorithms could be solved.

The various kinds of numerical weather prediction models, global climate models, land surface schemes, and
hydrologic models that exist today are the result of a continuous and elaborate formalization process that has led to
a set of equations based on fundamental physical principles whose numerical solution is possible today by means
of sophisticated algorithms. This modus operandi has not changed much since 1922, when Richardson wrote his
seminal book in which the foundations for numerical weather forecasting were set down.

Furthermore, advances in hydrology towards a distributed and process-based description of dominant land sur-
face hydrological processes are lagging behind for various reasons, some of which were mentioned above. The
renaissance in this realm of science coincide with the emergence of new journals like Water Resources Research
(AGU) (Rajaram et al., 2015) in 1965. As a result, a few years later, an approach similar to that used by Richardson
was put forward by Freeze and Harlan (1969) as the first blueprint for a physically-based, digitally-simulated hy-
drologic response model. Their conceptualization was based on physical principles and several parameterizations
introduced by Darcy, Horton, De Wiest, Saint-Venant, Liggett, Woolhiser, Mannings among others. Although,
Freeze and Harlan (1969) did not test their ideas with a numerical model — they conceded that their paper is
“more an artist’ s conception than a true Blueprint” —, it provided fresh new ideas to inspire land surface mod-
eling pioneers to develop the first distributed hydrological models. In 1975, K. Beven was one of the first who
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attempted to apply the Freeze and Harlan blueprint to a real basin. The computer power and spatial informa-
tion available at that time, however, only allowed him to simulate a tiny basin with an area of barely 21 ha. The
simulation results, according to him, were not worth publishing (Beven, 2001).

Data and computation limitations were overwhelming at the time when Freeze and Harlan wrote their ground-
breaking paper. Contemporary researchers, Amorocho and Hart, even wrote that (cited in Freeze and Harlan, 1969,
p.238):

Prohibitive amounts of input data would be required, far beyond practical limitations even for small experimental
plots.

During the next decades, further improvements to the original blueprint (i.e., Freeze, 1974) were made and a
number of models were developed following the original or modified conceptualizations (e.g., Abbott et al., 1986;
Bronstert et al., 1998; Kirkby, 1988). These models, however, could not be run at scales larger than that of the
watershed scale (10-50 ha) or in hillslopes. Recently, Beven (2002) proposed a “new” blueprint but until now there
is no implementation based on his proposal.

1.6 The parameterization and scale problems

After the 1970s, once electronic computers became indispensable research tools, the skill and efficiency of the
GCMs and LSM/HMs were mainly improved by: 1) increasing the complexity of the dynamical conceptualizations,
e.g., from models omitting ocean dynamics to current GCMs fully resolving it, having now aerosols (SA), carbon
cycle (TAR), dynamic vegetation (TAR) (Bonan, 1995), atmospheric chemistry (AR4), land ice(AR4) (IPCC,
2007); 2) improving the numerical algorithms used for solving the system of partial differential equations (Brunet
et al., 2015), 3) improving the quality of the initial conditions by developing data assimilation methods (Brunet
et al., 2015), and 4) by doubling resolution once the storage capacity and computational power allowed. These
facts are clearly reflected in the change of the spatial resolution of the GCMs employed as the scientific basis for
the IPCC assessment reports since 1990.

Figure 1.8 Evolution of the spatial resolution, computational demand, and
storage of the GCMs employed in the IPCC reports since 1990. FAR (IPCC,
1990), SAR (IPCC, 1996), TAR (IPCC, 2001a), and AR4 (2007). Note: The
scale of both axis is nonlinear and approximate. Adapted from IPCC (2007,
WG1).

According to (Lynch, 2008), the GCM spa-
tial resolution has doubled every five years
since 1990 (Fig. 1.8). It should be noted
that increasing the model resolution by a
factor of two implies about ten times as
much computing power and storage. Re-
cently, the hyper-resolution initiative in
land surface modeling has also opted along
this pathway (Bierkens et al., 2014; Wood
et al., 2011).

One of the major challenges to de-
ploying the modeling chain depicted in
Fig.1.6 is to distinguish and to recognize
that “there are scales and physical pro-
cesses that can not be represented by a
numerical model, regardless of the resolu-
tion” (Stensrud, 2007). Parameterization is
the “process by which these important pro-
cesses that can not resolved directly by a

numerical model are represented” (Stensrud, 2007). Put differently, it is a simplified and idealized representation
of the physical phenomenon at a given scale in the form of a simplified equation that requires existing variables
and numerical constants, often called parameters.

Model parameterizations on the land surface have changed little during the past decades. It should be noted
that Richardson (1922, p.9) already recognized that the theory and “constants” (what we now call parameters)
“must be appropriate to the size” of the grid element. He also suggested that these parameters should be found
experimentally (e.g., Richardson, 1922, p.108), if possible. At present, many of these “constants” are still confined
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to their respective source codes or as lookup-tables as noted by Mendoza et al. (2015) and Cuntz et al. (2016) in
the NOAH-MP LSM. Writing models and source codes with written down constants is an old practice, see e.g.,
Crawford and Linsley (1966)’s source code for the Stanford Watershed Model IV, in 1966. This poor practice has
negative effects on results because it hinders the modeler’s capability to explore the sensitivity of these parameters
on outputs and the possibility to infer them using observations.

In a recent assessment towards seamless prediction of the Earth System across time scales, Dirmeyer et al.
(2015) stated very clearly that improvements in understanding of hydrological land processes and their param-
eterization are crucial for increasing the predictability of GCMs at sub-seasonal (days to weeks) and seasonal
forecasting (months) time scales. The major drawback that these authors see at the moment is the coarse resolution
of the LSMs, which are a fundamental part of GCMs, and their lack of scalability.

In addition to that, Bauer et al. (2015) remarks that “grid-scale invariance” and improvements in physical
process description have remarkably increased the skills of numerical weather prediction (NWP) models in the
recent past. These authors, however, point out that for improving skill, increasing resolution is not the only answer;
there is still a need for improving parameterizations of the land surface components of NWP models.

Parameterization of LSMs/HMs is therefore an old, ubiquitous, and recurring problem. Moreover, until as
recently as 1982, more than a decade after the famous Freeze and Harlan blueprint was published, the progress
on this fundamental component of the modeling chain was insignificant. For these reasons, Dooge (1982, p.269)
concluded that:

[T]he parameterization of hydrologic processes to the grid scale of general circulation models is a problem that has
not been tackled, let alone solved.

Lack of effective progress did not mean that there were not brilliant ideas around to address the problem. In fact,
the keys to the solution were hidden in the vast literature on the subject. For example, Crawford and Linsley (1966,
p.9) had already expressed serious concerns with the problem of over-parameterization of HMs and the lack of
parameters for the “ungaged[sic] areas”. Their solution was to pursue parsimonious parameterizations (i.e., having
a “minimum number of independent parameters”) so that they can be extended to ungauged locations. Freeze and
Harlan (1969, p.240,256) also put forward ideas for parameter regionalization when they indicated that it will
be “necessary to extrapolate results of representative measurements of physical parameters to other points in the
basin”, and that the ideal blueprint may lead to over-parameterization and, hence, a “simplification of the model is
needed” to achieve “workable dimensions”. Dooge (1982, p.245) also realized that “the process of parametrization
at the macro-scale of the micro-scale processes may be based either on the nature of these fine scale processes
or else determined empirically at the macro-scale”. In other words, he provided potential pathways that can be
followed to derive a macro-scale model, either by process-based upscaling techniques or by a simplified effective
model using effective parameters that represent the micro-scale processes.

Attempts to use inverse modeling (without regularization functions) to estimate parameters for HMs/LSMs
would simply not work for making a model transferable across locations or scales. As a result of these experi-
ences Leavesley et al. (1983, p.50) concluded that finding parameters for “distributed” hydrological models via
optimization constitute an ill-posed problem due to the large number of degrees of freedom (i.e., unknown) and
the few constraints that can be derived from integral observations such as streamflow. It should be noted that the
word “distributed” was introduced to differentiate HMs from those that do not consider the spatial variability of
the parameters and process within a basin. The latter we called “lumped” models. Leavesley’s solution consisted
of reducing the degrees of freedom by introducing a concept called hydrologic response units (HRUs), which rep-
resent areas of the landscape that have quasi-similar hydrological response and hence share the same hydrological
parameters. This solution opened up huge expectations, but until now, there is no process-based method to derive
the HRUs. Currently, only empirical approaches exist (Samaniego et al., 2017).

An insight into the “parameterization problem” was, however, stated almost four decades ago. Dooge (1982)
pointed out that this crucial issue is intimately related with the “scaling” problem (Grayson and Blöschl, 2000;
Sivapalan et al., 2004), which, in his opinion, was also a crucial “unresolved problem” in hydrology. In fact, two
decades later, Blöschl (2001) pointed out that scaling is “the cornerstone for a unifying theory in hydrology”. By
the beginning of the 1990s, we still did not have a solution for these two problems, but at least we knew that they
were related. The next milestone was achieved in a key workshop held at Princeton University (1990) aimed at
exploring the status of land surface parameterizations within climate models. As a synthesis of this workshop,
Wood (1990) concluded that among the reasons hindering the progress of improving the representation of land-
atmosphere interactions in GCMs is the poor experimental settings to address the problem of “scale”. With this
aim in mind, he concluded that we should ask instead:
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What modeling experiments need to be performed to resolve the “scale” question and what is the tradeoff’ among
model complexity, the physical basis for land parameterizations and observational data for estimating model param-
eters?

This was, and still is, a fundamental question in hydrology, one among many others (Blöschl et al., 2019;
Clark et al., 2016; Peters-Lidard et al., 2017) that have not been addressed until recently (see e.g., Samaniego
et al., 2017). Another key insight of the Princeton workshop based on empirical results that, in my opinion, had
serious implications for the further development of LSM/HMs, was formulated by Wood (1990) as follows: “[t]he
inadequate representation [land-atmosphere interactions in GCMs] reflects the recognition that the well-known
physical relationships, which are well described at small scales, result in different relationships when represented
at the scales used in climate models.”

An extended review on the evolution of process-based hydrologic models in recent decades along with the
key theories and concepts was presented in Clark et al. (2017) and, thus, it is not necessary to repeat it here.
The representative elementary area (REA) concept introduced by Wood et al. (1988) and later expanded by (Wood
et al., 1990; Woods et al., 1995), however, is briefly introduced here because it is fundamental to the development of
scale-independent land surface and hydrological models, to address the proposed grand challenge, and to develop
a skillful modeling chain of the kind depicted in Fig. 1.6.

This REA concept and the empirical evidence supporting it (Wood et al., 1990; Woods et al., 1995) provided
... confidence that simpler macroscale models will perform well at large grid scales which have significant subgrid
variability, thus questioning the wisdom of detailed land parameterization which ignores process heterogeneity.

Moreover, Wood et al. (1988) and many others, confirmed that the length of the REA (say `1) is process de-
pendent and strongly influenced by topography. This implied that it would be possible to develop meso- and
macro-scale hydrological models in which “the variability [of the parameters] can be explicitly represented only at
scales larger than the element size (`1) while variability at the sub-element scale must be represented in a lumped
way” (Grayson and Blöschl, 2000).

This fundamental conclusion was the inspiration to develop the mesoscale Hydrological Model (mHM, www.
ufz.de/mhm) exhibiting, for the first time, a sophisticated regularization scheme called the “Multiscale Pa-
rameters Regionalization” (MPR) (Samaniego et al., 2010a). In this model, MPR simultaneously addressed the
parameterization and scaling problem mentioned previously. The scaling problem in MPR “is addressed by using
process-specific representative elementary areas (REAs) that determine the minimum computational grid size `1 at
which the continuum assumptions can be used without explicit knowledge of the actual patterns of the topography,
soil, or rainfall fields” (Samaniego et al., 2017).

Currently the mHM has been proven to be a plausible and parsimonious hypothesis to address the grand chal-
lenge, subject of this treatise. Up to now has been thoroughly tested and evaluated in Germany (Kumar et al., 2010,
2013; Samaniego et al., 2010a,b, 2013; Wöhling et al., 2013; Zink et al., 2017), in the conterminous USA (Kumar
et al., 2013b; Rakovec et al., 2019), across Europe (Kumar et al., 2015; Rakovec et al., 2016a,b; Samaniego et al.,
2019a), Asia, Africa and South America (Dembélé et al., 2020; Huang et al., 2016; Samaniego et al., 2011, 2016),
and currently on over 5000 GRDC stations across the globe (Samaniego et al., 2019b). Although, these results are
quite encouraging, many operational land surface models used in GCMs supporting the IPCC reports still exhibit
poor scalability and transferability, as shown in Samaniego et al. (2017).

1.7 Subject and aim of the thesis

This habilitation work focuses on the work carried out over the last decade aimed at putting together a modeling
chain able to perform modeling and forecasting of hydrological and agricultural droughts from local to continental
scales. In other words, I attempt to provide an answer to the trillion-dollar question implicit in Fig.1.4.

This thesis does not cover the immense work necessary to code, setup, parameterize and run a GCM, which
is the first component of the modeling chain depicted in Fig. 1.6. This fundamental work has been subject of
innumerable IPCC reports, books, research articles and dissertations, and hence out for scope of this work. This
thesis, however, contributes fundamental insights on how to improve the parameterization of existing operational
land surface models based on the criticism reported in Samaniego et al. (2017). Examples of such endeavors are
ongoing work, having been reported at international geoscience conferences (e.g., Thober et al., 2019a, 2020).

This work will also show how to use and preprocess the outputs of GCMs so that they can be used as drivers
for hydrological and land surface models in offline mode (i.e., uncoupled from GCMs and used for drought impact
assessment). A shortcoming of this approach is that it does not account for feedback from the highly resolved

www.ufz.de/mhm
www.ufz.de/mhm
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land surface water fluxes into the GCM. It is expected, however, that the new generation of Earth System Models,
exhibiting improved land surface hydrology and parameterization schemes such as MPR will do so. In this aspect
there is additional work being carried out.

Using GCM-simulated or observed forcing data, it will be shown how to estimate drought indices and their
uncertainties, quantify probabilities of occurrence of drought events and their area, duration and magnitude, and,
finally, to show potential pathways on how to use this modeling chain outputs for estimating drought impacts such
as changes on wheat yield over a specific region and time.

In summary, key elements of this work are: 1) the propagation and quantification of uncertainties along the
various elements of the modeling chain; 2) the strict verification criteria to evaluate the performance of the models
across scales and locations; and 3) the development of high standard, reusable and portable open-source code that
can be used for hydrological modeling of drought forecasting and projections.

1.8 Structure of the thesis

This thesis is subdivided into three methodological parts and one for discussion, synthesis and outlook to achieve
the goal mentioned above, namely:

Part I Towards Drought Modeling across Scales, which covers six papers on the macro-drivers of droughts, the
MPR development and mHM, parameter uncertainty, seamless predictions, multiscale evaluation of fluxes
and states, and remotely sensed conditioning of mHM.

Part II Forecasting and Predicting Droughts, which covers three papers on the development and verification of
a seasonal forecasting and prediction modeling chain, and the propagation of uncertainties along its various
elements.

Part III Estimating Drought Impacts, which covers three papers on the development of the German Drought Mon-
itor, the prototype of a data-based impact model for crop yield in Germany and the estimation of soil moisture
droughts in Europe until 2100.

Part IV Lessons Learnt and Outlook, which synthesizes the main findings and potential pathways to improve the
proposed modeling chain.

It should be noted that the selected published manuscripts (Chapters) used in each of these Parts are not sequen-
tial in time. This is the consequence of the order in which the research funds were procured and the length of the
peer-review process rather than on methodological aspects. The selection of manuscripts is based on the relevance
of the theses which were the subject of the individual papers that constitute this treatise on drought modeling and
forecasting.

A summary of each Chapter and their main research statements are presented next. In each individual paper
presented here, each thesis was treated as a research hypothesis subjected to strict statistical falsification.

1.9 Research Statements

The papers constituting the three parts of this thesis were selected according to their relevance to investigating
specific components of the proposed model chain, which is assumed would help to address the challenge stated
above. The research statements, or theses, that are put forward in each paper are denoted hereafter with the letter
Tp.i). The index p denotes a methodological part and i a running number.

1.9.1 Towards Drought Modeling across Scales

Chapter 2 Samaniego, L., and A. Bárdossy (2007), Relating macroclimatic circulation patterns with characteris-
tics of floods and droughts at the mesoscale, J. Hydrol., 335, 109–123

The main objective of this paper is to “let the data speak for themselves” a la Gould. This means, use the law
of parsimony (i.e., Occam’s razor) in machine learning techniques and no ad-hoc assumptions to explore in a
large data set which explanatory variables (e.g., many physiographic, land cover, and climatic characteristics)
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are able to predict seasonal extreme runoff characteristics like the total [hydrologic] drought duration at the
mesoscale basins.

The main theses put forward in this study are:

T1.1: Annual land cover change fractions (i.e., forest area) and the dryness index tallying the total number
of “dry spells” with decreasing antecedent precipitation during a season are statistically significant predictors
of drought duration and specific streamflow deficit (i.e., streamflow below the 10% percentile threshold) in
mesoscale basins during a hydrological summer season (MJJASO). Drainage area, floodplain’s slope and
drainage density are also significant predictors.

T1.2: Drought duration and specific streamflow deficit during summer are highly correlated variables in
mesoscale basins.

Chapter 3 Samaniego, L., R. Kumar, and S. Attinger (2010a), Multiscale parameter regionalization of a grid-
based hydrologic model at the mesoscale, Water Resour. Res., 46(5), w05523

This paper presents, for the first time, a series of cross-validation experiments covering several scales and
locations using the process-based spatial-explicit model called mHM. This model exhibits the multiscale
parameter regionalization technique as a way forward to addressing the Dooge (1982) scaling and parameteri-
zation problems, the issues of overparameterization and equifinality described by Beven (2001) and to address
the transferability tests suggested by Klemeš (1986). Technically, MPR is a sophisticated regularization tech-
nique, commonly used in mathematics and statistics to solve inverse problems. This term refers to a process of
introducing additional information to solve an ill-posed problem and/or to prevent overfitting and to improve
the generalizability of the learnt model. In MPR, the additional information is given by regularized (or region-
alized) model parameters at the sub-grid resolution of the model. The subgrid representation of the model pa-
rameters require additional geo-physiographic properties of the land surface, parameter specific regularization
(or transfer) functions, and several scale-invariant coefficients called global parameters. For the novelty and
success of this method, the authors of this article received the WRR Editors’ Choice Award 2010. The source
codes of mHM, mRM (routing) and the stand alone MPR can be found at https://git.ufz.de/mhm,
https://git.ufz.de/mhm/mrm, and https://git.ufz.de/chs/mpr, respectively.

The main theses put forward in this study are:

T1.3: The REA concept is a fundamental notion to estimate effective parameters in a mesoscale hydrological
model. The overall REA-scale can be inferred with the MPR technique.

T1.4: The finer the resolution of the subgrid variability of the model parameters, the better the model predic-
tions at the REA scale.

T1.5: MPR global parameters enable the transferability of a model across scales and locations with a minimum
performance loss.

Chapter 4 Samaniego, L., R. Kumar, and M. Zink (2013), Implications of Parameter Uncertainty on Soil Moisture
Drought Analysis in Germany, Journal of Hydrometeorology, 14(1), 47–68

The aim of this study was to analyze the effects of the MPR parameterization technique on simulated soil
moisture over Germany. Using mHM the daily soil moisture fields at 4⇥4 km2 were reconstructed using
observed meteorological forcings interpolated with External Drift Krigging. In this study, a non-parametric
method was used to estimate the soil moisture index (SMI). Major soil moisture drought events for Germany
were also reconstructed for the first time. The implications of parameter uncertainty on drought identification
were discussed and assessed. The code used for this study can be found at https://git.ufz.de/chs/
progs/edk_nc and https://git.ufz.de/chs/progs/SMI.

The main theses put forward in this study are:

T1.6: A single parameter set for a given LSM or HM is inadequate to estimate water fluxes and related state
variables at high spatiotemporal resolutions, considering that both inputs and model parameters over large
modeling domains are subject to considerable uncertainties.

T1.7: Any drought characteristic (e.g., severity and duration) based on simulated soil moisture is prone to large
variability due to parametric uncertainty.

T1.8: Ignoring parameter uncertainty in drought identification will led to large false positives.

https://git.ufz.de/mhm
https://git.ufz.de/mhm/mrm
https://git.ufz.de/chs/mpr
https://git.ufz.de/chs/progs/edk_nc
https://git.ufz.de/chs/progs/edk_nc
https://git.ufz.de/chs/progs/SMI
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Chapter 5 Samaniego, L., R. Kumar, S. Thober, O. Rakovec, M. Zink, N. Wanders, S. Eisner, H. Müller Schmied,
E. H. Sutanudjaja, K. Warrach-Sagi, and S. Attinger (2017), Toward seamless hydrologic predictions across
spatial scales, Hydrology and Earth System Sciences, 21(9), 4323–4346

In this paper, we analyze the state-of-the-art LSMs and HMs to reveal that most of them do not have consistent
hydrologic parameter fields across scales. We perform multiple experiments with the mHM, Noah-MP, PCR-
GLOBWB, and WaterGAP models to demonstrate the pitfalls of deficient parameterization practices currently
used in most operational models. We propose a general model protocol to describe how MPR can be applied
to any LSM/HM.

The main theses put forward in this study are:

T1.9: Ad-hoc parameterization schemes, “brute” force optimization or inadequate upscaling operators lead to
discontinuous and scale dependent parameter fields.

T1.10: The flux-matching test of water fluxes across scales is a necessary condition to obtain quasi scale-
invariant MPR global model parameters.

T1.11: The multiscale parameter regionalization (MPR) technique provides a practical and robust method to
estimate seamless parameter and flux fields across scales, in any LSM or HM.

Chapter 6 Rakovec, O., R. Kumar, J. Mai, M. Cuntz, S. Thober, M. Zink, S. Attinger, D. Schäfer, M. Schrön,
and L. Samaniego (2016c), Multiscale and Multivariate Evaluation of Water Fluxes and States over European
River Basins, J. Hydrometeorol., 17(1), 287–307

In this study, the mHM model parameterized with the MPR is tested across 400 European river basins. The
model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotran-
spiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations.
This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets,
varying from 0.5 to 100 km.

The main theses put forward in this study are:

T1.12: Performing parameter estimation on a LSM/HM based only on streamflow-related metrics is a nec-
essary but not sufficient condition to warrant the proper partitioning of incoming precipitation into various
spatially distributed water storage components and fluxes.

T1.13: Multivariate parameter estimation or assimilation scheme is necessary for improving the ability to
predict regional water fluxes and states over large domains.

T1.14: MPR parameterization allows estimation of fluxes from local- (eddy covariance footprint, 102 m) to
regional-scales (satellite footprint, 105 m), in a seamless manner.

Chapter 7 Zink, M., J. Mai, M. Cuntz, and L. Samaniego (2018), Conditioning a Hydrologic Model Using Patterns
of Remotely Sensed Land Surface Temperature, Water Resources Research, 54, 2976–2998

In this study, we developed a bias-insensitive pattern-matching criterion to guide the parameter optimiza-
tion on spatial patterns remotely-observed state variables (e.g., satellite-based land surface temperature). The
proposed method is extensively tested in six distinct large German river basins and cross-validated in 222
additional basins in Germany. Additionally, a simple but efficient diagnostic algorithm (derived from the en-
ergy balance equation) to estimate land surface temperature within mHM. This paper was selected as Editors’
Highlights and presented in EOS (AGU) (Bierkens, 2018).

The main theses put forward in this study are:

T1.15: The uncertainty in the global model parameters of a hydrological model will decrease when streamflow
and land surface temperature are considered simultaneously.

T1.16: Model parameters constrained with remotely sensed land surface temperature significantly improve the
estimation of evapotranspiration at basin and plot levels.

T1.17: The bias-insensitive pattern-matching criterion improves the identifiability of parameters of a hydro-
logic model.
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1.9.2 Forecasting and Predicting Droughts

Chapter 8 Thober, S., R. Kumar, J. Sheffield, J. Mai, D. Schäfer, and L. Samaniego (2015), Seasonal Soil Moisture
Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME), Journal of
Hydrometeorology, 16(6), 2329–2344

The main objective of this study was to evaluate the skill of the “North American Multi-Model Ensemble”
(NMME) for soil moisture drought forecasting over Europe. Downscaled forcings of this ensemble were used
as forcings of the mHM model. The skill of the NMME-based forecasts was compared against those based
on the ensemble streamflow prediction (ESP) approach for the hindcast period of 1983–2009. Subensembles
combinations of the NMME members were also investigated.

The main theses put forward in this study are:

T2.1: Dynamic drought forecasts (i.e., driven by GCMs) are consistently higher than that of ESP-based ones
over the entire European domain and lead times.

T2.2: Subensembles selection is a promising alternative to the full ensemble and hence are useful for op-
erational seasonal soil moisture (SM) drought forecasting because of marginal performance losses and low
computational demand.

T2.3: Seasonal SM forecasts, specially over extreme conditions (i.e., droughts) exhibit strong and ubiquitous
influence of the initial hydrologic conditions, highlight the need for robust parameterization schemes such as
MPR.

Chapter 9 Samaniego, L., R. Kumar, L. Breuer, A. Chamorro, M. Flörke, I. G. Pechlivanidis, D. Schäfer, H. Shah,
T. Vetter, M. Wortmann, and X. Zeng (2016), Propagation of forcing and model uncertainties on to hydrolog-
ical drought characteristics in a multi-model century-long experiment in large river basins, Climatic Change,
141(3), 435–449

In this study, based on the ISI-MIP2 project simulations, we attempt to advance our understanding on the
propagation of forcing and model uncertainties on to century-long time series of drought characteristics using
an ensemble of GCMs and HMs under a broad range of climate scenarios and regions. In this study, a
sequential sampling algorithm is proposed to address this issue and to disentangle the uncertainty originated
by GCMs and HMs. Here a runoff index (RI), similar in concept to SMI is used to be able to compare runoff
estimated by several HMs.

The main theses put forward in this study are:

T2.4: The uncertainty contribution of the GCMs on RI and derived drought characteristics outweighs that from
the HMs regardless of the hydrological regime represented by the selected large-scale river basins.

T2.5: Given a GCM forcing, the drift in the RI time series of a given HM is practically indistinguishable from
the ensemble RI. Therefore, the drift mainly arises from the uncertainty in the GCM forcings.

T2.6: The uncertainty in drought characteristics is dependent of the greenhouse gas concentration scenario
(RCP).

Chapter 10 Samaniego, L., S. Thober, N. Wanders, M. Pan, O. Rakovec, J. Sheffield, E. F. Wood, C. Prudhomme,
G. Rees, H. Houghton-Carr, M. Fry, K. Smith, G. Watts, H. Histal, T. Estrella, C. Buontempo, A. Marx, and
R. Kumar (2019a), Hydrological forecasts and projections for improved decision-making in the water sector
in Europe, Bull. Am. Meteorol. Soc., 100, 2451–2472

In this study, we developed a high-resolution multi-model ensemble of state-of-the-art climate and hydrolog-
ical models to deliver, for the first time, an ensemble of 36 hydrometeorological change metrics co-designed
with key water sector stakeholders in Europe. The model chain comprises two modes: one for seasonal
forecasting (2 GCMs) and another for climate projections (5 GCMs). Both modeling chains share the same
settings for the four LSM/HMs used in this project. This study constitutes the culmination of more than a
ten-year quest for research needed to deploy, for the first time, a prototype of the modeling chain depicted in
Fig. 1.6.

The main theses put forward in this study are:
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T2.7: Due to parameter and structural uncertainties, an ensemble of multi-hydrological models is better suited
to capture the uncertainty propagation in simulated fluxes and state variables, and thus, drought indices, than
a single hydrological model.

T2.8: The combined GCM and HM uncertainties are not equally distributed over time or space.

T2.9: The uncertainty of derived SCIIs is not equally distributed between atmospheric (GCM) and land surface
models (HM), with some regions in which the former is greater than that of the latter, and vise-versa.

T2.10: A multi-model ensemble (GCMs/HMs) exhibits higher forecasting skills (for droughts and floods) than
Ensemble Streamflow Prediction (ESP).

1.9.3 Estimating Droughts Impacts

Chapter 11 Zink, M., L. Samaniego, R. Kumar, S. Thober, J. Mai, D. Schäfer, and A. Marx (2016), The German
drought monitor, Environmental Research Letters, 11(7)

In this study, the operationalization of the modeling chain used to deploy the German drought monitor (GDM
www.ufz.de/duerremonitor) is presented and tested. It also provides an updated version of the largest
soil moisture drought events in Germany since 1950, which were originally presented in (Samaniego et al.,
2013). The GDM produce daily, quasi-real time (latency of 4 days) SMI for Germany at a spatial resolution
of 4⇥4 km2. The GDM reached over 1 088 000 website hits on February 2019, which represent 25% of the
UFZ visits until this date. The GDM system was the first implementation of the modeling chain shown in
Fig.1.6 that used observed data instead of GCM-based simulations as forcing data, and focused on current soil
moisture states on a soil column up to 1.8 m in depth.

The main theses put forward in this study are:

T3.1: The GDM system resolution and latency parameters allow detection of the emergence, the probability
of occurrence, and the potential severity of ongoing drought events.

T3.2: The GDM system delivers timely information about the onset, extent, and intensity of drought events.

T3.3: The general public, the press, and many stakeholders are demanding and expecting accurate and timely
information regarding the evolution of agricultural droughts in Germany.

Chapter 12 Peichl, M., S. Thober, V. Meyer, and L. Samaniego (2018), The effect of soil moisture anomalies on
maize yield in Germany, Natural Hazards and Earth System Science, 18(3), 889–906

In this study, a complete drought modeling chain as shown in Fig.1.6 is tested. Here parametric, reduced-
form fixed-effect panel models are employed to investigate the intra-seasonal predictability of soil moisture
(transformed to SMI) to estimate silage maize yield in Germany. In this study, we validate and compare results
to similar state-of-the art approaches that use only meteorological variables.

The main theses put forward in this study are:

T3.4: Soil moisture improves the capability of statistical models aimed at predicting silage maize yield com-
pared to standard methods that neglect it.

T3.5: Temporal patterns of seasonal soil moisture and its persistence contributed significantly to the crop yield
model predictability.

T3.6: The SMI, as any anomaly based index, is advantageous for climate econometric impact models because
they are less prone to systematic errors.

Chapter 13 Samaniego, L., S. Thober, R. Kumar, N. Wanders, O. Rakovec, M. Pan, M. Zink, J. Sheffield, E. Wood,
and A. Marx (2018), Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change,
4

In this study, using the ensemble of hydrological and land-surface models, forced with bias-corrected down-
scaled general circulation model output presented in Samaniego et al. (2019a), we estimated, for the first
time in Europe, the impacts of 1–3 K global mean temperature increases on soil moisture droughts during the
period from 2010 until 2100. Here, we also estimate the potential number of people in Europe that may be
potentially affected by extreme droughts and related changes in aridity. These assessments focused on the

www.ufz.de/duerremonitor
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major ecological regions in Europe. Currently, this paper is listed as a “Highly Cited Paper”, “Hot Paper” in
the Web of Science.

The main theses put forward in this study are:

T3.7: Anthropogenic induced warming will cause unprecedented increases in the area affected by the largest
soil moisture drought and its duration. Drought magnitude, consequently, will also increase.

T3.8: The largest historical droughts observed during the control period will become more frequent and thus,
due to their increased occurrence, events of this magnitude will no longer be classified as extreme in the future.

T3.9: Changes in aridity, drought area, duration and frequency will be region specific. The highest changes
will be expected in regions with higher air temperatures during the summer season.
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Abstract

The prediction of extreme hydrological events in mesoscale catchments has been a main concern in hydrology be-
cause of their considerable societal impacts and because of the compelling evidence that anthropogenic activities
significantly modify their occurrence likelihood. In this paper, nonlinear generalized models were used to predict
extreme runoff characteristics like the specific volume, the frequency of high flows, and the total drought duration.
Explanatory variables included many physiographic, land cover, and climatic characteristics such as mean slope,
aspect, elevation, type of geological formations, shares of a given land cover type, and many composed indicators
relating antecedent precipitation index and atmospheric circulation patterns. All time-dependent variables were
estimated semiannually for each subcatchment. The proposed method was tested in 46 sub-catchments belonging
to the Upper Neckar River basin covering an area of approximately 4000 km2 during the period from 1961 to 1993.
The results of this study indicated that macro circulation patters derived from either subjective or operational clas-
sifications combined with other explanatory variables can be effectively used to predict seasonal extreme runoff
characteristics at the mesoscale. Moreover, the results indicated that most runoff characteristics exhibited a dis-
tributional element other than normal and that the selection of nonlinear generalized models was an appropriate
choice to deal with the heteroscedasticity of model errors.

2.1 Introduction

The quantification of the magnitude and duration of meteorological extremes, as well as their probability of oc-
currence in a mesoscale catchment, has long been a main concern in hydrology and related disciplines because
these anomalies might induce significant changes on several water-cycle-related state variables (e.g. soil mois-
ture). These changes, in turn, might lead to the occurrence of either flood or drought spells (high- and low-flow
regimes). The magnitude of the environmental degradation and the subsequent demographic and economic impacts

Drought Modeling and Forecasting, First edition.
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at regional level are strongly dependent on the magnitude and duration of these events. Typical examples of the
environmental degradation induced by the shortage of water are forest fires, stress on the supply side of the food
chain, and soil erosion caused by the combined effects of vegetative cover reduction and wind action. An excess
of water, on the other hand, also creates environmental problems such as the destruction of the endemic flora and
fauna, insect infestations, and soil erosion caused by rill and gully erosion. Both extreme events entail substantial
socioeconomic consequences such as heavy reduction of agricultural production and power generation, damages
to the basic infrastructure and the manufacturing sector, as well as famines and people’s migration.

Moreover, there is compelling evidence (e.g. see Houghton et al. (2001)) that the anthropogenic disruptions
of the environment are significantly modifying the likelihood of occurrence of these events in a given period.
Consequently, it would be crucial to investigate how the magnitude and the probability of occurrence of high and
low flows might be affected by land use/cover and climatic changes.

Hydrological extremes occurring at the mesoscale are largely dependent on the occurrence of particular macro-
climatic processes in the atmosphere, which are currently modeled by complex General Circulation Models (GCMs).
GCMs, however, are not able to predict mesoscale hydrologic extremes mainly because these models are conceived
to represent the main features of the atmospheric circulation rather than the regional climatic details. Moreover,
GCM outputs depend on a given forcing scenario (e.g. CO2 emissions) and, therefore, are highly uncertain.

In spite of that, it is possible to use their outputs, among them upper level winds, geopotential heights, and
sea level pressure, as predictors of mesoscale observations such as precipitation. This procedure, which is gener-
ally termed empirical downscaling, is carried out using methods like multiple linear regressions, neural networks
(Cannon and Whitfield, 2002), fuzzy rules (Bárdossy et al., 2002), or regression tree approaches (Li and Sailor,
2000).

Another downscaling alternative is to use proxies for the state of the atmosphere at a given location and time as
predictors of mesoscale variables. These proxies include: macroclimatic indexes such as the Pacific North America
Index (PNA), the El Niño Southern Oscillation (ENSO), or the European atmospheric Circulation Patterns (CP)
(Hess and Brezowsky, 1969). This type of information is particulary relevant to assess the effects of macroclimatic
changes in mesoscale catchments, especially in ungauged basins or in those with very low density of meteorological
stations. For instance, Reddmont and Koch (1991), Bárdossy and Plate (1992), and Shorthouse and Arnell (1997)
used this procedure to link macroclimatic indices with the magnitude and the spatial distribution of meteorological
variables (e.g. precipitation, temperature). Alternatively, Dracup and Kahya (1994), Piechota and Dracup (1996),
and Stahl and Demuth (1999) linked them with stream flow characteristics such as partial duration of floods or
drought spells. To our knowledge, however, there is no reference in the literature (excluding Samaniego (2003)) in
which this approach has been used to assess simultaneously the influences of land use/cover and climate changes
on hydrological extremes.

Two main types of CP classification techniques, subjective and objective, can be distinguished in the literature.
The main advantage of the subjective classification is that the meteorologist’s experience is applied on a daily
basis in the classification. This advantage, however, entails a shortcoming for some practical applications such
as medium range forecasting; namely, that the results of the classification can not be reproduced automatically
(Yarnal, 1993). Objective classifications, on the contrary, operate on a given data set and derive day-by-day clas-
sified CPs using automated algorithms. The results of this kind of classification are ideal for the integration with
climate-change simulations because they can be reproduced rapidly without human intervention (Bárdossy and
Filiz, 2005; Bárdossy et al., 2002).

In this study, low- and high-flow characteristics were related to existing CP classifications. The stochastic
downscaling method was subsequently tested in the Upper Neckar Catchment in Southern Germany.

2.2 Method

2.2.1 Problem Formulation

The purpose of this paper is to find robust cause-effect relationships between a given runoff characteristic (i.e.
one that accounts for a high-, or low-flow regime in a catchment) and a selected set of variables in given spatial
and temporal domains. These relationships relate a given runoff characteristic with a set of explanatory variables
such as: 1) physiographical factors, 2) shares of land cover types, and 3) climatic or meteorological factors. These
variables are related to known physical processes that take place in a given catchment but are not the result of
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a physically-based analysis. The proposed method is consequently database driven and searches for significant
signals within the available information. To apply this modeling approach, the following definitions are necessary.

Let Y t

il
denote the l runoff characteristics, related with low- or high-flows, observed in basin i during year t, and

fl(·) a nonlinear, differentiable, and monotonic function relating it to a set of explanatory variables
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explanatory variables.

Table 2.1 European Circulation Patterns according to Hess and
Brezowsky (1969).

Major Type Sub-type Index k Description Abbreviation
Zonal W 1 West, anticyclonic Wa

circulation 2 West, cyclonic Wz
3 Southern, West WS
4 Angleformed West WW

Mixed SW 5 Southwest, anticy-
clonic

SWa

circulation 6 Southwest, cyclonic SWz
NW 7 Northwest, anticy-

clonic
NWa

8 Northwest, cyclonic NWz
HM 9 Central European

high
HM

10 Central European
ridge

BM

TM 11 Central European
low

TM

Meridional N 12 North, anticyclonic Na
circulation 13 North, cyclonic Nz

14 North, Iceland high,
anticyclonic

HNa

15 North, Iceland high,
cyclonic

HNz

16 British Isles high HB
17 Central European

trough
TRM

NE 18 Northeast, anticy-
clonic

NEa

19 Northeast, cyclonic NEz
E 20 Fennoscandian

high, anticyclonic
HFa

21 Fennoscandian
high, cyclonic

HFz

22 Norwegian Sea-
Fennoscandian
high, anticyclonic

HNFa

23 Norwegian Sea-
Fennoscandian
high, cyclonic

HNFz

24 Southeast, anticy-
clonic

SEa

25 Southeast, cyclonic SEz
S 26 South, anticyclonic Sa

27 South, cyclonic Sz
28 British Isles low TB
29 Western Europe

trough
TRW

Unclassified U 30 Classification not
possible

U

Each vector hMi
t

i
, hUi

t

i
, and hGi

t

i
is composed

of variables that are evaluated at the mesoscale,
which denote: 1) climatic or meteorological, 2) land
cover, and 3) physiographical characteristics, re-
spectively. The operator h·i denotes a vector com-
posed by either the integral or a spatial statistic ob-
tained from a set of variables defined on a given
spatial and temporal domain. Moreover, let ��� be a
vector of parameters to be calibrated and validated
based on historical records, and "t

il
be an additive er-

ror term with zero mean but otherwise of undefined
distribution. Based on these definitions, the general
form of the relationship can be written as:

Y t

il
= fl

�
hMi

t

i
, hUi

t

i
, hGi

t

i
,���
�

+ "t
il

8 i = 1, . . . , I t = 1, . . . , T
(2.1)

where I and T denote the total number of basins,
and the total number of years of the calibration pe-
riod respectively.

The variables required for eq. (2.1) are based on
the best possible information describing the rele-
vant basin’s characteristics at the mesoscale. For ex-
ample, one could use land cover classifications ob-
tained from hyperspectral remote sensing data, phys-
iographic characteristics of the basin derived from
digital elevation models, soil types and their respec-
tive physical parameters together with geologic for-
mations obtained from field campaigns and existing
maps at the mesoscale, or time series for discharge
and climatic variables. To account for macroclimatic
changes one could use stochastic downscaling pro-
cedures to generate wetness and dryness indices that
could be linked with high- and low flow regimes at
the mesoscale. The derivation of such indices is de-
scribed next.

2.2.2 Downscaling Circulation Patterns

In the present study, the subjective CP classification
proposed by Hess and Brezowsky (1969) and two
objective CP classifications developed by Bárdossy
and Filiz (2005) were employed to downscale the

macroclimatic state of the atmosphere as predictors for several mesoscale runoff characteristics.
The subjective classification is a synoptic meteorological classification defined for a large spatial domain (40� W,

30� N and 60� E, 80� N). This index is usually referred to as the European atmospheric circulation patterns and
is currently used by the German Weather Service. This classification is based on mean air pressure distribution
over Europe and the northern Atlantic Ocean and differentiates among three major circulation types called zonal,
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mixed, and meridional. These major types are, in turn, further subdivided according to the direction of movement
of frontal zones, location of high and low pressure areas, and cyclonic and anti-cyclonic rotation. As a result, there
are 29 plus one unclassified CPs as shown in Table 2.1.

The two objective classifications were optimized for a specific spatial domain and are specific for low- and high-
flows. The fuzzy rule-based optimization was carried out with the method proposed by Bárdossy et al. (2002). The
technique used for the classification of the high-flow related CPs was already reported in Bárdossy and Filiz (2005).
A similar technique, with the exception of the objective function, was used to derive low-flow related CPs.

The purpose of the classification was to identify a selected number of classes so the members of these classes:

1. Behaved similarly with respect to rainfall and/or discharges. This means that the classes should be as homo-
geneous as possible.

2. Behaved differently from the mean. This means that the classification should enable a distinction with respect
to the selected variable. A wet/dry situation has to be identified.

The classification was based on the large scale atmospheric variables such as the Sea Level Pressure (SLP) or the
500 hPa geopotential height anomaly obtained from the National Meteorological Center (NMC) gridpoint data set
for different windows over Europe with a grid resolution of 5� ⇥ 5�. In this study the classification was performed
by optimization using an objective function that evaluated the performance of the classification and the SLP data.
In this study, two kinds of objective functions were considered.

For floods, positive increments of the discharges were used to define the objective function:

OF (R) =
1

TD

TX

t=1

DX

d=1

�����
z(CPt(d) = k)

z̄
� 1

����� (2.2)

where z̄ is the mean increase of the discharge on an arbitrary day at a given location i with (z > 0). z(CPt(d) = k)
is the mean increase of the discharge on days t(d) with CP k (CPt(d) = k), and D the number of days of the year t.
The rule system describing K CPs is represented by the matrix R—for more details please refer to Bárdossy and
Filiz (2005). This objective measures the relative performance of the classification compared to no-classification.
The value of OF is large if there are CP types which lead regularly to high increases of discharge and others which
do not. This measure is thus related to flood peaks and flood volumes.

For droughts, this approach is not optimal, as small or no discharge changes are not necessarily related to low
flows or droughts. Therefore rainfall data measured at different stations were used to define the objective function
as:

OD(R) =
1

TDM

TX

t=1

DX

d=1

MX

m=1

�����ln
 

zm(CPt(d) = k)

z̄m

!����� (2.3)

In this case z̄m is the mean precipitation at location m and zm(CPt(d) = k) is the mean precipitation at location
m on days t(d) with CP k (CPt(d) = k), and M is the number of measurement locations considered. The
logarithmic transformation ensures that CPs with lower than normal precipitation are considered stronger than in
the case of the linear type evaluation used in eq. 2.2.

Both classifications were calibrated and validated for a specific region and are composed of twelve categories
(K = 12) ranging from CP1 to CP12 and one unclassified one called CP13. The procedure used in this study to
downscale the proposed CPs is described next.

The first step was to cluster the CPs into two or three groups denoted as wet, normal and dry periods, using for
this purpose a seasonal wetness index Wk (Bárdossy, 1993) estimated as follows:

Wk =

1
P

X

t

X

d2St

pt(d)
k

1
T

X

t

X

d2St

't(d)
k

(2.4)

with

pt(d)
k

=

(
hpi

t(d) if CPt(d) = k ^ d 2 St

0 otherwise
(2.5)
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't(d)
k

=

(
1 if CPt(d) = k ^ d 2 St

0 otherwise
(2.6)

P =
X

t

X

d2St

hpi
t(d) (2.7)

and where

hpi
t(d) is the expected daily precipitation at the study area ⌦. The operator h·i denotes the integral of

the daily precipitation p over the domain ⌦ occurring during the day d of the water year t 2

{1, . . . , T}.
CPt(d) is the atmospheric circulation pattern index according to Hess and Brezowsky for a given day d

of the water year t.
St is a set indicating whether a the day d belongs to summer or winter. St takes the values

{1, . . . , dw} and {dw + 1, . . . , D} for winter and summer respectively. If t denotes a leap year,
then dw = 182 and D = 366; otherwise dw = 181 and D = 365.

P is the total summer or winter precipitation within ⌦ during the calibration period in millimeter.
k is a CP-type index whose equivalence is either given in Table 2.1 or defined automatically by the

classifier.
The wetness index defined in eq. (2.4) represents the ratio between the relative amount of precipitation in

summer or winter occurring during those days with the CP-type k and the relative frequency of such CP. Using
Wk, the CPs can be grouped into three categories by applying the following rules:

if

8
><

>:

Wk  ⌧1 ) k 2 {Dry/Season}

⌧1 < Wk  ⌧2 ) k 2 {Normal/Season}

Wk > ⌧2 ) k 2 {Wet/Season}

(2.8)

If only dry and wet periods—in any season—are required then the thresholds ⌧1 and ⌧2 must be equal.
The second step consisted of defining the following indices based on the previous classification, namely:

xt

ij
=

DX

d=dw+1

#t(d)
ij

j = 1, 2 (2.9)

xt

ij
=

dwX

d=1

#t(d)
ij

j = 3 (2.10)

with

#t(d)
ij

=

8
>>>>>>>>>>><

>>>>>>>>>>>:

1 if j = 1 ^

(
xt(d)
i4 � xt(d�1)

i4 < 0

CPt(d)
2 {Dry/Summer}

1 if j = 2 ^

(
xt(d)
i4 � F�(x4)

CPt(d)
2 {Wet/Summer}

1 if j = 3 CPt(d)
2 {Wet/Winter}

0 otherwise

(2.11)

and

xt(d)
i4 =

CX

c=0

(�)chpi
t(d�c) (2.12)

where
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� is the recession constant, commonly ranging within the interval 0.85 < � < 0.98 (Chow, 1964).
F�(x) is a threshold value representing the �-th percentile of variable x.

c is a time index denoting the precipitation occurred c days before the event t(d). A common range
for c is from 15 to 120 days.

The variable x1 obtained with eq. (2.9) is aimed at finding a relationship between the occurrence of “dry”
circulation patterns and low flows—i.e. Y t(d)

i
 F10(Yi)—occurring during summer. Hence, it tallies the total

number of occurrences of CPs clustered as “dry periods” for a given catchment i during summer of a year t which
have simultaneously a decreasing API (i.e. days where d

dt
x4 < 0).

Variables x2 and x3 in eq. (2.10), on the contrary, are intended to analyze relationships for peak flows—i.e.
Y t(d)
i

� F95(Yi). The former counts the number of days in summer on which both the occurrence of “wet”
circulation periods and an antecedent precipitation index greater than a given threshold occur simultaneously. In
other words, this index assumes that a flood may be expected if a certain climatic condition and a given amount of
precipitation during a continuous period have already occurred. The latter tallies simply the number of occurrences
of wet circulation periods during winter.

2.2.3 Modeling High- and Low-Flow Characteristics

Modeling extreme runoff characteristics—here denoted by the variable Y —is, in general, a challenging task be-
cause of their highly skewed probability density functions (PDF). Empirical studies carried out with extreme runoff
characteristics have shown that the error term of multivariate models—represented by " in eq. (2.1)—has a PDF
other than the normal, or in other words, it is heteroscedastic (Samaniego, 2003). Consequently, standard meth-
ods such as multivariate linear or nonlinear regression generally fail to produce unbiased and acceptable fits if the
common Gaussian assumption is not relaxed (i.e. the error term " should be normally distributed with zero mean
and a constant variance).

There are currently many possibilities to address this problem: 1) To introduce variable transformations as in
Montgomery and Peck (1982) or to weight the residuals in the objective function according to their reliability
as proposed in Gentleman (1974) and Draper and Smith (1981); 2) To use multivariate copulas to establish the
dependence among the marginals of many random variables (Favre et al., 2004; Schweizer and Wolff , 1981); or 3)
To use a generalized model to deal with the variance of a given random variable in a proper manner (Clarke, 1994;
Lindsey, 1999). In this paper, the latter approach was adopted.

In general, the structure of a generalized model is composed of three elements:

1. The deterministic element, also called the predictor, ⌘t

i
, which is a suitable function of the explanatory vari-

ables xt

i
, thus

⌘t

il
= fl(x

t

i
,���) (2.13)

2. The distributional element, which indicates that the variance of the response Y t

ij
is an explicit function of the

expectation at each observation denoted by µt

il
, hence

E[Y t

il
] = µt

il
(2.14)

var[Y t

il
] = V (µt

il
) (2.15)

and that Y t

il
is h distributed with distributional parameters ↵↵↵.

3. The link function g(·), which is a nonlinear, monotone, and differentiable function that establishes a link
between the deterministic and the stochastic part of the model, so that

g(µt

il
) = ⌘t

il
(2.16)

where xt

i
is a vector of observed variables at the basin i and point in time t,  denotes a dispersion parameter, ↵↵↵

are the fitted parameters of the probability density function h(·), and V (·) is a variance function.
This formulation differs from the standard Generalized Linear Model (GLM) in one respect only, namely: that

the function fl(·) can be assumed either linear or nonlinear. By doing so, there is more flexibility to handle the
intertwined relationships between the predictors and the predictand.
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2.2.4 Model Selection and Parameter Estimation

The model selection was done in two steps: 1) a priori selection of a functional form for the eq. (2.1) according
to a parsimonious criterion and/or available knowledge on the relationships between some of the related variables,
and 2) the selection of the most robust model once a functional relationship is given.

In the present study, once a nonlinear relationship was selected, a constrained multi-objective optimization
problem—whose solution space comprised all feasible combinations of given explanatory variables—was then
solved. By definition, a feasible combination consisted only of statistically significative variables in which each
subcategory must have at least one variable, i.e. hMi

t

i
, hUi

t

i
, hGi

t

i
6= ;. Here, the significance of each variable

was assessed by a nonparametric test (Efron, 1982).
Among all competing models, the most robust model is that which is least sensitive to the selection of the

estimator. In the present study two estimators were used for the selection of the most robust model structure (i.e.
variable composition), namely: L1 and L2. The former denotes the sum of the absolute residuals whereas the
latter denotes the sum of the squares of residuals. These two estimators were selected a priori. Other possibilities
are conceivable too, e.g. two different likelihood functions. Consequently, the best model should simultaneously
surpass the others in two predefined objectives:

�o =
IX

i=1

TX

t=1

⇣
Y t

il
� eY t

il
(Lo)

⌘2
o = 1, 2 8 l (2.17)

where �o is a jackknife statistic (Quenouille, 1949) found by minimizing the estimator Lo with o = 1, 2. For the
estimation of each eY t

il
, the vector xt

i
was sequentially excluded from the data set. Subsequently, model parameters

were calibrated with the rest of the sample and finally eY t

il
was evaluated for xt

i
. This procedure was repeated

8 i, t. To improve the performance of the optimization algorithm and ease the comparison between the objective
functions all variables (i.e. both the input and output ones) were transformed (scaled) to the interval (0, 1]. The
jackknife statistics were not normalized as shown in eq. 2.17.

Once both the functional form and the model structure were selected, the estimation of model parameters ��� was
carried out by maximizing the log-likelihood function `(·) whose general form for the explained variable Y t

il
is

max
�̂��

`(���) =
X

i,t

ln h(Y t

il
|xt

i
,↵↵↵,���) (2.18)

and, its corresponding goodness of fit was assessed by the Akaike’s Information Criterion AIC (Akaike, 1973a) as
follows

AIC = �2 `(�̂��) + 2p⇤ (2.19)

where h(Y t

il
|xt

i
,↵↵↵,���) denotes the probability density function (PDF) of Y t

il
assuming that all observations are inde-

pendent, and p⇤ is the number of parameters used to define the model fl(·). It should be noted that minimizing the
estimator L2 implies that the explained variable and the residuals are assumed normal distributed. The maximum
likelihood method was used here to introduce a given distributional element. For more details on this approach
please refer to Samaniego (2003) and Samaniego and Bárdossy (2005).

2.3 Application

2.3.1 The Study Area and Information Available

The proposed method was tested in the upper catchment of the Neckar River upstream of the Plochingen gauging
station covering an area of approximately 4000 km2 (Fig. 2.1). The data concerning this Study Area were obtained
from several sources as indicated in Table 2.2. All variables described in eq. 2.1 were integrated both in space,
at subcatchment level, and in time, at semiannual intervals. The spatial domain of each subcatchment comprised
the drainage area of 46 gauging stations (I = 46) located in the Study Area, whose area ranged from 4 km2 to
4000 km2. With respect to the time domain, the gauged discharge was aggregated from event scale (day) during
the period from 1960.11.01 to 1993.10.31, into semiannual intervals termed summer or winter to minimize the
existing autocorrelation, hence T = 33. To validate these data, an annual water balance for each subcatchment was
calculated and all those observations exceeding a threshold value were excluded as outliers (Samaniego, 2003).
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Every predictor and explained variable listed in Table 2.2 were estimated for each subcatchment and time interval
based on data provided by several German State Agencies, as is indicated in the same Table.

Figure 2.1 Location of the Study Area within the
State of Baden-Württemberg, Germany. The location of
subcatchments A and B are also displayed.

2.3.2 A Priori Structures of the Model

Table 2.2 Explained variables, selected predictors, and data
sources used in this study.

Source Variable Description

Time series of mean daily
flows from 1961-1993 (Institute
for Environmental Protection
Baden-Württemberg, LfU)

Y1 Specific volume of high flows in
winter (mm)

Y2 Specific volume of high flows in
summer (mm)

Y3 Total duration of high flows in
winter (day)

Y4 Total duration of high flows in
summer (day)

Y5 Frequency of high flows in win-
ter (year�1)

Y6 Frequency of high flows in sum-
mer (year�1)

Y7 Total drought duration in sum-
mer (day)

Y8 Cumulative specific deficit in
summer (mm)

European Circulation Patterns
according to Hess and Bre-
zowsky, and precipitation time
series (German Meteorological
Service, DWD)

x1 A dryness index tallying the to-
tal No. of “dry periods” with de-
creasing API in summer (day)

x2 Total number of “wet periods”
occurring, simultaneously with
an API greater than a given
threshold in summer (day)

x3 Total number of “wet periods” in
winter (day)

Time series of daily precipita-
tion and temperature for 288 me-
teorological stations in Baden-
Württemberg from 1961 to 1993
(LfU and DWD). Each day was
interpolated with External Drift
Kriging to a spatial resolution of
300 m ⇥ 300 m

x4 Antecedent precipitation index
(API) (mm)

x5 Cumulative winter precipitation
(mm)

x6 Cumulative summer precipita-
tion (mm)

x7 Mean winter precipitation
(mm)

x8 Mean summer precipitation
(mm)

x9 Mean temperature in January
(K)

x10 Mean temperature in July (K)
x11 Maximum temperature in Jan-

uary (K)
Topographic map 1:25 000 for
1961 (State Surveying Agency
Baden-Württemberg, LVA) and
LANDSAT scenes from 1975,
1984, and 1993

x12 Fraction of forest cover (-)
x13 Fraction of impervious cover (-)
x14 Fraction of permeable cover (-)

DEM 30 m ⇥ 30 m (LVA)

x15 Area of a given catchment
(km2)

x16 Trimmed mean slope F(15)-
F(85) ( �)

x17 Mean slope in floodplains ( �)
x18 Drainage density (1/km)
x19 Fraction of north-facing slopes (-

)
x20 Mean elevation of the catchment

(m)
x21 Difference between max. and

min. elevation (m)
x22 Fraction of saturated areas (-)

Soil map 1:200 000 and Geolog-
ical map 1:600 000 (LfU)

x23 Mean field capacity (mm)
x24 Fraction of karstic formations (-)

In the present study, four types of functional relation-
ships fl(·) were selected to represent presumed rela-
tionships between the explanatory variables and the
predictor, therefore, they should be seen as hypotheses
rather than models. The configuration of the predic-
tor was based on criteria such as simplicity of model
structure and parsimony of parameters. They, however,
should help to reveal the kind of linkage that may ex-
ist among the system’s processes represented here by
the observables listed in Table 2.2. Consequently, four
combinations of variables mixing linear and/or nonlin-
ear functions were investigated, namely: 1) a multi-
linear (ML), 2) a potential (POT), and 3) two multi-
linear-potential (MLP1, MLP2) relationships. For-
mally, these relationships can be written as
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il
= �0 +

X

j

�jx
t

ij
(2.20)
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and
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= �0 +
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�jx
t
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+ �J⇤
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j /2U

�
xt

ij

��j (2.23)

Furthermore, to fulfil the model requirements de-
scribed in section 2.2.3, these predictors were com-
bined with several variance and link function alterna-
tives shown in Tables 2.3 and 2.4 respectively.
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Table 2.3 Probability distributions employed in this study and
their relevant characteristics.

Distribution Expectation Variance Dispersion
Function Parameter

Y
t

il
⇠ h(↵↵↵) E[Y t
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] V (µt

il
) 

Normal N (µt

il
,�) µ

t
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2

Poisson P(µt
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) µ
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µ
t

il
1

Gamma G(a, bt
il
) µ
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= ab

t

il
(µt
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)2 a

�1

Weibull W(a, bt
il
) µ

t

il
= b

t

il
�(1 + a

�1) (µt

il
)2 �(1+2a�1)

�2(1+a�1)
� 1

Note: a and b
t

il
denote the shape and the scale parameters of the PDF, respec-

tively, and �(·) is the gamma function.

2.4 Results and Discussion

2.4.1 CP Classifications

Table 2.4 Link functions used in this study.

Name Function µt

il = g�1(·)
Identity ⌘t

il

Logit 1
1+exp(⌘t

il
)

Log exp(⌘t

il)

Reciprocal (⌘t

il)
�1

Based on the hydrological data available for the Study Area, the
subjective and objective atmospheric circulation patterns were
classified into two or three categories using parameters ⌧1 and ⌧2 as shown in Table 2.5. The adopted values for
the recession constant � were 0.95 and 0.85 for winter and summer respectively. Additional parameters required
for this classification were the percentile level � = 0.80, and the maximum range of c, whose adopted values for
winter and summer were c = 30 and c = 120 days respectively. It is worth noting that according to the classi-
fication rules proposed for the subjective classification, most of the dry-CPs in this region are anticyclonic. This
result confirms the adequateness of the adopted classification parameters since warmer and drier air masses in an
anticyclone tend to suppress convective precipitation, which, in turn, leads to a reduction of the relative humidity.
Most of the wet-CPs are, on the contrary, cyclonic.

Table 2.5 Classification of circulation patterns (CPs) for winter and summer seasons according to the wetness index Wj in
the Study Area during the period from 1961 to 1993. The number of CPs and their total frequency of occurrence in percentage
(⇢) for each category are also indicated.

Classification
Type

⌧1 ⌧2 Category CP Winter No. ⇢ [%] CP Summer No. ⇢ [%]

Subjective 0.6 1.0 Dry BM, HB, HFa, HM, HNa,
HNFa, NEa, NWa, Sa, SEa,
SEz, SWa, Wa

13 41 BM, HB, HFa, HM, HNa,
NEa, NWa, Sa, SEa, SWa,
Wa

11 44

Normal HNFz, NEz, Sz, TB 4 6 HNFa, Na, Sz, U 4 4
Wet HFz, HNz, Na, NWz, Nz,

SWz, TM, TRM, TRW, U,
Ws, WW, Wz

13 53 HFz, HNFz, HNz, NEz,
NWz, Nz, SEz, SWz, TB,
TM, TRM, TRW, WS, WW,
Wz

15 52

Objective
high-flows

1.1 1.1 Dry CP1, CP3, CP4, CP7, CP9,
CP12,

6 61 CP1, CP3, CP4, CP6, CP7,
CP9, CP12

7 69

Wet CP2, CP5, CP6, CP8, CP10,
CP11, CP13

7 39 CP2, CP5, CP8, CP10,
CP11, CP13

6 31

Objective low-
flows

0.8 0.8 Dry - CP3, CP5, CP8, CP11,
CP13

5 35

Wet - CP1, CP2, CP4, CP6, CP7,
CP9, CP10, CP12

8 65

2.4.2 Visualizing Possible Effects of Land Cover Change on Hydrological Extremes

Two subcatchments labeled A and B (Fig. 2.1) were selected to illustrate the evolution of some explanatory vari-
ables over time and the possible effects of land use/cover change. These subbasins have approximately the same
extent (123 km2 and 126 km2 respectively) but differ largely on their main land cover type. Their average elevation
above sea level is 630 m and 385 m respectively.
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Figure 2.2 Time series and trends (by means of a 5-year
running average) of selected variables, namely: the frequency
of high flows in winter (Y5), the total drought duration in summer
(Y7), indicesx1 andx3 based on the subjective CP classification,
summer precipitation (x6), mean temperature in July (x10), and
fractions of land cover (x12 and x13) for two subcatchments (A
and B) depicted in Fig. 2.1. Additionally, it is also shown how
the same climatic phenomenon (i.e. a sequence of dry years
highlighted by a dashed line) have produced different outcomes
depending on the land cover and morphological situation within
the catchment.

During the period from 1961 to 1993, subcatch-
ment A exhibited slightly growing shares of forest and
impervious cover whereas subcatchment B endured a
steady land use transition from grassland (permeable
land cover) to settlement (impervious land cover) and
a steady decline of forest since the mid 70s. As a re-
sult of that, in 1993, the former was mainly covered by
forest (48%) whereas the latter was extensively urban-
ized (56%) and hence mainly covered by impervious
surfaces.

The behavior of these two subcatchments is de-
picted on the left and right panel of Fig. 2.2, respec-
tively. Total drought duration in summer (Y7), for in-
stance, exhibited a remarkable decrement in the largely
urbanized catchment although the total precipitation in
the same half year as well as the mean air temperature
in July did not reveal any significant trend. Moreover,
the index x1 showed a completely different behavior
depending on the shares of land cover. This fact sug-
gests that the combination of a rapid growth of imper-
vious cover accompanied by a decline of forest may
have led to a rapid shrink of the total drought dura-
tions. In contrast, slightly growing shares of forest and
impervious areas may have led to an increase of total
drought durations. Moreover, for a given meteorologi-
cal drought, the effect on the runoff characteristic var-
ied considerably. These facts are illustrated in Fig. 2.2
by the rectangles drawn with a dashed line. The fre-
quency of high flows in winter (Y5) and the index x3

also revealed different behavior depending on the main
land cover type. Subcatchment B, for instance, exhibited a clear positive trend whereas subcatchment A did not. A
more detailed analysis of probable causal relationships is presented in section 2.4.3.

Consequently, these observations seemed to indicate that although the explained variables were mainly governed
by macroclimatic conditions, they might be significantly attenuated or enhanced by the land cover conditions as
well as by morphological characteristics of the catchment.

2.4.3 Model Parametrization and Performance

Figure 2.3 Performance of three models types (MLP1, MLP2
and POT) used to predict total drought duration in summer (Y7).
�1 and �2 are Jackknife statistics calculated by minimizing the
L1 and L2 estimators respectively.

The most robust models were selected by the method
described in section 2.2.4. The composition of these
models and their corresponding calibrated parameters
are shown in Tables 2.6 and 2.7 respectively. Models
for the runoff characteristics Y1, Y2, and Y8 were not
estimated because they are highly correlated with char-
acteristics Y3, Y4, and Y7, whose pairwise Pearson’s
correlation coefficients were 0.87, 0.89, and 0.71 re-
spectively. For the remaining runoff characteristics, the
best results were obtained with the identity link func-
tion, but, in any case, the predictor function appears to
be multilinear.
To select among the several functional relationships
considered in this study (MLP1, MLP2 and POT), a
scatterplot (Fig. 2.3) of the performance indices �1 and
�2 was used.
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Since these performance indices denote Jackknife statistics-errors, the smaller the performance index, the higher
the robustness of the model fit. In the example shown in Fig. 2.3, for instance, model type MLP2 was better than
POT, and this, in turn, was better than model type MLP1. The performance indices for the ML type model do
not appear in this graph because their corresponding values were greater than the maximum values shown in this
graph. Similar results were obtained for the other characteristics. This finding indicated that the nonlinearity of the
described system stemmed mainly from the meteorological and/or physiographic variables.

Table 2.6 Summary of the composition of the calibrated hydrological models (1 denotes that a variable is included in the
model, otherwise it is omitted). Additionally, the sample size N as well as the type of predictor and distribution functions
employed in each model are shown.

Runoff ⌘(·) h(·) Variable xi (i) N
Characteristic 1 2 3 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Y3 POT N 1 1 1 1312
Y4 MLP2 N 1 1 1 1318
Y5 POT P 1 1 1 1 1 1 1 1 1 1247
Y6 MLP2 W 1 1 1 1 1 1 1 1 977
Y7 MLP2 W 1 1 1 1 1 1 1263

Table 2.7 Parameter estimates and their respective p-values for each of the calibrated hydrological models (the climatic
indices are based on the subjective classification).

Runoff Parameter �i (i)
[p-value]

Char. 0 J
⇤ 1 2 3 5 8 9 10 11 12 13 14

Y3 1.419 0.951 �0.116 0.059
[⇡ 0.] [⇡ 0.] [⇡ 0.]

Y4 0.889 3.365 1.143 �0.502 0.105
[⇡ 0.] [0.024] [⇡ 0.]

Y5 0.024 0.160 0.761 0.058 �0.131 �0.166

[⇡ 0.] [⇡ 0.] [0.018] [⇡ 0.] [⇡ 0.]

Y6 0.100 4.923 0.454 1.098 0.012
[⇡ 0.] [⇡ 0.] [0.032]

Y7 �0.269 14.658 0.869 0.017
[⇡ 0.] [0.045]

Runoff Parameter �i (i)
[p-value]

Char. 15 16 17 18 19 20 21 22 23 24
Y3
Y4
Y5 �0.637 0.556 0.225 �0.005

[⇡ 0.] [⇡ 0.] [0.015] [⇡ 0.]

Y6 �0.825 �1.136 �0.289 0.486 �0.006

[0.010] [0.004] [0.002] [0.064] [0.024]
Y7 �0.075 �0.711 �2.126 0.236

[⇡ 0.] [⇡ 0.] [⇡ 0.] [0.016]

The model summary presented in Table 2.6 shows that with the exception of Y3 and Y4, the remaining runoff
characteristics exhibited a distributional element other than normal. This means that the runoff characteristics Y5,
Y6, and Y7 as well as their associated additive error term (eq. 2.1) are heteroscedastic, or in other words, that they
exhibit a non-stationarity variance either along time, or along some of the predictors, or both.

The goodness of the fit (r), bias, and the root of mean square error obtained for each calibrated model using
both the subjective and objective CP classifications are summarized in Table 2.8. In general, these results indicated
that the objective classification was as efficient as the synoptic one proposed by Hess and Brezowsky (1969). In
the case of the low-flow characteristic (Y7), the results obtained for both the r and the RMSE were significantly
better than those obtained with the subjective classification. This important result showed an additional advantage
of the objective classification, namely: that the learning (optimization) algorithm employed to find the fuzzy-rule
classification system (see Bárdossy et al., 2002) can be fine-tuned for a specific purpose, say predicting drought
events at the mesoscale.

From all modeled characteristics, total drought duration in summer Y7 exhibited the highest RMSE (13 days and
9 days depending of the classification used), which can be seen as an overall indicator of uncertainty associated
with the estimation of this variable. In this case, the use of a “fine-tuned” objective CP classification (i.e for
low-flows) led to a 30% reduction in the uncertainty of the predicted variable.
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By inspection of Table 2.7 some hydrological interpretation of the empirical models is presented. Results
obtained for total duration of high flows in winter and summer (Y3 and Y4 respectively) indicated that these runoff
characteristics have a very strong correlation with the macroclimatic situation represented by the variables x3 and
x9 in winter and x2 and x10 in summer respectively. Morphological variables were irrelevant in these cases but land
cover variables (x12 and x9) were found to be statistically dependent and significant, although their contribution
to the total explained variance was quite small. In both cases, mean temperature was inversely related to the total
duration of high flows, which is plausible since the higher the temperature, the larger the evapotranspiration, and
thus the lower the discharge.

Table 2.8 Correlation coefficient (r), bias (BIAS), and root of mean square error (RMSE) and the Akaike Information
Criterium (AIC) obtained for the calibration period from 1961 to 1993 with yearly time steps.

Runoff Subjective CP Classification Objective CP classifications
Characteristic BIAS RMSE r AIC BIAS RMSE r AIC

Y3 �0.1 3.3 0.94 2919. �0.2 3.9 0.91 3266.
Y4 +0.0 2.3 0.94 1538. +0.0 2.8 0.88 2403.
Y5 +0.0 1.5 0.77 4327. �0.0 1.5 0.76 4330.
Y6 +0.2 1.1 0.87 1372. �0.1 1.3 0.79 1693.
Y7 +0.0 13.3 0.86 8751. �0.3 9.3 0.92 7021.

The frequency of high flows (Y5) in winter appeared as directly dependent on the meteorological conditions,
especially the total precipitation (x5), the maximum temperature in January (x11) and the composed indicator
of wet circulation patterns (x3). Thus, the wetter a given year was, the higher the likelihood that a flood event
would arise. Moreover, if the winter temperature in January was high, then the frequency of high flows tended
to increase since the thawing process would be faster, which, in turn, may have increased discharge. The same
direct relationship applied to the fraction of north-facing slopes (x11) and the average field capacity (x23). The
former could be explained due to a reduced evapotranspiration and hence higher runoff (i.e. the conservation of
mass principle that is implicit in the water balance of a basin). The shares of forest and permeable areas (x12 and
x14 respectively) are inversely related variables, all perfectly plausible relationships from the hydrological point
of view because land cover types with larger roughness coefficients tended to increase the time of concentration
within a basin and hence reduce the likelihood of peak events. Causal relationships for the other variables were not
quite clear, which indicates that they may represent artifacts found in the sample. During summer, the frequency of
high flows (Y6) also exhibited a direct relationship with the mean precipitation (x8) and the composed index for wet
circulation patterns (x1), the share of saturated areas (x5), and the share of impervious areas within a catchment
(x13).

Figure 2.4 Spatial distribution of the correlation coefficient r
of the total duration of high flows in winter (Y3, left panel), and
the total drought duration in summer (Y7, right panel). In the
particular case of basins A and B, r were 0.71 and 0.73 for Y3;
and 0.98 and 0.92 for the Y7, respectively.

Based on the data available, the total drought dura-
tion in summer (Y6) appeared to have a complex non-
linear relationship with the predictors. For instance,
it exhibited a nonlinear relationship with the macro-
climatic conditions represented by the variable (x1),
which not only depends on the circulation patterns but
also on the antecedent precipitation index. The latter,
which is a proxy of the average soil moisture, was,
in turn, directly related to the share of forest within
a catchment (x12) and inversely related to the share of
impervious areas (x13). Furthermore, x12 appeared as
a linear predictor of Y6 too. These relationships are
also consistent with the catchment’s water balance, as
during a summer dry spell, the evapotranspiration from
forest reaches the higher annual values, which, im-
plies no recharge of the subsurface storage occurs, and,
therefore, there should be less discharge into streams.
The area of the basin (x15) appeared to be inversely re-
lated to Y6. In other words, the larger the basin’s area, the larger its storage capacity, and hence, the longer the
basin’s baseflow can be kept above a given threshold. This, in turn, implies fewer days per year accounting for
water deficits.
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Figure 2.5 Observed and calculated time series for the total
drought duration in summer [(Y7), panel (a)] and the frequency
of high flows in winter [Y5, panel (b)] for basins A and B,
respectively.

Based on the results shown in Table 2.8 and Fig. 2.5,
it can also be inferred that the selected models perform
relatively well because they were able to explain be-
tween 59% and 88% of the observed variance. This ef-
ficiency of the models, however, was not constant over
space but exhibited considerable spatial-temporal vari-
ability within the studied area. For example, variabil-
ity in Y3 and Y7 (Fig. 2.4), depended not only on the
season (i.e. winter and summer) but also on the kind of
hydrological regime (i.e. high- and low-flows) that was
analyzed. In the present case, the lack of predictabil-
ity seems to be associated with morphological charac-
teristics such as the fraction of karstic formations un-
derneath a given basin and its status as a headwater
basin. In general, headwater subbasins performed bet-
ter than those which are not. This is probably related
with the number regulation structures (e.g. weirs and
barrages) located along the courses of non-headwater
basins. Moreover, subcatchments with lower fraction
of karstic formations performed better than those with
larger fractions of karstic fractions. The reason for
that could be the unaccounted sources of water caused
by size differences between surface and underground

catchments, which, in turn, might alter the water budget accounting (particularly with respect to the baseflow) at a
given gauging location.

2.4.4 Effects of the Distributional Element on the Simulated Variance

Figure 2.6 Variation of the dispersion of the observed and calculated total drought duration in summer (Y7) as a function
of the index x1. The only difference between panels (a) and (b) is the kind of distribution function assumed for the explained
variable, and thus, the error term: On the panel (a), Y7 is assumed normal distributed, whereas on the panel (b) the variable is
assumed Weibull distributed. Both continued and dashed lines represent the magnitude of the standard deviation whereas dots
and rectangles represent the mean values at each level of predictor.

The correct selection of the distributional element when modeling highly heteroscedastic time series is a de-
ciding factor on the model’s quality, especially regarding the variance of the explained variable. This is clearly
illustrated in Fig. 2.6, where the the total drought duration was modeled using two distributional elements as null
hypothesis namely: 1) the normal distribution which is symmetrical and has a constant mean and variance; and 2)
a skewed distribution like the Weibull which has a variance that depends on the value of the mean. For the sake of
comparison, in both cases the a priori adopted function of the predictor, the sample size, and the explanatory vari-
ables were kept equal. Based on the results depicted in Fig. 2.6, it can be concluded that, under these assumptions,
both models were able to predict relatively well the expected value of Y7; but that the model based on the normal
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distribution completely underestimates the observed variability of Y7 which largely depends on the index x1. The
model based on the Weibull distribution, on the contrary, exhibited a significant increase of the estimated variance
along the abscissa, and, in this respect, performed much better than the former.

2.5 Conclusions

Based on the results of this study, some general conclusions can be drawn:

The indices derived from either the objective or the subjective CP classifications were equally effective at
explaining a large proportion of the variance of the proposed runoff characteristics. Consequently, objective
classifications could become an efficient alternative in those cases where automated operational forecasts are
required,

The proposed dryness index (dry circulation patterns occurring with a decreasing antecedent precipitation
index) exhibits a completely different behavior depending on the fraction of land cover within a catchment
while almost constant seasonal-mean precipitation and temperature have been observed. Moreover, the dry-
ness index is highly correlated with total drought duration,

The proposed compounded wetness indexes also explain a large fraction of the observed variance of the total
duration and the frequency of high-flows in winter and summer,

The fraction of forest and/or impervious areas seem to have played—in the Study Area—a significative role
in the hydrological extremes at mesoscale level,

The large fraction of the observed variance of all extreme runoff characteristics is, however, explained by
indices related to macroclimatic indices, and,

The heteroscedasticity of the observed variables could only be acceptably simulated using nonlinear general-
ized models that assume non-gaussian distributions.
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Abstract

The requirements for hydrological models have increased considerably during the previous decades to cope with the
resolution of extensive remotely sensed datasets and a number of demanding applications. Existing models exhibit
deficiencies such as overparametrization, the lack of an effective technique to integrate the spatial heterogeneity of
physiographic characteristics, and the non-transferability of parameters across scales and locations. A Multiscale
Parameter Regionalization (MPR) technique is proposed as a way to address these issues simultaneously. Using
this technique, parameters at a coarser scale, in which the dominant hydrological processes are represented, are
linked with their corresponding ones at a finer resolution in which input datasets are available. The linkage is done
with upscaling operators such as the harmonic mean, among others. Parameters at the finer scale are regionalized
through nonlinear transfer functions which link basin predictors with global parameters to be determined through
calibration. MPR was compared with a standard regionalization (SR) method in which basin predictors instead
of model parameters are firstly aggregated. Both methods were tested in a basin located in Germany using a
distributed hydrologic model. Results indicate that MPR is superior to SR in many respects, especially if global
parameters are transferred from coarser to finer scales. Furthermore, MPR, as opposed to SR, preserves the spatial
variability of state variables and conserves the mass balance with respect to a control scale. Cross-validation tests
indicate that the transferability of the global parameters to ungauged locations is possible.

3.1 Introduction

Hydrologic models have evolved in the previous decades to cope with the extensive data sets derived from Geo-
graphic Information Systems (GIS) and a plethora of remote sensing acquisition techniques. Rapidly increasing
computational power has also contributed to this development. As a result, hydrologic models evolved from simple
conceptual hydrologic models (e.g. SAC model (Burnash et al., 1973a), HBV model (Bergström, 1995)) to spa-
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tially distributed models of varying complexities such as MIKE-SHE (Refsgaard and Storm, 1995), VIC-3L (Wood
et al., 1997), HL-RMS (Koren et al., 2004), WASIM-ETH (Schulla and Jasper, 2007).

This development process has not always contributed to finding the “right” answers to the main problems of
contemporary hydrology, particularly at the mesoscale, i.e. basins whose area are within the range of [102, 104]km2

(Dooge, 1986). These problems, according to Beven (2001) are: nonlinearity, scale, uniqueness, equifinality, and
uncertainty.

Recent developments, especially from the so-called “physically based” hydrologic models have not properly
addressed these problems, in most practical cases, mainly due to the following reasons. Firstly, media properties
(both vegetation and soil) are essentially unknown or at least poorly known (Blöschl et al., 2008), this implies that
any system’s characteristic will always exhibit some spatial variability regardless of the grid cell resolution chosen
for modeling purposes. Hence, trying to use point scale physics at the basin scale implies that both the media and
the boundary conditions should be known spatially at the scale of the equations. This, in turn, requires prohibitive
amounts of input data, which in most cases goes far beyond practical limitations even for small experimental plots
(Zehe et al., 2006). Secondly, modelers are forced to find “effective parameters” via calibration, since the required
information seldom exists. As a result, these types of models are transmuted into “overparameterized conceptual
models” (Beven, 2001; Blöschl, 2001; Kirchner, 2006).

“Conceptual models”, on the contrary, are parsimonious and computationally efficient than the former. They
have been commonly applied in operational hydrology, due to these reasons. These models have been mainly
focused on discharge generation and its predictive uncertainty, but have paid little attention to important issues
like the spatio-temporal distribution of inputs, state variables, and water fluxes, which are fundamental for cou-
pling them with regional climate models (Seneviratne and Stöckli, 2008). The application of these models usually
requires parameter calibration.

In general, parameters of any mesoscale hydrologic model are by definition effective quantities that can not be
measured but need to be inferred by an indirect procedure usually called calibration (Beven, 2001; Gupta et al.,
2002; Kirchner, 2006).

Model overparameterization further complicates this inference process due to the equifinality (Beven, 2001; von
Bertalanffy, 1968) of feasible solutions. In most cases, finding them constitutes a difficult optimization problem.
Moreover, solutions determined through calibration are not transferable to ungauged locations or to different scales
(Liang et al., 2004; Troy et al., 2008) other than that used during calibration.

For these reasons regionalization techniques have been pursued in hydrological modeling. They have been
aimed 1) to reduce model overparametrization (Pokhrel et al., 2008), 2) to confine the parameter search to realistic
values (Gotzinger and Bárdossy, 2007; Hundecha and Bárdossy, 2004), and 3) to allow the transfer of information
(e.g. model parameters) from gauged to ungauged locations (Abdulla and Lettenmaier, 1997; Mosley, 1981).

Parameter regionalization techniques reported in literature can be categorized into two main groups: Firstly, pa-
rameter regionalization carried out after model calibration, or simply post-regionalization; and secondly, parameter
regionalization carried out through simultaneous calibration of transfer-function parameters by assuming prior re-
lationships between basin predictors (e.g. elevation, slope, soil texture, vegetation characteristics, etc.) and model
parameters, or simply simultaneous regionalization. Parameters required for establishing these relationships are
called “transfer-function parameters” (Hundecha and Bárdossy, 2004), global- or super-parameters (Pokhrel et al.,
2008).

In general, the post-regionalization technique consists of the following steps (Abdulla and Lettenmaier, 1997;
Parajka et al., 2005; Seibert, 1999): 1) select a set of gauged locations or basins, 2) calibrate a hydrologic model in
each basin independently, 3) perform a multivariate input-output analysis (e.g regression, neural networks) to link
model parameters obtained for each basin with a set of basin predictors, and 4) cross-validate the results in a gauged
basin that was not taken into account during the calibration phase. This technique is quite simple to implement but
quite disadvantageous due to the following reasons. Firstly, a set of calibrated model parameters can be a good
solution to minimize a given error function but it might be a bad one to perform regionalization analysis because
it does not conform with the physical range expected for a given parameter. Or in other words, these calibrated
parameters might be only an artifact of the optimization algorithm. And secondly, because interactions among
regionalization functions are not considered during the model calibration (Boughton and Chiew, 2007; Heuvelmans
et al., 2006; Parajka et al., 2005; Wagener and Wheater, 2006), which implies that the transfer function parameters
may turn out to be weak or even wrong estimations (Kim and Kaluarachchi, 2008).

The simultaneous-regionalization technique has been proposed to address the shortcomings of the previous
approach as well as to take into account the spatial variability of the model parameters. The basic procedure is as
follows: 1) select a group of gauged basins, 2) establish a priori functional relationships (i.e. transfer-functions)
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between model parameters and basin predictors, 3) calibrate the transfer function parameters coupled with the
hydrologic model, and 4) cross-validate these parameters in a gauged basin that was not used during the calibration.

This approach has been used in several studies. For instance, Hundecha and Bárdossy (2004) employed the
simultaneous-regionalization method in a semidistributed conceptual model (HBV-IWS) with five regionalized
parameters. In this case, the spatial variability of the basin predictors was grouped into zones, which were de-
fined within each sub-basins based on land cover classes, soil types, and elevation. A follow up of this study was
proposed by Gotzinger and Bárdossy (2007), in which only the top-soil reservoir of the HBV-IWS model was
conceived as spatially distributed. In this study, the authors introduced monotony and Lipschitz conditions into the
optimization problem to ensure the continuity of the model parameters in neighboring cells which share similar
properties. In both studies, models were able to reproduce quite well the discharge hydrograph. However, reason-
able soil moisture patterns are unlikely to be obtained in both cases, since this regionalization technique employs
discrete classes as basin predictors. Most recently, Pokhrel et al. (2008) followed a similar approach to regionalize
HL-DHL model parameters based on a priori estimates derived by Koren et al. (2004).

A variant of this procedure was proposed by Fernandez et al. (2000) and Kim and Kaluarachchi (2008). In
this case, the authors simultaneously calibrate both the model parameters and the transfer function parameters,
which – in our opinion – is redundant because the model parameters are already coupled with the transfer function
parameters.

Troy et al. (2008) proposed an alternative regionalization procedure aiming to reduce the computational time
needed for the calibration of the VIC land surface model. To attain this goal, model parameters were obtained
through calibration for a subset of the grid cells. Subsequently, parameters for the uncalibrated grid cells were
found by linear interpolation. Their results indicated that calibrating the model at different temporal resolutions
caused minimal changes in modeled runoff while transferring parameter sets across spatial resolutions did induce
significant changes in model performance. The main shortcoming of this technique – in our opinion – is that neither
the optimized parameter values nor the regionalization function (i.e. the linear interpolation) have a functional
relationship with the physiographic characteristics of the uncalibrated grid cells whose spatial variability is not
necessarily linear. Large bias in simulated runoff at some modeled locations, as reported by the authors, may be a
consequence of this strong assumption.

The common feature among regionalization techniques reported in recent literature is that the sub-grid vari-
ability of the basin predictors is not taken explicitly into account. Hence, basin predictors are defined at the same
scale as the modeling units (e.g. grid cells). Hereafter, these types of techniques will be denoted as Standard

Regionalization (SR) to distinguish them from the technique proposed in this study.
In this study, a Multiscale Parameter Regionalization (MPR) technique is proposed to overcome the issues men-

tioned above. This approach is a type of simultaneous regionalization but it differs in many important aspects from
those found in the reviewed literature (Fig. 3.1). Foremost, the regionalization is performed at a finer resolution
(i.e. data input level) to account for the sub-grid variability of basin predictors. Subsequently, effective parameter
values required for hydrologic modeling at a coarser grid are obtained with appropriate upscaling operators.
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Figure 3.1 Schematic comparison between MPR and the standard simultaneous
regionalization approaches. In both cases, the set of global parameters ��� is to be obtained
through calibration.

Regionalization at the finer
scale is carried out with lin-
ear or nonlinear transfer func-
tions which are based on pro-
cess understanding and empiri-
cal evidence (e.g. pedo-transfer
functions). These functions aim
to establish a quasi-continuous
link between model parameters
and basin predictors through
transfer function parameters (or
global parameters). The pur-
pose of the subsequent step is
to estimate an effective value
of a parameter that captures the
emerging structure to suitably
describe the dominant hydrological processes at a coarser grid.

One of the main advantage of distributed models over lumped ones is their ability to reproduce streamflow at
ungauged locations within a basin (Reed et al., 2004). However, the performance of regionalization techniques
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within the context of simulating streamflow at internal ungauged locations is not satisfactory yet (Pokhrel and
Gupta, 2010). There is also extensive literature dealing with the issue of how to transfer model parameters to
ungauged basins based on dissimilarity measures, but this is out of the scope of this paper. Interested readers may
refer to Samaniego et al. (2010b); Wagener et al. (2007) and sources therein.

MPR implemented within a spatially distributed mesoscale hydrologic model (mHM) (Samaniego et al., 2010b)
has successfully contributed to ameliorating the current shortcomings of existing distributed hydrologic models,
namely overparametrization and the lack of an effective technique to integrate the spatial heterogeneity of soils,
vegetation and topography into the model. Extensive numerical experiments carried out in this study supported the
research hypothesis that explicitly accounting for the sub-grid variability in a regionalization technique (i.e. MPR)
is essential to facilitate the transferability of global parameters to ungauged locations or to other modeling scales
not considered during calibration. Furthermore, it contributed to the conservation of total water fluxes on a given
control volume as well as retaining a reasonable level of accuracy for streamflow prediction.

Improvements in these areas are urgently needed for the efficient application of existing distributed hydrologic
models in operational streamflow forecast at gauged and ungauged locations (PUB initiative) and for coupling
these models with regional climate models.

3.2 Conceptualization of the System

3.2.1 General Problem Formulation

Figure 3.2 General model structure for a
cell i at time point t draining to a stream
section within this cell (graphic is not to
scale).

A mesoscale river basin is an open system that can be defined mathemat-
ically in various ways depending on how the spatio-temporal variability
of the basin characteristics is described. If the basin characteristics can
be assumed to be continuous in space, and its media characteristics and
boundary conditions would be known at the point scale, and the govern-
ing process would be fully scalable, then a system of partial differential
equations (PDE) would be suitable to describe the evolution of the dom-
inant processes at this scale (Freeze and Harlan, 1969). Conversely, a
system of ordinary differential equations (ODE) may be appropriate to
describe the temporal evolution of these processes at a given location
i (Blöschl et al., 2008), if these characteristics appeared to be discrete
with unknown scaling laws.

Since the continuity and the scalability assumptions are quite diffi-
cult to justify at the mesoscale, most conceptual hydrologic models (e.g.
HBV, SAC, VIC-3L) have adopted an ODE formulation, which may also
include stochastic terms representing the uncertainty of the system. In
general, let M{f ,g} be a distributed mesoscale water balance hydro-
logic model that relates the state variables x with some observables categorized as inputs u and outputs y. Here
f and g denote a set of functional relationships that describe the evolution of the system and the quantification of
model outputs, respectively. u is a set of fields (grids) representing the land cover, the physiographical and the
meteorological variables. Based on this model, the rate of change of the state variables at a given cell i (Fig. 3.2)
and point in time t are

ẋi(t) = f
�
xi(t),ui(t),���i(t)

�
+ ⌘⌘⌘i(t) 8i 2 ⌦ (3.1)

where ��� is a vector of location specific parameters. Some of these parameters may vary in time to take into
account changes in land cover (for more details; see Section 3.2.2). ⌘⌘⌘ is a vector of unmeasurable stochastic inputs,
which can be interpreted as the degree of uncertainty originated due to the lack of knowledge about the dominant
processes during the formulation of M. ⌦ denotes the spatial domain of a river basin, and i 2 ⌦.

Observed outputs such as streamflow or ground water levels y at given locations m 2 ⌦ in time t are defined
by

ym(t) = g
�
x(t),u(t),���(t)

�
+ ✏✏✏m(t) (3.2)

where ✏✏✏ is a vector denoting the uncertainty of the system originated by defects on measurements of both the inputs
and outputs. A necessary condition of the lattice covering this domain ⌦ is, that there should be a unique point
having the highest flow accumulation. This point is denoted hereafter as the basin’s outlet.
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It is worth noting that inputs fields u and outputs y can be measured at predetermined time intervals. Conversely,
the state variables and their rate of change (represented as ẋ = dx

dt
) can only be inferred indirectly. To solve this

system of ODEs, we assume for the sake of simplicity, that the stochastic term ⌘⌘⌘ = 0 [Eq. (3.1)]. There are other
available alternatives to solve explicitly this system of stochastic ODE, for example through Bayesian analysis
(Kavetski et al., 2006) or data assimilation (Vrugt et al., 2005). The application of any of these techniques within
the framework of the multiscale regionalization technique is possible, but out of the scope of this study. The
assumption stated above, although disadvantageous in other respects, would allow us to test the efficiency of the
proposed regionalization method.

3.2.2 Model Parametrization

As a result of the proposed solution scheme, the uncertainty originated by the combination of various causes,
such as: defects in measurements, deficiencies of the model structure, inaccurate process representation, and de-
gree of spatio-temporal discretization, is embedded in both model parameters ��� and measurements’ error ✏✏✏. This
uncertainty is, in turn, translated into the model predictive uncertainty, which is also greatly magnified by over-
parametrization (Beven, 2001).

The challenge is to formulate a parametrization method able to cope with data availability (i.e. resolution) but
still robust enough to make reliable predictions under a changing environment.
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Figure 3.3 Estimation of effective regionalized parameters���1

at level-1 based on regionalized model parameters ���0 at level-0.
Note that global parameters ��� are common for both the effective
parameters at level-1 and level-1’. Given the level-0 information
and a modeling scale, say at level-1, ��� can be determined via
calibration.

In this study, a Multiscale Parameter Regionalization
(MPR) technique is introduced to overcome the over-
parameterization problem, to explicitly account for the
sub-grid variability within the parameter regionaliza-
tion framework, and also to ease the transferability of
global parameters to other scales (Wagener and Kol-
lat, 2007) and locations, which are different from those
used during calibration; all of these without inducing
statistical significant bias in either streamflow predic-
tions and/or simulated water fluxes. The basis of this
method is that we are not interested in estimating ag-
gregated basin characteristics having little or no in-
formation regarding the spatial variability of the nat-
ural factors that regulate the hydrological process at
the sub-grid scale, but rather, in estimating effective
model parameters that capture the emergent properties
of these processes. To achieve this objective, the fol-
lowing hierarchy of spatial scales is considered.

3.2.3 Hierarchy of Spatial Scales

The spatial dimension of the dominant hydrological
processes occurring at the mesoscale span over several orders of magnitude. In this study, three levels (Fig. 3.3)
are differentiated to better incorporate and represent the spatial variability of input and state variables:

1. Level-0: Spatial discretization used to describe the sub-grid variability of relevant basin characteristics such
as terrain elevation, slope and aspect, the main soil characteristics and number of horizons of pedotops, main
geological formations of the basin as well as the land cover. The cell size and cell index at this level is denoted
by `0 and j, respectively.

2. Level-1: Spatial discretization used to describe dominant hydrological processes (Blöschl, 2001) at the meso-
scale, referred hereafter as the modeling scale. The cell size and cell index at this level is denoted by `1 (with
`1 � `0) and i, respectively.

3. Level-2: Spatial discretization used to describe the variability of the meteorological forcings at the mesoscale,
for example the formation of convective precipitation cells. The cell size at this level is denoted by `2, with
`2 � `1.



38 MULTISCALE PARAMETER REGIONALIZATION

3.3 Multiscale Parameter Regionalization

The MPR technique requires two phases to estimate the effective values of model parameters ��� at the modeling
scale, namely: 1) regionalization and 2) upscaling. These phases are depicted in Fig. 3.3.

3.3.1 Parameter Regionalization

The first phase of MPR consists on establishing a priori relationships between fields of model parameters ���0 and
distributed basin predictors u0 at level-0 (Fig. 3.3). These spatio-temporal fields are merged together through linear
or nonlinear transfer functions f(•) and scalar values denoted hereafter as global parameters ���.

Global parameters ��� are hypothesized as quasi-scale-independent scalar values that remain fixed across the
whole modeling domain ⌦. These global parameters along with the transfer functions and different basin predictors
u0 determine the fields of model parameters ���0 at level-0. These functions are based on process understanding
and/or empirical evidence (e.g. pedo-transfer functions).

Commonly, static morphological variables such as soil texture properties; terrain elevation, slope, and aspect;
average conductivity of main geological formations as well as time series of land cover classes available at level-0
scale can be used as basin predictors (Abdulla and Lettenmaier, 1997; Hundecha and Bárdossy, 2004). This is
possible partly because these variables are intimately related with the generating process at the `0 scale such as the
runoff generation at hillslopes (Becker and McDonnell, 1998).

The general formulation of a regionalization or transfer function f(•) is

�0
lj

(t) = fl
⇣
uuu0
j
(t),���

⌘
(3.3)

where �0
lj

(t) denotes the l-th model parameter defined at the cell j of level-0 in time point t, l = 1, . . . , p, with p

denoting the total number of model parameters. uuu0
j

refers to a v-dimensional predictor vector for cell j and ��� is a
s-dimensional vector of global parameters. Vector dimensions v and s denote the total number of basin predictors
and the total number of free parameters to be calibrated, respectively. Some model parameters are time-dependent
due to changes in basin predictors such as land cover.

The main objective of this first step is to reduce model overparameterization, to ease the transferability of global
parameter sets from gauged to ungauged catchments (Samaniego et al., 2010b), and, if possible, to increase overall
model performance. Moreover, the parameter regionalization performed at level-0 scale (smallest scale supported
by the input data), also ensures that MPR explicitly account for the sub-grid variability within the modeling frame-
work (i.e. preprocessing of input data is not required as it is commonly done in the SR method).

3.3.2 Estimation of Effective Parameters

The second phase of MPR consists in upscaling of the lth regionalized model parameter �0
l
(t) from level-0 to

the modeling level-1 (cell i) in a way that the resulting parameter �1
li
(t) becomes an effective parameter that

encapsulates the emerging features of a given process at this scale (Fig. 3.3). The main challenge in this phase is
therefore to find the best, often non-linear, aggregation or upscaling rules, hereafter denoted as upscaling operators.

Moreover, these operators should also take into account the characteristics of the sub-grid variability of a given
parameter (i.e. second and higher moments) and its propagation via non-linear equations describing the hydrolog-
ical system. If this is not done properly, significant biases in predicted variables would be introduced. The reason
for that stems from the fact that predicting the evolution of an aggregated variable x1 at a larger scale through a
non-linear process P(x1) may be quite different from predicting the evolution of the subgrid-scale variability of
variable x0, since

P(x0
j
) 6= P(x1

i
), 8j 2 i 8i 2 ⌦ (3.4)

where
x1
i

= x0
j
. (3.5)

with the overbar denoting the arithmetic mean. The magnitude of the difference between the P(x0
j
) and P(x1

i
)

would depend mainly on the temporal gradient of the function P and the variance of x (Nykanen et al., 2001).
Each process and its related effective parameters, however, would have to be analyzed on a case by case ap-

proach, since no generally agreed upon upscaling theory exists for dominant hydrologic processes at the mesoscale
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(Binley et al. (1989) and sources therein). Consequently, the upscaling operators can be considered an approxima-
tion to account for the influence of sub-grid variability on the model parameters. The schematic representation of
this phase is shown in Fig. 3.3.

The general form of an upscaling operator O applied to the l-th model parameter at level-1 (�1
li
(t), l =

1, . . . , p 8i 2 ⌦ ) is given by:
�1
li
(t) = Ol

D
�0
lj

(t) 8j 2 i
E

(3.6)

where p denotes the total number of model parameters, and i, j are indices related to grid cells at level-1 and
level-0, respectively. Olh•i is the upscaling operator applied to the model parameter l. There are a number of
possible operators or upscaling functions that can be used within the MPR method. Their selection and type,
however, should be based on conceptual and/or process understanding, and subject to evaluation. Additionally,
parsimonious relationships should be preferred to complex ones. In this study, five kinds of upscaling operators
were tested, namely: the majority operator M, the arithmetic mean A, the maximum difference D, the geometric
mean G, and the harmonic mean H (Table 3.1).

Table 3.1 Types of upscaling operators used in MPR to derive an effective parameter at level-1 based on regionalized
parameters at level-0. i and j denotes the cell index at these levels, respectively. b is value of the field with the highest frequency
of occurrence. | · | denotes the cardinality of the set.

Name Notation Estimation Condition

Arithmetic mean A �
1
i
(t) = Ah �

0
j
(t) i = 1

n

P
j
�
0
j
(t) 8j 2 i

Maximum differ-
ence

D �
1
i
(t) = Dh �

0
j
(t) i = max

�
�
0
j
(t)

�
� min

�
�
0
j
(t)

�
8j 2 i

Geometric mean G �
1
i
(t) = Gh �

0
j
(t) i =

�Q
j
�
0
j
(t)

� 1
n 8j 2 i

Harmonic mean H �
1
i
(t) = Hh �

0
j
(t) i = nP

j
1

�
0
j
(t)

�
0
j
(t) > 0, 8j 2 i

Majority M �
1
i
(t) = Mh �

0
j
(t) i = b |{�

0
j
(t) = b} 8j 2 i| ! max b 2 N

3.3.3 Remarks on the MPR Technique

Fisrt, the regionalization in MPR is carried out at the lowest spatial resolution supported by the data (i.e. level-0),
which contributes to preserving the spatial variability of both the predictors and the regionalized parameters. This
characteristic not only distinguishes this approach from standard regionalization methods (Fig. 3.1) but also mini-
mizes the bias introduced by simple aggregation of predictors. In contrast with MPR, basin predictors in standard
regionalization techniques are firstly aggregated from level-0 to level-1, and afterwards parameter regionalization
is performed at modeling scale (e.g. Hundecha and Bárdossy (2004), Pokhrel et al. (2008)).

Second, MPR greatly reduces the level of model complexity as denoted by the following inequality

p ⇥ n⌦ � s (3.7)

where n⌦ denotes the number of cells contained within the basin ⌦. For example, if a hydrologic model requires
p = 28 parameters per cell (e.g. mHM, see Section 3.4.1) and would be calibrated without regionalization in
a basin covering an area 1000 km2 with a resolution of 1 km2 (i.e. n⌦ = 1000 cells), then the optimization
algorithm would have to search for a good solution to an optimization problem with 28 ⇥ 1000 = 28 000 degrees
of freedom, a daunting computational task! Conversely, if MPR would be applied within mHM, then merely s = 62
global parameters ��� would have to be estimated. Consequently, MPR becomes quite advantageous during model
calibration because sampling in a lower dimensional space improves dramatically the convergence speed of any
optimization algorithm (Pokhrel et al., 2008).

Third, MPR not only considerably reduces the parameter uncertainty by minimizing the number of the free
parameters to be calibrated (see above) but also allows to ascertain effective parameters �1�1�1 at various modeling
scales, using the same upscaling operators, and without re-calibrating the global parameters ��� (Fig. 3.3). Global
parameters are expected to be time-invariant and quasi scale-independent.
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Figure 3.4 Evaluation scheme for the evaluation of the continuity principle between two
modeling scales. In this example, level-1 is the control scale at 8⇥8 km whereas the level-1’
is the simulations scale at 2⇥2 km. Here ���(8) denote global parameters (scalars) calibrated at
level-1. Wi(t) and wi0(t) is the estimated water fluxes at each scale, respectively.

Finally, MPR also en-
sures that the continuity
principle (i.e. mass
conservation on a given
control volume at level-1)
is satisfied to a larger ex-
tent if global parameters
calibrated for a coarser
modeling scale (e.g.
`1 = 8 km) would be
used for a finer one (e.g.
`1 = 2 km) as indicated
in Fig. 3.4. It should be
noted that the calibration
of global parameters at
a coarser modeling scale
is advantageous because
this implies a significant
reduction in the computa-

tional time required for model calibration (Troy et al., 2008). Large deviations in the distribution of fluxes are a
clear indication of a biased and poor regionalization technique.

3.4 Application

3.4.1 The Model

A mesoscale grid-based conceptual hydrologic model (mHM) was employed in this study to test MPR. mHM
includes a number of new features and improvements that ease the implementation of the proposed regionalization
technique. This model is based on numerical approximations applied in known hydrologic models such as HBV
(Blöschl et al., 2008; Hundecha and Bárdossy, 2004) and VIC-3L (Liang et al., 1994). mHM has been applied in
38 mesoscale basins in Germany ranging in size from 70 km2 to 4000 km2 (Samaniego et al., 2010b).

In general, this model simulates the following processes (Fig. 3.2): canopy interception, snow accumulation
and melting, soil moisture dynamics, infiltration and surface runoff, evapotranspiration, subsurface storage and
discharge generation, deep percolation and baseflow, and discharge attenuation and flood routing. An extended
description of the model, however, is out of the scope of this paper. The main equations of mHM are briefly
presented in Appendix 3.7. The model requires p = 28 parameters per modeling cell (level-1). Using MPR,
however, only s = 62 global parameters need to be calibrated. mHM is entirely written in Fortran 2003.

3.4.2 Implementation of MPR and SR in mHM

A short description of all basin predictors employed in both regionalization methods (MPR and SR) is shown
in Table 3.2. In this table, u denotes the spatial variability of a given variable either at level-0 or level-1 scale.
These predictors, excluding land cover, leaf area index (LAI), and fraction of impervious cover on floodplains, are
time-independent variables.

Not all model parameters of mHM are required to be regionalized because they do not exhibit spatial variability
at the mesoscale level and thus can be assumed as global parameters. Among these parameters are: �2, �4, �9,
�11, �12, �14 (see definition in the Appendix). Others were regionalized as indicated in Table 3.3.

The performance of several types of upscaling operators in MPR were studied during the calibration and evalu-
ation phases. Most of these operators, as well as the relationships between catchment characteristics and parameter
fields at level-0, are based on process understanding and/or empirical evidence. For the soil-related characteristics,
however, only the harmonic mean was used as suggested by Zhu and Mohanty (2002). A summary of the transfer
functions used in mHM is shown in Table 3.4.
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Table 3.2 Description of basin predictors used in MPR. u•
denotes a field describing the spatial variability of a given basin
characteristic at level-0, if not specified otherwise.

Variable Description

u1 Land cover class (time dependent).
u2 Leaf area index (LAI) (time dependent).
u3 Fraction of impervious cover on the floodplains (time de-

pendent).
u4 Sink free DEM.
u5 Terrain slope.
u6 Aspect.
u7 Flow directions based on the DEM.
u8 Flow accumulation.
u9 Length of the reach segment in cell i (level-1).
u10 Slope of the reach segment in cell i (level-1).
u11 Length of flow path based on flow direction (u7).
u12 Mean clay percentage in the root zone.
u13 Mean sand percentage in the root zone.
u14 Mineral bulk density in the root zone (Rawls, 1983).
u15 Mean clay percentage in the vadose zone.
u16 Mean sand percentage in the vadose zone.
u17 Mineral bulk density in the vadose zone (Rawls, 1983).
u18 Hydraulic conductivity of major geological formation.
u19 Fraction of karstic formations within a cell i.

mHM was also parameterized with the standard re-
gionalization method (SR) to assess the efficiency of
both techniques. In SR, basin predictors were first up-
scaled from level-0 to the required modeling scale at
level-1 and then the regionalization of parameters was
performed. To make a fair comparison between both
methods, model parameters in SR were regionalized
with the same functional relationships used in MPR
(Table 3.3). As a result, the total number of global pa-
rameters ��� in both methods is the same. The major
difference between SR and MPR method is the level
at which the parameter regionalization was performed
(i.e. the input data scale, or level-0, in MPR and the
modeling scale, or level-1 in SR).

3.4.3 Study Area: The Upper Neckar Basin

mHM with both regionalization schemes (i.e. SR and
MPR) was applied to the Upper Neckar river basin,
near Stuttgart in Germany. It covers an area of ap-
proximately 4000 km2 (Fig. 3.5) and is bounded by the
north-western edge of the Swabian-Jura on the right
bank of the Neckar river and by the Black Forest on its left bank. The elevation ranges from 240 m to 1014 m
a.s.l. with a mean elevation of 546 m. 90 % of the area has mild slopes ranging from 0� to 15�. The annual pre-
cipitation is approximately 900 mm per year. The geology of the catchment is composed mainly of altered keuper,
claystone-jura, claystone-keuper, limestone-jura, loess, sandstone and shelly limestone. Approximately 35 % of
the basin contains karstic formations. The climate of this basin is moist with mild winter according to the Köppen
notation. The daily mean air temperature in the coldest and warmest months (i.e. January and July) is -0.8 �C and
17.0 �C. Soil freezing may occur during the winter at higher altitudes (e.g. Black Forest).

3.4.4 Data Availability
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Figure 3.5 Location of the Upper Neckar river basin within
Germany. The basin’s outlet corresponds to gauge Nr. 10. at
Plochingen

Data availability should be carefully considered before
a modeling attempt is carried out because this, in turn,
constrains the model structure. Typical information
available for the Upper Neckar basin is detailed next.

1. Meteorological information is available at hourly
or daily intervals from a network of 288 stations (Ger-
man Weather Service, DWD).

2. Land cover data was derived from Landsat TM5
scenes (30 m ⇥ 30 m) classified for 1975, 1983,
1989, 1993, and 2004 (Samaniego et al., 2008). For
this study, land cover classes were aggregated as fol-
lows: class 1, composed of permeable areas covered
by coniferous, deciduous, and mixed forest; class 2,
mainly composed of impervious areas with land usage
such as settlements, industrial parks, highways, airport
runways, and railway tracks; and class 3, mainly composed of permeable areas covered fallow lands, or those
surfaces covered by crops, grass, and orchards. Wetlands and water bodies were included into this class because
they are insignificant in this region.

3. Weekly leaf area index (LAI) and daily land surface temperature (LST) were obtained from Moderate Reso-
lution Imaging Spectroradiometer (MODIS), NASA, with a spatial resolution of 1000 m ⇥ 1000 m for the period
from 2001 to 2007. These data are available freely from https://wist.echo.nasa.gov/api/.

4. Soil texture at different horizons as well as the geological formations were obtained from digital soil maps at
the scale of 1 : 25 000 (LfU, Environmental Agency Baden-Württemberg).
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Table 3.3 Predictors used in the regionalization functions. All model parameters �0
l are regionalized at level-0, l = 1, . . . , 28.

Superscript index 0 is not shown to ease notation.

Process Model Predictor Reference
Parameter variables

Interception �1 LAI (Dickinson, 1984; Fenicia et al., 2008)
Snow accum. &
Melting

�2,�4 � �

�3,�5 Land cover (Gotzinger and Bárdossy, 2007; Hundecha and Bárdossy, 2004)
Infiltration
root zone

�6 Soil texture, land cover (Zacharias and Wessolek, 2007)

�7 Soil texture, land cover (Brooks and Corey, 1964)
�8 Soil texture, land cover (Koren et al., 1999)

�9,�11, �13 � �

�10, �12 Soil texture Patterson and Smith (1981)
Surface Runoff �14 � �

EVT
root zone

�15, �16 Soil texture, land cover (Kutilek and Nielsen, 1994)

�17 Land cover (Kutilek and Nielsen, 1994)
Fast
interflow

�18 Soil texture, land cover (Booij, 2005)

�19 Slope (Booij, 2005)
Slow
interflow

�20 Soil texture (Booij, 2005)

�21 Soil texture, elevation (Booij, 2005)
Baseflow �22 Soil saturated hydraulic conductivity (Liang et al., 1994)

�23, �24 Geological formations (Le Moine et al., 2007)
Routing �25 Length, slope and land cover of drainage path

within the cell
�

�26 Length, slope and fraction of impervious area of
floodplains of the reach segment

(Tewolde and Smithers, 2006)

�27 Slope of the reach segment (Tewolde and Smithers, 2006)
PET �28 Slope, aspect (Shevenell, 1999)

5. Terrain elevation was obtained from the SRTM sensor (NASA) with a spatial resolution of 90 m ⇥ 90 m.
This data was obtained freely from http://srtm.csi.cgiar.org/.

6. The hourly or daily basin’s streamflow at various locations shown in Fig. 3.5 was obtained from LfU (Institute
for Environmental Protection Baden-Württemberg, Germany) and the DWD.

3.4.5 Discretization and Data Processing

Several spatial resolutions were used in this study for the various levels defined in Section 3.2.3:
Level-0: Physiographic variables u such as terrain elevation, slope, aspect, soil texture properties, and land

cover as well as LAI were defined at four spatial resolutions to test the influence of the sub-grid variability on the
parametrization scheme. The selected spatial resolutions were: `0 = (100, 500, 1000, 2000) m.

Level-1: Several modeling resolutions were considered to test the performance of mHM with both regional-
ization techniques (i.e. MPR and SR). This test includes also the sensitivity of global parameters obtained for a
particular modeling resolution, and then used in a different one. The selected modeling resolutions were: `1 = (2,
4, 8, 16, 32) km.

Level-2: In this study, the meteorological data was derived at the same resolution as the modeling scale (i.e.
`2 ⌘ `1).

The vertical discretization of the soil layer was carried out based on soil horizon depth obtained from the soil
map. In general, its total depth varies between 30 cm to 90 cm in the study area.

Daily interpolated fields of meteorologic forcings at level-2 (e.g. precipitation, maximum and minimum temper-
ature) were obtained with external drift Kriging (EDK) using terrain elevation as a drift variable. Additionally, long
term daytime/nighttime fluctuations of these forcings were also used to better represent their intra-day variability.
Potential evapotranspiration (PET) was derived with the procedure proposed by Hargreaves and Samani (1985).
This variable was additionally corrected to take into account the influence of elevation and aspect (Shevenell, 1999).
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Table 3.4 Regionalization (transfer) functions and upscaling operators used in mHM. For simplicity three land cover classes,
two soil layers, and two geological formations are employed. Forest ⌘ 1, impervious cover ⌘ 2, and permeable cover ⌘ 3. Time
index t only used for time dependent parameters. Superscript indexes of ��� (0,1) are not shown to ease notation. Subindexes i
and j refer to cells at level-1 and level-0, respectively. k�jki denotes a locally normalized field values located within the cell i,
i.e. k�jki = �j

max �j

8j 2 i.k • k is a globally normalized field.

Process Parameter l Operator Regionalization Function

Interception 1 �1i(t) = Ah �1u2j(t) ii
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11 �11i = �27

12 �12i = Hh �28 + �29
u12j
100 ii

13 �13i = �30

Surface Runoff 14 �14i = �31

EVT
root zone

15 �
k

15i(t) = Hh �32 �
k

6j(t) ii

16 �
k

16i(t) = Hh �33 �
k

6j(t) ii

17 �17i(t) = Ah �17j(t) ii �17j(t) =

8
><

>:

�34 u1j(t) = 1

�35 u1j(t) = 2

�36 u1j(t) = 3

Fast
interflow

18 �18i = Hh �37(1 + k⇥jk) ii ⇥j =

(
�13 + �14u6j + �15u17j u16j < fs

�16 + �17u6j + �18u17j otherwise

19 �19i = Ah �38(1 + ku5jk) ii

Slow
interflow

20 �20i = Ah �39 + �40 (1 + kjk) + �41 (1 + kDh u4j ik) ii j = �42e
�43 u16j��44 u15j

21 �21i = Ah �45 (1 + kDh u4j ik) ii

Baseflow 22 �22i = Ah �46 (1 + kjki) ii

23 �23i(t) =

(
�47 Mh u18j(t) ii = 1

�48 Mh u18j(t) ii = 2

24 �24i(t) = 1 + (�1)�49 �50 Mh u19j ii

Routing 25 �25i(t) = Gh ⌥j(t) ii  
j0 =

8
><

>:

�51 u1j(t) = 1

�52 u1j(t) = 2

�53 u1j(t) = 3

⌥j(t) =
P

j02{j!io}  j0
(u11j0 )

�54

(u5j0 )
�55

26 �26i(t) = �56ku9ik ( 1 � ku3ik )�57 ku10ik
�58

27 �27i(t) = �59ku10ik

PET 28 �28i(t) =

(
Ah �60 +

�61��60
�62

u6j(t) ii u6j(t) < �62

Ah �60 +
�61��60
360��62

(360 � u6j(t)) ii otherwise
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PET was afterwards disaggregated according to its long-term day-night variability to better describe the daily soil
moisture dynamics. In areas, where surfaces are covered by impounded water, the daily PET was adjusted with the
pan-evaporation coefficient (fp) to estimate the maximum free-water surface evaporation rate.

The spatio-temporal variability of LAI was approximated by combining the land cover data at level-0 (based on
LANDSAT TM5) with the long-term weekly LAI for each land cover class.

3.4.6 Parameter Identification

Good sets of global parameters ��� were identified with a split-sampling technique using a constrained optimization
algorithm based on simulated annealing (SA) (Aarts and Korst, 1990). The following estimation procedure was
used:

Algorithm 1:
1. Randomly select an initial set of global parameters ��� within their predefined ranges and constraints.
2. Estimate model parameters �0�0�0 at level-0, using [Eq. (3.3)].
3. Estimate effective model parameters �1�1�1 at level-1, using [Eq. (3.6)].
4. Set an initial annealing temperature ⌧ (a priori estimate).
5. Calculate the current objective function � [Eq. (3.8)].
6. Randomly select an index (◆) with 1  ◆  s.
7. Randomly modify the element �◆ of the vector ��� and formulate a new vector ���⇤.
8. Estimate model parameters �0⇤�0⇤�0⇤ and effective model parameters �1⇤�1⇤�1⇤ using [Eq. (3.3)] and [Eq. (3.6)], respec-
tively.
9. Calculate the new objective function �⇤.
10. If �⇤

 � then replace ��� by ���⇤. Else calculate ⇡ = exp(���⇤

⌧
). With the probability ⇡, replace ��� by ���⇤.

11. Repeat steps (6)-(10) M times (with M being the length of the Markov chain of SA (Aarts and Korst, 1990)).
12 .Reduce the annealing temperature ⌧ and repeat steps (6)-(11) until the objective function � achieves a mini-
mum.

The overall model efficiency � was estimated as a weighted combination of four estimators based on the Nash-
Sutcliffe efficiency (NSE) between observed and calculated streamflows using three different time scales (daily,
monthly and yearly) as well as the logarithm of the daily streamflow to de-emphasize the effects of the peak flows
over the low flows. These objective functions are denoted by �n, n = 1, 4. The overall objective function to be
minimized is then

� =
⇣X

n

wp

n
(1 � �n)p

⌘ 1
p

(3.8)

where p > 1, and
P4

n=1 wn = 1. Here p is an exponent according to the compromise programming tech-
nique (Duckstein and Opricovic, 1980) and wn denote the degree of importance of each objective. High values of
p, say p = 6, should be chosen to avoid substitution of objective function values at low levels. In this study, the
estimators related with daily streamflows were twice as important as the long-term ones, thus {wn} = {

1
3 , 1

6 , 1
6 , 1

3}

. The NSE for a given time scale t0 (say day, month or year) is given by

�n = 1 �

X

t0

(yn(t0) � ŷn(t0))
2

X

t0

(yn(t0) � y
n
(t0))

2
(3.9)

where y
n
(t0) is the mean value of the observations time series over the calibration period. The index n denotes

here the daily, monthly, yearly, and the transformed ln
�
y(t0)

�
streamflow discharges. y and ŷ are the observed and

simulated streamflows at a given time scale.
The calibration and evaluation periods selected for all simulations described in this study ranged between 1979-

11-01 to 1988-10-31 and between 1988-11-01 to 2001-10-31, respectively. For the estimation of fluxes and state
variables both periods were used. Six months spin up time was used to establish reliable initial conditions for the
state variables. This period, however, was not accounted for in the overall objective function.
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3.5 Numerical Experiments and Evaluation Criteria

Various numerical experiments were carried out to evaluate the performance of a parametrization technique with
respect to the following criteria:

1. Sensitivity of model efficiency measures to the spatial resolution of basin predictors at level-0. 2. Sensitivity
of model efficiency measures to global parameters ��� calibrated at modeling scales and/or locations different from
that currently used. 3. Degree of disruption of the mass balance in a control volume at level-1 caused by the transfer
of global parameters ��� from modeling scales and/or locations different from that currently used. 4. Preservation of
spatial patterns of the state variables at various modeling scales (i.e. level-1).

3.5.1 Effect of the Sub-grid Variability

The purpose of this numerical experiment was to assess the effect of the sub-grid variability of predictors (i.e.
level-0) on model efficiency, given a predefined modeling level-1. Aggregated statistics based on streamflow only
[e.g. the root mean squared error (RMSE) or the Nash Sutcliffe Estimator (NSE)] may not be sufficient to identify
these effects mainly due to the nonlinearity of the system. For this reason, the spatial variability statistic r̄ based
on water fluxes or state variables was also estimated in the following algorithm:

Algorithm 2:
1. Set the spatial resolution of level-1, e.g. `1 = 2 km
2. Set a spatial resolution for level-0 data, `0.
3. Calibrate the model at level-1 based on level-0 information using Algorithm 1.
4. Estimate model efficiency at level-1 (e.g. bias, RMSE, NSE).
5. Estimate the spatial variability statistic r̄ [Eq. (3.10)].
6. Repeat (2) to (5) for various spatial resolutions of input data or basin predictors, e.g. `0 = (100, 500, 1000,
2000) m.

Here r̄ denotes the expectation of r estimated as

r̄ = E
h
r
�
x
(100)
i

(t), x
(J)
i

(t)
�
t
8i 2 ⌦

i
, 8t (3.10)

where r is the spatial correlation of two fields in time t. It should be noted that, the correlation coefficient r is
estimated over the space for each point in time t. x

(J)
i

(t) denotes the value of a state variable or a water flux at
cell i (level-1) in time point t estimated with effective parameters obtained with level-0 information at a spatial
resolution `0 = J . J is the level-0 discretization with J = (100, 500, 1000, 2000) m. The simulation with
`0 = 100 m was used as a baseline for the estimation of r̄.

3.5.2 Transferability of Global Parameters across Modeling Scales

The transferability of global parameters may introduce bias either because of the unaccounted spatial heterogeneity
of basin predictors or because of the assumptions required to define the regionalization functions and the upscaling
rules. In this study, the procedure depicted in Fig. 3.4 was employed to test the mass conservation on a given
control volume:

Algorithm 3:
1. Set the spatial resolution of level-0 (`0 ⇥ `0) and level-1 (`1 ⇥ `1). The latter is denoted as the control scale.
Level-2 scale is set equal to that of level-1. E.g. `0 = 100 m and `1 = 8 km.
2. Find global parameters ���(`1) at the control scale (use Algorithm 1), e.g. if `1 = 8 km then find ���(8) as shown in
Fig. 3.4.
3. Set a new modeling level-1’ for evaluation such that `01 < `1, e.g. `01 = 2 km.
4. Simulate fluxes at level-1’ using the set of global parameters obtained for the control scale in (2) (e.g. ���(8)).
5. Estimate global efficiency measures of the model at level-1’ (e.g. RMSE, NSE).
6. Integrate water fluxes obtained in (4) [Eq. (3.11)] from level-1’ to level-1 and estimate the statistic rf [Eq. (3.12)].
7. Repeat (3) to (7) for various spatial resolutions of level-1.

It is worth noting that in MPR, model parameters �1 are not transferred from one modeling scale `1 to a different
one at level-1, but the global parameters ���(`1). Based on them, regionalized fields of parameters �0 at level-0 can
be upscaled to any modeling scale (level-1) as indicated in step (4) of Algorithm 3 (Fig. 3.3).
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This algorithm basically consists in finding the absolute deviations between fluxes of every cell i at a control
scale defined a priori (e.g. `1 = 8 km) and the corresponding integral of water fluxes obtained at the finer scale (e.g.
`1 = 2 km). In this case, both simulations (i.e. at coarser and finer modeling scales) have to be forced by the same
meteorological drivers and employ the same global parameters ���, which can be obtained at the coarser resolution
via calibration. This implies that model parameters at level-0 (�0�0�0) are common for both modeling scales. Formally,
the absolute deviations at point in time t can be calculated by

���Wi(t) �

Z

i

wi0(t)
��� ! 0 i0 2 i 8i 2 ⌦ (3.11)

where Wi(t) and wi0(t) denote the fluxes at time t estimated at the coarser and finer cells i and i0 respectively. ⌦
represents the domain of a simulation.

A possible estimator for the conservation of mass at every grid i over a time interval is the NSE between the
water fluxes obtained at the coarser scale Wi(t) (used as baseline values since no observations exist) and the
aggregated flux at grid i denoted as

R
i
wi0(t). In this case, a negative NSE value indicates a complete mismatch

between these two variables. If the principle of continuity is fully satisfied, then the expectation of the NSE statistic
denoted by rf would tend to one, formally,

rf = E
h
NSE

�
Wi(t), hwi0(t)i

�
i

i
! 1 (3.12)

where E is the expectation of the NSE evaluated at every cell i. Larger deviations of rf from its ideal value (i.e. 1)
would indicate that the global parameters obtained with a given regionalization technique can not be transferred to
other modeling scales.

3.5.3 Preservation of Spatial Patterns

The spatial similarity of two fields at two different scales can be estimated with the averaged spatial correlation
coefficient rs given by

rs ⌘ rs
�
x
(`0)
j

, x
(`1)
i

�
8j 2 i 8i 2 ⌦ (3.13)

where x
(`0)
j

and x
(`1)
i

two fields at scale `0 and `1, respectively.

3.6 Analysis of Results

3.6.1 Sensitivity of Model Efficiency to the Sub-grid Variability

Table 3.5 Effect of the sub-grid variability
`0 = (100, 500, 1000, 2000) m on three
model efficiency statistics (RMSE, NSE, and
r) obtained for the daily discharge simulation
for a given modeling scale (`1 = 2000 m).
These statistics were evaluated during the
period from 1979.11.1 to 2001-10-31.

`0 `1 RMSE NSE r

m m mm/d - -
100 2000 0.38 0.88 0.94
500 2000 0.41 0.87 0.92

1000 2000 0.41 0.86 0.91
2000 2000 0.42 0.86 0.91

The results of the numerical experiment obtained with Algorithm 2 sup-
port the hypothesis that the sub-grid variability of the basin predictors
played an important role both in the prediction of daily streamflow and
the spatial distribution of water fluxes. For instance, the RMSE between
observed and simulated streamflow increased by 12 %, if the `0 reso-
lution varied from 100 m to 2000 m, with a fixed modeling scale of `1
= 2 km (Table 3.5). Correspondingly, the NSE and the coefficient of
correlation r showed a decrement of 2 %.
The variability of the spatial distribution of soil moisture in the top soil
layer, as well as the actual evapotranspiration and runoff, exhibited a re-
duction up to 40 % of r̄ (Eq. (3.10)) with respect to their corresponding
baseline simulation (Fig. 3.6). It is worth mentioning that MPR simu-
lations in which `0 = `1 = 2000 m are equivalent to those determined
with the SR method. As a result, input data with a resolution `0 = 100 m
was used for the remaining numerical experiments employing the MPR
technique.
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3.6.2 Sensitivity of Streamflow Simulations to Global Parameters

Results obtained with Algorithm 3 are presented in Table 3.6. Both statistics, RMSE and NSE, shown in this table
were estimated with the daily streamflow simulations at the outlet of the basin (Gauge Nr. 10 in Fig. 3.5) for a given
scale. Both parametrization methods were not significantly different from each other, with respect to the RMSE
and the NSE, when the model was calibrated and evaluated at a given modeling scale as shown in Table 3.6 (values
in boldface on the diagonal). In this case, MPR performed marginally better than SR (approximately 2 % for both
statistics). This implies that there exist various levels of discretization and thus parameterizations that provide
equally acceptable solutions for modeling streamflow. These results agreed with those obtained by the Distributed
Model Intercomparison Project (DMIP) (Reed et al., 2004) with respect to the performance of lumped versus
distributed hydrologic models. The performance regarding other state variables, however, may be unacceptable as
will be shown afterwards.
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Figure 3.6 Mean and P95 � P5 quantile range of the
spatial correlation (r̄) of (a) daily soil moisture, (b) daily total
evapotranspiration, and (c) runoff between simulations obtained
with a fixed modeling scale `1 = 2 km but varying input
data resolution `0 = (100, 500, 1000, 2000) m. The baseline
values correspond to the simulations obtained with the smallest
resolution. These statistics were estimated for the period from
1979-11-01 to 2001-10-31

Deficiencies of the regionalization methods, neverthe-
less, became apparent when global parameters were
shifted across modeling scales as can be appreciated in
the off-diagonal values in Table 3.6. The performance
of SR, as compared to MPR, showed a significant de-
terioration when the global parameters were calibrated
for a coarser modeling scale (say `1 =8 km) and sub-
sequently applied in a finer one (`1 = 2 km) as shown
in the upper triangular matrices of Table 3.6. The
RMSE obtained with MPR and SR was, on average,
0.46 mm/d and 0.62 mm/d, respectively. This means
that the error of the daily streamflow simulations ob-
tained with SR was, on average, 34 % higher than that
estimated with MPR. The NSE, as expected, exhibited
the opposite relationship. Mean NSE, in this case, was
0.80 and 0.64 for MPR and SR, respectively. More-
over, the average reduction of NSE with respect to the
baseline simulations (i.e. no shift of global parame-
ters) was 53 % for SR, whereas, this statistic only ex-
hibited 12 % reduction for MPR. It is worth noting that
the regionalization technique proposed by Troy et al.
(2008) also exhibited a significant deterioration in the
VIC model performance when model parameters cali-
brated at coarser resolutions were applied to finer res-
olutions.
Shifting global parameters calibrated for a given mod-
eling scale to its immediate lower one (e.g. from 8 km
to 4 km), however, does not induce a significant de-
crease in the performance of MPR as compared to that
of SR. The increment of the RMSE was, on average,
1.1% and 30.7% for MPR and SR, respectively (Ta-
ble 3.6). The decrement of NSE for MPR was at most
3%, whereas, SR exhibited reductions in NSE up to
11%.
Transferring global parameters calibrated for a finer
modeling scale (say `1 = 2 km) to a coarser one (`1 =
8 km) was not so significant with both regionalization
techniques as it was described above for the opposite
case. In those cases, the RMSE obtained with MPR
were only 1% lower than those obtained by SR. NSE
estimated with both methods was, on average, 0.83 and 0.82 for MPR and SR, respectively (based on the lower
triangular matrices of Table 3.6). The same tendency for both methods was observed when global parameters were
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Table 3.6 RMSE and NSE obtained with both the multiscale (MPR) and the standard (SR) parameter regionalization
techniques at various modeling scales obtained with daily streamflow values. Values on the diagonal (bold) refer to the statistics
obtained for a model calibrated and evaluated at a given scale, whereas off-diagonal values denote statistics obtained with global
parameters � calibrated at other modeling scales. Results were obtained at Plochingen gauging station (basin outlet) during the
period from 1979-11-01 to 2001-10-31.

Simulation Calibration Scale
Scale 2 km 4 km 8 km 16 km 32 km 2 km 4 km 8 km 16 km 32 km

RMSE [mm/d]
MPR SR

2 km 0.38 0.38 0.45 0.53 0.72 0.42 0.46 0.64 0.78 0.90
4 km 0.35 0.33 0.35 0.41 0.57 0.38 0.34 0.46 0.63 0.77
8 km 0.39 0.39 0.33 0.36 0.49 0.41 0.37 0.34 0.46 0.63
16 km 0.46 0.47 0.39 0.35 0.38 0.47 0.46 0.40 0.35 0.45
32 km 0.54 0.55 0.50 0.42 0.39 0.53 0.56 0.50 0.42 0.38

NSE [-]
MPR SR

2 km 0.88 0.87 0.82 0.76 0.56 0.86 0.81 0.64 0.46 0.29
4 km 0.89 0.90 0.89 0.85 0.73 0.87 0.90 0.81 0.65 0.48
8 km 0.86 0.87 0.90 0.89 0.80 0.85 0.88 0.90 0.81 0.66
16 km 0.82 0.82 0.87 0.89 0.87 0.81 0.81 0.86 0.89 0.82
32 km 0.75 0.75 0.78 0.84 0.88 0.75 0.72 0.78 0.84 0.88
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Figure 3.7 Mean and range of NSE obtained between
observed and simulated daily streamflow simulations using
MPR and SR at various modeling scales. Both statistics were
determined with global parameters shifted from both coarser
and finer scales to a given simulation scale. Simulations were
carried out during the period from 1979-11-01 to 2001-10-31.

shifted to its immediately higher scale (e.g. from 4 km
to 8 km.

The interpretation for this behavior of both meth-
ods is related with the amount of information used
for regionalization. As a consequence, shifting global
parameters from finer to coarse resolutions, for both
methods, provide higher stability rather than the other
way around. For the same reason, MPR performed
significantly better than SR, when global parameters
were shifted from coarser to finer modeling scales.
Model parameters estimated with MPR, at any mod-
eling scale, are intrinsically linked with their sub-grid
variability (Fig. 3.3).

The average performance for both regionalization
schemes at a given simulation scale obtained only with
transferred global parameters is shown in Fig. 3.7. The
average and the range of NSE depicted in this figure
for a given scale were estimated based on their respec-
tive values of Table 3.6 (i.e. along rows). In gen-
eral, model performance tends to increase as the sim-
ulation scale increases, regardless of the regionaliza-
tion scheme (Fig. 3.7). However, there seems to be
an upper limit, which for this study basin is around
`1 = 8 km. After this threshold scale is reached, fur-
ther spatial discretization tends to decrease model per-
formance. This behavior has also been noticed in the

VIC model (Liang et al., 2004).
The range of NSE for both regionalization schemes tends to decrease towards the threshold scale. SR exhibited

larger ranges than MPR for all simulation scales, though. Furthermore, the mean of NSE obtained with MPR was,
on average, 12% higher than that of SR (Fig. 3.7).
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Figure 3.8 Sensitivity of the monthly water balance obtained
by shifting global parameters from the calibration to the
simulation scales for both regionalization schemes (MPR
and SR). Baseline for the NSE are the monthly streamflow
observations from 1979-11-01 to 2001-10-31.

The monthly water balance for both regionaliza-
tion schemes exhibited similar behavior with respect
to shifting global parameters as mentioned above
(Fig. 3.8). The deterioration in performance, never-
theless, was not as higher as that estimated with daily
streamflow simulations. The NSE between monthly
observed and simulated streamflow during the period
from 1979-11-01 to 2001-10-31 was at least 0.92 and
0.70 for MPR and SR, respectively. The specific long-
term mean annual discharge at the outlet of the basin
obtained with MPR and SR was quite close to the ob-
served long-term mean of 407 mm/y for all spatial res-
olutions employed. The bias between the observed and
simulated long-term annual discharge for both region-
alization techniques, with or without shifting global
parameters, was smaller than 7 mm/y.

3.6.3 Effects of the Sub-grid Variability on
Model Parameters

Model parameters (���1) varied considerably depend-
ing on the regionalization method employed (Fig. 3.1),
which denote the large degree of equifinality character-
izing the model parameter space. A good example of
this can be appreciated in Fig. 3.9, which depicts the
spatial distribution of the porosity of the top (k = 1)
soil layer �1

6 , obtained at various modeling scales [i.e.
`1 = (2, 4, 8) km] with both parametrization methods.
Comparison of the sub-grid distribution of �0

6

(`0 = 100 m) with the corresponding effective pa-
rameters �1

6 obtained with MPR and SR respectively,
showed that the MPR method preserved the spatial pat-
tern significantly better than the SR method (Fig. 3.9).
The spatial correlation coefficient rs [Eq. (3.13)] be-
tween �6 at level-0 and the corresponding field ob-
tained with MPR at level-1 was, on average, 25 %
greater than that obtained with SR.
The larger deviations observed in the SR technique
can be mainly attributed to the upscaling mechanism
(Fig. 3.1) described in Section 3.4.2. These, in turn,
led to the emergence of significantly different spatial
patterns. MPR, on the contrary, did not exhibit such
large deviations because of the two step regionaliza-
tion procedure which inherently accounts for sub-grid
variability (Fig. 3.9).

3.6.4 Sensitivity of the Mass Balance to Global Parameters Calibrated at Various Modeling Scales

Two important water fluxes and one state variable were selected to carry out the continuity test: (a) actual evapo-
transpiration, (b) total discharge, and (c) the soil moisture of the top soil layer (depth 5 cm). Since no observations
are available for any of these variables, simulated values obtained with global parameters calibrated at each control
scale were used as a baseline for the estimation of NSE. Moreover, to ensure comparability, all simulations were
driven by the same meteorological factors, which were estimated at the smallest modeling scale (`1 = 2 km) and
then aggregated to the required one. Deviations from the optimal value (i.e. no difference between fluxes or state
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variables) were quantified as indicated in Algorithm 3 with the statistic rf [Eq. (3.12)] for every simulation and for
both regionalization approaches independently.

Standard Regionalization Multiscale Regionalization

(a)

Level-1

Level-0

(b)

(c)

(d)
0.600.550.500.450.400.350.30

20
 km

Figure 3.9 Spatial variability of the porosity (mm mm�1 of the top-soil layer
(i.e. �(1)

6 ) estimated at three different modeling scales, `1 = (2, 4, 8) km, and for
both regionalization techniques (SR and MPR) is depicted in panels (a),(b), and (c)
respectively. The porosity of the top soil layer at `0 = 100 m (i.e. �(0)

6 ) is provided
in panel (d) as a reference.

The P95 � P5 quantile range and the
mean of NSE (rf ), between a simu-
lated flux from a given control scale
(`1) and the corresponding areal ag-
gregated flux from a selected simula-
tion scale (`01) are shown in Fig. 3.10
as an error bar with continuous line
and solid circle, respectively. Each
simulation, in this case, employed in-
dependently calibrated global param-
eters. For instance, if `1 = 4 km and
`01 = 2 km are selected as control
and simulation scales, respectively,
then global parameters �(4) and �(2)

need to be determined via calibration.
Based on them, rf between fluxes
Wi(t) and hwi0(t)i (Eq.3.12) was es-
timated taking the former as baseline
(Fig. 3.4). In the same Figure, dashed
lines and empty circles depict also
the P95 � P5 quantile range and the
mean of NSE, but in this case, fluxes
at the finer scale (hwi0(t)i) were es-
timated with global parameters ob-
tained at the control scale. For the
previous example, this would imply
that both fluxes Wi(t) and hwi0(t)i
have to be estimated with �(4).
It was determined based on these
three variables that the soil moisture
of the top soil layer exhibited the
highest sensitivity to the spatial res-
olution `1, whereas the actual evapo-
transpiration (AET) was the less sen-
sitive variable. These results also cor-
roborated a previous study of Liang
et al. (2004), in which the AET obtained with VIC-3L model was found to be less sensitive as compared to soil
moisture and runoff based on simulations with transferred parameters.

SR exhibited systematic deficiencies as compared with MPR (Fig. 3.10). For instance, the NSE obtained with
SR was, on average (rf ), not only much less than that obtained with MPR, but also exhibited a considerably
larger range of variability as compared with MPR. Furthermore, MPR was less sensitive to the modeling scale than
SR, specially when global parameters were calibrated at a given control scale (level-1) and then applied in other
simulation scales (level-1’).

It was also determined that rf between soil moisture fields of the top soil layer obtained with the SR method
was in most cases less than zero when the global parameters were calibrated at the control and simulation scales
independently [panel (c) of Fig. 3.10]. For the same simulations, however, rf was greater than 0.85 [panel (b)
of Fig. 3.10], which indicates that the total discharge flux Q(t) was quite insensitive to both the scale and the
regionalization method employed.

The spatial variability of the NSE [Eq. (3.12)] depicted in Fig. 3.11 based on a simulation performed at
`01 = 2 km with global parameters obtained at the control scale `1 = 4 km clearly shows the degree of influ-
ence that a regionalization technique may have on the dynamics and the mass balance of relevant water fluxes
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and state variables. This simulation indicated that global parameters obtained with SR are scale specific, thus not
transferable, since almost 53 % of the grid cells did not conserve the mass balance (say NSE < 0.95) as compared
with the 2.5 % of the grid cells with MPR. The locations at which the NSE is less than this threshold are mostly
karstic formations (Fig. 3.5).
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Figure 3.10 Evaluation of the conservation of mass for three water fluxes at various control scales based on MPR and SR
parameterizations. Filled circles and continuous lines denote the mean and P95 � P5 quantile range of the NSE [Eq. (3.12)]
between the fluxes obtained at a given simulation scale compared with those obtained at the respective control scale (assumed as
baseline for NSE). Empty circles and dotted lines indicate the same statistics but using global parameters obtained at the given
control scale (i.e. no shift). From top to down: (a) actual evapotranspiration, (b) total discharge, and (c) the soil moisture of the
top soil layer.
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Figure 3.11 Discrepancy between fluxes simulated at
two different modeling scales (the control scale `1 = 4 km
and the finer scale `01 = 2 km) during the period from
1979-11-01 to 2001-10-31. The NSE was used as a
measure of correspondence between fluxes simulated at
the control scale – assumed as baseline – and the areal
aggregation of fluxes obtained from the finer scale, as
depicted in Fig. 3.4. Global parameters were estimated at
the control scale. The spatial distribution of the NSE
for daily evapotranspiration, total discharge, and soil
moisture of the top soil layer is depicted in panels (a),
(b), and (c), respectively.

Daily time series of LST during the year 2000 were used as
a proxy for the spatio-temporal variability of the top-layer
soil moisture fields at the scale of `1 = 2 km. A strong
negative correlation between the volumetric water content of
this layer and the LST (MODIS) is expected (Chauhan et al.,
2003; Wang et al., 2007). As an example, a short sequence
of LST and top layer soil moisture fields obtained with both
regionalization methods is depicted in Fig. 3.12 to visualize
the dynamics of these variables.
Based on these results, it was noticed that the soil moisture
patterns calculated with MPR and the LST were closely re-
lated to each other. The dynamics of the moisture pattern
obtained with SR, on the contrary, did not exhibit a strong
dependence. As a result, the Spearman’s rank correlation
coefficient between the LST and the soil moisture of the top-
layer obtained with the MPR and the SR technique varied
between [-0.82,-0.57] and [-0.69,-0.07], respectively. The
maximum difference observed between the Spearman’s rho
estimated with MPR and SR was as high as 41 %.
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Figure 3.12 Land Surface Temperature (�C) from MODIS and simulated volumetric water content (mm mm�1) in the
top-soil layer estimated with SR and MPR. Both variables are depicted for various days during year 2000 at the modeling scale
`1 = 2 km.
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3.6.6 Transferability of Global Parameters to Ungauged Locations

Ten gauging stations within the Upper Neckar basin were selected as cross-validation locations (Fig. 3.5) to test
the efficiency of mHM to reproduce streamflow at internal locations. In these simulations, the modeling scale was
set to `1 = 4 km because this discretization covers all internal stations. Sets of global parameters for MPR and SR
were obtained at this discretization as well as three coarser scales, namely: `1 = (8, 16, 32) km.
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Figure 3.13 Performance of MPR and SR for daily discharge simulations on
several internal locations within the upper Neckar basin, during the period from
1979-11-01 to 2001-10-31. Simulations for both methods were carried out at
`1 = 4 km using global parameters ��� obtained from different scales: `1 = (4, 8,
16, 32) km.

The NSE obtained for daily stream-
flow simulations during the evalua-
tion period using MPR was, on aver-
age, 6 % greater that those obtained
with SR (Fig. 3.13). This result cor-
responds to simulations obtained with
global parameters estimated at the
modeling scale of `1 = 4 km. The
median reduction of NSE for inter-
nal gauging stations with respect to
the performance obtained at the out-
let (gauge Nr. 10) was 15 % and 20 %
for MPR and SR, respectively. Simu-
lations obtained with global parame-
ters calibrated at `1 = 4 km were used
as reference.
In the case that global parameters
were estimated at the other model-
ing scales, then the NSE for SR was,
on average, 18 % lower than that ob-
tained with MPR (Fig. 3.13). Here,
the median reduction was 16 % and
28 % for MPR and SR, respectively.
This implies that MPR is more robust than SR for streamflow predictions at internal locations.

Both methods, however, showed relatively poor performance for internal stations located within karstic forma-
tions (e.g. gauge Nr. 3, Fig. 3.5). For those locations, the NSE obtained with MPR was 62 % greater that that
obtained with SR. These results, however poor, are still better than those reported in previous studies (Gotzinger
and Bárdossy, 2007).

3.7 Conclusions

We have introduced in this paper a multiscale parameter regionalization technique (MPR) implemented within
a fully spatially distributed conceptual hydrologic model (mHM) suited for research and operational purposes at
the mesoscale. The framework of MPR is, however, not limited to mHM. It can be applied to any distributed
hydrologic model.

The efficiency of the MPR technique was compared with the standard parameter regionalization (SR) procedure
often used in recent literature. The hydrologic model and both regionalization techniques were applied in a river
basin covering an area of 4000 km2.

Results of this study indicated that both regionalization techniques do not exhibit significant differences in global
efficiency measures (e.g. NSE of streamflow simulation) as long as the model is calibrated and evaluated at a given
modeling scale (level-1). These results also pointed out the extent of the equifinality of global parameter sets and
a substantial shortcoming of the calibration procedure when the objective function does not consider components
other than observed and simulated streamflow.

Substantial differences in efficiency between MPR and SR, however, became apparent when the global param-
eters were calibrated at a coarser modeling scale and then transferred to a finer one. In such a case, MPR exhibited
a clear superiority with respect to SR. As a consequence of this analysis, MPR can substantially reduce the amount
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of computational time required for model calibration starting from the premise that one can calibrate the global
parameters at a coarser scale and then transfering them to a finer scale without having to recalibrate.

The dynamics of state variables such as soil moisture and water fluxes varied significantly depending on the
regionalization method employed as well as the modeling scale used for the calibration of global parameters.
Therefore, it is crucial for the evaluation of any regionalization technique, to assess the error induced into the mass
balance, at a given control volume, when global parameters are shifted across scales.

Compelling evidence is presented in this study with respect to the effect of accounting for the sub-grid vari-
ability in the regionalization method, as well as the importance of the upscaling sequence (i.e. either predictors
or parameters) to satisfy the continuity principle. Moreover, cross-scale experiments bring us to the conclusion
that upscaling regionalized model parameters (i.e. MPR), instead of performing parameter regionalization with up-
scaled basin predictors (i.e. SR), lead to significantly different spatio-temporal distributions for both state variables
and fluxes, due to the nonlinearity of the system.

Another advantage of MPR over SR is its capability to produce better streamflow simulations in cross-validated
locations (assumed ungauged for testing), which is of great importance for the prediction in ungauged basins
(PUB). Experiences with upscaling techniques lead us to the conclusion that there are no explicit simple averaging
rules for the various model parameters. Further investigation regarding upscaling operators and their fundamental
properties, required to describe dominant processes in a mesoscale control volume, is still needed. Finally, addi-
tional research is also required to address the effects of the various sources of errors within the MPR framework.
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Appendix: Main Equations of the Grid-based Model (mHM)

mHM simulates the spatio-temporal evolution of dom-
inant hydrologic processes (Fig. 3.2) such as: canopy
interception, snow accumulation and snowmelt, evapo-
transpiration, soil infiltration and freezing, surface and
subsurface runoff generation, percolation, subsurface
storage, base flow and a flow routing process. This
model is driven by precipitation, temperature, potential
evapotranspiration, and land cover. Its state equations
f for a given cell i in time point t are State equations:

ẋ1i = Pi(t) � Fi(t) � E1i(t)

ẋ2i = Si(t) � Mi(t)

ẋk
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The main governing equations of mHM are provided
next (subindexes are omitted whenever possible to ease
reading):

Response fluxes:

F (t) = max
�
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Notation

Inputs

P Daily precipitation depth, mm d�1.
Ep Daily potential evapotranspiration (PET),

mm d�1.
T Daily mean air temperature, �C.
Rs Solar Radiation, W/m2.
ATI Antecedent temperature index, K.
States

x1 Depth of the canopy storage, mm.
x2 Depth of the snowpack, mm.
x3 Depth of soil moisture content in the root zone,

mm.
x4 Depth of impounded water in reservoirs, water

bodies, or sealed areas, mm.
x5 Depth of the water storage in the subsurface

reservoir, mm.
x6 Depth of the water storage in the groundwater

reservoir, mm.
x7 Depth of the water storage in the channel reser-

voir, mm.

Fluxes

S Snow precipitation depth, mm.
R Rain precipitation depth, mm.
M Melting snow depth, mm d�1.
F Throughfall, mm d�1.
E1 Actual evaporation intensity from the canopy,

mm d�1.
E2 Actual evapotranspiration intensity, mm d�1.
E3 Actual evaporation from free-water bodies, mm

d�1.
Ep Potential evapotranspiration, mm d�1.
I Recharge, infiltration capacity or effective pre-

cipitation, mm d�1.
C Percolation, mm d�1.
q1 Surface runoff from impervious areas, mm d�1.
q2 Fast interflow, mm d�1.
q3 Slow interflow, mm d�1.
q4 Baseflow, mm d�1.
K Gain/loss flux in a leaking linear reservoir, mm

d�1.
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Output

Q
0
i

Simulated discharge entering the river stretch at
cell i, m3s�1.

Q
1
i

Simulated discharge leaving the river stretch at
cell i, m3s�1.

Q
i0 Contribution from the upstream cell i.

Q Hydrograph at the outlet of a grid cell.
Other variables

�t Simulation time interval.
zi Depth of sub-surface layer i, i = 1, . . . , 3.
z
k

1 Depth of root-zone horizon k, k = 1, . . . ,�.
x
k

3/d
k Average water content in the k root-zone hori-

zon, m3 m�3.
⇢
k Overall influx fraction accounting for the imper-

vious cover within a cell.
⇢T (t) Portion of the permeable areas.
⇢U (t) Fraction of impervious surfaces in a grid cell.
'(t) modified degree-day factor, mm d�1 �C�1.
✓
k

r
Residual soil moisture content.

#(t) Soil ice content (i.e. water equivalent) of the first
root zone horizon.

✓ Scale factor of the distribution f(#) ⇠

�(⇠, �9), with ⇠ = #

✓
.

E(·) Expectation of the soil ice content on a given cell.
fl Fraction of unfrozen water in the first root zone

layer.
aT Antecedent temperature index (ATI).
µ(�25,�t) Triangular unit hydrograph.
io Outlet of every cell i.
j Saturated hydraulic conductivity based on Camp-

bell and Shiozawa (1994) pedotransfer function.
oj Fraction of organic matter.
%o Average organic matter bulk density (=

0.224 g/cm3 ) (Rawls, 1983).
% Bulk density according to Adams (Rawls, 1983).
fs Sand fraction threshold according to Zacharias

and Wessolek (2007) (= 66.5 %).
 Adjustment factor (Chow et al., 1988).
⌥ Time of concentration (similar to Kirpich’s Eq.)

of each cell j 2 i along the drainage path {j !

io}.
io Outlet of cell i at level-0.
E

⇤
p

PET estimated by a standard method for a hor-
izontal surface e.g. Hargreaves and Samani
(1985).

Parameters

�1 Effective maximum canopy storage, mm.
�2 Threshold temperature for phase transition

snow/rain, �C.
�3 Degree-day factor during rainless days.
�4 Rate of increase of the degree-day factor per unit

of precipitation, d�1 �C�1.
�5 Maximum degree-day factor reached during

rainy days.
�
k

6 Maximum soil moisture content.
�7 Parameter that determines the relative contribu-

tion of rain or snowmelt to runoff.
�8 Critical value of soil ice content above which the

soil is practically impermeable.
�9 Shape factor of the distribution f(#) ⇠

�(⇠, �9).
�10 ATI threshold below which unfrozen water con-

tent reaches its minimum.
�11 ATI threshold above which no frozen water exist.
�12 Minimum fraction of unfrozen water content.
�13 Weighting multiplier ranging from 0.1 to 1.
�14 Maximum ponding retention in impervious areas.
�15 Permanent wilting point.
�16 Soil moisture limit above which the actual tran-

spiration is equated with the PET.
�
k

17 fraction of roots in the k
th horizon.

�18 Maximum holding capacity of the second reser-
voir (unsaturated zone).

�19 Fast-recession constant.
�20 Slow-recession constant.
�21 Exponent that quantifies the degree of nonlinear-

ity of the cell response.
�22 Effective percolation rate.
�23 Baseflow recession rate.
�24 Fraction of the groundwater recharge that might

be gained or lost either as deep percolation or as
intercatchment groundwater flow in nonconser-
vative catchments.

�25 Duration of the TUH.
�26 Muskingum travel time parameter.
�27 Muskingum attenuation parameter.
�28 Aspect correction factor of the PET.
Indices

k Index denoting the root zone layer, k = 1, 2.
t Time index for each �t interval.
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Abstract

Simulated soil moisture is increasingly used to characterize agricultural droughts but its parametric uncertainty,
which essentially affects all hydrological fluxes and state variables, is rarely considered for identifying major
drought events. In this study, a high-resolution, 200-member ensemble of land surface hydrology simulations
obtained with the mesoscale Hydrologic Model is used to investigate the effects of the parametric uncertainty on
drought statistics such as duration, extension, and severity. Simulated daily soil moisture fields over Germany at
the spatial resolution of 4⇥4/,km2 from 1950 to 2010 are used to derive a hydrologically consistent soil moisture
index (SMI) representing the monthly soil water quantile at every grid cell. This index allows a quantification of
major drought events in Germany. Results of this study indicated that the large parametric uncertainty inherent
to the model, did not allow discriminating major drought events without a significant classification error. The
parametric uncertainty of simulated soil moisture exhibited a strong spatio-temporal variability, which significantly
affects all derived drought statistics. Drought statistics of events occurring in summer with at most six months
duration were found to be more uncertain than those occurring in winter. Based on the ensemble drought statistics,
the event from 1971 to 1974 appeared to have 67% probability of being the longest and most severe drought
event since 1950. Results of this study emphasize the importance of accounting for the parametric uncertainty for
identifying benchmark drought events as well as the fact that using a single model simulation would very likely
lead to inconclusive results.

4.1 Introduction

Drought is a recurrent and extensive climatic phenomenon characterized by below-average water availability whose
duration might last for several years. It is considered as one of the most costly natural disasters because it often
induces huge socio-economic losses (Wilhite, 2000) as well as environmental degradation. During the summer
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of 2003, for instance, several parts of Europe endured the highest temperatures of the last 500 years (Fink et al.,
2004; Luterbacher et al., 2004) and one of the most extensive and severe drought in records. In Germany alone,
the estimated loss in the agricultural sector was 1.5 billion Euros (COPA-COGECA, 2003). In extreme cases,
prolonged drought spells might lead to unprecedented environmental disasters often associated with the decline
of human societies (Haug et al., 2003; Hodell et al., 1995) or the trigger for mass migrations and famine (Field,
2000). Droughts occur indifferently in high and low rainfall areas and in virtually all climatic zones (Dracup, 1991;
Mishra and Singh, 2010), although the most severe human consequences happen in arid regions.

Currently, hydro-meteorologic mechanisms originating droughts are relatively well understood. In general,
droughts are driven by extreme macroclimatic variability originated by atmospheric interactions and feedback
between the atmosphere, the oceans, and the land surface (e.g. McCabe and Palecki, 2006; Nicholson, 2000). This
variability is, in turn, related to the solar activity as well as atmospheric composition, and strongly affected by
anthropogenic activities (Sheffield et al., 2009).

Our ability to make reliable drought predictions, however, is not satisfactory (Wilhite, 2000) although there is
vast scientific literature on this topic. One of the main reasons is related to the insufficient knowledge regarding
the processes controlling drought development and persistence, as well as, its spatio-temporal variability (Sheffield
et al., 2009). Another reason stems from the fact that there is no clear definition of this phenomenon (Wilhite and
Glantz, 1985) since it depends upon the variable that is used for its quantification.

Droughts have been mainly classified into three types: (1) meteorological drought, usually defined as an ex-
treme anomaly of precipitation; (2) hydrological drought, which is related to a deficit in the supply of surface and
subsurface water, and (3) agricultural drought, being a combination of meteorological and hydrological droughts
leading to deficits in root zone soil moisture available to vegetation (Wilhite and Glantz, 1985). Since precipitation
and discharge data are widely available, a plethora of drought indices have been proposed in the scientific literature
to quantify meteorological and hydrological droughts, for instance: the Palmer Drought Severity Index (Palmer,
1965), the Standard Precipitation Index (McKee et al., 1993), the Regional Deficiency Index (Stahl and Demuth,
1999), among others.

It is widely accepted, however, that these empirical indices are not adequate to represent extreme water stress
conditions that would lead to a significant reduction of biomass and crop yield (Keyantash and Dracup, 2002;
Mishra and Singh, 2010). In Germany, for example, Döring et al. (2011) have shown that empirical drought
indices based only on available data such as precipitation, temperature do not constitute adequate measures to
describe agricultural drought stress because they do not explicitly account for the available water stored in the root
zone, which is ultimately the plant’s life supporting substance.

Direct soil moisture observations, on the other hand, are not available at regional level because measuring this
variable at large scales is not logistically and economically feasible (Vereecken et al., 2008). This implies that
hydrologic or land surface models would have to be employed for the estimation of the soil water content. Soil
moisture, in contrast to precipitation or discharge, constitutes a good index for quantifying agricultural drought
because it controls the proportion of the rainfall that percolates, runs off or evaporates from the earth surface
(i.e. root zone). Concisely, it integrates precipitation and evapotranspiration as well as the delays introduced by
interception, snow accumulation, and melting over periods of days to weeks. In other words, soil moisture in the
root zone is a governing factor sustaining vegetative growth and thus it is a direct indicator of agricultural drought
(Keyantash and Dracup, 2002). Land surface models such as VIC-3L (Liang et al., 1996a) and SIM (Soubeyroux
et al., 2008), for example, have been used recently to assess agricultural drought characteristics in the USA and
France, respectively (Andreadis et al., 2005; Sheffield et al., 2004; Vidal et al., 2010). There are, however, several
key issues that should be considered, if simulated soil moisture is chosen for quantifying agricultural droughts.

Modeling soil moisture dynamics at large-scales (e.g. grid cells greater than 500 m) is difficult and uncertain
as was demonstrated by the PILPS project (Chen and Coauthors, 1997). In this project, 23 land surface models
(LSMs) exhibited significant differences between modeled and measured soil moisture (among other variables) al-
though all models were based on fundamental principles of mass and energy conservation and forced with identical
atmospheric conditions. This experiment also indicated the existing interplay between this state variable and other
fluxes such as latent heat as well as the substantial parameter uncertainty that is related with these physical pro-
cesses. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes make
the modeling of soil moisture even more complicated because parametrization schemes might become scale depen-
dent (Nykanen and Foufoula-Georgiou, 2001). It should be noted that effective model parameters (e.g. saturated
soil water content or porosity) at large scales can only be estimated but not measured. This, in turn, constitutes a
new source of uncertainty that should be taken into account when modeling soil moisture dynamics. Consequently,
a drought monitoring and early warning system based on a soil moisture index, which does not fully take into
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account the predictive uncertainty of the simulation model, might be inadequate for real applications and/or for
impact assessment.

Most of the soil moisture drought studies (Andreadis and Lettenmaier, 2006; Shukla et al., 2011; Vidal et al.,
2010) found in the literature have not addressed the epistemic uncertainty related to parametrization, model struc-
ture, and input data. More recently, Wang et al. (2011) argued that state variables, such as soil moisture, are
strongly dependent on the parametrization of the LSMs and the quality of the meteorological forcing data. Simi-
lar results have been found by Mo et al. (2012a), who concluded that the primary source of uncertainty between
two drought monitoring systems operated in the USA is originated from precipitation data, and in a minor degree
from air temperature, shortwave and longwave radiation, and wind speed. As a result, substantial discrepancies
with in-situ measurements have been found (Entin et al., 2000), which are mainly attributed to the variability of
topography, soil, vegetation, and root structure, but could also stem from uncertainty sources mentioned above.
Specifically, finding a robust parametrization scheme for a LSM or a hydrological model, which is able to produce
reliable estimates of water fluxes at high spatial resolution over large domains, is one of the grand challenges of
contemporary hydrology (Beven and Cloke, 2011).

It has been noted, however, that multi-model ensembles are able to describe the anomalies and seasonal variabil-
ity of soil moisture. Wang et al. (2009, 2011) successfully applied this technique to reproduce agricultural drought
characteristics in the continental United States and China. In both studies, six LSMs were used to generate soil
moisture fields for a period of almost 100 years in the USA and 56 years in China. However, in those studies, only
a single simulation for each LSM was used.

In this study, we argue that a unique parameter set for a given LSM is inadequate to estimate water fluxes
and related state variables at high spatio-temporal resolutions, considering that both inputs and model parameters
over large modeling domains are subject to considerable uncertainties due to the reasons mentioned above (see
also Rosero et al., 2011). Thus, we hypothesize that any drought characteristic (e.g. severity, duration) based on
simulated soil moisture is prone to large variability due to parametric uncertainty, which, if it is not taken into
account, will lead to incorrect estimates of drought characteristics.

The main objectives of this study and the rationale behind them is summarized below. 1) To obtain a con-
sistent ensemble of daily soil moisture fields for Germany since 1950 at a spatial resolution of 4⇥4 km. Such
reconstruction is fundamental to characterize historical drought events and their related characteristics. To the best
of our knowledge, this is the first study to perform nationwide agricultural drought reconstruction for Germany.
Long-term soil moisture simulations are also fundamental for initializing hydrologic or regional climate models
and the basis to fulfil the remaining objectives. 2) To develop a reliable soil moisture drought index (SMI) for
Germany at a high spatial resolution. Such SMI is key for implementing a monitoring system and adaptation
strategies at regional scale. Available global soil moisture analyses have a spatial resolution 0.5� or larger, which
is too coarse for a regional drought analysis. 3) To identify benchmark agricultural drought events occurring in
summer and winter in Germany during the last 60 years and the uncertainty of their main statistical characteristics.
These exceptional events are necessary to identify potential climate change effects on the hydrological cycle. The
uncertainty associated with drought characteristics such as coverage area, duration, and severity, will be quantified
by means of a Monte Carlo method. Ensemble model simulations would allow us to assess the reliability of the
predictions which, in turn, will lead to minimize the number of false positive drought events (i.e. cases in which
the SMI indicates that a given event is below a certain threshold for a given characteristic when in fact it is not).
Additionally, the effect of the ensemble size on the false positive rate will be investigated. 4) To identify regions in
Germany prone to strong drought persistence as well as areas exhibiting significant trends in monthly soil moisture
fields. These insights would provide hints for mitigation and adaptation measures at regional scale.

4.2 Soil Moisture Data

Soil water availability in the root zone is a direct indicator of agricultural drought because it constitutes a governing
factor of the state of vegetative growth through the availability of water for transpiration (Keyantash and Dracup,
2002). Measuring soil moisture content over the entire domain of Germany at a spatial resolution of 4 ⇥ 4 km,
for example, is logistically and economically infeasible (Vereecken et al., 2008). LSMs or hydrologic models are
therefore often employed to estimate this key variable over large spatial domains and longer periods (Andreadis
and Lettenmaier, 2006; Mishra et al., 2010; Sheffield and Wood, 2007; Wang et al., 2009, 2011).

In this study, the mesoscale Hydrologic Model, mHM (Samaniego et al., 2010a) was used to generate a large
ensemble of daily soil moisture fields for the period from 1950 to 2010. A three layer soil scheme was used to
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model the soil moisture dynamics over the entire root zone depth (i.e. approximately up to 2 m below ground). The
depth of the first two layers was fixed to 5 cm and 25 cm, whereas the depth of the last one was variable according
to soil characteristics provided by the soil texture map. The spatial resolution of each grid was 4 ⇥ 4 km (level-1).
A short description of mHM and the generation of ensemble soil moisture fields are given below.

4.2.1 The mHM

The mesoscale Hydrologic Model is a process-based water balance model (Samaniego et al., 2010a) that has
been developed over the last five years at the Helmholtz Centre for Environmental Research - UFZ. This spatially
explicit model does not differ significantly from existing large scale hydrologic models (e.g. the HBV and the
VIC-3L model) on how dominant hydrologic processes at the meso- and macro-scales are conceptualized, but
on how the effective parameters of the model are quantified at a selected modeling scale and on how the sub-
grid variability of physiographic characteristics provided at level-0 is taken into account for the estimation of
these effective parameters. These two fundamental differences constitute the core of the multiscale parameter
regionalization technique (Samaniego et al., 2010a) that is embedded into mHM. Extensive numerical experiments
have shown that this technique is capable of coping with the large spatio-temporal variability of the input data and
as a result, mHM is able to produce quite good performance at multiple spatial resolutions and locations other than
those used during calibration (i.e. proxy basin and flux-matching tests).

Currently, mHM has been evaluated in more than one hundred basins in Germany ranging from 4 km2 to
47 000 km2 (Kumar et al., 2010, 2013; Samaniego et al., 2010a). This model is driven by disaggregated fields of
daily forcings such as precipitation, temperature, and potential evapotranspiration. It accounts for the following
hydrological processes: canopy interception, snow accumulation and melting, evapotranspiration, infiltration, soil
moisture dynamics in three layers, surface runoff, subsurface storage, discharge generation, percolation, baseflow,
and flood routing within the river reaches. Readers may refer to Samaniego et al. (2010a) for a detailed model
description as well as its parametrization.

The morphological and physiographic data required for setting up mHM include a digital elevation model
(50 ⇥ 50 m) acquired from the Federal Agency for Cartography and Geodesy, a vector soil map containing
information on soil textural properties such as sand and clay contents of different soil horizons, and a vector map
of hydro-geologic formations containing properties such as saturated hydraulic conductivity. Both vector maps at a
scale of 1:1 000 000 were obtained from the Federal Institute for Geosciences and Natural Resources of Germany.
Three Corine land cover seamless vector data (http://www.eea.europa.eu) for the years 1990, 2000, and 2006 were
employed to account for the changes in states of land cover over the simulation time period (1950-2010). Land
cover states, prior to the year 1990, were inferred from the Corine 1990 map. Monthly variability of the leaf area
index was estimated for each land cover class with MODIS scenes from 2001 to 2009. These data are freely avail-
able from https://lpdaac.usgs.gov/get data. For a detailed description on data processing and setting up mHM in
several river basins, interested readers may refer to Kumar et al. (2010); Samaniego et al. (2010a). Previous data
sets were re-sampled on a common spatial resolution of 100 ⇥ 100 m denoted as level-0. This level of information
provides the sub-grid variability of all morphological and physiographic variables required to run the model at any
coarser resolution denoted as level-1 (e.g. 4 km). The time series of discharge data across several gauging stations
were acquired from the EURO-FRIEND program (http://ne-friend.bafg.de) and the Global Runoff Data Centre
(http://www.bafg.de).

Gridded fields of daily average precipitation as well as maximum, minimum, and average air temperatures at
4 ⇥ 4 km spatial resolution (level-2) were estimated from their respective point measurement data from about
5600 rain gauges and 1120 meteorological stations, operated by the German Meteorological Service (DWD). Two
interpolation techniques were used to derive the daily fields of precipitation, which are detailed in section 4.2.2.
Gridded estimates for temperature fields were obtained with external drift kriging, wherein the terrain elevation
was used as a drift variable. The daily fields of potential evapotranspiration were estimated with the Hargreaves
and Samani method (Hargreaves and Samani, 1985) and were subsequently corrected to account for the spatial
variability of the terrain aspect.

4.2.2 Ensemble description and experimental design

Two major sources of parametric uncertainty were identified through sensitivity analysis. The most important one
is related with the variability of the global calibration parameters of mHM (i.e. space and time independent), and
the second one is related with the parameters required for the rainfall interpolation method. Consequently, the
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uncertainty tree was divided into two main branches, each one driven by two independent interpolation methods
but both based on the same rainfall measurements. These two branches were denoted as DWD1 and DWD2. Other
meteorological variables such as daily, minimum, and maximum temperature required in both branches were kept
the same. This assumption was taken considering 1) that precipitation interpolation is one the most important
source of error in the input data (Mo et al., 2012a), and 2) that the areal coverage of snow-dominated areas in
Germany is geographically limited.

The DWD1 branch was created with external drift kriging using terrain elevation as a drift and a combined
variogram that comprised a nugget and an exponential part. The resolution of this product was 4 ⇥ 4 km, with
daily time steps from 1950 to 2010. The best fit parameters (i.e. nugget, range, and sill) were found through a
cross-validation procedure.
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Figure 4.1 Map of Germany indicating the main river basins
used for this study. Selected locations for uncertainty analysis
of the soil moisture climatology are depicted with a dot.

The DWD2 branch was obtained by re-sampling the
original daily REGNIE (www.dwd.de) product avail-
able at 1 ⇥ 1 km into a regular grid similar to that of
the DWD1 data set. The k-nearest’s neighbor tech-
nique and a standard geo-referencing algorithm were
employed for this purpose. The DWD1 data was used
to complete this set with daily fields from 1950 to 1959
since the REGNIE data set is only available from 1960
to 2010. The REGNIE data is based on multiple linear
regression having elevation, geographic location, and
aspect as predictors.

Within each branch, the propagation of the param-
eter uncertainty into the soil moisture simulations was
evaluated by an ensemble of one hundred best param-
eter sets of mHM. The following procedure was im-
plemented for their selection. First, in every major
river basin depicted in Fig. 4.1, the dynamically di-
mensioned search algorithm (Tolson and Shoemaker,
2008) was employed to find good sets of global pa-
rameters which exhibit an acceptable model efficiency
[e.g. Nash-Sutclife-Efficiency of at least 0.75] dur-
ing the evaluation period (for details refer to Kumar
et al., 2010, 2013). In the next step, all parameter sets
found for a given basin were transferred to the remain-
ing ones. Finally, only those sets exhibiting a model
efficiency greater than or equal to 0.65 at recipient lo-
cations were retained as members of the best global
parameter sets. This implies that these super sets of
global parameters are able to reproduce water fluxes in
all major river basins in Germany with an efficiency of

at least 0.65. It may be noted that a single set of VIC-3L model parameters for a large domain in the midwestern
United States was used in a study by Mishra et al. (2010) for assessing historical drought events. In contrast to
that, in this study the ensemble of 200 model realizations was used for the subsequent analysis of historical drought
events in Germany including both uncertainty branches.

In general, mHM requires at least five years of spin-up time to equilibrate. To minimize the influence of initial
conditions, all state variables (e.g. water content at a given soil layer) in each ensemble member were initialized
with their climatological averages corresponding to the precise time of year at the initialization (Rodell et al.,
2005). The climatological average was estimated as the long term mean of a given state variable within a seven-
day window around the first of January. The DWD1 precipitation estimate was employed to estimate the long
term mean. This procedure allowed to reduce the spin-up time to one year without inducing large bias due to
inappropriate initial conditions. Thus, model simulations during the starting year 1950 were discarded from the
following analysis.
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4.3 The mHM Soil Moisture Index

The absolute values of the soil moisture states estimated with mHM do not allow a direct comparison of derived
drought indices across the study domain because anomalies in absolute terms reflect climatological and morpho-
logical characteristics (Andreadis et al., 2005), rather than strong deviations from the respective normal conditions,
which is the main characteristic that defines a drought event. Instead of absolute values, agricultural droughts can
be quantified as “deficit of soil moisture relative to its seasonal climatology at a location” (Sheffield et al., 2004).
The main idea behind this definition is to develop an index that varies between 0 and 1, which indicates drier to
wetter conditions, respectively. The apparent selection for such an index is the conditional cumulative distribution
function of the soil water content in the root zone at a given location i and time of the year m. This kind of nor-
malization is inspired by the Standardized Precipitation Index (McKee et al., 1993). The procedure to estimate a
Soil Moisture Index (SMI) based on mHM soil moisture simulations is described next.

4.3.1 Aggregation and normalization

Daily mHM soil moisture from three soil layers was averaged for every grid cell to obtain monthly states. These
monthly values were, in turn, normalized with respect to the corresponding total root zone saturated water content
(i.e. porosity times the total depth of the soil layers) to estimate the monthly soil moisture fraction (x) of the total
soil column, namely:

x =

P
l
xl

P
l
xl

S

(4.1)

where, xl is the monthly soil moisture at root zone layer l [mm], xl

S
is porosity or the saturated water content

of root zone layer l [mm]. In the present study l = 3. In this case, the indexes i and m are omitted to ease the
notation.

4.3.2 Estimation of the SMI

The monthly soil moisture fraction (Eq. 4.1) may exhibit heavily skewed, non-gaussian distributions (Koster et al.,
2009) whose shape varies depending on climate and soil characteristics. The distribution of this random variable
can also be multi-modal (Vidal et al., 2010), which is an indication of preferential states of seasonal soil moisture
(Laio et al., 2002; Rodriguez-Iturbe et al., 1991). Consequently, describing this random variable with unimodal
theoretical distribution [e.g. the beta distribution (Sheffield et al., 2004)] is not appropriate. Instead of making
assumptions regarding the theoretical distribution of this variable, which would induce an additional source of
uncertainty, a non parametric technique was adopted to estimate the probability density function of the monthly
soil moisture fraction at every cell within the domain, denoted hereafter as f̂(x). The estimation procedure is as
follows.

Given a set of data from one of the ensemble members x1, x2, . . . , xn that corresponds to the monthly soil
moisture fractions of a given cell within the domain during month m (e.g. January), the kernel density estimate at
a given value x can be obtained by

f̂(x) =
1
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where K(x) is the smoothing kernel, n the sampling size, and h the bandwidth. The sampling size in this
case is equal to 60. There are various possibilities to select K(x) (Wilks, 2011), however the Gaussian kernel is
appealing in this case because of its unlimited support. The optimal selection of the bandwidth ĥ can be obtained
by minimizing the unbiased cross-validation criterium (Scott and Sain, 2005) given by
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where, f̂�k(x|h) is the leave-one-out density estimate at x when observation xk is not taken into account. This
optimization was performed with a generalized reduced gradient algorithm. Once the optimal bandwidth is found,
the best fit of the empirical distribution function can be estimated f̂ .

Finally, the mHM soil moisture index for a given cell and month, which denotes the quantile at the soil moisture
fraction value x, can be obtained by numerically integrating the expression

SMI =

Z
x

0
f̂(u)du (4.4)

4.3.3 Identification of drought events

Droughts are regional phenomena covering large contiguous areas over long periods. Understanding the spatial-
temporal patterns and their relationships with other variables is therefore a fundamental step for drought prediction.
Previous drought studies carried out in Germany, however, have been focused on statistical analysis of readily
available point observations such as river discharge or precipitation data (Demuth and Heinrich, 1997; Franke
et al., 2004; Schindler and Mayer, 2007; Schindler et al., 2007; Stahl and Demuth, 1999), and in general, they are
limited to a regional scale rather than to the national scale. To the best of our knowledge, studies investigating the
spatial-temporal drought variability over the whole German territory are not available in the scientific literature.

The retrospective reconstruction of soil moisture analysis in Germany provides a unique data set to estimate
fundamental characteristics (e.g. severity and areal extent) of the major agricultural droughts occurred in Germany
since 1950 at a high spatial resolution. Drought events were identified in this continuous spatio-temporal data set
with the method proposed by Andreadis et al. (2005).

First of all, regions under drought stress were identified with the threshold method (Dracup et al., 1980). This
implies that cells fulfilling SMIt < ⌧ were selected as potential regions under drought at the monthly time step t.
The selection of the truncation level ⌧ is fundamental for this method. A common value adopted in the literature
is ⌧ = 0.2 (Andreadis et al., 2005; Vidal et al., 2010). This threshold indicates that a given cell is enduring a soil
water deficit occurring less than 20% of the time.

In the second step, drought clusters at every monthly time step have to be consolidated in space. This means
that all clusters whose area is less than a minimum threshold area will be excluded from further analysis. This step
is necessary to eliminate small isolated areas that are suffering a drought but are too small to be considered as a
regional event. In this study the minimum cluster area was set to 640 km2 (i.e. 40 cells).

The final step of the drought event identification consists consolidating independent spatial clusters over suc-
cessive time steps into a regional, multi-temporal cluster. This kind of clustering is necessary because the spatial
variability of a drought event is vast, composed of many branches that can either merge together or split over time.
The only condition to join clusters over time is that the overlapping area should be larger than 6400 km2 (i.e. 400
cells). Overlapping areas less than this threshold area was considered as independent drought events.

Both threshold areas (i.e. the minimum cluster area and the overlapping area) were determined though sensitiv-
ity analysis but primarily based on rules of thumb often followed in the literature (e.g. Andreadis et al., 2005; Vidal
et al., 2010). The main criteria for the selection of these parameters was the stability of drought characteristics de-
scribed in the following section. It should be noted that the selection of smaller areas, enduring drought conditions,
leads to the proliferation of smaller clusters that are not contiguous over time and hence can not be considered as
part of a regional phenomenon.

4.3.4 Quantification of drought characteristics

Drought characteristics such as mean duration, mean areal extent, total magnitude, intensity, and severity-area-
duration curves were quantified for every drought event and every ensemble member. The mean duration (D) of
a spatio-temporal drought event is defined as the average of the drought duration of every cell within a drought
event. This statistic is given in months. The mean areal extent (A) is defined as the average of a region under
drought from the onset until the end of the drought event, expressed as percentage of the total German surface area.
The total magnitude (M ) is defined as the spatio-temporal integral of the SMI below the threshold value ⌧ (i.e. the
deficit) over those areas which are affected by the drought event, or explicitly
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where, t0 and t1 denote the onset and the ending months of a given drought event. At is the area under drought
at a given time step t, expressed as the percentage of total German surface area. i denotes a given location within
the domain At, and (·)+ the positive part function. Thus, M is expressed in months times percentage of total
German surface area.

Above described three statistics are useful to rank drought events based on the overall impact but they do not
allow to estimate the impact of the drought after some months from the onset. This could be better quantified with
the drought intensity (Id) at a given duration d from the onset of the event. This statistic can be estimated as
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This statistic would also allow to estimate the impact of various events during summer and winter, by discrimi-
nating the time step t0 + d to a corresponding season.

Another commonly used method to benchmark drought events is based on the severity-area-duration curves
(SAD) proposed by Andreadis et al. (2005). The severity (Sd) for every cell for a given duration d in months can
be estimated as

Sd = 1 �
1

d

X

t2d

SMIt (4.7)

The SAD curves for durations of 3, 6, 9, and 12 months for a given ensemble realization were constructed as
follows. Firstly, the grid cells were ranked according their severity. The procedure starts with those cells having
the maximum severity. Then, the severities of the adjacent cells were summed up progressively until a threshold
area is reached. Afterwards, the average severity is estimated for those selected cells. The cumulative area and the
average severity constitute the abscissas and ordinates of the SAD curves for a given duration. In this study, regular
area intervals equivalent to the area of 20 grid cells were selected (i.e. every 320 km2). This procedure is repeated
until the whole area of a given drought event is covered.

The monthly evolution of these statistics was estimated for every member of the ensemble. Based on the
ensemble simulations, the uncertainty of the four selected statistics was analyzed.

4.4 Results and Discussion

4.4.1 mHM evaluation

The performance of mHM was evaluated against observations of daily streamflow, latent heat and soil moisture
measured at various eddy covariance (EC) stations acquired from www.fluxdata.org, as well as, with soil moisture
observations obtained with a cosmic ray neutron probe (Rivera Villarreyes et al., 2011). Seven large river basins
in Germany were selected to cross-validate mHM performance with respect to observed daily streamflow. In
this proxy basin test, global calibration parameters of mHM obtained at every river basin were transferred to the
remaining test basins. For instance, from Neckar to Danube, Main, Ems, Saale, Mulde, and Weser basins (Fig. 4.1).
The procedure to find the best hundred global parameter sets is described in section 2.4.2.2.

High efficiency in this kind of test is a good indication of model performance in ungauged locations. The
ensemble mean Nash-Sutcliffe Efficiency (NSE) obtained with mHM using the best hundred global parameter sets
at proxy basins during the validation period from 1965 to 1999 varied from 0.50 to 0.88, which is quite acceptable
considering that these basins have significantly different hydrologic regimes. Model evaluation on those basins
with at-site calibrated parameter sets during the same period exhibited on average a NSE value ranging from 0.74
to 0.93. During the calibration period (2000-2004), the NSE varied from 0.84 to 0.96. These tests indicated that
mHM can be used for hydrological predictions within Germany.

The coefficient of determination between the simulated latent heat fluxes against observations across several
eddy covariance (EC) stations varied between 0.50 and 0.74 during the period 2000-2002. The model domain
in this case was reduced to a cell size of 100 ⇥ 100 m. Considering the various factors that influence the EC
measurements and the fact that mHM is driven by disaggregated hourly values of precipitation and temperature as
well as known scaling issues with EC measurements, these results can be regarded as satisfactory. The soil moisture
anomalies estimated with mHM were able to explain up to 75% of the variance of their observed anomalies at
various EC stations during the same period. Soil moisture estimates were obtained with standard TDR probes.
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The model at the EC sites was forced with observed hourly precipitation and hourly temperature instead of the
interpolated data as used for running the model over the whole domain.

The cosmic ray neutron probe, on the other hand, is a promising alternative because it allows an estimate of the
soil water content over a control volume with a diameter of approximately 600 m and a depth of 0.3 m, which in
this case, corresponds to the tillage depth setup in mHM. The coefficient of determination (r2) between the mHM
soil moisture anomaly and the cosmic ray neutron probe, reported by Rivera Villarreyes et al. (2011), was 0.57 for
the period from August to September of 2011. Correspondingly, the r2 between the simulated and the mean of
soil moisture anomalies measured with 16 frequency domain reflectometry probes located within the same control
volume was 0.79.

4.4.2 Retrospective reconstruction of soil moisture fields

Figure 4.2 Ensemble monthly mean soil moisture fraction over Germany for the period 1950 to 2010.
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The basis for the analysis of agricultural drought analysis in Germany was the reconstruction of daily soil mois-
ture fields since 1950. Two hundred realizations of these fields were estimated for the whole of Germany at an
hourly basis based on the premise that a single simulation is not sufficient for such analysis because of parameter
uncertainty.

Figure 4.3 Seasonality of the long-term soil
moisture fraction x in the Rhine basin. Each point
denotes the mean and the standard deviation of x at
a given grid cell within this basin.

Figure 4.4 Parameter uncertainty of percentiles
P10 and P90 of x at selected cells in Germany. The
ensemble mean of these statistics is shown with a
continuous line whereas their standard deviation is
depicted in solid color. The location of the grid cells
are shown in Fig. 4.1. The position of the panels
approximately resembles the geographic location
of these grid cells.

For the subsequent analysis, simulated hourly fields were aggre-
gated to daily and monthly time steps. Monthly soil moisture
values were then normalized as indicated in Eq. 4.1 to ease com-
parison across locations. The ensemble long-term mean for each
month (Fig. 4.2) is the most evident statistic to evaluate these re-
sults and to verify whether the annual variability of soil moisture
corresponds to the known climatology of major geographic re-
gions in Germany. The variability of the spatial patterns shown in
Fig. 4.2 indicate almost saturated conditions the whole year round
in mountainous areas such as the Black Forest, the Harz moun-
tains, and the Bavarian Alpine Foreland. Quasi-permanent dryer
conditions have been observed on the North German Plain. The
variability of the long term mean of the soil moisture fraction x
with respect to its standard deviation indicates a clear seasonality
describing wetter and less variable conditions in winter opposed to
less wet but highly variable conditions in summer (Fig. 4.3).

Results indicated that not only the ensemble monthly climatol-
ogy of the soil moisture fraction x, depicted in Fig. 4.2, but also
other statistics such as the 10th and 90th percentiles of x (P10,
P90) exhibits seasonality and strong dependency to geographic lo-
cation. The annual variability of these two percentiles for selected
cells within Germany is depicted in Fig. 4.4. The geographic lo-
cation of the selected cells is shown in Fig. 4.1. The variability
and the value of both percentiles indicate marked hydro-climatic
regimes in Germany, for instance, humid regions with moderate
seasonality on the North Sea (cells 1 and 2), very humid regions
with very little seasonality in the alpine regions (cells 18-20), very
humid regions with marked seasonality on the Black Forest (cells
13 and 17), moderately dry regions with marked seasonality in the
North German Plain (cells 7 and 8), and regions with large sea-
sonality in the pre-alpine regions (cells 14 and 15). In general, the
standard deviation of the 90th percentile of x is less than that of
the 10th percentile based on the 200-member ensemble. This cor-
roborates the findings of Meng and Quiring (2008); Schaake et al.
(2004) which point out that the parametric uncertainty in drier re-
gions (cells 7, 8, 11, 15) is much higher than in humid regions
(cells 17-20). The standard deviation of both percentiles exhibits
not only seasonal variability, clearly depicted in cell no. 15 shown
in Fig. 4.4, but also strong geographic dependency. This indicates
that there is a complex interplay between climatic conditions and
parametrization of the soil moisture processes.

4.4.3 Comparison with other indices

The same method proposed in section 13.5 to estimate the SMI
can be used to estimate drought indices based on precipitation and

surface runoff generated at each cell before routing (Shukla et al., 2011). The results of these three drought indices
are shown in Fig. 4.5 for one of the ensemble realizations obtained with DWD1. The three upper panels of this
figure indicate how different the spatial distribution of the drought index might become depending on the variable
used to describe a drought event. Among the three variables, the drought index based on precipitation exhibits the
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largest spatiotemporal variability because of the lack of memory of the precipitation process, which is one of the
main reasons for considering it not appropriate for describing water stress in vegetation (Döring et al., 2011). The
drought index based on surface runoff is correlated to the SMI but still quite weak due to fast runoff generation
processes. The SMI, as compared with the other two indices, exhibits the largest persistence.

(a) (b) (c)

(d)

Figure 4.5 Drought indices estimated with precipitation (a), runoff (b) and soil moisture (c) at 1960-08. Panel (d) depicts the
time series of the averaged values over Germany from 1959 to 1969. The solid grey area indicates the drought occurrence.

4.4.4 Sensitivity of the parameter uncertainty related to precipitation interpolation

(a) (b)

Figure 4.6 Ensemble mean of the Pearson correlation
coefficient (a) and mean coefficient of variation (b) between
monthly soil moisture fraction estimated with rainfall products
DWD1 and DWD2 but same model parameters.

Among the two sources of parametric uncertainty in-
vestigated in this study, the first one was related to the
interpolation methods used to regionalize rainfall point
data. For this purpose, two methods were employed
to estimate the gridded fields of precipitation data, as
denoted by DWD1 and DWD2 (see section 2.4.2.2 for
details). Since both methods use the same input data,
any possible variation in soil moisture simulations —
ceteris paribus— could be attributed to the kriging
weights and the variogram parametrization used in
DWD1, or the linear weights of the multi-linear regres-
sion method employed in DWD2. In this respect, two
question were pursued in this study. (1) How important
is this source of uncertainty for the estimation of soil
moisture? And, (2) how is this uncertainty distributed
over space? To answer these questions, the Pearson

correlation coefficient (r) of the monthly soil moisture fractions at every grid cell obtained with both precipitation
products (i.e. DWD1 and DWD2) were estimated separately for all 100 global parameter sets. From these r values,
the ensemble mean (r̂) and the coefficient of variation of r were calculated for every cell within the domain. These
statistics are depicted in panels (a) and (b) of Fig. 4.6, respectively.
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In general, most of the grid cells within Germany exhibit a r̂ value greater than 0.98, which indicates a high
degree of agreement between any pair of simulations driven by DWD1 and DWD2 forcings but having the same
global model parameters. There are very few places where this statistic is less than 0.98, but in every case greater
than 0.95. This finding along with the very low coefficient of variation indicated a quite low sensitivity of the
monthly soil moisture fraction to the precipitation interpolation parameters. The lower values of r̂ were obtained
mainly in cells located in and around mountainous regions such as the Harz, the Alps, and the Swabian Jura
(Fig. 4.6).

4.4.5 Overall parameter uncertainty of the soil moisture index SMI

The two major sources of parametric uncertainty described above induced considerable variability into the SMI as
shown in Fig. 4.7, which depicts the areal average of the SMI over major German river basins, denoted hereafter
as hSMIi. It can be noticed from this figure that the overall parameter uncertainty of hSMIi is neither constant
in space nor over time. The hSMIi obtained with each ensemble member exhibited a large variability within the
interquartile range of SMI but a relatively small one at its extreme quartiles (Fig. 4.7). This behavior is closely
related with the high variability of the standard deviation of the soil moisture fraction around the middle ranges of
its mean value (e.g. between 0.6-0.8 as depicted in Fig.4.3).

Figure 4.7 Parameter uncertainty of SMI averaged over six
major basins in Germany from 1971-01-01 to 1991-12-31.
The light grey depicts the variability of the ensemble hSMIi
and the black line represents the ensemble mean hSMIi.

For further analysis, the temporal variability of hSMIi
within the ensemble simulations is estimated by its range
R(t) = hSMI(t)imax � hSMI(t)imin, at every point in
time t. R(t) denotes the ensemble uncertainty of the soil
moisture index over a given domain at time t. The long-
term average of R(t) is approximately 0.124 with a stan-
dard deviation of 0.014. The correlation coefficient es-
timated between the range of time series R(t) for every
pair of major basins, depicted in Fig. 4.1, varied from
0.25 to 0.88. This implied that the uncertainty of the
SMI is not only the result of independent errors arising
from model parametrization, but also the result of sys-
tematic interdependencies between soil moisture and cli-
matic variables such as precipitation (P ) and potential
evapotranspiration (Ep). Based on these results, it was
determined that the standard deviation of R(t) tends to
decrease as the ratio Ep/P increases. Moreover, given
the data provided for each major basin (Fig. 4.7), the null
hypothesis that the time series of the ensemble uncer-
tainty R(t) constitutes white noise can be safely rejected
provided that the p-value of the Fisher’s Kappa statistic
was less than 0.001.

The 12-month moving average of hSMIi depicted in
panel (a) of Fig. 4.8 over the reconstruction period (1951-
2010) showed a considerable reduction in uncertainty
compared with the monthly values of hSMIi, but still not
small enough to be considered negligible. The 12-month
moving average of the percentage of area under drought
(with respect to the surface area of Germany) exhibited a
considerable uncertainty at the peaks of the events (panel
(b) of Fig. 4.8). This result, however, allows prelimi-
nary identification of major drought events covering at
least 50% of the German territory, namely those in the
periods 1953-1954, 1959-1960, 1964-1965, 1972-1973,
1976-1977, 1992-1993, 2003-2004.
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(a) (b)

Figure 4.8 Panel (a): 12-month moving average of hSMIi
over Germany and major river basins including uncertainty
during the period from 1951-01-01 to 2010-12-31. Panel (b):
Area under drought. The light grey line depicts the variability
of the ensemble hSMIi and the black line represents the
ensemble mean hSMIi.

The parametric uncertainty of the SMI also has a
strong influence on drought severity classes commonly
used for monitoring purposes. Panel (a) of Fig. 4.9
depicts the probability of finding a cell, at a given
point in time, under one of the five drought sever-
ity classes used by the United States Drought Moni-
tor (http://droughtmonitor.unl.edu). These classes denote
abnormal (DO), moderate (D1), severe (D2), extreme
(D3), and exceptional (D4) dry conditions, which corre-
spond to: 0.2 < SMI  0.3, 0.1 < SMI  0.2, 0.05 <
SMI  0.1, 0.02 < SMI  0.05, and SMI  0.02, re-
spectively. This figure shows also that there are areas, in
which, no unique drought class can be assigned due to
parametric uncertainty. A possibility to assign a unique
class to a cell is to choose a class with the largest proba-
bility, as shown in the panel (b) of Fig. 4.9 for May 1976.

4.4.6 Identification of major drought events
based on mean duration, mean areal extent and
total magnitude

Major drought events were found in this study using the
technique described in section 3.4.3.3. These benchmark
events are required for the future analysis of possible con-

sequences of climate change on agricultural droughts. The drought clustering algorithm was applied to every en-
semble realization to find the spatio-temporal evolution of all drought events during the reconstruction period from
1951-2010. For every event, drought characteristics such as mean duration (D), total magnitude (M ), and mean
areal extent (A), among others, were evaluated using the procedure illustrated in section 3.4.3.4. The ensemble
average of these characteristics, i.e. D̂, M̂ , and Â are depicted in Fig. 4.10. The corresponding uncertainty of these
characteristics is presented in Table 4.1.

(a) (b)

Figure 4.9 Panel (a): Probability of being at a drought severity class D0,...,D4 for May 1976. Panel (b): Most
likely drought severity class based on the ensemble simulations. Classification according to the US Drought Monitor
(http://droughtmonitor.unl.edu).

The eight largest drought events identified during the last 60 years in Germany are the following periods: 1962-
1965, 1971-1974, 1975-1978, 1959-1960, 1953-1954, 1991-1993, 2003-2005, and 1995-1997. It is worth noting
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Table 4.1 Uncertainty of characteristics of major
drought events in Germany since 1950. Uncertainty of
the characteristics and mean ± standard deviation.

Period Duration Area Magnitude
[month] [%] [% area ⇥ month]

⇥ 103

1953-1954 8.0 ± 0.2 70.8 ± 3.0 24.6 ± 1.0
1959-1960 12.0 ± 0.2 59.2 ± 2.3 36.3 ± 0.7
1962-1965 14.5 ± 0.9 41.5 ± 1.5 36.8 ± 2.0
1971-1974 14.8 ± 4.6 43.1 ± 5.0 36.7 ± 12.9
1975-1978 12.4 ± 0.8 43.5 ± 4.9 36.5 ± 1.9
1988-1991 5.9 ± 0.2 22.7 ± 2.0 11.1 ± 1.1
1991-1993 9.3 ± 1.5 29.3 ± 4.2 20.7 ± 3.6
1995-1997 8.5 ± 2.3 24.7 ± 6.7 11.8 ± 3.2
2003-2005 7.6 ± 0.5 32.1 ± 4.5 17.1 ± 1.6
2005-2007 5.6 ± 1.0 24.7 ± 3.4 11.5 ± 2.2

Table 4.2 Probability of finding a drought event in any of the top
eight ranks. Here, only the eight largest events in Germany since
1950 were selected. The sum of the likelihood is not necessarily
one due to the truncation of the table up to only the eighth rank.
Values in bold represent the largest likelihood based on the ensemble
simulations.

Event Ranking likelihood
1 2 3 4 5 6 7 8

1953-1954 0.04 0.31 0.56 0.09
1959-1960 0.34 0.51 0.15
1962-1965 0.43 0.48 0.08 0.01
1971-1974 0.67 0.03 0.19 0.10 0.01
1975-1978 0.02 0.06 0.36 0.56

1991-1993 0.59 0.09 0.08
1995-1997 0.07 0.53 0.29
2003-2005 0.03 0.10 0.23 0.59

that the event from 2003-2005, appears in this overall ranking in the 7th position. Vidal et al. (2010) also noticed
this fact and concluded that 2003 hardly appears as a benchmark event in France. This is a rather controversial
conclusion because in this year the highest temperatures during the last 500 years were recorded (Luterbacher
et al., 2004). In Germany alone, great losses in the agricultural sector (COPA-COGECA, 2003) were reported. A
likely explanation for this paradox is provided in section 4.4.7.

Figure 4.10 Area under drought, duration, and magnitude
of the eight largest events in Germany since 1950 based on
the ensemble hSMIi.

Figure 4.11 Sensitivity of the false positive rate (↵) to
ensemble size. In this example, ↵ denotes the probability of
rejecting the null hypothesis that the event from 1971-1974
ranks 1st among all drought events from 1950 to 2010. The
size of the bootstrapping realizations was 1000.

The three drought characteristics D, M , and A depicted in Fig. 4.10, are highly correlated with each other. The
Pearson correlation coefficient between D and M , is the highest, and equal to 0.97, whereas those between (D and
A) and (M and A) are 0.80 and 0.87, respectively. This indicates that this triplet has low dimensionality. In fact,
the first eigenvector of the correlation matrix of this triplet alone explains 92% of the total variance.

Using the k-means cluster analysis, three main groups of drought events were distinguished, 1) events with a
large areal extent and duration, i.e. events 1962-1965, 1971-1974, 1975-1978, and 1959-1960; 2) events with the
largest areal extent and moderate duration, i.e. 1953-1954; and 3) events with moderate areal extent and duration,
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i.e. 1991-1993, 2003-2005, and 1995-1997. Based on the ensemble SMI mean (SMI), the event from 1971-1974
exhibited the longest duration, and the event from 1953-1954 covered the largest area. The events from 1962-1965
and 1971-1974 reached the two largest magnitudes.

Figure 4.12 Severity at the peak of the eight largest drought events
from 1951-01-01 to 2010-12-31 based on the ensemble mean SMI.

The absolute ranking of these extreme drought
events is rather difficult due to the parameter un-
certainty as illustrated in Table 4.2. This table
presents an estimate of the probability to order ev-
ery event into the eight top ranks using a linear,
equal-weighted, normalized indicator composed of
D and A, as an example. The results presented
in this table indicate that the maximum probabil-
ity of finding an event in one of the top ranks is
not greater than 0.67. The ranking of a given event
spans at least over three categories. Low ranking
events tend to have a much larger ranking spread
than the top ones, though.

The size of the ensemble also played a very im-
portant role to estimate the probability of finding an
event in a given rank (1 � ↵), where ↵ denotes the
false positive rate. Fig. 4.11, for example, shows
the probability of not identifying the event from
1971-1974 as the largest since 1951. This figure
clearly shows that the variance of the false posi-
tive rate is strongly dependent on the ensemble size.
These results were obtaining by bootstrapping the
200 ensemble simulations without replacement and
limiting the number of realizations to 1000 for a
given sample size. This figure showed also that the
first two moments of ↵ tend to stabilize with en-
semble sizes larger than 50. Consequently, it is safe
to conclude that small ensemble sizes would lead
to misleading results. An ensemble with 200 mem-
bers, as realized in this study would lead to safer re-
sults. These Monte Carlo realizations clearly high-
lighted the role of parametric uncertainty in identi-
fying the benchmark drought events which should
be handled carefully.

The spatial distribution of severity (Sd) based
on SMI at the peak of the eight largest drought
events is shown in Fig. 4.12. It can be observed
from this figure that each event has its own pecu-
liarities with respect to the spatial distribution of
the affected areas. The drought event during De-
cember 1954 has the largest areal coverage, with
93.5% of the German territory under water stress,
whereas the event during April 1996 had the lowest
coverage with 46.5%. The latter drought event at
its peak was particularly concentrated on the north-
west part of Germany. The event of 1976, with its
peak in August, had spread over whole Germany
with an exception of the Alpine Foreland. The lat-
ter areas endured the highest severity during August
2003.
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4.4.7 Uncertainty of large events occurring in summer and winter

As mentioned before, the ranking of drought events based on ensemble characteristics (D, M , and A) does not
allow the identification of their impact at a given point in time from their onset, nor to differentiate them according
to their level of incidence in a particular season. The drought intensity proposed in Eq. 4.6 enables estimating the
transient evolution of a drought event from its onset, and by so doing, it allows quantifying how fast a drought
event covered a given area and by what magnitude. Panel (a) in Fig. 4.13 shows the results of plotting drought
intensity versus duration from the onset (d) of a given event for the ten largest events since 1950. Panel (b) in
the same figure depicts the results obtained by ranking the drought intensities of all events at various durations
from their onsets (e.g. 3, 6, ... months). The classification of an event into summer or winter was estimated with
the procedure illustrated in section 3.4.3.3 (Eq. 4.6). The ensemble SMI mean (i.e. SMI) was used instead of
individual realizations for both analyses because the former is an unbiased estimate of the SMI, and thus leads to a
robust estimate of the evolution of the drought intensity.

(a) (b)

Figure 4.13 Panel (a): Drought intensity evolution for the 10 largest drought events since 1950. Panel (b): Major drought
events for a given duration and season of occurrence. The numbers denote the following events: 1: 1953-1954, 2: 1959-1960,
3: 1962-1965, 4: 1971-1974, 5: 1975-1978, 6: 1988-1991, 7: 1991-1993, 8: 1995-1997, 9: 2003-2005, 10: 2005-2007.

Based on the results described above and shown in Fig. 4.13, it was found that at 3 month duration, summer
events have much larger drought intensity than the corresponding ones in winter. At 6 and 9 months duration,
the opposite happens. The events with more than a 9 month duration mostly reach their higher intensities during
summer as compared to winter ones. However, droughts having a duration of 30 months or more are more intense
during winter months. The event 1953-1954 not only exhibits the largest intensities at 6 and 9 month durations
during winter months (Nov-Apr), but also the largest intensity in summer at 12 months duration. The event 2003-
2005 is, according to these results, the summer event with the largest intensity at 6 months duration. Among the
10 largest drought events in Germany during last 60 years, the 1953-1954 event had the largest intensity peaking
within a relatively short period of time (less than 12 months). This event, however, lasted for only one and a
half years. Four drought events, namely, 1962-1965, 1971-1974, 1975-1978, and 1991-1993, spanned over the
period of more than 30 months (i.e. two and a half years). According to this analysis, the decade of 1970 could
be regarded as the most severe drought period in Germany. The drought events 1962-1965 and 1971-1974 clearly
exhibited more than one peak over their whole life span. The analysis also indicated that most of the historical
drought events in Germany have their peaks during 6 to 12 months of duration.

The empirical bivariate density function between the average drought area (A) and the total magnitude (M ) was
constructed to analyze the uncertainty in overall drought characteristics (D, M , and A) based on the ensemble
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realizations. The large number of model runs also allowed to assess the uncertainty in time evolution of these
characteristics. The four most intense drought events with 6 months and at least 30 months duration after its onset
were selected to illustrate this procedure, namely: the events 1953-1954 and 2003-2005 for shorter duration, and
the events 1975-1978 and 1962-1965 for longer duration, respectively (Fig. 4.14). It is worth noting that the events
1953-1954 and 2003-2005 are classified as winter and summer events, respectively, at 6 months duration (Fig. 4.13
(b)). Likewise, the events 1975-1978 and 1962-1965 peaked in winter and summer, respectively. Droughts that are
peaking within a relatively short time (up to 6 months) from their onset are quite relevant because they have large
repercussion on socio-economic activities.

(a) (b) (c) (d)

Figure 4.14 Top: Bivariate density functions between drought area and total drought magnitude of four major events. Panels
(a) and (b) depict the most intense drought events with 6 months duration after its onset in winter and summer, respectively.
Panels (c) and (d) correspond to the most intense drought events having a drought duration of at least 30 months, in winter and
summer, respectively. Bottom: Predictive uncertainty and evolution of the area under drought for the selected events.

Based on the ensemble results, the density function for each event was estimated independently with a bivariate
Gaussian kernel smother algorithm. The estimation of the bandwidths in both directions was carried out in a
similar way as presented in section 3.4.3.2. The results of this analysis are depicted in the top panels (a) to (d)
of Fig. 4.14, which clearly supports the research hypothesis that the parametric uncertainty of soil moisture has a
strong implication for drought characterization. Most events exhibit multimodal behavior which is the combined
result of the uncertainty of the model parametrization and drought identification (e.g. clustering, threshold).

Events having shorter durations and peaking in winter (1953-1954) appear to be more certain than those peaking
in summer (2003-2005) as can be noted by the larger spread of the respective distribution (Fig. 4.14 (a) and
(b)). Consequently, the probability density values for the summer event are lower than those of the winter event.
However, at longer durations no conclusive comparison could be drawn from this analysis because longer events
experience various seasons over many years. The time evolution of the area under drought A(t) for each events, as
depicted in bottom panels of Fig. 4.14, also supports the assertion that a single model realization would lead, very
likely to a high rate of false alarms for drought monitoring.

4.4.8 Uncertainty of the Severity-Area-Duration curves

SAD curves obtained with the ensemble SMI mean (SMI) for the eight largest drought events in Germany at
duration 3, 6, 9, and 12 months are depicted in panel (a-d) of Fig. 4.15. From this analysis, the event from
1975-1978 appears to be the most severe and extensive event at durations ranging from 3 to 9 months. Based on
this measure, the 2003-2005 event, however, hardly appears as a benchmark event at longer durations and area
coverage. The event from 1953-1954 is quite severe at 3 and 6 months, but not at longer durations. The apparent
contradiction of these results, can be clarified with the individual evolution graphs presented in Fig. 4.13.

SAD curves have often been used to rank drought events (Andreadis et al., 2005; Sheffield et al., 2009). Due
to parametric uncertainty, however, they exhibit large variability as shown in panel (e) of Fig. 4.15. This, again,
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corroborate our hypothesis that a single model run would lead to unsatisfactory conclusions and event ranking.
These results indicate that the SAD variability increases as the area under drought and duration increase. The
variability of the SAD curve with a 12-month duration is almost twice as much as that for 3 months. The variability
of SAD curves for summer events is higher than that estimated for winter at any duration.

(a) (c) (e)

(b) (d)

Figure 4.15 Panels (a) to (d): Ensemble averaged Severity-Area-Duration (SAD) curves of eight major drought events for 3,
6, 9, and 12 months duration since 1950 over Germany. Panel (e) depicts the predictive uncertainty of the SAD curves obtained
for the event 2003-2005. In this panel, lines in red denote the ensemble mean.

4.4.9 Drought persistence and SMI trends

(a) (b) (c)

Figure 4.16 Persistence map of the SMI (a), and regions with positive (b) and negative(c) SMI trends (5% significance).
Panels (b) and (c) depict the percentage of ensemble members indicating a significant trend.

Characterizing areas prone to remain under severe drought conditions when they are already suffering one consti-
tute a relevant piece of information for water resources planning. The level of persistence of the severe drought
events can be quantified with a two-state Markov chain with two states: SMI  0.2 and 0.2 < SMI  1.

The persistence of severe drought can be estimated for each ensemble member as the probability ⇡00 =
Pr (SMI(t + 1)  0.2 | SMI(t)  0.2) , 8t. The ensemble mean of ⇡00 is depicted in panel (a) of Fig. 4.16 for the
whole of Germany. This figure indicates that most of the Northeast German Plain comprising the area of the Elbe,
Saale, and Mulde river basins, as well as large extensions along the Main and Rhine rivers, exhibit drought per-
sistence greater than 0.8. The Northwest German Plain, comprising the Ems and Weser river basins, tend to have
lower drought persistence than the eastern part of Germany, with an average value of ⇡00 less than 0.7. The Alpine
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Foreland located within the Danube basin and areas in and around the Black Forest, on the contrary, exhibit the
largest variability in drought persistence within Germany ranging from less than 0.4 to 0.8. It is worth nothing that
those areas exhibiting large drought persistence have been also classified as areas with medium to high agricultural
suitability according to a recent study conducted by UBA-PIK (www.pik.de). These regions comprise large plains
within the Saale river basin around the cities of Halle and Magdeburg, and flood plains of the Rhine river on the
western side of the Black Forest.

Mann-Kendall tests on monthly SMI indicate that there are large extensions of the German territory showing
positive trends (i.e. getting wetter) during winter months but negative trends in summer months, at 5% significance
level. The largest areas exhibiting significant trends were detected in March and August as depicted in Fig. 4.16,
panels (b) and (c), respectively. It is worth noting that positive SMI trends tend to occur in areas with low persis-
tence and negative trends in areas with high persistence. These trends are, in turn, related, with observed trends in
temperature and precipitation. Further details on this aspect are beyond the scope of this paper.

4.5 Summary and Conclusions

In this study we have presented a method to derive a soil moisture index based on a process based hydrological
model. This model uses a multiscale parametrization method that goes beyond standard calibration approaches.
Great emphasis has been put on testing this model in all major river basins in Germany, especially with respect
to the transferability of global parameters across locations and scales. Ongoing tests with Fluxnet and cosmic ray
neutron probe data have also been presented. Using this model a consistent ensemble of high resolution daily soil
moisture fields for Germany since 1950 at a spatial resolution of 4⇥4 km were obtained.

Based on this soil moisture reconstruction, a soil moisture index (SMI) representing the corresponding monthly
quantile was estimated with the kernel density approach. The derived SMI exhibits high correspondence with total
grain yield of Germany and allows to identify major drought events in Germany, that have also been identified
using other techniques (e.g. tree rings) and reported in the literature (Büntgen et al., 2010). This approach has
advantages over standard empirical approaches or those obtained from satellite derived products, which are too
coarse to account for soil moisture at high spatio-temporal resolutions and quite uncertain because the algorithms
used to infer soil moisture do not take into account the water balance of large river basins. Consequently, the
proposed technique has a large potential to be used as a monitoring tool in the future. More research is, however,
needed to evaluate the SMI against times series of annual crop yield at regional scale. Further research is also
required to identify potential driving mechanisms, the feedback effects, and the spatio-temporal correlations of soil
moisture with other hydrological state variables such a snow depth, and climatic variables.

The effects of other sources of uncertainty stemming from model structure and quality of meteorological data
on the soil moisture index should be further investigated. Potential benefits of using ensembles of multi-model,
multi-parameter soil moisture simulations should be also carried out. Both issues, however are out of the scope of
this study.

Based on the results of this study, the following conclusions were drawn. 1) The main source of parametric
uncertainty of the soil moisture index is related with global model parameters. This uncertainty is seasonally and
regionally varying. This corroborates, findings of other researchers who have advocated for multi-model ensembles
to account for model uncertainty. In summary, one single model run is not enough for estimating benchmark
events. 2) The uncertainty of overall statistics used for estimating drought events are highly sensitive to this kind
of uncertainty. This sensitivity is the result of non-linear relations and branching effects caused by the clustering
method. 3) Events peaking during summer with at most 6 months duration tend to exhibit a much large uncertainty
than those peaking during winter. 4) The SMI is not a stationary variable. Many regions in Germany exhibited
significant trends during the study period. Potential triggering mechanisms and drivers behind these trends might
be the observed changes of precipitation and temperature, as well as, other feedback mechanisms. A detailed trend
attribution, however, is out of the scope of this study. 5) The identification of benchmark drought events should be
based on combined criteria such as SAD or intensity duration curves. Robust estimates can only be made with an
ensemble SMI due to the uncertainty mentioned before.
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5.1 Abstract

Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-
scale (1–10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial
scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-
matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have
consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and Wa-
terGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational
models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge’s
1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of
existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR)
technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across
scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model
and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and
limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

5.2 Introduction

... “If it disagrees with experiment, it’s wrong”. Richard P. Feynman

Land surface and hydrologic models (LSMs/HMs) are currently used at diverse spatial resolutions ranging from
1 to 10 km in catchment-scale impact analysis and forecasting (Addor et al., 2014; Christensen and Lettenmaier,
2007) to over 50 km in global-scale climate change simulations to estimate land surface boundary conditions of
key state variables (Bierkens, 2015; Haddeland et al., 2011; Wanders and Wada, 2015). The fundamental con-
ditions behind the applicability of the same LSM/HM model structure at different spatial scales requires that the
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model parameterizations are scale invariant and that the model estimates similar fluxes across a range of spatial
resolutions. In other words, it must fulfill the flux-matching condition across scales so that the mass conservation
principle can be ensured (Wood, 1997).

A parameterization is a simplified and idealized representation of subgrid physical phenomenon that is either
“too small, too brief, too complex, or too poorly understood” to be explicitly represented by a model at a given res-
olution (Edwards, 2010). Parameterizations require variables called predictors, effective parameters and constants
also called transfer, global, or super parameters (Pokhrel and Gupta, 2010). Super parameters are often parameters
in empirical relationships that have been found with measurements in the field or in the laboratory, e.g., regression
parameters in pedotransfer functions (Cosby et al., 1984). They are often tuned to represent observed variables and
often have no physical meaning. These parameters constitute simplified surrogates to compensate for the missing
subgrid processes that are not accounted for within a modeling system (Brynjarsdottir and O’Hagan, 2014).

Effective parameters of LSMs/HMs are usually obtained by ad hoc procedures (e.g., automatic calibration) at a
given spatial resolution for a given modeling domain. As a consequence of this standard practice, parameter fields
of LSMs/HMs often exhibit artificial spatial “discontinuities” such as calibration imprints circumscribing river
basin boundaries, and consequently they are not seamless (Li et al., 2012b; Merz and Blöschl, 2004). Inconsistent
patterns of effective parameter fields for land surface geophysical properties across spatial scales constitute a clear
indication that their parameterizations are not scale invariant. There are several reasons explaining this parameteri-
zation deficiency. With the advent of electronic computers, the performance of general circulation models (GCMs),
numerical weather prediction (NWP) models (Pielke Sr, 2013), land surface models (Liang et al., 1994; Niu et al.,
2011; Sellers et al., 1997), and hydrologic models (Batjes, 1996; Lindstrom et al., 1997; Samaniego et al., 2010a;
van Beek et al., 2011) has been increased mainly by improving model conceptualization (i.e., the number of process
descriptions) and/or spatial resolution since the storage capacity and computational power allowed for it (Bierkens
et al., 2014; Le Treut et al., 2007; Wood et al., 2011). As a result, parameterizations in LSMs have also increased in
their complexity during the past decades (Fisher et al., 2014; Sellers et al., 1997). The procedures to estimate ef-
fective parameters required for the parameterizations, however, remained unchanged. For example, LSMs evolved
from simple aerodynamic bulk transfer schemes with uniform description of surface parameters during the 1970s
to detailed LSMs having a consistent description of the exchange of energy and matter between the atmosphere,
the vegetation, and the land surface (Sellers et al., 1997). State-of-the-art LSMs, such as the Community Land
Model version 4 (Bonan et al., 2011) and Noah-MP (Niu et al., 2011), however, still use quite simple pedotransfer
functions based on work of Clapp and Hornberger (1978) and Cosby et al. (1984) to estimate fundamental soil
properties such as porosity (Oleson et al., 2013).

Further reasons that have prevented the improvement of parameterization techniques are

the lack of procedures and theories for linking physical properties (e.g., soil porosity) that can be measured at
the field scale with “effective” parameter values that represent the aggregate behavior of the land characteris-
tics at the scale of a grid cell required in LSMs or HMs,

poor understanding of the scaling of parameters (Dooge, 1982) and its influence on the hydrological response
of the system (Wood, 1997; Wood et al., 1988),

limited inclusion of subgrid heterogeneity in hydrological parameterizations and multiscale modeling of hy-
drologically relevant variables as suggested by Famiglietti and Wood (1994, 1995); Liang et al. (1996b),

lack of significant progress on the applicability of seminal upscaling theories (Dagan, 1989; Gelhar, 1993;
Kitanidis and Vomvoris, 2010; Miller and Miller, 1956; Neuman, 2010) developed for subsurface hydrologic
problems into LSMs/HMs, and

lack of transparency in most of the existing LSM/HM source codes with respect to the meaning, origin, and
uncertainty associated with the hard-coded numerical values (i.e., parameters) either in the code or in the
look-up tables (Cuntz et al., 2016; Mendoza et al., 2015).

Consequently, it is possible to assert that model parameterization is an old, ubiquitous, and recurring problem in
land surface and hydrologic modeling. Considering this lack of coherent development during the past decades, we
can still concur with Dooge (1982, p. 269) and say that the “parameterization of hydrologic processes to the grid
scale of general circulation models is a problem that has not been approached, let alone solved.”

There are potential methods available in the literature that may lead toward coherent parameterizations and pre-
diction of water and energy fluxes in LSMs/HMs. For example, (1) sidestepping the scaling problem of key model
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parameters by assuming scale-independent distribution functions with regionalized distribution parameters (Intsi-
ful and Kunstmann, 2008), (2) finding strong links between model parameters to mapped geophysical attributes via
regularization procedures (Pokhrel and Gupta, 2010), and (3) finding strong links between of observed functional
responses of hydrological systems and geophysical characteristics (Yadav et al., 2007). These methods, however,
alone may not satisfy the flux-matching criteria.

In contrast to these existing methods, we argue that the multiscale parameter parameterization (MPR) technique
(Samaniego et al., 2010a) offers a framework to link the field scale (observations) with the catchment scale (Dooge,
1982). MPR also accounts for the effect of the spatial variability and non-linearity of geophysical characteristics
in the parameterization of hydrologic processes that operate at a range of spatial resolutions (Dooge, 1982; Wood
et al., 1988). Depending on the conditions imposed on the parameter estimation technique, MPR can lead to
parameterizations that satisfy the flux-matching criteria and hence contributes to obtaining seamless parameter and
water flux fields. Because MPR relies on empirical transfer functions and upscaling operators to link geophysical
properties with model parameters, it provides a very effective procedure to transfer “global parameters” to scales
and locations other than those used in calibration (Kumar et al., 2013; Samaniego et al., 2010a,b). This dependency
on several transferable coefficients also contributes to minimizing a serious drawback of spatially explicit models
called “overparameterization” (Beven, 1995).

In this study, we analyze to which extent existing LSM/HM parameterizations are limited to obtain seamless
predictions of water fluxes and states across multiple spatial resolutions. Through several modeling experiments
addressing Wood (1990)’s query (i.e., “What modeling experiments need to be performed to resolve the scale
question . . . ”), we demonstrate that a large portion of the predictive uncertainty in existing LSMs/HMs originates
from the deficient estimation of effective parameters, which leads to a lack of scale invariance and thus to their
poor transferability across scales and locations. These experiments also aim to help the modeler to reveal poor-
performing parameterizations, i.e., those that exhibit non-seamless fields. Finally, based on our past experiences
and aiming to address the challenges stated above, we develop a protocol that systematizes the application of the
MPR technique for any LSM/HM and demonstrate its effectiveness by implementing it into the PCR-GLOBWB
model.

5.3 Current parameterization techniques

5.3.1 The state-of-the-art

The most common parameterization techniques found in the literature are (1) look-up tables (LUTs), (2) manual
or automatic calibration, (3) hydrologic response units (HRUs), (4) representative elementary watersheds (REWs),
(5) a priori regularization functions, (6) simultaneous regionalization/regularization functions, and (7) dissimilarity-
based metrics to transfer model parameters.

The simplest technique to assign a parameter value to a modeling unit (e.g., grid cell, HRU, or subcatchment)
is based on a LUT. In this case, a categorical index associated with a modeling unit links it with information
taken from an external reference file (i.e., the LUT) which maps this index with parameter values that are usually
taken from the literature. This technique is commonly used in most of the (operational) LSMs such as CABLE,
CHTESSEL, CLM, JULES, and Noah-MP (Best et al., 2011; ECMWF, 2016; Kowalczyk et al., 2006; Niu, 2011;
Oleson et al., 2013; Viterbo and Beljaars, 1995). A disadvantage of this method is the difficulty to perform
sensitivity analysis (Cuntz et al., 2016). Moreover, the number of classes defined in LUT is often limited to a few
(e.g., 13 soil classes in Noah-MP) resulting in non-seamless parameter fields that are not continuous.

Manual or automatic calibration is a commonly used technique to parameterize spatially lumped hydrologic
models (e.g., Andréassian et al., 2014; Burnash et al., 1973b; Crawford and Linsley, 1966; Edijatno et al., 1999;
Fenicia et al., 2011; Lindstrom et al., 1997; Martina et al., 2011; Singh et al., 2014) and semi-distributed hydro-
logic models (e.g., Hundecha and Bárdossy, 2004; Hundecha et al., 2016; Kavetski et al., 2003; Leavesley et al.,
1983; Lindström et al., 2010; Merz and Blöschl, 2004). The aim is to minimize the disagreement between model
simulations and observations. In the majority of the cases, the target variable is streamflow. The main drawback
of this parameterization technique is that the parameter fields, which are obtained by colocating lumped model
parameters from sub-basins, are doubtful because they exhibit sharp discontinuities along individually calibrated
sub-basin boundaries despite having spatial continuity in basin physical attributes like soil, vegetation, and geo-
logical properties that govern spatial dynamics of hydrological processes (Blöschl et al., 2013; Li et al., 2012b;
Merz and Blöschl, 2004). In addition, the “patchwork quilt” parameter fields shown in these references exhibit
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significant sensitivity to the calibration conditions as demonstrated by Merz and Blöschl (2004). Thus, models
that are parameterized with this technique may exhibit (1) poor predictability of state variables and fluxes at loca-
tions and periods not considered in calibration and (2) sharp discontinuities along sub-basin boundaries in state,
flux, and parameter fields (e.g., Lindström et al., 2010; Merz and Blöschl, 2004). Parameter fields derived from
basin-wise “calibrated” lumped models lack spatial seamlessness and thus are “inadequate representations of real-
world systems” (Savenije and Hrachowitz, 2017). Moreover, excessive reliance on parameter calibration leads to
deficient performance at interior points of the basin or at other locations at which the model was not calibrated
(Brynjarsdottir and O’Hagan, 2014; Lerat et al., 2012; Pokhrel and Gupta, 2010).

There have been many attempts to improve the parameterization of lumped and semi-distributed models by
further discretizing the sub-basins into a given number of regions that exhibit nearly similar hydrologic behavior,
i.e., the so-called HRU concept initially proposed by Leavesley et al. (1983) and further developed by others (e.g.,
Beldring et al., 2003; Blöschl et al., 2008; Flügel, 1995; Viviroli et al., 2009; Zehe et al., 2014). Unfortunately,
results obtained in these parameterization attempts have not been very successful in realistically representing the
spatial variability of model parameters, states, and fluxes because of the lack of regionalized parameters and the
unabridged reliance on parameter calibration to improve model performance (Kumar et al., 2010). Commonly, the
effective parameters estimated for the HRUs are found by automatic calibration. Efforts have been made to enforce
continuity on parameter fields (Gotzinger and Bárdossy, 2007; Singh et al., 2012) but with somewhat limited
success during the transferability of parameters across scales and locations. In addition, models parameterized
using HRUs do not lead to mass conservation of water fluxes (i.e., flux-matching) when applied to scales other
than those used for calibration (Kumar et al., 2010, 2013). Recent attempts have been made to improve the HRU
concept to increase the seamless representation of parameters, states, and fluxes (Chaney et al., 2016a). However,
this concept has not been tested for scalability and seamlessness of the estimated fields at coarse resolutions.
Lately, a thermodynamic reinterpretation of the HRU concept was proposed by Zehe et al. (2014), but to date, the
implementation of this approach has not found its way into meso-scale to macro-scale LSMs/HMs.

The representative elementary watershed approach (Reggiani et al., 1998) is an interesting theoretical concept,
which scales mass and momentum balance equations. Unfortunately, to the best of our knowledge, it has not been
used to estimate effective parameters at meso- and regional scales.

A priori regularization functions (e.g., pedotransfer functions) were introduced by Koren et al. (2013) to en-
sure the “inappropriate randomness in the spatial patterns of model parameters”, i.e., the lack of seamlessness.
Unfortunately, in this case, the parameters (or coefficients) of regularization functions were not subject to param-
eter estimation or to the verification of their ability to predict fluxes and states across various scales. The use
of empirical point-scale-based relationships to link geophysical characteristics with LSM/HM parameters and the
assumption that their coefficients are universally applicable with certainty (e.g., the coefficients in the Clapp and
Hornberger (1978) pedotransfer functions) are the major reasons for the proliferation of hidden parameters in
LSM/HM code (Cuntz et al., 2016; Mendoza et al., 2015). It is of pivotal importance to understand that these
point-scale relationships should not be applied beyond the scale at which they were derived.

Many types of regionalization (or regularization) approaches have been tested for semi-distributed and dis-
tributed models. According to Samaniego et al. (2010a), these approaches can be broadly classified into post-
regionalization and simultaneous regionalization approaches, depending on if the regionalization function param-
eters (or global parameters) are estimated after (Abdulla and Lettenmaier, 1997; Livneh and Lettenmaier, 2013;
Seibert, 1999; Wagener and Wheater, 2006) or during the model calibration (Fernandez et al., 2000; Gotzinger
and Bárdossy, 2007; Hundecha and Bárdossy, 2004; Pokhrel and Gupta, 2010). None of these procedures con-
sider the subgrid variability of the model parameters or geophysical characteristics. Livneh and Lettenmaier (2013)
noted that most of these regionalization procedures exhibit limited transferability because of the use of discrete soil
texture classes as predictors, and very likely discontinuous parameter fields.

Recently, a dissimilarity-based regionalization technique was used by Beck et al. (2016) to generate an ensem-
ble of global parameters of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model at a 0.5� resolution for
global-scale hydrological modeling. A shortcoming of this approach is the use of ad hoc nearest-neighbor interpo-
lation of parameter fields to fill gaps where no donor basins are available in (geographically) surrounding regions.
Following a similar concept of that of Beck et al. (2016), the parameterization method proposed by Bock et al.
(2016) for the contiguous United States (CONUS) will likely lead to discontinuous parameter fields for reasons
similar to those mentioned above.

Many attempts have been made in the land surface modeling community to address Dooge’s challenges, espe-
cially with respect to the transferability of model parameters across locations and scales, and to obtain seamless
parameter fields. One of the earliest prominent experiments was conducted in the Project for Intercomparison
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of Land-surface Parameterizations (PILPS) (Wood et al., 1998). In this project, calibrated LSM parameters were
transferred from small catchments to their nearest computational grid cells. The results indicated that LSMs ex-
hibited poor transferability across space, leading to significant differences in the partitioning of water and energy
fluxes. For instance, Troy et al. (2008) used calibrated variable infiltration capacity (VIC) model parameters from
small basins to generate parameter fields for continental-scale land surface modeling by “linearly interpolating to
fill in those grid cell not calibrated” on a sparse grid. As noted by Samaniego et al. (2010a), this type of regional-
ization is inadequate because of the nonlinearity of soil and geological formations. The spatial patterns of model
parameters that would be obtained by ad hoc extrapolations based on calibrated parameters from small basins or
grid cells would most likely lead to unrealistic parameter fields with spatial discontinuities circumscribing river
basins, as shown in recent studies by Wood and Mizukami (2014) and Mizukami et al. (2017) for the VIC model
parameters.

Model
Spatial Resolution

� 30 arcmin 5 arcmin < 30 arcmin 5 arcmin

mHM

Noah-MP

PCR-GLOBWB

WaterGAP

Single scale only

Figure 5.1 Porosity fields (top 2 m) of typical LSM/HM over Pan-EU
at various resolutions: CABLE (1�), CLM (1�), CHTESSEL (0.11�),
JULES (35 km), LISFLOOD (EFAS, 5 km), mHM (EDgE-C3S,
5 km), Noah-MP (CORDEX-EU, 0.11�), and PCR-GLOBWB (EDgE-
C3S, 5 km). Normalized available water capacity of WaterGAP2
(HyperHydro, 30 arcmin), [3, 536] mm, WaterGAP3 (HyperHydro,
5 arcmin), [1, 960] mm, and HBV [50, 698] mm. In brackets, the
normalization values, denoted as [min, max], are provided only for
HBV and WaterGAP.

Recent community-driven efforts, such as the
Protocol for the Analysis of Land Surface
Models (PALS) and the Land Surface Model
Benchmarking Evaluation Project (PLUMBER)
(Haughton et al., 2016), indicate that the hur-
dles noted in PILPS have not been overcome.
Thus, it is required to gain understanding on
whether the inferior predictability of many LSMs
evaluated with empirical benchmarks in the
PLUMBER project (e.g., CABLE, CHTESSEL,
JULES, Noah) may be the result of deficient pa-
rameterizations, among other factors.

5.3.2 Parameterization of soil porosity
and available water capacity in selected
LSMs/HMs

The above-mentioned challenges that we
face in estimating key physical parameters in
LSMs/HMs have been intensively discussed in
many studies (Bierkens, 2015; Bierkens et al.,
2014; Clark et al., 2016, 2017; Gupta et al.,
2014; Mizukami et al., 2017; Peters-Lidard
et al., 2017). To further visualize the problems
and to understand the deficiencies of current
parameterization techniques, we selected a repre-
sentative sample of LSMs/HMs used for research
and/or operational purposes, namely CABLE,
CLM, JULES, LISFLOOD, Noah-MP, mHM,
PCR-GLOBWB, WaterGAP2 (30 arcmin),
WaterGAP3 (5 arcmin), CHTESSEL, and HBV.
These models vary in process complexity and
spatial resolution.
We selected soil porosity as an example to visual-
ize existing shortcomings because it is one of the
most common parameters in many LSMs/HMs.
This parameter controls the dynamic of several
state variables and fluxes such as soil moisture,
latent heat, and soil temperature, and its sensi-
tivity has been demonstrated in various studies
(Cuntz et al., 2015, 2016; Goehler et al., 2013;
Mendoza et al., 2015).
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A representation of the porosity of the top 2 m soil column in these models over the Pan-European domain
(Pan-EU) is shown in Fig. 5.1. The Pan-EU domain was selected for depiction, but we note that the problem is
general and persistent across other domains (Mizukami et al., 2017). For cases in which a HM does not use this
parameter, the “available water capacity” (WaterGAP) or the “field capacity” (HBV) were selected as a surrogate
due to their similarity with porosity. Both surrogate fields are normalized (in space) to ease their comparison with
the porosity fields. Soil porosity is expressed in m3 m�3 to ease the comparison among different models.

The following lessons can be learned from Figure 5.1: 1) There is a large variability in the parameterization of
this key physical parameter because none of the analyzed models have comparable spatial patterns or comparable
estimates at a given location. It should be noted that the definition of the selected parameter is rather simple: it
represents the ratio of the volume of voids to the total volume in the soil column. One can now wonder how large
the uncertainty of other parameters would be (e.g., hydraulic conductivity) whose relationship with soil properties
is very nonlinear. 2) The degree of seamlessness strongly depends on the level of aggregation and the upscaling of
underlying soil texture fields. For example, the proxy of porosity for WaterGAP is substantially different in spatial
pattern and magnitude for 30 arcmin and 5 arcmin simulations. On the contrary, the spatial pattern and magnitude
for porosity used in mHM remain almost unchanged for application at 30 and 5 arcmin resolution. 3) A parameter
field becomes highly discontinuous and patchy when, for a given model, the parameter is calibrated in a limited
domain (or basins) and then extrapolated to other regions (e.g., as shown in the panel corresponding to the HBV).
4) These experimental results confirm the postulation of Dooge (1982) that the parameterization of the existing
state-of-the-art LSMs/HMs at large and continental scales is still an unsolved problem.

The analysis of current parameterization techniques allow us to put forward the following questions: 1) Why
are there such large differences between models in estimating a parameter that has a physical meaning? 2) What
are the consequences of poor parameterizations on the spatiotemporal dynamics of state variables and fluxes? 3)
What are the consequences of model calibration on parameter fields? 4) Are current model parameterizations scale
invariant? 5) Do the fluxes estimated with these models at various scales satisfy the fundamental mass conservation
criterion (hereafter denoted as the flux-matching test)?

Table 5.1 Data sources and parameterization method used by models used in this study

Model Parameterization Method References Source code & Projects
CABLE Pedo-transfer functions,

look-up table, dominant
soil type

Kowalczyk et al. (2006) www.cawcr.gov.au/publications/

technicalreports/CTR_057.pdf

CLM Pedo-transfer functions,
look-up table, mosaic
approach

Oleson et al. (2013) www.cesm.ucar.edu/models/cesm1.2/

clm/

CHTESSEL Look-up table, dominant
soil type

ECMWF (2016); Viterbo and
Beljaars (1995)

www.ecmwf.int/search/elibrary

HBV k-NN interpolation, cali-
brated parameter

Beck et al. (2016) www.gloh2o.org/hbv-simreg/

JULES Look-up table, dominant
soil type

Best et al. (2011) jules.jchmr.org

LISFLOOD Pedo-transfer functions,
mosaic approach, arith-
metic mean

De Roo and Wesseling (2000) ec.europa.eu/jrc/en/publication/

mHM MPR Samaniego et al. (2010a) edge.climate.copernicus.eu www.ufz.

de/mhm

Noah-MP Look-up table, dominant
soil type

Niu (2011) www.jsg.utexas.edu/noah-mp

www.meteo.unican.es/wiki/cordexwrf

PCR-GLOBWB (Original) pedo-transfer
functions with averaged
predictors

van Beek et al. (2011); Wada
and Bierkens (2014)

pcraster.geo.uu.nl/projects/

applications/pcrglobwb/

(New) MPR Samaniego et al. (2010a)
WaterGAP (2,3) Look-up tables Batjes (1996); Müller Schmied

et al. (2014)
www.uni-kassel.de/einrichtungen/

en/cesr/research/projects/active/

watergap.html www.uni-frankfurt.de/

45218063/WaterGAP

www.cawcr.gov.au/publications/technicalreports/CTR_057.pdf
www.cawcr.gov.au/publications/technicalreports/CTR_057.pdf
www.cesm.ucar.edu/models/cesm1.2/clm/
www.cesm.ucar.edu/models/cesm1.2/clm/
www.ecmwf.int/search/elibrary
www.gloh2o.org/hbv-simreg/
jules.jchmr.org
ec.europa.eu/jrc/en/publication/
edge.climate.copernicus.eu
www.ufz.de/mhm
www.ufz.de/mhm
www.jsg.utexas.edu/noah-mp
www.meteo.unican.es/wiki/cordexwrf
pcraster.geo.uu.nl/projects/applications/pcrglobwb/
pcraster.geo.uu.nl/projects/applications/pcrglobwb/
www.uni-kassel.de/einrichtungen/en/cesr/research/projects/active/watergap.html
www.uni-kassel.de/einrichtungen/en/cesr/research/projects/active/watergap.html
www.uni-kassel.de/einrichtungen/en/cesr/research/projects/active/watergap.html
www.uni-frankfurt.de/45218063/WaterGAP
www.uni-frankfurt.de/45218063/WaterGAP
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5.4 Seamless parameterization framework

5.4.1 The flux-matching postulation

The key postulation aiming at obtaining scalable (global) parameters that are transferable across locations and
scales was proposed by Samaniego et al. (2010a) and further tested in Kumar et al. (2013,b) and Rakovec et al.
(2016a). We hypothesize that flux matching across scales leads to quasi-scale-invariant global parameters �̂; thus,
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Here, k denotes the subgrid elements constituting a given modeling cell i with area ak. i denotes a modeling
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.
⌦ denotes the modeling domain, e.g., a river basin, and t a point in time. It should be noted that the topology of
the cells at either level is not specified. Normally, rectangular grid cells are used for convenience, but this is not a
necessary condition. This strong flux-matching condition can be used as a penalty function or as an additional test
to discriminate parameter sets obtained with conventional parameter estimation approaches.

5.4.2 The MPR approach

MPR, proposed by Samaniego et al. (2010a), aims to estimate model parameters that are seamless across scales,
satisfy the flux-matching conditions (see Sect. 5.4.1), and enable the transferability of global or transfer-function
parameters across scales and locations (Kumar et al., 2013b; Livneh et al., 2015; Rakovec et al., 2016b; Samaniego
et al., 2010a,b; Wöhling et al., 2013). The development of MPR is ongoing. Regionalization functions used in
MPR for the mHM model (www.ufz.de/mhm) by Samaniego et al. (2010b) were further improved by Kumar
et al. (2013). More recently, a model-agnostic implementation of MPR has been proposed by Mizukami et al.
(2017) and tested in the VIC model in over 500+ basins in the CONUS. The study of Mizukami et al. (2017), in
contrast to the present study, does not include flux-matching tests nor the evaluation of model skill across different
spatial scales.

The scaling problem in MPR is addressed by using process-specific representative elementary areas (REAs)
that determine the minimum computational grid size `1 at which the continuum assumptions can be used without
explicit knowledge of the actual patterns of the topography, soil, or rainfall fields (Wood et al., 1988). The REA
of a specific process, such as streamflow, can be determined by conducting a careful sensitivity analysis as shown
by Samaniego et al. (2010a). To estimate an “effective” model parameter (e.g., total soil porosity) at the selected
modeling scale, it is first necessary to estimate its variability at a much finer scale `0 ⌧ `1 such that the effects of
its spatial heterogeneity can be adequately represented. In other words, the parameter at the fine scale `0 represents
the minimum support at which the proposed equations are still valid. Barrios and Francés (2011) indicated that
a suitable estimate of `0 for a given parameter could be near its correlation length. The subgrid variability of a
parameter �0 depends, in turn, on the spatial heterogeneity of geophysical and biophysical characteristics (u0),
such as terrain elevation, slope and aspect, soil texture, geological formation, and land cover, which are now
available at hyper-resolution for the entire globe. The mathematical relationships that link model parameters with
these characteristics at the finer resolution are called pedotransfer, regionalization, or regularization functions f
(Clapp and Hornberger, 1978; Cosby et al., 1984; Wösten et al., 2001). The constants required in these functions
are usually denoted as global parameters �̂; thus, �0 = f (u0, �̂). Note that the fields �0 and u0 are dependent on
space and time, but the vector �̂ is not.

Regularization functions are commonly used in mathematics and statistics to solve ill-posed problems (which is
the case when the parameters of a distributed LSM/HM are determined by calibration) and/or to prevent overfitting.
The direct consequence of the regularization is the substantial decrease in degrees of freedom of the optimization
problem because the cardinality of the gridded parameter fields #{�0} is orders of magnitude larger than that of
the vector of the global parameters #{�̂}. Hence, MPR is a parsimonious parameterization technique that offers
spatially continuous parameter fields and removes spatial discontinuities in water fluxes and states, as observed by
Gotzinger and Bárdossy (2007) and discussed by Mizukami et al. (2017). From the Bayesian point of view, the
regularization functions impose a prior distribution on the model parameters. Consequently, greater care should be
taken in their selection.

www.ufz.de/mhm
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Figure 5.2 Schematic representation of the proposed seamless prediction framework based on Rakovec et al. (2016a). It
includes a preliminary sensitivity analysis, MPR estimation, global-parameter estimation, a flux-matching test, and multiscale
seamless prediction. Wi and wk are the fluxes at the i and k cells of the 1/2� and 1/4� resolutions, respectively (as an example).
Qobs and Sobs are the observed time series of streamflow and soil moisture, respectively. The operator | · | is a compromise
dissimilarity metric composed of many independent observations at various scales.

The second step of the MPR approach consists of upscaling the subgrid distribution of a regionalized parameter
to the modeling scale. In other words, �1 = h�0i. Here, the symbol h·i represents an averaging or scaling operator
that is parameter specific, and thus �1 denotes the upscaled effective parameter field. It is important to note that
this scaling operator is not necessarily the arithmetic mean.

A schematic representation of the MPR procedure can be seen in Fig. 5.2. In short, the motto of MPR is “esti-
mate first, then average”, whereas other existing regionalization methods follow the opposite approach of “average
first, then estimate.” Because the processes in LSMs/HMs are highly nonlinear, this sequence of operations does
not commute. The consequences can be dramatic (to be shown in the results section). The latter, which is the stan-
dard approach, does not preserve fluxes/states across scales, whereas MPR does to a considerable extent. The key
question here is in finding the right scaling rule for the model parameters such that the fluxes/states are preserved
across a range of spatial scales.

Model parameters at the `1 scale (i.e., 1 to 100 km) are called “effective” parameters because they cannot be
measured by physical means at this resolution and can only be inferred by heuristic relationships f(·). Thus, it is
essential that the inequality `0 ⌧ `1 is fulfilled so that the law of large numbers leads to stable estimates of the
effective parameter �1 having low uncertainty. Since every LSM/HM (e.g., those mentioned in Sect. 5.3) contains
“effective” model parameters, depending on heuristic relationships (that are hidden in the source code in many
cases; Cuntz et al., 2016; Mendoza et al., 2015), it is logical that existing LSMs/HMs are subject to parameter
uncertainty. These models can be treated as stochastic models, even though their governing equations are deter-
ministic in nature and based on physical principles such as the conservation of mass and energy (Clark et al., 2015;
Nearing et al., 2016). Effective parameters should not be the pure result of a blind calibration algorithm. MPR
varies from other regionalization approaches in that the introduced relationships may lead to seamless parameter
fields and model simulations fulfilling the flux-matching condition.

Currently, MPR is the only method that consistently and simultaneously addresses the scale, nonlinearity, and
overparameterization issues if global parameters are estimated simultaneously at multiple locations (i.e., basins).
The MPR approach also addresses the principle of scale-dependent subgrid parameterization (i.e., “net fluxes must
satisfy the conservation of mass” proposed by Beven, 1995) but does not adhere to Beven’s other principles, such
as that subgrid parameterizations may be data and scale dependent (principles 3 and 4 in Beven, 1995), because
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exhaustive tests reported in the above-mentioned references carried out over hundreds of river basins do not appear
to support them. We find MPR to be a robust technique that has the ability to provide “effective parameters” and is
capable of addressing the scaling problem; in this sense, it diverges from the Beven’s view (Beven, 1995, p. 507)
that these “effective parameters” are an “inadequate approach to the scale problem”. Furthermore, MPR differs on
the regionalization and aggregation scheme (i.e., patch model areal weighting) proposed by Beven (1995, p. 520).

The selection of regionalization functions and scaling operators is fundamental to ensuring the transferability of
global parameters across scales and to guarantee the seamlessness of parameter fields across scales, e.g., from `1 to
2`1 and so on. Samaniego et al. (2010a) proposed that the key to determining them is the flux-matching condition
mentioned above. A seamless parameter field �1 can be interpreted as the corollary of the flux-matching condition.
Moreover, MPR employs geophysical properties at `0 that allow for a representative sample at the hyper-resolution
promoted by Wood et al. (2011) and Bierkens et al. (2014).

5.4.3 Protocol for implementing the MPR approach

The development of LSMs/HMs and their parameterizations should be guided by a strict hypothesis-driven frame-
work (Nearing et al., 2016) that aims at finding parsimonious and robust parameter sets that fulfill the flux-matching
condition and a number of efficiency metrics that are not used during the parameter estimation phase. A multi-
variate, multiscale evaluation assessing the reliability of model simulations should follow the scheme presented in
Rakovec et al. (2016b). Based on our previous experiences, we synthesize a formalized scheme (i.e., protocol) for
systematically implementing the MPR technique in other LSMs/HMs with the aim to obtain a robust and seamless
parameterization. A graphical depiction of the estimation procedure at multiple scales is shown in Fig. 5.2.

1. Retrofit the source code of an LSM/HM so that all model parameters are exposed to analysis algorithms.
Parameters are the values of a model that can be considered random variables, i.e., those that are subject
to various outcomes and can be fully defined by a probability density function. Parameters should not be
confused with numerical or physical constants.

2. Determine a set of the most sensitive model parameters through a sensitivity analysis (SA). For computa-
tionally expensive LSMs such as CLM or Noah-MP, computationally frugal methods such as the elementary
effects method (Morris, 1991), its enhanced version such as that proposed by Cuntz et al. (2015), or the dis-
tributed evaluation of local sensitivity analysis (DELSA; Mendoza et al., 2015; Rakovec et al., 2014) are of
particular interest because use of the popular standard Sobol’ method (Sobol’, 2001) can be computationally
expensive although still possible (Cuntz et al., 2016).

3. Regionalize sensitive model parameters that exhibit marked spatial variabilities. The selection of the region-
alization function f(·) can be guided by existing literature or by step-wise methods (e.g., Samaniego and
Bárdossy, 2005). This regularization step should be conducted at the highest available spatial resolution for
all predictor fields. This resolution is denoted as level `0. The output of the regularization is the parameter
field �0.

4. Estimate effective parameter fields �1 using upscaling operators based on the underlying subgrid variability
�0. The scale `1 is determined by synthetic experiments aimed at finding the optimal REA for processes
related to the parameter in question (Kumar et al., 2013; Samaniego et al., 2010a).

5. Estimate the global parameters �̂ using standard optimization algorithms (simulated annealing, shuffled com-
plex evolution (SCE), dynamically dimensioned search (DDS)) by minimizing a compromise metric that in-
cludes observations at multiple scales and locations (Duckstein and Opricovic, 1980; Rakovec et al., 2016b).
The compromise metric could also include hydrologic signatures to extract as much information from a time
series as possible (Nijzink et al., 2016).

6. Perform multi-basin, multiscale, multivariate cross-validation tests to evaluate the robustness of the regional-
ization functions, scaling operators, and global parameters (Rakovec et al., 2016b).

7. Evaluate the parameter seamlessness and the preservation of the statistical moments of fluxes and states across
scales (seamless prediction step in Fig. 5.2).

8. If the cross-validation tests provide satisfactory results (e.g., Kling–Gupta efficiency (KGE) of the compro-
mise solution > 0.6), then evaluate the flux-matching condition given by Eq. (5.1). If the total error is too
large to be tolerated, repeat steps 3 to 8.
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It should be noted that any of the steps above can be tested within a sequential hypothesis-testing framework
(Clark et al., 2016). A substantial difference from a standard model optimization exercise is that the transfer
function f(·) (step 3) and the upscaling operator (step 4) can also be modified in the modeling protocol.

Failure to satisfy the imposed condition, such as the flux-matching test, after exhaustively testing the options
in steps 3 to 6 may indicate deficits in process understanding and/or poor data. Consequently, the evaluation step
should also provide guidance on detecting and separating the errors stemming from process conceptualization
(modeling) and input data.

5.4.4 Seamless parameter fields across multiple scales using MPR

In Sect. 5.4.2, it was postulated that the MPR technique aims at estimating seamless parameter fields across scales
which minimize the occurrence of artificial discontinuities and ease the transferability of model parameters across
scales and locations. The latter has been tested and reported in many studies in Europe, USA, and other basins
worldwide (Kumar et al., 2013,b; Rakovec et al., 2016a,b; Samaniego et al., 2011). In this study, we provide
evidence in favor of the former postulation.

To achieve this goal, the mHM model is parameterized using MPR (Samaniego et al., 2010a) with hyper-
resolution fields of geophysical characteristics at `0 = 500 m resolution as input. Among them, the land cover data
were obtained from the Corine datasets (http://land.copernicus.eu/pan-european/corine-land-cover),
and the soil texture information was derived from SoilGrids (soilgrids.org). These very detailed and homog-
enized soil texture fields provide the fractions of clay and sand, mineral bulk density, and fraction of organic matter
for six soil horizons up to 2 m deep. A hyper-resolution digital elevation model (DEM) over Europe (approximately
30 m) from the GMES RDA project (EU-DEM; www.eea.europa.eu/data-and-maps/data/eu-dem)
was used to derive terrain characteristics such as slope, aspect, and flow direction. The underlying hydrogeologi-
cal characteristics are based on the International Hydrogeological Map of Europe (IHME; www.bgr.bund.de/
ihme1500), available at a 1 : 1 500 000 scale. Details on the pedotransfer function used for these simulations can
be found in Livneh et al. (2015). mHM global parameters were obtained by closing the water balance over selected
river basins in Europe (Rakovec et al., 2016b).

(a) (b) (c)

(d) (e) (f)

Figure 5.3 Seamless soil porosity (top 2 m) fields obtained using MPR at three spatial resolutions `1: (a) 5 km, (b) 10 km, and
(c) 25 km, respectively. Lower panels (d)–(f) show the empirical distribution function of porosity at the respective resolution
and method.

http://land.copernicus.eu/pan-european/corine-land-cover
soilgrids.org
www.eea.europa.eu/data-and-maps/data/eu-dem
www.bgr.bund.de/ihme1500
www.bgr.bund.de/ihme1500
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Based on these settings, which constitute the basis for the EDgE project (edge.climate.copernicus.eu), we esti-
mated porosity fields at three modeling resolutions of `1= 5, 10, and 25 km, based on the same `0 support infor-
mation. Following the MPR procedure depicted in Fig. 5.2, the parameter fields for the mHM model at these three
resolutions can be estimated. Results are shown in Fig. 5.3.

The results illustrate that the MPR approach can preserve the spatial pattern of the porosity fields (see Fig. 5.3a,
b, and c) and the first and second moments of its probability density function shown in Fig. 5.3e–g. Two-sample
Kolmogorov–Smirnov tests indicate that there is insufficient evidence to reject the null hypothesis that any of the
three possible pairs of empirical distributions were drawn from the same unknown distribution. This highlights that
the MPR approach leads to consistent parameter fields across scales. In this case, the mean porosity is estimated to
be 0.42 m3 m�3 independent of the scale.

5.4.5 Limitations of the MPR approach

The MPR approach, as any method, has some limitations. One of the crucial aspects of MPR is the selection of
transfer functions and upscaling operators. Existing theories could be the first guess, but in the event that nothing
is available, the protocol proposed in Sect. 5.4.3 could be used to guide the search of robust transfer functions.
Testing the model parameterization for flux-matching conditions across a range of basin and spatial scales may help
to identify adequate upscaling operators. This procedure, although tedious, is the only solution for the moment.

In the event that some state variables change over time (e.g., land cover/use), or during parameter estimation,
the MPR algorithm has to be linked to the model because every time a global parameter (�̂) is re-estimated, all
related model parameters (�1) have to be updated as illustrated in Fig. 5.2. The computational cost of performing
MPR is therefore larger than other parameterization method discussed before.

Another limitation of the applicability of the MPR technique until recently was its availability only as an intrinsic
module of the mHM model (www.ufz.de/mhm). This implies that tailored algorithms (i.e., source code) to
perform the regionalization and upscaling of parameters for a target LSM/HM have to be developed from scratch,
as it is demonstrated here as a case study for the PCR-GLOBWB model. This activity is of course time-consuming
and not pleasing due to its complexity. For this reason, Mizukami et al. (2017) have started a community effort to
develop a model-agnostic MPR implementation (MPR-flex), which has been so far evaluated for the VIC model.

The availability of high-resolution biophysical characteristics at the spatial scale `0 constitutes another limitation
of the applicability of MPR. Since the subgrid variability is fundamental to estimating robust effective parameter
values at coarser scales, the minimum scale at which a model can be applied (`1) is strongly determined by the data
availability. For example, if the soil data are available for the Pan-EU domain at `0 = 250 m, the `1 should not be
lower than 1000 m, so that each modeling cell (`1) has a representative number of underlying subgrid cells (`0).

MPR has been mainly developed for a hydrologic model representing the water cycle. However, land surface
models also include the energy and carbon cycles and thus have greater complexity. In particular, they have more
detailed representation of vegetation. It is a topic for future research to develop a MPR approach (i.e., transfer
functions and upscaling operators) for plant functional-type-specific parameters such as carboxylation rate and the
slope of the Ball–Berry equation for stomatal conductance (Ball et al., 1987), which are required for a successful
implementation of MPR in LSMs.

Finally, the computational effort for MPR is also considerably larger in comparison with other methods, because
of its requirement to estimate model parameters (�0) at the highest resolution at which the biophysical character-
istics are available. The computational time, however, could be substantially reduced by using a restart file (i.e., a
dataset containing a copy of all parameters, state variables, and fluxes of a model at a given point in time). If this
capability is available, the MPR estimation can be greatly reduced for operational simulations because the effective
parameter fields and past modeled states do not need to be estimated often.

5.5 Experiments to reveal non-seamless parameterizations

In this section we perform four modeling experiments, inspired on Wood (1990)’s recommendation, to investigate:
1) the effects of the over-calibration of global parameters on the spatial patterns of modeled state variables. 2) The
effects of a parameterization technique on the spatial pattern of effective parameters. 3) The effects of a param-
eterization technique on the dynamics of a state variable. And, 4) the effects of not satisfying the flux-matching
condition on simulated flux across different spatial scales. In these experiments four models are employed: mHM,
Noah-MP, PCR-GLOBWB, and WaterGAP.

www.ufz.de/mhm
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5.5.1 Effects of on-site model calibration

As noted in the introduction, on-site (basin-specific) parameter estimation based on HRU or similar techniques
(such as clustering grid cells or sub-basins into regions that exhibit quasi-similar hydrological behavior) leads to
non-seamless parameter fields such as those reported in Merz and Blöschl (2004). Here, we go one step further to
show the consequences of this common practice on state variables such as soil moisture. Our postulation is that
an on-site calibration of global parameters �̂ leads to biased state variables even with regularization techniques
such as MPR. To falsify this postulation, we performed two model simulations denoted “on-site” and “multisite”
calibration schemes. In both cases, we used the mHM setup described in Rakovec et al. (2016a) over the Pan-EU
domain at a 0.25� resolution.

In the first simulation, we perform on-site calibrations at 400 river basins in the Pan-European domain. Sub-
sequently, the respective optimized parameter sets are used in each corresponding basin to generate the target
variable, in this case, the daily soil moisture of the top 1 m soil column. Lastly, daily soil moisture fields are as-
sembled using the independent basin simulations for the entire Pan-EU domain. The results of this experiment are
shown in Fig. 5.4a for a day in August 2005. In the second simulation, the global parameters �̂ are estimated simul-
taneously for a set of 13 basins covering various hydroclimatic regimes in the Pan-EU domain. The corresponding
soil moisture field for the same point in time is depicted in Fig. 5.4b.

The first simulation shows clear evidence of strong spatial imprint in the soil moisture fields that is easily
identifiable because the shapes of the constituent river basins (Fig. 5.4a) are apparent. Another interesting feature
is a strong wet bias in a basin located in center of the Iberian Peninsula compared to its neighboring regions. Wet
soils during this period are very unlikely because the entire region was enduring a prolonged and extreme drought.
Moderate dry bias is apparent in basins in southwest Germany, and a strong dry bias was detected in basins in west
Croatia, south Lithuania, south Hungary, and north Bosnia and Herzegovina. Conversely, the soil moisture field
obtained with the multi-basin parameter estimation does not exhibit these nuisances and thus can be regarded as a
spatially seamless field. In this case, parameter estimation with a large sample of geophysical characteristics and
many streamflow time series to estimate efficiency measures leads to a well-posed parameter estimation problem.

(a) (b)

Figure 5.4 mHM simulations of soil moisture as the fraction from saturation ✓

✓s
for a day in August 2005 conducted with (a)

basin-wise parameter estimation and (b) seamless parameter estimation. Panel (b) shows a seamless soil moisture field.

Based on these results, it can be concluded that parameter sets obtained using the on-site parameter estimation
technique do not lead to seamless parameter fields or state variables. Moreover, automatic optimization algorithms,
such as SCE or DDS, tend to overlearn from time series with large observational errors, which in turn leads to poor
identifiability of parameters (Brynjarsdottir and O’Hagan, 2014) and biased simulations, as demonstrated above.
Consequently, parameter estimation should be performed with a representative sample of basins that adequately
cover the variability of hydrological regimes and geophysical properties (e.g., soil types) (Kumar et al., 2015). It
is worth noting that if the parameters of a model are estimated in a small basin with very few soil types, a single
geological formation, or very flat terrain, then it is very likely that some parameters cannot be constrained during
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calibration. The obtained parameter set is biased to the specific basin in which it has been estimated, and hence it
is not skillful for seamless and continental-scale simulations.

5.5.2 Effects of a parameterization technique on spatial patterns of effective parameters

The effects of the commonly used parameterization techniques to generate the porosity fields of LSMs (such
as CHTESSEL and Noah-MP depicted in Fig. 5.1) are important to investigate. These fields are obtained by
combining the majority (or dominant) upscaling operator and a look-up table containing categorical values of model
parameters tabulated for a limited set of dominant soil types (e.g., Niu, 2011, p. 20., ECMWF, 2016, p. 137). The
majority-based operator is mostly used for estimating grid-specific vegetation classes in LSMs (Li et al., 2013a).

The porosity field, based on a majority upscaling for the Noah-MP model used in EURO-CORDEX (www.
euro-cordex.net) at an approximately 12 km resolution, is depicted in Fig. 5.1. Compared with the other
model-derived porosity fields, the Noah-MP field appears to be most homogeneously distributed in space. It is
very likely that the spatial heterogeneity is underrepresented in this case as the default soil LUT contains only
13 soil classes. It should be noted that a model such as CABLE that uses a porosity field with an approximately
100 km resolution has a larger variability than that of Noah-MP at 12 km.

(a) (b)

(d)(c)

Figure 5.5 Porosity fields obtained using the majority upscale operator for
spatial resolutions of (a) 5 km and (b) 12 km with the Noah-MP model used
in the EDgE and EURO-CORDEX projects, respectively. Lower panels (c)–
(d) show the empirical distribution function of porosity at the respective
resolution and method.

The following experiment is carried out
to evaluate whether the variability of the
soil map or the upscaling operator has
a larger effect on the derived porosity
field. The highest resolution soil map
available for Europe is used and applied
in the same manner to derive porosity
fields as described above. The texture
field is provided by the SoilGrids dataset
(http://soilgrids.org) at 1000 m
resolution (level-0). The upscaled poros-
ity field is generated at 5 km for the EDgE
project. The soil characteristics for Noah-
MP are estimated using the same look-up
table as in the EURO-CORDEX–Noah-MP
case. The comparison of both parameter
fields (i.e., EDgE–Noah-MP and EURO-
CORDEX–Noah-MP) and the main statis-
tical moments describing the spatial vari-
ability of the porosity fields are shown in
Fig. 5.5. The results clearly indicate the in-
appropriateness of the majority-based up-
scaling operator for this parameter in both
cases. It leads to reduction of the variance
of the porosity field and thus can be con-
sidered the least sensitive operator. This
means that the informational content of the

hyper-resolution soil maps, commonly available globally, is almost lost.

Notably, although the overall mean of the porosity estimated using MPR over the Pan-EU domain for mHM
(Fig. 5.3a) is only 6.6 % lower than that calculated using the majority-based approach for Noah-MP (Fig. 5.5a), the
spatial patterns obtained by both models are very different. The evidence of this remarkable dissimilarity can also
be visualized by comparing the empirical density functions shown in Figs. 5.3d and 5.5c, both corresponding to a
field at `1 = 5 km and with the same input data. A detailed evaluation conducted by Samaniego et al. (2012) in
Germany showed that large porosity values estimated with the majority-based approach could overestimate those
obtained with MPR by up to 40 %, whereas in other locations, underestimation up to 15 % from those estimated by
MPR can be found.

www.euro-cordex.net
www.euro-cordex.net
http://soilgrids.org
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Other upscaling operators, such as the weighted arithmetic mean, are commonly used in LSMs in combination
with the mosaic approach. For example, in CLM (Oleson et al., 2013, see p. 160), the texture class of the subunits
of the cell, called tiles, are provided in a look-up table. The upscaled porosity field obtained using this approach
is shown in Fig. 5.1 at a 1� (100 km) resolution. Methods based on the majority and weighted arithmetic mean
operators exhibit some similarity and lack spatial variability. In both cases, the spatial mean is approximately
0.43 m3 m�3.

Hydrologic models that do not use soil porosity tend to use a similar conceptualization and values denoted as
the total available water capacity (TAWC; WaterGAP versions 2 and 3) and field capacity (FC; HBV). For these
types of conceptual models, normalized values of these parameters are used as surrogates for soil porosity. The
consistency of the spatial patterns of TAWC and FC are compared here instead of their actual values. A distinctive
difference in the patterns can be observed. For example, WaterGAP3 exhibits lower values than WaterGAP2,
whereas the pattern of the normalized FC in HBV is the opposite in many locations (e.g., Spain, Germany, and
Scandinavia).

Details of the parameterization schemes used to estimate TAWC and FC are beyond the scope of this study.
Interested readers may refer to Müller Schmied et al. (2014) or Beck et al. (2016), respectively. However, the
TAWC in WaterGAP is obtained by linking the soil type provided by the FAO soil map with available water
capacity values estimated by Batjes (1996). Thus, no scaling rule or form of regularization is used in this case. The
field capacity parameters used in HBV were determined using an ad hoc nearest-neighbor interpolation technique
that relies on calibrated parameters from nearby similar donor basins that might exhibit very different geophysical
characteristics. The parameter fields obtained for two versions of WaterGAP (30 and 5 arcmin) and HBV are
depicted in Fig. 5.1. It can be concluded that the parameterization technique employed is not scale invariant as
revealed by distinct parameter sets from WaterGAP model versions, which are operated at different resolutions.
The regionalization proposed by Beck et al. (2016) leads to a patchwork-quilt field that does not resemble to any
other field presented. Evident from Fig. 5.1, the HBV field lacks seamlessness that may result in non-seamless
fields of water fluxes and states.

5.5.3 Effects of a parameterization technique on the dynamics of a state variable

There is a complex interplay between soil moisture (SM) and latent heat (LH) in LSMs/HMs. Improving our un-
derstanding of soil–land–atmosphere feedback is fundamental for making reliable predictions of water and energy
fluxes. In this context, we carry out a sensitivity experiment to investigate the effects of soil-related parameteri-
zations (e.g., soil porosity) on latent heat and soil moisture. Two contrasting modeling paradigms (Noah-MP and
mHM) are employed.

The WRF/Noah-MP system is forced with ERA-Interim at the boundaries of the rotated CORDEX grid (www.
meteo.unican.es/wiki/cordexwrf) at a spatial resolution of 0.11� covering Europe from 1989 to 2009.
To ease the comparison, the process-based hydrological model mHM (www.ufz.de/mhm) is driven with daily
precipitation and temperature fields generated by the WRF/Noah-MP system during the same period. The spatial
resolution of mHM is fixed at 5 ⇥ 5 km2. The main geophysical characteristics in WRF/Noah-MP of land cover
and soil texture are represented with a 1 ⇥ 1 km2 MODIS and a single-horizon, coarse-resolution FAO soil map
with 16 soil texture classes, respectively. The porosity field of Noah-MP is estimated by applying a majority-based
operator to values for different soil classes, as shown in Fig. 5.5b.

The settings of the mHM model used in this experiment are described in Sect. 5.4.4. In contrast to those of
Noah-MP, the global parameters of mHM estimated using the MPR technique are obtained by closing the water
balance over selected river basins in Europe (Rakovec et al., 2016b). The porosity fields obtained for mHM over
the Pan-EU are depicted in Fig. 5.3.

The phase diagrams of the monthly fraction of soil water saturation fSM = ✓

✓s
(i.e., plots of monthly fSM(t) vs.

fSM(t + 1)) are subsequently investigated to understand the effect of differences in porosity estimates of the top
2 m soil column on the soil moisture dynamics (Fig. 5.6). Two locations in Germany are selected in which Noah-
MP systematically over- or underestimated the latent heat fluxes with respect to mHM (the latitude and longitude
coordinates of the center of the selected Noah-MP grids are A (54� N, 10� E) and B (51� N, 7� E), respectively). At
location A, the majority-based approach underestimates the MPR soil porosity by �10 %, whereas in location B, it
overestimates it by 40 %. This experiment unambiguously shows that, at locations where Noah-MP overestimates
latent heat with respect to mHM, the temporal variance (i.e., dynamic) of the monthly SM time series simulated
by Noah-MP is almost doubled compared to that of mHM, leading to much lower soil moisture values (Fig. 5.6a).
Conversely, underestimation of latent heat greatly reduces the variance of the soil moisture dynamics (Fig. 5.6b).

www.meteo.unican.es/wiki/cordexwrf
www.meteo.unican.es/wiki/cordexwrf
www.ufz.de/mhm
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(a) (b)

ET overestimated ET underestimated

Figure 5.6 Phase diagrams of monthly soil moisture fraction for two locations in Germany, (a) 54� N, 10� E and (b) 51� N,
7� E, in which the latent heat estimated by Noah-MP is over- or underestimated with respect to corresponding estimates of
mHM. The models have identical forcings.

5.5.4 Effects of not satisfying the flux matching condition

In Sect. 5.3, we postulated that ad hoc parameterization schemes do not necessarily fulfill the flux-matching test
performed with a flux simulated by a given model at two modeling resolutions (`1 = 5 and 30 arcmin). A detailed
description of how to perform this test is provided in Samaniego et al. (2010a). The following experiment is con-
ducted with three models (mHM, PCR-GLOBWB, and WaterGAP) in an attempt to falsify the above postulation.
All models use the same forcings and geophysical information. The simulations are conducted in the Rhine River
upstream of the Lobith gauging station. All three models are driven by daily forcing with a spatial resolution of
5 km, which was kindly provided by the EFAS team at JRC (www.eea.europa.eu). Additional details of the
modeling settings of this experiment are provided in Sutanudjaja et al. (2015) and at www.hyperhydro.org/.

Table 5.2 Efficiency of mHM, PCR-GLOBWB and WaterGAP obtained for
the Rhine basin at Lobith station during 2003 for spatial resolutions of 5 and 30
arcmin.

Model
5 arcmin 30 arcmin

KGE Bias [m3s�1] KGE Bias [m3s�1]
mHM 0.96 61.19 0.96 21.74
PCR-GLOBWB 0.93 -20.61 0.86 248.09
WaterGAP (3,2) 0.83 143.02 0.90 -41.99

The KGE and bias values of these three
models obtained for both scales at the
Lobith station during 2003 are reported
in Table 5.2. The daily streamflow
time series during this year is selected
for evaluation because it exhibits strong
temporal dynamics, with wet conditions
in the beginning of the year followed by
a drought during the summer and fall
seasons.

The performances obtained for the three models are satisfactorily, but the results shown in Table 5.2 indicate
that mHM is the only model that can have higher KGE values regardless of the spatial modeling resolution.

The flux-matching test presented in Sect. 5.4.1 is performed with simulated evapotranspiration (ET) because
it is the largest flux in the water cycle besides precipitation, and is prone to the largest predictive uncertainties
(Mueller et al., 2013). To ease the comparison, collocated grids are employed for every model such that every
coarser scale grid cell has exactly the same number of underlying cells at finer resolution (5 arcmin). The results of
this test are shown in Fig. 5.7a, b. They reveal that mHM exhibits the best flux-matching between these two scales.

www.eea.europa.eu
www.hyperhydro.org/
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(a) (b) (c)

mHM

(d) (e) (f)

PCR-GLOBWB

(g) (h) (i)

WaterGAP

5 arcmin 30 arcmin rel. error [%]

Figure 5.7 Multiscale simulation of annual ET for the Rhine River in 2003 with mHM, PCR-GLOBWB, and WaterGAP
(versions 3 and 2) at spatial resolutions `1 of 5 and 30 arcmin, respectively. The relative errors in percentage of the coarse field
estimates with respect to the finer ones (aggregated to the coarser level) for mHM, PCR-GLOBWB, and WaterGAP are shown
in panels (c), (f), and (i), respectively.

This experiment also shows that the MPR technique implemented in mHM leads to ET fields that are of similar
magnitude at both scales, indicating a close conservation of mass leading to the lowest relative errors (Fig. 5.7c)
among the three models.

The PCR-GLOBWB and WaterGAP models reveal large inconsistencies in preserving the spatial pattern of
annual ET across two modeling scales, although the streamflow performance at the outlet is good (greater than
0.83 in both cases). PCR-GLOBWB at coarse resolution tends to underestimate ET (up to 50 %) compared with
those at finer resolution (Fig. 5.7f). Conversely, the coarser version of WaterGAP tends to overestimate ET (up
to 60 %) compared with those at the finer resolution (Fig. 5.7i). Interestingly, it can be observed that changes
in model resolution affect the dynamic of water fluxes in those models that do not use any consistent scaling
rules for model parameterization. These results also confirm the postulation that “streamflow-related metrics are
a necessary but not sufficient condition to warrant the proper partitioning of incoming precipitation P into various
spatially distributed water storage components (e.g., SM) and fluxes (e.g., ET)” (Rakovec et al., 2016a). Because
all models are forced with the same forcings, share the same geophysical information, and have almost similar
hydrological process descriptions, it can be safely concluded that the parameterization method used in the models
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caused the ET mismatch. To falsify this postulation, the MPR parameterization protocol proposed in Sect. 5.4.3 is
next applied to PCR-GLOBWB.

5.6 Implementation of the parameterization protocol in PCR-GLOBWB

To evaluate the consistency of land surface fluxes before and after MPR implementation, we analyze the impact
of MPR on evaporative fluxes and soil moisture content in PCR-GLOBWB (Sutanudjaja et al., 2016; van Beek
et al., 2011; Wada and Bierkens, 2014) over the Rhine River basin during 2003. The model is used to simulate
the hydrological states at two different spatial resolutions (`1 = 5 and 30 arcmin), and the sensitivity to MPR
implementation is evaluated using a field difference method (in line with Eq. 5.1):

� =
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T

TX
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W (t) � w(t)

w(t)

◆2

, (5.2)

where W and w are the coarse and fine resolution simulations of variable W , respectively, and T is the total time
series length.

(a) (b)

Original

(c) (d)

MPR

5 arcmin 30 arcmin

Figure 5.8 Porosity fields of PCR-GLOBWB before (a, b)

and after implementing MPR (c, d) for two spatial resolutions
of 5 and 30 arcmin. Dotted lines denote the Rhine Basin and the
continuous line is the main EU river basin network.

The original PCR-GLOBWB parameterization does
not include consistency in upscaling as enforced by
MPR, leading to a larger difference in soil proper-
ties. Figure 5.8 depicts the porosity fields of this
model before and after the implementation of MPR.
Figure 5.8a and b clearly show the problems men-
tioned in Sect. 5.3, for example, lack of coherence in
spatial patterns and the existence of spatial disconti-
nuities of parameter fields at two scales. The poros-
ity fields obtained with the MPR technique shown in
Fig. 5.8c and d, on the contrary, exhibit a typical seam-
less spatial structure in which the main features of the
field can be distinguished across scales. It is worth not-
ing that differences seen between Fig. 5.8a and c are
not only due to the improved upscaling procedure, but
also due to a modified pedotransfer function. The pa-
rameters of the pedotransfer function have also been
included in the calibration within the MPR approach.
These differences in soil hydraulic properties influence
the derived hydrological properties, leading to changes
in saturated conductivity and storage capacity in the
unsaturated zone. The considerable differences in ET
fluxes are shown in Fig. 5.9a and b, and are the result

of these changes. When MPR is employed, we observe that the difference in actual average Rhine Basin evapo-
transpiration between the two scales � drops from 29 to 9.4 % (Fig. 5.9d, e). For the total column soil moisture,
we find a stronger decrease in � from 25 to 6.9 %, clearly indicating the benefits of MPR implementation. The
error fields in Fig. 5.9c and f show a clear benefit of implementing MPR in PCR-GLOBWB. It should be noted,
however, that the improvements are not as high as those obtained for mHM as shown in Fig. 5.7c. This is related
to the fact that all effective parameters related to the evaporation and soil dynamic processes have been scaled with
MPR in mHM, whereas in PCR-GLOBWB, only soil porosity has been scaled with this technique. Nevertheless, it
is remarkable to see the improvements in flux matching (Fig. 5.9f) by scaling a single parameter of PCR-GLOBWB
using MPR.

We also observe a slight increase in the discharge performance (KGE) at Lobith. The original KGEs are 0.86
(`1 = 5 arcmin) and 0.93 (`1 = 30 arcmin), whereas the KGEs with MPR implementation are 0.91 and 0.93,
respectively. Another advantage is that PCR-GLOBWB is calibrated at a coarser resolution, whereas this model is
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calibrated for each spatial resolution individually in the original setup and with lower consistency in the discharge
simulation.

(a) (b) (c)

Original

(d) (e) (f)

MPR

5 arcmin 30 arcmin rel. error [%]

Figure 5.9 Annual ET fields in 2003 of PCR-GLOBWB before (a, b) and after implementing MPR (c, d) for two spatial
resolutions of 5 and 30 arcmin. Dotted lines denote the Rhine Basin and the continuous line is the main EU river basin network.
The relative errors in percentage of the coarse field estimates with respect to the finer ones are shown in panels (c) and (f),
respectively.

From these evaluations, we conclude that MPR implementation leads to significant improvement in the flux-
matching and discharge simulations across scales, allowing for more consistency across scales for hydrological
model simulations. Notably, additional parameters in PCR-GLOBWB still need to be regionalized within the MPR
framework, which could potentially lead to better performance and transferability.

5.7 Conclusions

Hyper-resolution modeling initiatives (Bierkens et al., 2014; Wood et al., 2011) challenge the hydrological com-
munity to intensify efforts to make water (quantity and quality) and energy flux predictions “everywhere” and for
these predictions to be “locally relevant.” The predictions should have small uncertainties to be useful for the end
users. These grand challenges also imply that the next generation of land surface and hydrologic models must
incorporate probabilistic descriptions of the subgrid variability of geophysical land surface properties – such as
POLARIS (Chaney et al., 2016b) and SoilGrids (Hengl et al., 2017) – to cope with the large uncertainties that
characterize the related process below the representative elementary area (REA) scale. Consequently, great efforts
should be made in hyper-resolution monitoring at the global scale in improving the computational efficiency of
LSMs/HMs and in the development of scale-invariant parameterizations for these models. In this study, we have
shown that the state-of-the-art parameterizations need to be improved to address this grand challenge, especially
with respect to better fulfill the flux-matching condition.

We revisited a technique called MPR (Samaniego et al., 2010a), originally available only in mHM but recently
implemented in PCR-GLOBWB as a part of this study. Moreover, we proposed a “parameterization protocol” as
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a guideline to apply MPR and to retrofit existing LSMs/HMs to ease the implementation of MPR in the latter. We
also discuss the advantages and limitations of MPR which should be considered while applying this concept to
other LSMs/HMs.

This study has shown that two models that use ad hoc parameterizations can have reasonable efficiency with
respect to simulated streamflow but poor performance with respect to distributed fluxes such as evapotranspiration.
The implementation of this protocol in PCR-GLOBWB in this study increased the model efficiency by almost 6 %
and improved the consistency of simulated ET fields across scales. For example, the estimation of evapotranspi-
ration without MPR at 5 and 30 arcmin spatial resolutions for the Rhine River basin resulted in a difference of
approximately 29 %. Applying MPR reduced this difference to 9 %. For total soil water, the differences without
and with MPR are 25 and 7 %, respectively. We have also shown that the PCR-GLOBWB global parameters can
be transferred across scales with consistent ET patterns and model efficiency.

In general, it can be concluded that the estimation of global parameters is feasible with MPR and that these
scalars are transferable across scales and locations. The successful application of MPR implies that the averaging
procedure of geophysical properties matters and that having the right physics with incorrect “effective” parameters
leads to inconsistent fluxes and states. Consequently, MPR is a step forward to quasi-scale-invariant parameteriza-
tions and is feasible to implement in existing LSMs/HMs whose goal should be seamless parameter fields across
scales that do not exhibit artificial spatial “discontinuities” such as calibration imprints, and that lead to consistent
predictions across scales. We consider that this feature is the key for the next generation of LSM and NWP models
such as the model for prediction across scales (MPAS) (www.mmm.ucar.edu) and the nested-domain ICON
(www.earthsystemcog.org/projects/dcmip-2012/icon-mpi-dwd). Furthermore, a proper im-
plementation of MPR in process-based (conceptual) models may contribute to recent efforts towards identifying
their “effective” parameters through observational datasets at the scale of interest (Savenije and Hrachowitz, 2017).

Finally, we would like to reiterate that a flux obtained from a land surface/hydrologic model should always
be evaluated with local observations when available and across scales. If “it disagrees with the experiment, it’s
wrong.”
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6.1 Abstract

Accurately predicting regional scale water fluxes and states remains a challenging task in contemporary hydrology.
Coping with this grand challenge requires among other things a model that makes reliable predictions across scales,
locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic
model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400
European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated
against gridded evapotranspiration data, soil moisture and total water storage anomalies, as well as local-scale eddy
covariance observations. This multiscale verification is carried out in seamless manner at the native resolutions of
available dataset varying from 0.5 km to 100 km. Results of cross-validation tests show that mHM is able to capture
the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The
model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density.
Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable
exhibits with the best match being observed for evapotranspiration, followed by total water storage anomaly, and
the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but
not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to
account for other complementary datasets besides streamflow during parameter estimation to improve model skill
with respect to “hidden” variables.

6.2 Introduction

Since the pioneering work of Crawford and Linsley (1966), the efficiency of computational hydrologic models has
been evaluated against streamflow observations that are available at determined locations within a river basin (e.g.,
Bergström, 1995; Dawdy and Lichty, 1968; Duan et al., 1992; Hundecha and Bárdossy, 2004; Kumar et al., 2013b;

Drought Modeling and Forecasting, First edition.
By Luis Samaniego Copyright © 2021 Luis Samaniego

97



98 MULTISCALE AND MULTIVARIATE EVALUATION OF WATER FLUXES

Samaniego et al., 2010a; Seibert, 2000; Sorooshian and Dracup, 1980; Troy et al., 2008; Yilmaz et al., 2008). This
kind of continuous in situ measurement is essential for understanding the governing relationships between rainfall
and runoff in a particular drainage basin. The information content of this time series fundamentally differs from
other point measurements such as soil moisture and latent heat in the sense that it represents the integral basin
response to a sequence of hydrometeorologic events under particular physiographic and climatic conditions that
uniquely characterizes a river basin. Because of this fundamental characteristic, streamflow gauging has been and
will be part of the core of national hydro-meteorologic monitoring programs and the basis for sound water resources
management. It is therefore not surprising that streamflow time series has been the focus for seminal hydrologic
work in the past (Horton, 1935; Hurst, 1951; Kuichling, 1889; Nash, 1957; Rodriguez-Iturbe and Valdes, 1979;
SCS, 1973; Sherman, 1932).

In the last years, however, a tendency towards a more comprehensive assessment of model structural adequacy
has taken shape with an overall aim to improve the representation of different hydrological processes incorpo-
rated within a model (e.g., Clark et al., 2011; Gupta et al., 2012; Shuttleworth, 2012). The rational behind this
assessment is the need to get the right answers for the right reasons (Blöschl, 2001; Kirchner, 2006) which goes
beyond just assessing the model performance against observed streamflow or associated signature measures (e.g.,
Euser et al., 2013; Kumar et al., 2010; Pokhrel et al., 2012; Samaniego and Bárdossy, 2007; Yilmaz et al., 2008).
Additional motivation for such assessment is driven by the growing need to simulate spatially distributed land
surface fluxes controlled by local soil moisture availability and land surface hydrology. Consequently, comple-
mentary datasets representing internal hydrologic states and fluxes, such as soil moisture and evapotranspiration
are required to achieve this goal. New kinds of observations and/or proxy data obtained from remote sensing and/or
in situ measurement are being increasingly available, although at different spatial and temporal resolutions, e.g.,
monthly total water storage anomaly from GRACE at 1� ⇥ 1�, near surface soil moisture from ESA-CCI at 0.25�

⇥ 0.25�, and 30-minute eddy flux measurements of latent heat with a foot print of hundreds of hectares.
Several recent studies have evaluated the capability of hydrologic and/or land surface models to represent inter-

nal model fluxes and/or states (e.g., Cai et al., 2014; Li et al., 2012a; Livneh and Lettenmaier, 2012; Sutanudjaja
et al., 2014; Xia et al., 2014, 2015). A common shortcoming in these studies has been the incompatibility of the
scales at which simulated state variables and fluxes are compared with the observations (i.e., data are measured at
different spatial scales from those at which models usually operate). The scaling issue poses a major obstacle in
performing a comprehensive model evaluation (e.g., Blöschl, 2001; Gentine et al., 2012; Samaniego et al., 2010a;
Tetzlaff et al., 2010). Often, the in situ measurements of soil moisture or the evapotranspiration inferred at eddy
covariance sites are compared with much coarser gridded model outputs (e.g., Xia et al., 2014, 2015). In situ
measurements often exhibit much finer support than the smallest representative elemental volume of hydrologic
models (Blöschl, 1999; Blöschl et al., 1995; Wood, 1995).

This scale discrepancy problem is exaggerated when a model is evaluated simultaneously against multiple
datasets available at different spatial resolutions. In such a case, different upscaling/downscaling rules have to
be employed to enable comparison between simulations and observations. Alternatively, a quasi-scale independent
model parameterization scheme that allows to reliably represent processes at different spatial resolutions is required
to tackle this scaling problem. The latter has the advantage that a processes-based modeling approach can be used
to estimate hydrologic fluxes/states across multiple scales (Gentine et al., 2012; Kumar et al., 2013; Samaniego
et al., 2010a). Most of the existing modeling approaches, however, exhibit scale dependent performance, which
means that the model parameterization obtained at a given spatial resolution induces large bias in hydrologic fluxes
and states when applied to other resolutions (e.g., Boone et al., 2004; Haddeland et al., 2002; Kumar et al., 2013;
Samaniego et al., 2010a; Stöckli et al., 2007; Troy et al., 2008).

Recently, Samaniego et al. (2010a) proposed a multiscale parameter regionalization (MPR) method that allows
to make hydrologic predictions at different scales using a same set of model (transfer) parameters but without
losing much of the model performance. The method explicitly accounts for the sub-grid variability of the essen-
tial aspects of the physical processes that are embedded within model parameters (e.g., soil porosity) and ensures
that water fluxes simulated at different scales are comparable. The MPR method incorporated within the mesoscale
hydrologic model (mHM; Samaniego et al., 2010a) has been tested across a variety of climate and land surface con-
ditions at different spatial resolutions ranging from 4 km to 100 km (Kumar et al., 2010, 2013,b; Samaniego et al.,
2013). To date, these scaling studies have mainly focused on evaluating model performance against streamflow
and conducting flux matching experiments using modeled variables at multiple scales and locations.

In this study we specifically evaluate the ability of the MPR method to reproduce the spatio-temporal dynamics
of various water fluxes and states observed at multiple resolutions. The model parameterization constrained using
streamflow observations across 400 European river basins is evaluated against complementary datasets that include
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gridded upscaled in-situ evapotranspiration (ET) data, satellite-based soil moisture (SM) and total water storage
(TWS) anomalies, as well as local-scale eddy covariance data and their native resolutions. Alternative data fusion
possibilities (such as data assimilation) to mitigate the limitations of models are beyond the scope of the present
study and require future investigation. The multiscale evaluation approach followed here differs from previous
hydrological model assessment studies that have covered the European domain using for example, the LISFLOOD
model (e.g., Wanders et al., 2014), the PCR-GLOBWB model (e.g., Sutanudjaja et al., 2014; Wada et al., 2010)
or the WaterGAP model (e.g., Werth and Güntner, 2010). Although these studies focused on evaluating model
skill on multi-variables, they have been operated on limited number of basins and/or with little consideration to the
scaling discrepancy problem while verifying model outputs against observations.

We hypothesize that parameter estimation based only on streamflow related metrics is a necessary but not a
sufficient condition to warrant the proper partitioning of incoming precipitation (P) into various spatially distributed
water storage components (e.g., SM) and fluxes (e.g., ET). In the presented study, the multiscale and multivariate
verification of water fluxes and states is carried out by executing mHM in a “seamless manner” (i.e., multiscale
model simulation, in which each scale realization can be run simultaneously using a same set of model transfer
parameters) at the native resolutions of available datasets varying from 0.5 km to 100 km.

(a)

��

(b)

Figure 6.1 (a) Spatial map of the modelling domain showing the runoff ratio (Q̄/P̄ ) for 400 European basins used in this
study. The smaller basins are overlaid on larger ones. (b) 36 donor basins provide an ensemble of plausible parameter sets (�)
constrained using the observed streamflow (different colors are used to distinguish between individual basins).

6.3 Data and Methods

6.3.1 Study area and datasets

The study is carried out in 400 European river basins (Fig. 6.1a) with drainage area varying from 102 km2 to
106 km2. These basins span over distinct climate conditions ranging from the dry-summer subtropical (Mediter-
ranean, Southern Europe) to maritime temperate (Western Europe) and warm summer continental (Eastern Europe)
climate types according to Köppen-Geiger classification (Rubel and Kottek, 2010). Figure 6.1a shows the span of
runoff ratio (Q̄/P̄ ) which represents the long-term average partitioning of the precipitation (P̄ ) into runoff (Q̄) and
actual ET (ET ). The runoff ratio is a comprehensive measure of physiographic basin and regional climate descrip-
tors (e.g., Berger and Entekhabi, 2001; Sankarasubramanian and Vogel, 2002) that ranges between 0 and 1. Basins
with smaller Q̄/P̄ values represents relatively drier conditions with higher evaporative rates (e.g., Southern Spain),
while larger Q̄/P̄ represents humid or mountainous basins with lower evaporation rates (e.g., alpine regions).

The physiographical datasets used to setup the model mainly include digital elevation model, soil textural prop-
erties, and land cover states. An overview of these datasets is provided in Table 6.1. Since these datasets are
available at different spatial resolutions, they are mapped on a common spatial resolution of 500 m ⇥ 500 m. This
fine level datasets then allow to account for sub-grid variability of basin physical characteristics in parameter re-
gionalization as described further in section 6.36.3.2.
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Table 6.1 Description of input and evaluation datasets. ECAD, European Climate Assessment & Dataset. SRTM, Shuttle
Radar Topography Mission. CGIAR-CSI, Consultative Group on International Agricultural Research: Consortium for Spatial
Information. CORINE, coordination of information on the environment. EEA, European Environment Agency. ESD, European
Soil Database. HWSD, The Harmonized World Soil Database. GRDC, Global Runoff Data Centre. GRACE, Gravity Recovery
and Climate Experiment. FLUXNET, Flux Network. ESA-CCI, European Space Agency-Climate Change Initiative

Variable Description Reference

Model

setup

Meteorological forcing inputs (precipi-
tation, air temperature, potential evapo-
transpiration)

Daily E-OBS product of 0.25� ⇥ 0.25�
resolution

ECADa, http://www.ecad.eu (Haylock
et al., 2008)

Terrain characteristics (e.g., elevation,
slope, aspect, flow direction and flow ac-
cumulation)

SRTMb Digital Elevation Model data of
90 m ⇥ 90 m resolution

CGIAR-CSIc, http://srtm.csi.cgiar.

org (Jarvis et al., 2008)

Land cover (e.g., major class: forest, per-
meable, impervious cover)

CORINEd land cover dataset of
100 m ⇥ 100 m

EEAe, http://www.eea.europa.eu

Soil textural properties (sand and clay
content, bulk density, horizon depth)

30 arc-second raster based on ESDf HWSDg (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012)

Model

evalua-

tion

Streamflow data Daily observed streamflow GRDCh, http://www.bafg.de/GRDC;
French basins (Giuntoli et al., 2013)

TWS anomaly Gridded product of 1� ⇥ 1� resolution GRACEi (Landerer and Swenson, 2012; Swenson
and Wahr, 2006)

Actual ET Gridded product of 0.5� ⇥ 0.5� resolu-
tion

FLUXNETj (Jung et al., 2011)

In situ observations Eddy covariance sites http://gaia.

agraria.unitus.it

SM Gridded product of 0.25� ⇥ 0.25� reso-
lution

ESA-CCIk http://www.

esa-soilmoisture-cci.org (Dorigo
et al., 2014; Liu et al., 2011)

The meteorological forcing data for the mHM consist of the daily gridded fields of precipitation, and average,
maximum and minimum air temperatures at 0.25�

⇥ 0.25� resolution for the period 1950–2010. These datasets are
acquired from the European Climate Assessment and & Dataset project (E-OBS, v8.0, Haylock et al., 2008). These
fields were created using the external drift Kriging interpolation technique based on ground-based observation
networks. The potential evapotranspiration is derived using the temperature-based method of Hargreaves and
Samani (1982) at the same spatial resolution (0.25� ⇥ 0.25�).

Streamflow records are commonly used to constrain the model parameterization and to evaluate its performance.
Daily streamflow data between 1950 and 2010 were obtained from the Global Runoff Data Centre for this purpose.
The data availability varies from station to station with the median record length of 43 years. All basins used in this
study have undertaken a first-order data quality check, so that they do not violate the physical constraints imposed
by the Budyko relationship (Budyko, 1974) and do not exhibit any obvious unnatural behavior in the discharge
time series. More detailed analysis, particularly on the degree of regulation of European river basins, is deemed
beyond the scope of the study because of the lack of support information. Besides streamflow, model performance
is evaluated against complementary datasets, namely the total water storage anomaly, actual evapotranspiration and
soil moisture. A brief overview of these datasets is given below.

TWS anomaly The TWS anomaly represents an important measure on seasonal and inter-annual variability of
the terrestrial water storage, and is of critical interest for water resource management. The state of TWS affects in-
filtration rates, subsurface flows, groundwater recharge and runoff generation (e.g., Li et al., 2012a). The remotely
sensed anomalies of the Earth’s gravity field retrieved by the Gravity Recovery and Climate Experiment (GRACE
release 05, Landerer and Swenson, 2012) are used in this study to evaluate the simulated TWS of mHM. The global
GRACE gridded dataset has 1� ⇥ 1� spatial and monthly temporal resolution. Although the GRACE product is
available at coarse spatial and temporal resolutions, its application in hydrologic studies is increasing (e.g., Ander-
sen et al., 2005; Cai et al., 2014; Forman et al., 2012; Li et al., 2012a; Livneh and Lettenmaier, 2012; Orth and
Seneviratne, 2015; Su et al., 2010; Zaitchik et al., 2008). The TWS anomaly is analyzed using a combined product
composed of different solutions obtained from three processing centers: GFZ (Geoforschungs Zentrum Potsdam,
Germany), CSR (Center for Space Research at University of Texas, USE) and JPL (Jet Propulsion Laboratory,
USA). The TWS anomaly is calculated via removing their corresponding long term mean estimates, which cover
the baseline period from January 2004 to December 2009 (NASA, 2015). The arithmetic mean of these three prod-
ucts used here is the most effective way to reduce noise in the gravity field within the available scatter of the three
solutions (Sakumura et al., 2014). The evaluation period for TWS anomaly ranges between 2004 and 2012.

http://www.ecad.eu
http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
http://www.eea.europa.eu
http://www.bafg.de/GRDC
http://gaia.agraria.unitus.it
http://gaia.agraria.unitus.it
http://www.esa-soilmoisture-cci.org
http://www.esa-soilmoisture-cci.org
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Actual ET Actual ET (latent heat flux) includes evaporation of water from soil, surface water bodies, canopy
interception, and transpiration from plants leaves. It represents the second largest flux of the hydrologic cycle; on
average 60% of terrestrial precipitation is returned back to the atmosphere via ET (e.g., Oki and Kanae, 2006). In
this study, the modelled ET is evaluated against data at two distinct resolutions from (a) fine scale eddy covariance
observations at 27 CarboEurope sites (Göckede et al., 2008; Mauder et al., 2008), and (b) the 0.5� gridded ET
dataset derived from the FLUXNET observations (Jung et al., 2011).

Basic information for the eddy covariance stations is provided in Table 6.2 (Appendix). The foot print of the
observations covers approximately several hundred meters. Only stations with an almost complete record for the
years 2004-2007 are chosen from the CarboEurope database. Data are processed after Papale et al. (2006) and
unit imputation (gap-filling) is done by marginal distribution sampling (Reichstein et al., 2005). Observed latent
heat fluxes were corrected by authors for missing energy balance closures with a Bowen ratio approach similar to
Kessomkiat et al. (2013).

The gridded FLUXNET ET product is acquired from the Department Biogeochemical Integration at the Max
Planck Institute for Biogeochemistry, Jena, Germany. The FLUXNET ET product is obtained by upscaling obser-
vations of biosphere-atmosphere fluxes of carbon and energy from eddy covariance flux tower sites using model
tree ensembles (MTE) (Jung et al., 2011). The global monthly ET product is available at 0.5� ⇥ 0.5� for the period
1982–2011. We refer to Jung et al. (2011) for detailed description of the processing algorithm used to generate this
dataset.

ESA-CCI surface SM SM acts as a switch and integrator of various energy and water fluxes between the land
surface and the atmosphere and is the life-giving substance for vegetation. Estimating correctly the degree of soil
saturation is the key point in hydrological modeling because it influences the partitioning of precipitation into ET
and runoff. It also has a direct effect on society in terms of agriculture management as well as flood and drought
predictions. Moreover, it integrates precipitation and evaporation over periods of days to weeks, thus introducing
memory in the hydrological cycle.

The ESA Climate Change Initiative (CCI) provides a global SM product based on the retrievals from four
passive (SMMR, SSM/I, TMI, and AMSR-E) and two active (ERS AMI and ASCAT) coarse resolution microwave
sensors. The interested reader may refer to Liu et al. (2011) and Dorigo et al. (2014) for detailed description
of this dataset. The ESA-CCI dataset represents near surface SM (0.5–2 cm) at 0.25�

⇥ 0.25� spatial resolution
for the period 1978–2013. The recent study by Dorigo et al. (2014) shows that the skill of the merged product
compared to the skill of the individual input products of the passive/active sensors with respect to in situ observation
has a comparable and/or better performance than the individual input products in terms of the Spearman rank
correlations. We emphasize that the ESA-CCI SM product is rescaled to the dynamic range of the GLDAS-Noah
surface soil moisture fields, and therefore it could not be considered as an independent dataset representing absolute
true soil moisture (ESA, 2015).

6.3.2 The mHM and the MPR

The mesoscale hydrologic model (mHM) used in this study is a grid based distributed model that is based on
numerical approximations of dominant hydrologic processes applied in known HMs such as the Hydrologiska
Byråns Vattenbalansavdelning (HBV; Bergström, 1995) and the Variable Infiltration Capacity (VIC; Liang et al.,
1994) models. Specifically the model accounts for the following processes: canopy interception, snow accumula-
tion and melting, SM dynamics, infiltration and surface runoff, ET, subsurface storage and discharge generation,
deep percolation and baseflow, and flood routing. The snow accumulation and melting processes are modeled
using a modified degree-day method which accounts for the enhanced snowmelt during the intense precipitation
events (Hundecha and Bárdossy, 2004). The incoming precipitation and snowmelt is partitioned into a root zone
soil moisture and runoff components depending on the degree of soil saturation using a power function similar to
the HBV model. The model uses three soil layers to describe the root zone soil moisture dynamics: the depth of
the first soil layer is 5 cm, the second one is 25 cm, and the third layer up to 100 cm. The soil moisture processes
in the first two soil layers account for the variation in soil organic matter over time with changes according to land
cover type. Actual ET from soil layers is estimated as a fraction of potential evapotranspiration depending on the
soil moisture stress and fraction of roots in each soil layer. The runoff generation process in mHM accounts for
surface, fast- and slow-interflow and baseflow components. The interflow component represents the fast reaction
to weather signals while the baseflow represents the slow and permanent groundwater flow. Finally, the total runoff
produced at each grid cell is routed to the neighboring downstream grid cell via the Muskingum-Cunge flow rout-
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ing algorithm. For a complete model description, interested readers may refer to Samaniego et al. (2010a); and the
model code can be downloaded from www.ufz.de/mhm. To date, mHM has been applied over a large number
of river basins across Germany and the U.S. (Kumar et al., 2010, 2013,b; Livneh et al., 2015; Samaniego et al.,
2010a, 2013).

The model uses three distinct levels of information to better account for spatial heterogeneities of input data,
hydrological processes, and meteorological forcings. The lowest level (`0) describes information on input data
related to physiographical and morphological characteristics of a basin. The intermediate level (`1) is used to
model the governing hydrological processes, while the highest level (`2) contains information on meteorological
data sets. Typically, the spatial resolution of `1 and `2 is the same, in order of kilometers depending on the
availability of the forcing data set (24 km ⇡ 0.25� in this study). The resolution of `0 input data is much finer than
the other two, in the order of hectometers (500 m ⇡ 0.004� in this study).

The Multiscale Parameter Regionalization (MPR) technique (Kumar et al., 2013; Samaniego et al., 2010a) is
used to efficiently incorporate the sub-grid `0 information within the modeling level `1 using a two-step parame-
terization technique (see Figure 6.2). In the first step, model parameters (�0, e.g., porosity) are linked to available
basin physical characteristics (e.g., terrain slope, sand and clay contents) using a set of pedo-transfer functions
(f ) and global parameters (�). This linkage is established at the `0 spatial resolution to account for the sub-grid
variability of input data and �0 parameters. In the subsequent step, the `0 fields of model parameters (�0) are
aggregated to generate the effective regional parameter fields (�1) at the modeling `1 level. The aggregation is
performed using upscaling operators such as the harmonic, geometric, or arithmetic means, which satisfy flux
matching conditions i.e., minimal discrepancy between aggregated water fluxes simulated across multiple reso-
lutions. A set of global parameters (�) is usually inferred via a suitable parameter estimation technique. This
two step parameter regionalization technique allows the model to run efficiently in a seamless manner at multiple
resolutions using the same set of global parameters � (see Figure 6.2).

According to Gupta et al. (2014) the benefit of a regionalization method such as MPR stems from the fact that
it “regularizes the optimization problem, providing constraints that greatly reduce the degrees of freedom (number
of unknowns to be inferred) to a relatively small number of regional transfer function coefficients”. The MPR
technique, in addition of regularizing the optimization problem, takes into account the sub-grid variability of the
essential aspects of the physical process that represent a given model parameter (e.g., soil porosity, wilting point,
or hydraulic conductivity). Previous studies have demonstrated the effectiveness of the MPR approach over other
existing parameterization techniques based on hydrological response units, lumped parameterizations and standard
regionalization that do not account for the sub-grid variability of model parameters (Kumar et al., 2010, 2013;
Samaniego et al., 2010a, 2011).

6.3.3 Experimental design and model setup

The goal here is to comprehensively evaluate the skill of mHM to represent the spatio-temporal variability of
modeled fluxes and states at multiple scales. The experimental design of model parameter estimation and seamless
verification is schematically shown in Fig. 6.2. In the initial phase, the model parameters are constrained against
observed streamflow to obtain an ensemble of plausible model parameters (�) with following procedure.

1. For each basin:

(a) Prior to the parameter estimation of the model parameters, a subset of “informative” parameters (�⇤) is
identified using the sequential screening method developed by Cuntz et al. (2015). This screening method
is an adaption of the Morris method (Morris, 1991). In the first iteration, the model is evaluated at several
points along trajectories of the parameter space and Elementary Effects are determined. Parameters with
an Elementary Effect above a certain threshold are considered to be “informative”. The next iteration
of the method only takes into account “non-informative” parameters to test whether they are sensitive at
other regions of the parameter space. This iterative procedure is repeated until no additional parameters
are marked to be informative.

(b) Find an optimal set of �̂ identified in step 1(a) by maximizing the Kling-Gupta efficiency (KGE; Gupta
et al., 2009). The Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1993) is used to maximize:

max
�̂

KGE(r, ↵, �), (6.1)

www.ufz.de/mhm
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with

KGE = 1 �

p
(r � 1)2 + (↵ � 1)2 + (� � 1)2, (6.2)

where r is the Pearson correlation coefficient between observed (Qobs) and simulated Q(�̂) streamflow;
↵ denotes the measure of relative variability in the simulated and observed values (ratio of the standard
deviations); and � is the ratio between the mean simulations and mean observations, i.e., bias. The pa-
rameter estimation period varies from basin to basin and ranges between 4 and 16 years of data depending
on the availability of the observed streamflow. Prior to the model parameter estimation, a default run in
the period from 1951 to 2010 is conducted to ensure appropriate initializations of internal model states
and fluxes. Additionally, 5 years of data prior to the parameter estimation period are used to spin-up the
model. The model is executed at daily time step and spatial resolution of 0.25� ⇥ 0.25�. The optimal set
of �̂ inferred by this procedure corresponds to the complete basin and not to individual grid cells. This
step is repeated ten times with random initialization of the parameter space to partially account for the
uncertainty of the SCE algorithm and best performing parameter set is selected.

(c) Transfer �̂ to all remaining basins for streamflow cross-validation. Estimate the KGE(�̂) as a measure of
transfer efficiency.

2. Select best parameter sets (�̂best) from the pool of �̂ based on a cross-validation median KGE value larger
than a threshold .

����

�����	
	��	�
���
��

�������
����������
��

�	���	����	�����
��

Figure 6.2 Schematic presentation of the experimental setup of the multiscale and multivariable model evaluation. Left
panel depicts the two-step MPR scheme to incorporate the sub-grid variability of basin physical characteristics (u0) available
at the `0 level. Effective parameters �1 at the modelling level `1 are estimated using a set of transfer functions f , global
(parameter estimation) parameters �, and upscaling operators h.i. Middle panel shows the subsequent procedure to estimate a
best set of global parameters (�̂best) calibrated against observed discharge (Q); and upscaling operators using the water fluxes
matching conditions across multiple `1 resolutions (Wi and wj denote the fluxes estimated at the coarser and finer cells i and
j, respectively; for more details see Samaniego et al., 2010a). Right panel illustrates the seamless (multiscale) verification
approach for water fluxes and states at multiple modelling scales `1 = 0.004�, . . . , 1� using the same sub-grid level information
(�0) and �̂best.

Following this procedure, an ensemble of best 36 parameter sets (�̂best) satisfying the threshold  of 0.55 is
selected to represent the “cross-validation uncertainty” of model output. The  criterion of 0.55 is not directly
related to performance in an individual basin, but rather it represents the median KGE value in a cross-validation
over 400 basins. The location of the respective 36 basins spans over the entire study domain (Fig. 6.1b), which
indicates the representativeness of the donor sample.

In the second phase (Fig. 6.2, right panel), the ensemble of 36 parameter sets is used to conduct model simula-
tions at the native scale of the complementary datasets using the following procedure.
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For each parameter set �̂best:

1. Estimate effective model parameters �0 at level `0 using transfer functions f applied to the basin’s physical
characteristics (u0) (Fig. 6.2, left panel).

2. Aggregate �0 to �1 at multiple modeling levels `1 using upscaling operators h.i. The spatial resolution of `1
varies from 0.004� to 1� depending on the variable of interest (Fig. 6.2, right panel).

3. Run mHM using the �1 parameter fields at multiple scales and evaluate its performance for selected water
fluxes and states.

Following the aforementioned algorithm, the model is executed 36 times at the spatial resolutions of 1� ⇥ 1�,
0.5� ⇥ 0.5�, 0.25� ⇥ 0.25� over the entire domain, and at 0.004�

⇥ 0.004� across 27 eddy grid points (see Fig. 6.2).
The streamflow evaluation is conducted on the entire record of available streamflow observations within the

simulation period 1951–2010. The model skill for complementary gridded data sets is evaluated during the period
of 2004–2010 for the ESA-CCI SM product, 1982–2011 for the gridded LANDFLUX ET data, 2004–2012 for the
GRACE TWS anomaly. The ET evaluation at eddy flux stations is limited to the period 2004–2007 due to data
availability issues. Three CORINE land cover scenes corresponding to the years 1990, 2000 and 2006 are taken
into consideration. Model simulations prior to 1990 use the CORINE 1990 land cover map.

The model performance is evaluated using multiple statistical criteria that includes r, ↵, and � (Eq. 7.12), which
quantifies mismatch between model and observations with respect to the temporal dynamics, variability and biases,
respectively. Additionally, the model evaluation results are presented using a Taylor diagram (Taylor, 2001). This
two-dimensional diagram quantifies concisely how well model simulations match observations in terms of r, ↵,
and the root-mean-square difference.

Finally, a two dimensional histogram of the marginal distributions of the observed and simulated values (also
called empirical copula) is used to describe the statistical dependency between the marginal distributions of two
random variables (Nelsen, 2006). The copula can be generally written as

P (x  X, y  Y ) = C(F (x), G(y)), (6.3)

where x is the observed quantity with distribution function F , y is the simulated value with distribution function G,
the left hand side of the equation is the joint probability P of x and y, and C is the copula between F and G. The
copula-based model evaluation allows to quantify the stochastic dependence of simulated variables with respect to
observations along the entire range of the variable.

6.4 Results and discussion

6.4.1 Model evaluation using observed streamflow

The mHM performance for the median KGE values between observed and simulated Q is depicted in Fig. 6.3a.
The results indicate that mHM is capable of simulating daily discharge well over the Pan-EU domain considering
that around 70% of the total area exhibits a median KGE value exceeding 0.5. It should be noted that the KGE
values at a given basin are not obtained by means of on-site parameter estimation, but rather by transferring global
parameters (�̂) from other basins. This guarantees consistent representation of hydrological processes at different
locations, because the goal here is to obtain parameter sets that represent hydrological fluxes and states across
the entire domain applicable for making predictions in ungauged basins. On-site parameter estimation yield even
better performances, but increase the dimensionality of the parameter space for the entire domain since each basin
in this case requires a set of global parameters. Additionally, Fig. 6.3b shows the ensemble of the cumulative
frequency distributions of model performance based on 36 sets of global parameters (�̂best). This figure illustrates
a considerably narrow variation of model performance due to equally good performing parameter sets with KGE
values higher than 0.55 for 50% of the basins.

The model performance in terms of KGE tends to be homogeneously distributed over space (Fig. 6.3a). Hot
spots of poorer model performance occur in notably human influenced river basins such as those in Southern
Spain, where the pressure on water resources is high and observed Q is far from natural conditions due to irrigation
diversions, hydroelectric power generation, and flood control, (e.g., Batalla et al., 2004; Lorenzo-Lacruz et al.,
2012). The mHM does not include human influenced processes, as the majority of other rainfall-runoff models, thus
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below normal performance is expected in those areas. We note that the basins which violate the physical constraints
of the Budyko curve are removed prior to the analysis, as discussed earlier, however, this first-order quality check
may not be sufficient to filter basins with significant anthropogenic activities. The mHM performance to simulate
naturalized streamflow dynamics in other heavily human influenced U.S. basins is adequate and comparable to
other existing models (Kumar et al., 2013b; Livneh et al., 2015). However, the lack of naturalized streamflow
dataset in the present study domain limits such type of model evaluation. Another hot spot can be found in Eastern
Europe (Romanian Carpathian Mountains) where the model systematically underestimates snow melt driven floods
(in spring). The same behavior is observed by on-site parameter estimation (not shown). Additionally to the model
conceptual error, the poor performance in these areas can be related to observation errors, such as the precipitation
undercatch discussed in the following section.

(a) (b)

KGE

C
um

. frequency

0.0 0.2 0.4 0.6 0.8 1.0
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0.8
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Figure 6.3 (a) Spatial maps of the modelling domain showing median KGE values between observed and simulated discharge
for 400 European basins based on the cross-validation analysis (spatial model resolution of 0.25� ⇥ 0.25�, daily time step). (b)
Cumulative frequency of the KGE values for the cross-validation uncertainty based on 36 parameter sets (grey), and the median
KGE value (black) shown in (a).

6.4.2 Factors influencing Q predictability

The model performance of KGE and its three components (see r, ↵, � in Eq. 7.12) is further evaluated in Fig. 6.4
for basic basin characteristics such as area, rain gauge density and runoff ratio (Q̄/P̄ ). In general, the spread in
uncertainty decreases with increasing basin area and also the model performance tends to be improved: KGE and
r increase, while ↵ and � converge towards their ideal value of one. This type of model performance dependency
indicates that smaller basins are more susceptible to errors in model inputs than the larger ones, which also stems
from averaging and the central limit theorem. The closer to the representative elementary area (REA), the more
difficult it is to model due to the increased effect of small processes considered neither in the model nor in the data.
Such kind of model dependency is also reported in previous studies (e.g., Kumar et al., 2013; Merz et al., 2009;
Reed et al., 2004).

Additionally, Fig. 6.4 depicts the relation between model performance and rain gauge density (number of rain
gauges per 1000 km2) to investigate the effect of forcing uncertainty. The model exhibits systematically better
performance in regions with relatively higher rain gauge density, particularly in terms of variability. This promotes
the importance of having a dense observation network for meaningful hydrological simulations, which is in par-
ticular important for capturing small-scale features such as convective cells (Alfieri et al., 2014). The median rain
gauge density is 0.4 gauges per 1000 km2 and does not meet the standard of the World Meteorological Organiza-
tion (WMO) in which the tolerable rain gauge density in flat regions is around 1–2 gauges per 1000 km2, while it
increases to 4–10 gauges per 1000 km2 for mountainous regions (e.g., Dingman, 2004). Therefore, a precipitation
product based on sparsely distributed rain gauge data can lead to higher modelling errors arising from imperfect
precipitation estimates. However, we would like to emphasize that the E-OBS dataset used here is the best possible
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freely available dataset that exists at the moment with a relatively long temporal coverage, large spatial extent and
fine spatial resolution (Hofstra et al., 2009).
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Figure 6.4 Basin area, rain gauge density, and runoff ratio
as factors influencing model predictability of discharge in terms
of KGE (see also Fig. 6.3a), and decompositions into the three
components (r, ↵, and � in Eq. 7.12). Black pluses show
basins which have at least 1 rain gauge per 1000 km2, grey filled
circles otherwise, and median values of the y-axis are provided
in corresponding colors. Kernel regression is used to produce a
smooth red line for the whole sample (black and grey).

Moreover, Fig. 6.4 illustrates that the model perfor-
mance with respect to Q̄/P̄ is usually superior in in-
termediate physiographic and climatic regimes (0.3 <
Q̄/P̄ < 0.7), whereas the performance deteriorates to-
wards both extremes. Generally, the model tends to
overestimate the observed mean and variability in rel-
atively moisture-limited (dry) basins. Note that these
basins contain areas with human influenced activities
where the model performs poorly (as discussed be-
fore). On the other hand, the extreme energy-limited
basins exhibit a large bias and a systematically under-
estimated variance. These shortcomings can be related
to several factors: precipitation underestimation due to
lower rain gauge density, insufficient evaporation rates
and/or model deficiency in capturing sub-grid snow
processes. In general, the spread of model statistics
(r, ↵, �) is considerably lower and model yields better
results in basins with higher rain gauge density, which
is observed regardless of the selected basin character-
istics (compare grey filled circles with black crosses in
Fig. 6.4 and their median values).

6.4.3 Spatial evaluation using complemen-
tary data

The model is further evaluated against the following
complementary data (not being used to constrain the
model) at monthly temporal resolution and native spa-
tial resolution, namely: fields of the total water storage
(TWS) anomaly from GRACE (1�

⇥ 1�), FLUXNET
ET (0.5�

⇥ 0.5�), and SM from ESA-CCI (0.25�
⇥

0.25�). Figure 6.5 shows the model performance in
terms of median r of the original data (top), median r of standardized anomalies (middle), and corresponding
copulas of the latter one (bottom).

Overall, the model represents the TWS anomaly and the actual ET adequately well, while the performance for
SM is not satisfactory in terms of correlation for the original time series (Fig. 6.5a–c). Presented hydrological
variables exhibit strong seasonality and the performance criteria based on, for example, correlation coefficient
for such variables is not adequate to show the actual model skill. Therefore, standardized anomalies of both
observations and simulations are estimated by removing their respective monthly means and standard deviations.
The correlation for the standardized anomalies shows in general deterioration for TWS and ET, however, slight
improvement in SM when compared to the data with retained seasonality (Fig. 6.5d–f). The mHM results are
consistent in findings of the recent study by Orth and Seneviratne (2015).

A reasonably good agreement is achieved for TWS anomaly in large part of the study domain. A relatively
larger error can be observed in the Alps and coastal areas. This can be attributed to the fact that mHM lacks the
capability to explicitly represent the glacial and tidal processes in these areas. Also, the GRACE data are not
suitable to accurately quantify ice mass changes in glaciers (e.g., Jacob et al., 2012) and there are relatively higher
measurement and leakage errors provided in GRACE dataset along the coastal line. The leakage error of GRACE
stands for “the residual errors after filtering and rescaling” from the raw original product to estimate the TWS
anomaly (NASA, 2015).

The temporal dynamics of modeled ET resembles quite well the FLUXNET derived ET product with the ma-
jority (75%) of cells exceeding correlation coefficients (r) larger than 0.9 for the original time series, and larger
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than 0.59 for the standardized anomalies. Poor model performance is noticed on the Iberian peninsula. Notably, in
these areas the model performance for observed Q is also poor (Fig. 6.3).

TWS anomaly Evapotranspiration Soil moisture
(a) (b)

(e)(d)

(c)

(f)

(g) (h) (i)

C
op

ul
as

St
an

da
rd

iz
ed

 A
no

m
al

ie
s

 O
rig

in
al

 D
at

a

Figure 6.5 Model performance of mHM simulations and total water storage anomaly (GRACE, left column), actual
evapotranspiration (gridded FLUXNET, middle column), and soil moisture (ESA-CCI, right column) observations in terms
of medians of the Pearson correlation coefficient r of the original time series (a, b, c), r of the standardized anomalies (d, e, f),
and empirical copula densities of the standardized anomalies (g, h, i). F(x) is a distribution function of an observed variable and
G(y) is a distribution function of a simulated variable (see Eq. 6.3). The Spearman rank correlations are 0.61 for TWS anomaly,
0.55 for evapotranspiration, and 0.49 for soil moisture.

In comparison with the two aforementioned variables, r for soil moisture exhibits the poorest performance,
however, overall correlation is quite comparable to those obtained in other recent studies (e.g., Dorigo et al., 2014;
Lievens et al., 2015). Stripes in the model performance may correspond to an artifact of the retrieval algorithm,
which is a typical characteristic in the observation through satellite microwave instruments (ESA, 2015). Notably,
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the comparison between satellite derived soil moisture and distributed models is challenging because of data and
modeling reasons. Firstly, there is limited information on the exact depth of the soil layer that is used for the ESA-
CCI satellite product besides other potential retrieval problems such as vegetation coverage, snow and ice content.
Secondly, the biases across the statistical moments are very typical for surface soil moisture data derived from
satellite retrievals, ground measurements, and models so that they need to be quantified and corrected (Reichle
and Koster, 2004). Thirdly, the top thin first soil layer of most distributed models is not a good representation
of actual soil moisture. Water evaporates as vapour from the soil surface. Soil water models that calculate only
liquid water flow have to compensate for the missing process of vapour transport. Most of the models therefore
include a very thin upper layer that counteracts the liquid water flow. Soil moisture products such as from cosmic
ray sensors (Zreda et al., 2012) represent larger soil volumes (Köhli et al., 2015) and could become more feasible
for model-data comparison in future studies.

The overall model evaluation using empirical copula densities of the standardized anomalies shows a strong
statistical dependency between observations and simulations in particular for high and low quantiles (Fig. 6.5g–i).
This has strong implications for drought and flood monitoring using satellite products alone. The statistical de-
pendency for values in-between the extremes is close to the diagonal but with considerable spread for the three
variables analyzed. This is related to grid cells exhibiting low correlation coefficients between their simulated and
observed anomalies (panels d–f). Among the three variables, the relationship between the observed and simulated
TWS anomaly exhibits larger scatter because of the reduced sample size due to a coarser spatial resolution and
limited temporal availability of datasets (panel g). Overall, the copula densities indicate that the matching be-
tween observations and simulations needs to be improved for normal conditions as compared to the extremes. The
Spearman rank correlations estimated based on these copulas varies from 0.49 to 0.61.

6.4.4 Basin scale evaluation of modelled fluxes and states

ETQ

TWS sSM

Figure 6.6 Evaluating model performance in terms of r and
↵ for discharge (Q), actual evapotranspiration (ET), total water
storage anomaly (TWS) and standardized soil moisture (sSM)
observations at monthly time step using Taylor diagrams. Data
are normalized by the standard deviation of the observations and
classified according to the runoff ratio coefficient (Q̄/P̄ ).

The quantitative evaluation of model performance at
basin scale is presented with Taylor diagrams (Fig. 6.6)
for monthly estimates of Q, TWS anomaly, ET, and
SM. The basins are further classified into three cate-
gories based on runoff coefficients (Q̄/P̄ ) represent-
ing wet/mountainous, intermediate and dry climatic
regimes. In general, the model is able to represent the
temporal dynamics of observed Q adequately well with
correlations varying between 0.75 and 0.95 in the ma-
jority of the analyzed basins. The observed variability
is also well captured by the model regardless of the
Q̄/P̄ characteristics with a median ↵ value of around
1. On the other hand, the variability in ET is system-
atically underestimated (↵ < 1), while temporal dy-
namics is well represented with r exceeding 0.8 in the
majority of basins. Furthermore, the performance of
the model is relatively low for the total water storage
anomaly and SM. This is observed independently of
the runoff ratio. The correlation for the TWS anomaly
ranges mostly between 0.6 and 0.9 with higher val-
ues being noticed for basins lying in the water limited
regime, which is also seen in Fig. 6.5. The poorest per-
formance among all analyzed variables is observed for
simulating the soil moisture dynamics with r less than
0.6 in the majority of basins.
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Figure 6.7 Evaluating model performance for discharge (Q), actual evapotranspiration
(ET), total water storage anomaly (TWS) and soil moisture (SM) at monthly time step
using the correlation coefficient. (a) Correlation is derived for the original time series
(red; identical to values shown in Fig. 6.6), and the time series with removed annual cycle
normalized by long term standard deviation from the monthly data (blue). (b) Results
of the standardized anomalies are differentiated into two equal-size groups based on the
KGE values yielding better performing basins (above median KGE) and worse performing
basins (below median KGE).

The model performance
in terms of correlation for the
original time series (shown
in Fig. 6.6) is contrasted
against their corresponding
standardized values for dif-
ferent variables in Fig. 6.7a.
All variables exhibit lower
performance for their stan-
dardized estimates with the
exception of soil moisture. The
largest deterioration is noticed
for the ET followed by the
TWS anomaly and the least
for Q. The sequence of this
deterioration corresponds to the
degree of seasonality among
the analyzed variables. The
best model performance for
Q can be partly attributed to
the fact that the model is con-
strained against this variable.

Despite the lower model performance for standardized variables, the majority of basins has r values above 0.4
which is well beyond the threshold limit of 0.2 to be statistically significant at the 95% confidence interval.

Based on the results shown in Fig. 6.7a, the test of differences in mean skill scores between the standardized
distribution of Q and other modeled variables have p-values lower than 10�5. This indicates that the null hypothesis
that Q alone can sufficiently constrain model components responsible for internal fluxes and states in a cross-
validation mode can be safely rejected. To further support the aforementioned hypothesis, Figure 6.7b differentiates
the results of the standardized anomalies into two equally-sized groups based on the median KGE cut-off value
of 0.55 (as discussed in section 6.46.4.1). On average a significant deterioration in model skill score (p-value
< 0.01) is observed for other complementary variables in comparison to discharge with the exception of TWS
anomaly for which no conclusive deterioration in model skill can be noticed for the worse performing basins. The
deterioration is more pronounced for the group of basins yielding on average better model performance in terms
of discharge, which to some degree reflect the over-fitting of model parameters during the parameter estimation
against the observed discharge. This also indicates that other complementary data are required to appropriately
constrain the model in well performing basins. Such datasets are also of great usage in data scarce regions, where
streamflow observations are not available to constrain the model.

Finally, Figure 6.8 shows the monthly dynamics of observed and simulated fluxes and states for three randomly
selected basins in dry, intermediate and wet climatic conditions based on the runoff coefficients. The magnitude
and timing of Q are well matched and observations are mostly covered within the uncertainty bounds. Contrary to
Q, ET and TWS anomaly exhibit very regular inter-annual variability. The model is able to follow this behavior
quite well, although it tends to underestimate the gridded FLUXNET ET in the intermediate and wet basins. The
largest discrepancy between the model and observation occurs for SM consistent with our previously discussed
results.

6.4.5 Model errors in relation to water balance closure

The aforementioned results of basin scale model performance for different variables illustrate the existence of
potential errors between observations and simulations (Figs. 6.5–6.8). They can be attributed to a number of
factors, which can be mainly related to model and input data errors. The former constitutes error due to the
improper model structure and/or parameterizations, whereas the latter represents errors due to imperfect forcings
and/or response variables. An analysis is carried out to understand the relationship between the errors in input data
to errors in individual variables. The residuals in water balance closure (P̄ � Q̄ � ET ) based on 20 water years
(1989–2008) of observed P, Q, and the gridded FLUXNET ET, are taken as a proxy for the input data error. This
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error is analyzed across basins with different climatic characteristics and contrasted against errors in simulated Q
and ET.
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Figure 6.8 Time series of monthly discharge (Q), actual evapotranspiration (ET), total water storage (TWS) anomaly and
soil moisture (SM) standardized anomaly for 3 randomly selected basins: (left column) the Duero River at Toro (basin area ⇡
42 000 km2, Q̄/P̄ = 0.18); (middle column) the Danube River at Zimnicea (basin area ⇡ 660 000 km2, Q̄/P̄ = 0.41); and (right
column) the Rhine River at Basel-Rheinhalle (basin area ⇡ 36 000 km2, Q̄/P̄ = 0.72). Observations are shown in blue, mHM
simulations are shown given the cross-validation uncertainty with its 95% confidence bounds (light grey) and inter-quartile
range (dark grey). Note the different scales for Q (upper row).
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Figure 6.9 Analysis of water balance closure error for the 179 basins with full coverage
of observed data for the water years of 1989–2008: (a) Scatter plot between the runoff ratio
and median annual water balance closure error with 95% confidence bounds estimated
using the bootstrapping method using 1000 bootstrap samples (grey lines). Color indicates
discharge model performance in terms of bias �. (b) Relation between median annual
water balance closure error and bias between model and observation for streamflow (black)
and evapotranspiration (gray).

Overall, the errors in water bal-
ance closure are rather inde-
pendent from the physiograph-
ical characteristics with major-
ity of the basins having aver-
age annual values between -
200 mm yr�1 and 100 mm yr�1

(Fig. 6.9a). The negative wa-
ter balance errors are caused by
either an underestimated source
term (P) or an overestimated
sink term (ET+Q). Note that
ET is not directly measured but
is rather estimated by upscal-
ing observations of biosphere-
atmosphere fluxes of carbon
and energy from eddy covari-
ance flux tower sites with its
own uncertainties (Jung et al.,
2011). As noted by Velpuri
et al. (2013), the errors in ET

can yield up to 50% of the mean annual ET values in certain regions. The underestimation of P̄ is likely due
to inadequate representation of rain gauge coverage failing to capture the small-scale convective events.
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(a)

Figure 6.10 (a) Comparison of the daily actual ET between mHM and local-scale
estimated derived at 27 eddy stations (see Table 6.2) between 2004 and 2007 using Taylor
diagrams. Three daily time series are shown for (b) evergreen needle leaf forest (Tharandt-
Anchor in Germany); (c) grassland (Monte Bondone in Italy); and (d) savanna (Mitra II
in Portugal). mHM simulations are shown for 36 best parameter sets (black).

The model overestimates the
observed discharge in basins
where the positive water bal-
ance closure errors occur (�Q >
1.05, Fig. 6.9a), while un-
derestimations are observed in
basins with negative closure er-
rors (�Q < 0.95, Fig. 6.9a).
This is further supported in
Fig. 6.9b which indicates that
the water balance closure er-
ror follows a close relation
with the errors between ob-
served and simulated discharge,
with a correlation coefficient of
around 0.96. The ET errors
do not exhibit any dependency
to observed water balance er-
rors, since the correlation coef-
ficient is 0.02. The simulated
ET estimates averaged across
the investigated basins are con-
sistently underestimated by ap-
proximately 70 mm yr�1 with
respect to observations. Fur-
thermore, the slope of the best
fitted line between water bal-
ance closure error and Q er-
ror is nearly one meaning that
on average 100 mm water bal-
ance closure error would trans-
late to around 100 mm of simu-

lated streamflow error. The slope can also be interpreted as the elasticity of the fitted line here illustrating the
sensitivity of proportional changes in modeling error (in case Q) to the changes in water balance closure error.
Results of this analysis indicate that a substantial part of the error in modeled variables can be safely attributed
to the erroneous observational datasets. These results highlight the need for better quantification of model errors
together with erroneous observational data.

6.4.6 Local-scale evaluation of ET

The multiscale evaluation of mHM is further carried out against daily ET estimated at eddy covariance stations
with distinct vegetation cover. Results of this analysis, summarized in Figure 7.11a, indicate that the model is able
to capture the temporal dynamics of ET with correlations ranging between 0.6 and 0.9 across 27 eddy covariance
stations. In analogy to the gridded scale ET simulation results (see Fig. 6.6), the model systematically underes-
timates the observed variability indicating the lack of the model to represent the observed range of ET dynamics
(i.e., from dry to wet phases). Figures 7.11b–7.11d show the time series of observed and modeled ET at three
distinct locations. The temporal dynamics of observations is well represented by the model at the forest and grass-
land sites with correlations of more than 0.88. Relatively poor performance is observed at the semiarid savanna
site (r = 0.74). However, the model is able to capture the observed variability including the sudden jumps in ET
values observed at this savanna site. Furthermore, the observed magnitude and variability of ET at the grassland
site is strongly underestimated by the model particularly during summer. This is due to the fact that the potential
ET that is used to force the model at a local scale is generally lower than the observed actual ET.

Results of this analysis provide a first-order confidence that the parameter estimates obtained at much coarser
scale can be transferred to finer ones. There is, however, a number of factors that influence the modeling results at
local scale, mainly related to the representation of hydrological processes as well as input data. For example, con-



112 MULTISCALE AND MULTIVARIATE EVALUATION OF WATER FLUXES

straining the model against the local forcings instead of large scale E-OBS meteorological forcings may improve
its performance. Another limiting factor could be due to the estimation of temperature based potential ET esti-
mates (Hargreaves and Samani, 1982), which do not account for other environmental factors, such as wind speed
or humidity (Cristea et al., 2012). Finally, the current model version does not account for lateral flows particularly
relevant at the small scales.

6.5 Conclusions

The performance of the mesoscale hydrologic model (mHM) parameterized with the multiscale parameter region-
alization (MPR) technique is comprehensively evaluated against various in situ and satellite-based observations
over 400 European river basins. The multiscale evaluation of internal model fluxes and states is carried out at
the native resolution of available data varying from 0.5 km to 100 km using an ensemble of cross-validated model
parameters constrained only against observed streamflow. Results show that the model is able to perform well for
simulating daily discharge over a wide range of climatic and physiographic conditions with KGE greater than 0.55
in more than 50% of the basins. The streamflow predictability deteriorates in basins with a poor rainfall gauge
network and in heavily regulated river basins (e.g., Southern Spain). Besides the improvement needed in obser-
vational networks, further efforts are needed to incorporate large scale reservoirs operations, irrigation and other
human induced water withdrawal and storage activities.

The multiscale evaluation for the complementary datasets generally shows reasonable but lower performance in
comparison to streamflow, which is used to constrain the model parameters. The model shows the best agreement
with the gridded FLUXNET evapotranspiration (r > 0.8), followed by the GRACE total water storage anomaly
(0.6 < r < 0.9) and the least for the ESA-CCI merged soil moisture (r < 0.6). This performance is strongly
related to the degree of seasonality that the selected variable exhibits. The skill of the model deteriorates when
the annual cycle is removed from each variable except for the soil moisture with majority of the basins exhibiting
r > 0.4 for the de-seasonalized complementary datasets. The analysis of water balance closure errors indicates
that a part of the error in modeled variables is due to erroneous observational datasets. While the error between the
observed and simulated discharge is closely related to the errors in the water balance closure estimates, modeled
ET is consistently underestimated with respect to observations on average by a constant error of 70 mm yr�1.

The local-scale evaluation of evapotranspiration at several eddy covariance sites further supports the functional-
ity of multiscale parameterization of mHM. While the model is able to capture the temporal dynamics of observed
evapotranspiration at most of the sites, it consistently underestimates the observed variability regardless of the lo-
cations. Besides improvement in the model parameterization to account for the local scale processes in detail (e.g.,
sub-grid variability of snow and runoff generation processes), future studies may focus on further enhancement in
model performance by constraining the model with site-specific information.

This study provides first order confidence on the ability of the mHM to simulate fluxes and states across a range
of spatial scales and varying climatic and physiographic conditions. Due to the implemented MPR technique, it has
been possible to run the model at disparate scales native to the observational data, without re-calibrating the model.
Although the model yields good performance while conditioned on observed discharge, further improvements are
expected by optimally exploiting other reliable complementary datasets together with the streamflow. Results of
this study indicate that the null hypothesis that streamflow alone can sufficiently constrain model components
responsible for internal fluxes and states in a cross-validation mode can be safely rejected. Therefore, further
research should focus on multivariate parameter estimation or assimilation schemes for improving the ability to
predict the regional water fluxes and states over large domains.
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Appendix: Eddy Covariance Stations

Details on the Eddy Covariance Stations Table6.2 provides detailed information on the eddy covariance stations.

Table 6.2 Overview of the eddy covariance stations including landcover, geographic coordinates and period used in this study.

Number Site Name (Code
a

) Landcover
b

Latitude (
�

N) Longitude (
�

E) Available Period

1 Neustift (AT-Neu) GRA 47.11667 11.3175 2004–2007
2 Brasschaat (BE-Bra) MF 51.3092 4.52056 2004–2007
3 Lonzee (BE-Lon) CRO 50.5522 4.74494 2004–2007
4 Vielsalm (BE-Vie) MF 50.3055 5.99683 2004–2007
5 Oensingen (CH-Oe1) GRA 47.2856 7.73214 2004–2007
6 Oensingen (CH-Oe2) CRO 47.2863 7.73433 2004–2007
7 Grillenburg (DE-Gri) GRA 50.9495 13.5125 2004–2007
8 Hainich (DE-Hai) DBF 51.0793 10.452 2004–2007
9 Mehrstedt (DE-Meh) GRA 51.2753 10.6555 2004–2006
10 Tharandt (DE-Tha) ENF 50.9636 13.5669 2004–2007
11 Wetzstein (DE-Wet) ENF 50.4535 11.4575 2004–2007
12 Soroe (DK-Sor) DBF 55.4869 11.6458 2004–2007
13 Las Majadas (ES-LMa) SAV 39.9415 -5.7734 2004–2007
14 Vall d’Alinya (ES-VDA) GRA 42.1522 1.4485 2004–2007
15 Grignon (FR-Gri) CRO 48.844 1.95243 2004–2007
16 Hesse (FR-Hes) DBF 48.6742 7.06462 2004–2007
17 Le Bray (FR-LBr) ENF 44.7171 -0.7693 2004–2007
18 Bugac (HU-Bug) GRA 46.6911 19.6013 2004–2007
19 Matra (HU-Mat) GRA 47.8469 19.726 2004–2006
20 Lavarone (IT-Lav) ENF 45.9553 11.2812 2004–2006
21 La Mandria (IT-LMa) GRA 45.5813 7.15463 2004–2006
22 Monte Bondone (IT-MBo) GRA 46.0156 11.0467 2004–2007
23 Renon (IT-Ren) ENF 46.5878 11.4347 2004–2007
24 Roccarespampani 2 (IT-Ro2) DBF 42.3903 11.9209 2004–2007
25 San Rossore (IT-SRo) ENF 43.7279 10.2844 2004–2007
26 Loobos (NL-Loo) ENF 52.1679 5.74396 2004–2007
27 Mitra IV (PT-Mi2) GRA 38.4765 -8.0246 2004–2007

a First two capital letters of the code stand for the country code.
b GRA: grassland; MF: mixed forest; CRO: cropland; DBF: deciduous broadleaf forest; ENF: evergreen needles forest; SAV: savanna.
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7.1 Abstract

Hydrologic models are usually calibrated using observed river runoff at catchment outlets. Streamflow, however,
represents an integral response of the entire catchment and is observed at a few locations worldwide. Parameter
estimation based on streamflow has the disadvantage that it does not consider the spatiotemporal variability of hy-
drologic states and fluxes such as evapotranspiration. Remotely sensed data, in contrast, include these variabilities
and are broadly available. In this study, we assess the predictive skill of satellite-derived land surface temperature
(Ts) with respect to river runoff (Q). We developed a bias insensitive pattern-matching criterion to focus the param-
eter optimization on spatial patterns of Ts. The proposed method is extensively tested in six distinct large German
river basins and cross-validated in 222 additional basins in Germany. We conclude that land surface tempera-
ture calibration outperforms random drawn parameter sets, which could be meaningful for calibrating hydrologic
models in ungauged locations. A combined calibration with Q and Ts reduces the root mean squared error in the
predicted evapotranspiration by 8% compared to flux tower observations but reduces the NSEs of the streamflow
predictions by 6% on average for the six large basins. Our results show that patterns of Ts better constrain model
parameters when considered in a calibration next to Q, which finally reduces parametric uncertainty.

7.2 Introduction

Hydrologic models (HM) are usually calibrated against streamflow at outlets of basins and thus only consider
integrated signals to model the response of the entire basin. That procedure ensures the fulfillment of the mass
balance but has no control over the spatial distribution of hydrologic fluxes and states such as evapotranspiration
and soil moisture. Drought monitoring and forecasting, however, rely on spatially representative simulations of
evapotranspiration and soil moisture. Model parameterizations aiming on streamflow lead to adequate estimations
of discharge, but in general induce discontinuities (i.e., a lack of seamlessness) in parameter fields (Merz and
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Blöschl, 2004; Samaniego et al., 2017), which in turn, leads to diminished accuracies for other fluxes such as
evapotranspiration (Rakovec et al., 2016a; Zink et al., 2017). To overcome these deficiencies, parameterization of
a hydrologic model assisted by spatially distributed satellite observations is investigated in this study.

Spatially distributed ground observations of land surface fluxes and states do not yet exist for regional or larger
scales and likely will never exist (Vereecken et al., 2008). Thus, satellite data remain the only resource for spatially
explicit observations of the Earth surface. From the perspective of a hydrological modeler, satellite soil moisture
or evapotranspiration observations are preferable for constraining hydrologic models because those variables are
model inherent. Those data, however, have several disadvantages. First, the estimation of satellite soil moisture
and evapotranspiration is based on inverse modeling techniques (e.g., Bastiaanssen et al., 1998; Mu et al., 2007;
Wagner et al., 2007), which convert the satellite signal into hydrologic state variables and fluxes and rely on own
parameterization schemes for the soil and vegetation. Using the parameterization of the hydrological model for this
conversion ensures consistency in the parameterization between remote sensing product and hydrological model
and should be preferred. Second, the satellite retrievals still underlie large uncertainties and inaccuracies (Sheffield
and Wood, 2011). Third, the spatiotemporal resolutions of freely available satellite products with regional to global
coverage such as soil moisture and evapotranspiration are coarse (� 25 km and � 30 d) compared to the spatial
resolutions of mesoscale hydrologic models, which range from 1 km to 10 km and from hourly to daily temporal
scales, respectively.

An alternative source of data is land surface temperature (Ts), which is based on satellite-based thermal-infrared
(TIR) observations. TIR is directly interlinked with Ts through the radiative temperature equation (Li et al., 2013b),
which depends only on corrections for atmospheric and emissivity effects (Li et al., 2013b), not on soil or vege-
tation characteristics. For those reasons, satellite-derived Ts are regarded as a more robust source of information
compared to soil moisture or evapotranspiration retrievals and consequently is preferred in this study. Formally, Ts

is defined as the temperature of the interface between the Earth’s surface and atmosphere (Niclòs et al., 2011) and
is directly connected to latent heat via the energy balance equation at the land surface. Lakshmi (2000) showed that
a strong relationship between Ts and soil moisture exists, and that the calibration of a land surface model (LSM)
with that variable was able to improve its soil moisture estimation.

As a consequence, land surface temperature was considered to be a promising variable for enhancing the spatial
representation of evapotranspiration and/or soil moisture in hydrological models. The land surface temperature is
the connection between the water and the energy balances and depends on the estimated evapotranspiration within
the hydrological model. The state-of-the-art, however, does not indicate conclusive results. McCabe et al. (2005),
for example, observed changes in the spatial distribution of evapotranspiration when calibrating a land surface
model (LSM) with Ts. Boni et al. (2001) and Reichle et al. (2010) assimilated Ts using a variational assimilation
scheme and an Ensemble Kalman Filtering technique, respectively. Both studies employed LSMs which implicitly
solve the energy balance and thus estimate Ts. Boni et al. (2001) concluded that the control of surface temperature
on evaporation is feasible, whereas Reichle et al. (2010) did not observe any effect on surface energy fluxes.

The calibration of a hydrological model with Ts was originally proposed by Crow et al. (2003). In that study they
found that the consideration of spatially averaged Ts, besides streamflow, improved monthly evapotranspiration
predictions by up to 20%. Similar efforts were undertaken by Corbari et al. (2010, 2015) and Silvestro et al. (2013,
2015).

All those studies have in common that only selected model parameters were considered during the calibration
process, whereas the remaining parameters were estimated by prior knowledge, i.e., by transferring parameters
from remote locations or by setting them using expert knowledge. It should be noted that the land surface models
employed in those studies explicitly solved the energy balance and thus inherently estimated the land surface
temperature. Their authors, however, did not specifically focus on the spatial distribution of Ts. Consequently,
models were either calibrated using basin averaged Ts (Silvestro et al., 2013, 2015) or compared observations and
simulations using standard error metrics such as bias or root mean squared error (Corbari et al., 2010, 2015).
Reichle et al. (2010); Stisen et al. (2011), and Koch et al. (2015) on the other hand suggested using bias insensitive
metrics, which only consider the spatial patterns of land surface temperature. Such measures are preferred because
satellite-derived Ts is known to be biased when compared to ground observations (Li et al., 2013b; Niclòs et al.,
2011; Reichle et al., 2010; Trigo et al., 2008). The novelty of our study is to take advantage of pattern matching
criteria for constraining hydrological models.

Spatially distributed data can hence improve model calibration, improving hydrologic states and fluxes. It also
impacts the estimation of model parameter uncertainty by improving parameter identifiability and by reducing
equifinality (Beven, 1993, 2001).
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In this study, we postulate that the simultaneous calibration of streamflow Q and Ts will affect the spatial
distribution of evapotranspiration (E) and improve estimates of E when compared to eddy covariance observations.
Furthermore, we hypothesize that the uncertainty in the global model parameters of a hydrological model will
decrease when Q and Ts are considered simultaneously because this approach would better constrain parameters
related to land surface processes such as evapotranspiration. The aim of the third analysis is to assess the predictive
skill of the hydrological model regarding streamflow if the model is calibrated with Ts alone to evaluate if Ts could
be a useful variable for model calibration if streamflow data are not available.

Finally, to test those hypotheses, we developed a diagnostic algorithm to estimate land surface temperature
within the mesoscale Hydrologic Model (mHM). For the parameter estimation we propose a non-parametric, bias-
insensitive pattern-matching criterion.

7.3 Study Domain and Data

7.3.1 Meteorological Data

The forcings needed for mHM were provided by the German Meteorological Service (DWD). The approximately
2000 precipitation and 1100 temperature stations covering Germany were interpolated using external drift Kriging
(Ahmed and De Marsily, 1987; Zink et al., 2017). A digital elevation model was used as an external drift. The
potential evapotranspiration was estimated based on the Hargreaves-Samani equation (Hargreaves and Samani,
1985) and using the interpolated fields of minimum, maximum and average daily air temperature. Precipitation,
average temperature and potential evapotranspiration are the main forcings for solving the water balance within
the hydrologic model mHM. The spatial resolution is 4⇥4 km2 since we consider that to be the lowest spatial
resolution supported by the station input data.

The proposed land surface temperature module requires net radiation as an additional input. Observed Ts is also
needed as an input for the evaluation of the modeled Ts. In general, observations of land surface temperature and
radiation are unfortunately not available or are very sparse. In Germany, for example there are at most 60 radia-
tion measurement stations. Alternative data sources relevant for this study are reanalysis or remote sensing data.
These data sources are required to be of similar spatiotemporal resolutions as the above-mentioned meteorological
forcings. Reanalysis data are typically coarser than 0.25� and are thus not appropriate for this study. Satellite data
are derived from either polar orbiting or geostationary satellites. Although, the spatial resolutions (e.g., 1 km)
of polar-orbiting satellites such as TERRA are large and equidistant, their temporal resolutions are coarse (one to
two overpasses per day). Geostationary satellites (e.g., Meteosat), however, have high temporal (�15 minutes) but
lower spatial resolutions. Their spatial resolution decreases with increasing latitude.

Herein, we use data from Meteosat Second Generation (MSG) that have been processed by the Land Surface
Analysis - Satellite Application Facility (LSA-SAF, EUMETSAT (2016)). The data have an average spatial resolu-
tion of 3.5 ⇥ 6.5 km2 for Germany and a temporal resolution of 15 or 30 minutes depending on the data product.
LSA-SAF provides land surface temperature and downwelling radiation data. The required net radiation is esti-
mated based on downwelling shortwave and longwave radiation (30 minute resolution), land surface temperature
(15 minute resolution), emissivity (15 minute resolution), and albedo (1 day resolution) products from LSA-SAF
(see section 7.4.2, Equations 7.4a-7.4c). The inter-daily data have been aggregated to daily values by filtering only
valid data points derived from quality flags provided by LSA SAF. Consequently, data points affected by high
cloud coverage are discarded. Days with less than 50% valid data for a particular pixel are also discarded for
the calculation of the daily mean value. Finally, pattern analysis is performed only for pixels having valid data
for the respective day. Data gaps are unproblematic in this study because they are neglected by the land surface
temperature module and the error measures presented in section 7.4.

The downwelling shortwave radiation (EUMETSAT , 2016) is evaluated using available observations from 28
stations in the year 2009 (Deutscher Wetterdienst (DWD), 2011). The evaluation showed that both datasets are
comparable, with an average Pearson correlation coefficient of 0.93 (standard deviation=0.04) and a relative bias
of 5% (standard deviation=2%), and were thus applicable for this study. In addition, we validated the LSA-SAF’s
land surface temperatures at two eddy covariance stations, i.e., stations E2 and E4 (Figure 7.1), where radiometric
temperatures are measured (Kutsch et al., 2008; Rebmann et al., 2010). The comparison revealed a bias in the
satellite retrievals of approximately 2.7 K. Similar biases of 2 K to 3 K have been reported in the literature (Li
et al., 2013b; Niclòs et al., 2011; Reichle et al., 2010; Trigo et al., 2008). These biases have to be taken into
account when comparing modeled and satellite-retrieved Ts.
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Figure 7.1 The main basins used for parameter inference
and numerical experiments. The six major inner German river
basins span over a climate gradient ranging from maritime
influence in the Ems to continental climate in Main and Neckar.
The points E1 to E7 depict the location of eddy flux tower
observations, which have been used for evaluating the simulated
evapotranspiration.

The study period has been restricted to the year 2009
because this was the only period in which meteorolog-
ical, LSA SAF and discharge data for each of the 6
main study sites have been available. Discharge data
past 2009 were not available for all six catchments. On
the other hand broadband emissivity data from LSA
SAF have just been available from 2009 onwards. The
restriction to one year of data constitutes a clear limita-
tion of this study and can be overcome in future studies
due to longer available discharge data. The year 2009
is, however, within the 30th and 70th percentile of the
climatology (1951-2010) in terms of annual catchment
water availability in all six catchments and can there-
fore be seen as a valid choice. The catchment water
availability is estimated as precipitation minus poten-
tial evapotranspiration (P � Ep). The climatology of
the annual discharge is for all catchments within the
25th and 75th percentile with exception of the Ems
basins which was slightly drier in 2009 showing a per-
centile of 24 (see supplemental material).

7.3.2 Study Domain and Land Surface Prop-
erties

The study domain covers a large fraction of Germany.
Intensive analyses will be presented for the six inner
German river basins presented in Figure 7.1. These are
the largest inner German basins and differ in size, hy-
drologic behavior and climatic conditions. They range
from a flat, agriculturally dominated, maritime influ-

enced basin in northern Germany (Ems) to a snow influenced and more continental basin with distinct slopes in the
south (Neckar). A detailed description of the basins can be found in Zink et al. (2017).

The land surface is characterized by a digital elevation model provided by the Federal Agency for Cartography
and Geodesy (BKG) (2010), a soil and hydrogeological map offered by the Federal Institute for Geosciences and
Natural Resources (BGR) (1998, 2009), and land cover information from the European Environmental Agency
(EEA) (2009). These data are discretized to a spatial resolution of 100⇥100 m2. The Global Runoff Data Centre
(2017) and the European Water Archive (EWA) (2011) provided the daily streamflow data.

Next to the six main study sites we use 222 uncalibrated basins for evaluating parameters regarding discharge
and 7 eddy flux towers for evaluating evapotranspiration simulations. A detailed description and metadata of these
sites can the found in Zink et al. (2017).

7.4 Methodology

7.4.1 The mesoscale Hydrologic Model mHM

This study’s computational experiments were conducted employing the mesoscale Hydrologic Model mHM (www.
ufz.de/mhm) (Kumar et al., 2013; Samaniego et al., 2010a). It is a process-based and spatially distributed
model that was developed for the estimation of hydrologic fluxes and state variables on the land surface. These
states and fluxes are derived by closing the water balance on every grid cell. Within a grid cell the governing
processes are conceptualized as discrete reservoir models for the different compartments of the hydrologic cycle,
e.g., interception, snow accumulation, soil moisture, and evapotranspiration. The estimation of hydrologic fluxes
and states is highly dependent on the quality of the evapotranspiration estimate since it is the second most important
flux in the water balance, following precipitation.

www.ufz.de/mhm
www.ufz.de/mhm
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The evapotranspiration within mHM is based on potential evapotranspiration (PET). The evapotranspiration
flux in mHM is mainly estimated by reducing the potential evapotranspiration according to the available amount
of soil water within the root zone (Feddes et al., 1976). Minor contributions to evapotranspiration originate from
the interception storage and evaporation from surface water retention. Evapotranspiration estimation is highly
dependent on the representation of the soil water retention in land surface models and is therefore described in the
following.

Within the root zone the amount of evaporative water is determined within the different soil layers. The number
and depth of the soil layers can be defined by the user whereas the depth of the deepest soil layer is derived by
mHM from the soil map and thus varies among grid cells. In this study, the soil was discretized into three layers.
The first layer ends 5 cm below the surface, the second at 25 cm and the third is the soil map dependent layer.
The evapotranspiration of the single soil layers is consecutively estimated with depth as a function of (a) potential
evapotranspiration, (b) soil water content, (c) soil hydraulic properties (permanent wilting point, field capacity, and
saturated soil moisture content) and (d) the fraction of roots. This functional relationship contains several model
parameters.

The model parameters are derived by employing the Multiscale Parameter Regionalization (MPR) technique
(Kumar et al., 2013; Samaniego et al., 2010a). This methodology is based on space and time invariant parame-
ters, the so called global parameters (Pokhrel et al., 2008). These global parameters parameters are subject to
calibration and are used for the estimation of spatially distributed parameter fields. These fields result from the
functional relationships (transfer functions) between the global parameters and physiographical characteristics of
the catchment.

In MPR, the transfer functions (e.g., the pedotransfer functions for the estimation of soil parameters) are con-
nected to the morphological input (e.g., soil textural properties) and thus lead to model parameters (e.g., porosity
and soil hydraulic conductivity). In the example, the global parameters are the coefficients of the pedotrans-
fer functions. The model parameter estimation is performed on the resolution of the morphological input (e.g.,
100⇥100 m2). They must be upscaled to determine the model parameters at the hydrologic model resolution (e.g.,
4⇥4 km2). The applied upscaling rules are different for the various model parameters (e.g., the geometric mean
for the porosity and soil hydraulic conductivity). Detailed information about model parameters and upscaling rules
are provided in Kumar et al. (2010, 2013); Samaniego et al. (2010a); Zink et al. (2017).

Compared to other parameter estimation approaches such as hydrologic response units (Flügel, 1995), the ad-
vantages of MPR are (1) the ability to choose flexible model resolutions without the necessity to rescale inputs,
(2) transferability of the global parameters across locations (Kumar et al., 2010; Rakovec et al., 2016a; Zink et al.,
2017), and (3) transferability across scales (Kumar et al., 2013,b; Samaniego et al., 2010a) without recalibrating
the model. mHM also showed its capability in impact assessment studies such as those of Samaniego et al. (2013)
and Thober et al. (2015) and for operational purposes (Zink et al., 2016).

7.4.2 Development of a Land Surface Temperature Module

A goal of this study is to incorporate spatially distributed information into the hydrologic model mHM to improve
the spatial representativeness of the hydrologic fluxes and states. Herein, we aim on evapotranspiration because
it has a large impact on water balance. Evapotranspiration is linked with land surface temperature by the energy
balance. We employ satellite-derived land surface temperature fields within the hydrologic model mHM. The
spatiotemporal distribution of land surface temperature (Ts) was used to constrain mHM in addition to streamflow
(Q).

Because the purpose of mHM is to solve the water balance equation, land surface temperature was not yet
calculated. The energy balance is used to simulate land surface temperature. In consequence, the evapotranspiration
acts on the energy and the water balances.

The following section will introduce a parsimonious module for estimating land surface temperature based on
modeled evapotranspiration (E) and given short- and longwave radiation inputs. The module is called the land
surface temperature module in the following. It can be coupled to any hydrologic model and was interfaced with
mHM in this study.

On the one hand, the evapotranspiration E [mm d�1] is determined by closing the water balance

E = P � Q � �S (7.1)
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with mHM . Where P is precipitation [mm d�1], Q is streamflow [mm d�1], and �S is the change in the
storages [mm d�1], e.g., soil moisture. On the other hand the energy balance of the land surface can be written as:

Rn = �E + H + G + S (7.2)

with net radiation Rn [W m�2], latent heat flux �E [W m�2], sensible heat flux H [W m�2], soil heat flux
G [W m�2] and any storages S [W m�2], for example photosynthetic or biomass heat storage. The latent heat
flux �E is determined by converting the mass flux of the evapotranspiration E estimated by mHM (Equation 7.1) to
an energy flux. For that reason, the evapotranspiration E [mm d�1] is multiplied by the latent heat of vaporization
� [kJ kg�1]. The density of water is taken as % = 1000 kg m�3. The latent heat of vaporization � is approximated
by � = 2501 � 2.37Ta using the air temperature Ta [�C] (Dyck and Peschke, 1995).

The land surface temperature is estimated using the temporal resolution of one day because this is the temporal
resolution of the meteorological input. For daily time steps it is assumed that the soil heat flux G and the storage
terms S are negligible (Haverd et al., 2007), such that Equation 7.2 simplifies to

H = Rn � �E. (7.3)

To solve Equation 7.3 the net radiation Rn has to be provided as an input to mHM. Because spatially com-
prehensive measurements of the net radiation are not available (see section 7.3.1), it is estimated from incoming
radiation components from satellites. We therefore use

Rn = Qin
S

� Qout
S

+ Qin
L

� Qout
L

(7.4a)

Qout
S

= ↵Qin
S

(7.4b)

Qout
L

= ✏�cTs

4
(7.4c)

Qin
S

and Qout
S

are the incoming and outgoing shortwave radiation [W m�2], respectively, and Qin
L

and Qout
L

are the incoming and outgoing longwave radiation [W m�2], respectively. The outgoing shortwave radiation
Qout

S
is estimated using Equation 7.4b, in which ↵ is the albedo of the land surface [�]. The outgoing longwave

radiation Qout
L

is approximated as the emission of a gray body emissivity ✏ which can be calculated using the
Stefan-Boltzmann law (Equation 7.4c) and the and the Stefan-Boltzmann constant � = 5.67 · 10�8 W m�2 K�4.

Equation 7.3 for sensible heat flux H [W m�2] modifies to

H = (1 � ↵)Qin
S

+ Qin
L

� ✏�cT 4
s

� �E. (7.5)

The thermodynamic formulation of the sensible heat H can be written as

H = %acp
cT s � Ta

ra
(7.6)

where Ta is the air temperature [K], cT s is the model derived land surface temperature [K], ra is the aerodynamic
resistance [s m�1], %a is the density of air (%a = 1.29 kg m�3) and cp is the specific heat capacity of air, which
is assumed to be constant (cp = 1004 J kg�1 K). Combining Equation 7.5 and 7.6 leads to a fourth degree
polynomial in cT s:

(1 � ↵)Qin
S

+ Qin
L

� �E +
%acp
ra

Ta �
%acp
ra

cT s � ✏�cT s

4
= 0. (7.7)

In summary, cTs is the modeled variable of interest, Qin
S

, Qin
L

, ↵, and ✏ are satellite-retrieved variables, %a, �,
and cp are constants, Ta is measured air temperature, which is an input for mHM, �E is derived by closing the
water balance with mHM (Equation 7.1), and ra is the aerodynamic resistance which is still unknown but will be
explained in the following.

Solving the Equation 7 for cTs leads to four possible solutions which are the roots of the quartic equation. The
root that falls within the interval [0 K, 500 K] is the feasible result for cT s. During all the experiments, only one
of the four roots fulfilled this requirement. The calculation of that root is presented in Appendix 7.6.
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The aerodynamic resistance ra [s m�1] is calculated following Allen et al. (1998):

ra =
ln
⇣

zm�d

z0m

⌘
ln
⇣

zh�d

z0h

⌘

k2uz

(7.8)

where zh is the height of the humidity measurement [m], d is the zero plane displacement height [m], z0m is the
roughness length for momentum transfer [m], z0h is the roughness length for heat transfer [m], k is the von Karman
constant (k = 0.41), and uz is the wind speed [m s�1] at the wind speed measurement height zm in [m]. It is
assumed that the measurement heights of wind speed and humidity are equal, i.e., z = zm=zh.

The approximations of the three variables d = 2
3hc, z0m = 0.123hc, and z0h = 0.1z0m are taken from Allen

et al. (1998). The constant coefficients for d, z0m and z0h have been implemented as the global parameters p48,
p49, and p50 in the land surface temperature module, respectively. These parameters need to be calibrated, and
their ranges were chosen to be between ±10% of the values reported by Allen et al. (1998). Thus Equation 7.8
therefore becomes

ra =
ln
⇣

z�p48hc

p49hc

⌘
ln
⇣

z�p48hc

p49p50hc

⌘

k2uz

. (7.9)

The equation shows that besides the given height z and the measured wind speed uz , ra is dependent on the
estimation of the parameters p48, p49, and p50 and the canopy height hc. The Multiscale Parameter Regionaliza-
tion (MPR) technique was employed to estimate canopy height hc because no spatially comprehensive information
regarding hc was available. Hence, hc becomes a calibration parameter that is dependent on the land cover infor-
mation.

The canopy height for the mixed land cover class takes the monthly evolution of the leaf area index (LAI) into
account. The mixed land cover class is a generalized class consisting of grasslands, agricultural areas, and pastures.
The relationship is assumed to be

hc,mix(m) = p47
LAI(m)

max
m

LAI(m)
, m = 1, . . . , 12 . (7.10)

in which hc,mix(m) is the canopy height [m] of the mixed land cover class (mix) for month m, LAI(i) is the
leaf area index [m2 m�2] for month m, and p47 is a calibration parameter [m].

Both of the other land cover classes (forest (for) and sealed (seal)) are assumed to be constant in canopy height
over the course of a year and do not depend on LAI:

hc,for = p45 and hc,seal = p46 . (7.11)

The canopy height is estimated at the resolution of the physiographic input data, i.e., 100⇥100 m2. Various
upscaling operators were tested for the upscaling to the model resolution, i.e., 4⇥4 km2, and the arithmetic mean
was proven to perform best.

In summary, we have presented the development of a land surface temperature module that can be coupled to
any environmental model. Satellite-derived radiation components (Q(in)

S
and Q(in)

L
), air temperature (Ta), wind

speed (uz), and modeled evapotranspiration (E) are used as inputs for the land surface temperature module. The
necessary steps for estimating land surface temperature (cTs, Equation 7.7) are

1. the estimation of E as residual of the water balance (Equation 7.1) and

2. the calculation of cTs (Equation 7.7) based on the aerodynamic resistance (Equation 7.9).

To approximate the aerodynamic resistance ra (Equation 7.9) the three global parameters p48 to p50 connected
to the displacement height and the roughness lengths as well as the three global parameters p45 to p47 connected to
the canopy height (Equation 7.10 and Equation 7.11) are necessary. An additional parameter p51 was introduced
into Equation 7.7 to account for the biases that have been observed in the satellite-retrieved Ts. This parame-
ter could be neglected because a bias insensitive error measure was designed for calibrating mHM with Ts (see
section 7.4.3).
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These seven global parameters, p45 � p51, are estimated through the automated calibration of the mHM model.
The difference between the satellite-derived T s and simulated land surface temperature cT s is minimized during
model calibration. The calibration procedure will be explained in the following.

The land surface temperature model driven by satellite observations has, however, certain limitations. First, the
satellite data of land surface temperature, short and longwave radiation, albedo and emissivity on its own come
with uncertainties. These uncertainties arise from assumptions in the underlying models for translating satellite
reflectances to derived variables. Another source of uncertainty are meteorological model data, which are used
to correct for atmospheric influences on the observed satellite signal, e.g. atmospheric humidity. Another source
of uncertainty are model parameters of the land surface temperature module itself which are further discussed in
section 7.5.2.

7.4.3 Optimization of the Coupled mHM-Land Surface Temperature Model

The aforementioned Ts module is coupled to mHM. For simplicity, the coupled mHM-land surface tempera-
ture model is denoted as mHM in the following. All of the parameters, including the mHM global parameters
(44 parameters) and the seven additional parameters of the Ts module are herein referred to as the mHM parame-
ters. The coupled model, therefore, has 51 global parameters for the purpose of calibration.

The coupled model will be calibrated against land surface temperature or streamflow or a combination of both.
The performance regarding the two model outputs, i.e., streamflow and land surface temperature, is estimated using
a weighted objective function. In general the objective function � is estimated by

� =

 
nX

i=1

(wi)
p(�i)

p

! 1
p

(7.12)

where wi is the weight (
P

n

i=1 wi = 1) of the error measure �i of the n objectives. Different error measures �i

are considered because streamflow Q only depends on time, whereas Ts is a spatiotemporal variable. Following
Duckstein (1984), the exponent p was set equal to 6 to assure numerical stability and assure a compromise solu-
tion. The exponent p ensures that the progress in competing objectives does not compensate each others effects,
e.g., if �1 improves and �2 declines the overall objective function could improve because the improvement of �1

outperforms �2 if a compromise solution is not applied. The power law ensures that the improvement of �1 gets
less weight and thus the optimizer will put more emphasis on improving �2. The different error measures � for
streamflow and land surface temperature are described in the following.

Error Measure for Streamflow Q The Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is applied to
assess the model performance regarding streamflow. To obtain satisfactory estimates of high flows as well as of
low flows, the NSE is determined for the daily streamflow (�1) and the logarithm of the daily streamflow (�2),
respectively. For the optimization against streamflow alone, �1 and �2 are considered in the objective function.
The weights are chosen to be equal for both criteria (w1 = w2 = 0.5).

Error Measure for Land Surface Temperature Ts An error measure for quantifying the differences between
modeled and satellite-retrieved Ts is developed in this section. The satellite retrievals of Ts had an inherent bias
of approximately 2 K to 3 K at the temporal resolution of one day in comparison to ground measurements (see
section 7.3.1). It is assumed that the patterns delivered by the satellite measurements are trustworthy. Thus, an ob-
jective that compares patterns of the satellite-retrieved and model estimated land surface temperature qualitatively
was targeted.

The application of error measures that are sensitive to a biases such as the mean squared error was therefore not
considered. A bias resistant, local and non-parametric measure denoted as pattern similarity (P ) was developed.
Mathematically, the new pattern similarity criterion can be expressed as

�3 =
1

NT

TX

t=1

NX

i,j2⌦

Pij(t) (7.13a)

Pij(t) =
1

2M

MX

k=1

h
˜sgn
⇣
bT (k)
s,ij

(t) � bTs,ij(t)
⌘

˜sgn
⇣
T (k)
s,ij

(t) � Ts,ij(t)
⌘

+ 1
i

(7.13b)
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where i and j are the elements of the spatial domain ⌦, which in total consists of N cells, T is the number of
time steps, Pij(t) is the pattern similarity criteria at cell (i, j) at a particular time step t, T (k)

s,ij
is the land surface

temperature of the kth of M neighbors of the center cell (i, j), and Ts,ij is the land surface temperature of the
center cell itself. The pattern similarity criterion is normalized with M , the number of neighbors of the center cell
(i, j). M typically equals eight but can vary at the basin boundaries. The notation without a hat (Ts) is used for
the satellite-derived land surface temperature, whereas the model simulated temperature is denoted with a hat (cTs).
The ˜sgn operation determines the sign of the argument a as follows:

˜sgn(a) =

(
1 if a > 0

�1 if a  0
. (7.14)

An example for the pattern similarity criterion is depicted in Fig. 7.2.
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Figure 7.2 Schematic description of the pattern similarity criterion according to
Equation 7.13b. In the upper left row, an example pattern A with the center pixel having
a value of 10 is illustrated (e.g., satellite-retrieved Ts in �C). The sign of the comparison
between the center pixel with its neighboring pixels is shown on its right. If the respective
neighboring pixel is larger than the center pixel (green arrow) the value 1 is assigned to
this pixel (e.g., 5 pixels in pattern A), otherwise (red arrow) the value -1 is assigned to
them (e.g., 3 pixels in pattern A). This analysis is repeated for a pattern B (e.g., simulation
of cTs), as depicted in the lower row. The results of both comparisons are multiplied and
increased by 1. Thus, the dissimilar pixels between patterns A and B are assigned values
of 0, whereas pixels with the same tendency are assigned values of 2. The elements of the
resulting matrix are summed and divided by twice of the number of neighbors (e.g., 16).
For the given example, the pattern similarity criterion is 0.75, meaning that three-quarters
of the neighbors showed the same relation to its center value in both patterns A and B.

The criterion is based on a
3⇥3 pixel search raster. Its cen-
ter cell is subtracted from the
eight neighboring cells. The
difference becomes negative,
and the ˜sgn = �1 if the
value of the center cell is greater
than the neighbor. In the op-
posite case the sign becomes
positive ( ˜sgn = 1). This
procedure is applied to both
fields under comparison, i.e.,
the satellite-retrieved Ts and the
modeled land surface tempera-
ture bTs. The two resulting 3⇥3
signum matrices are multiplied
together. The resulting matrix
has a negative entry (-1) where
the elements of both factors had
different signs and a positive
entry (+1) where the factors had
the same sign.

Thus, a negative entry ap-
pears when the modeled grid
cell shows a different tendency
compared to the measured land
surface temperature. The en-
try is positive when the grid cell

tendencies are in correspondence. To avoid the results canceling out when summed, the eight single results are
increased by one. Hence, for full correspondence the sum of the elements of the search raster yields 16 but it is
zero for full disagreement. Finally, the sum is scaled between zero and one. A P of 1, therefore, indicates full
agreement of the patterns, i.e., no dissimilarity.

The scaling assures comparability with other error measures such as the Nash-Sutcliffe Efficiency or correlation
coefficient. A pattern similarity of 0 not only corresponds to full dissimilarity but means that the two patterns are
inverse to each other. A P of 0.5 indicates randomly diverging patterns.

The 3⇥3 local search window is applied to every cell (i, j) within the domain ⌦ and all time steps t of the
patterns under comparison. The overall pattern similarity is then calculated as the mean of the single values (see
Equation (7.13a)).

Numerical tests showed that a combination of the pattern similarity criterion with another bias resistant criterion,
i.e., the Pearson correlation coefficient, results in the best model performances regarding streamflow and land
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surface temperature. The Pearson correlation coefficient is the fourth error measure �4. It is calculated as the
correlation between the vectorized Ts and bTs fields over all time steps within a catchment. It can be interpreted as
the temporal mean of the spatial correlation of Ts and bTs fields at every time step.

The criteria for pattern similarity �3 and �4 are equally weighted (w3 = w4 = 0.5) in the objective function if
applied to calibration against the land surface temperature (only �3 and �4 are considered in the objective function).

The calibration with respect to a combination of land surface temperature and streamflow data were conducted
using all four error measures �1, �2, �3, and �4 as objectives. The weights are defined as w1 = w2 = 1

3 and
w3 = w4 = 1

6 . The higher weighting of the streamflow error measures was chosen to ensure a correct partitioning
of water in the hydrological system. In comparison with other weighting schemes this setup has proven to perform
best.

Some of the objectives, e.g., the correlation, were varying within a very small range when compared to their
maximal ranges (e.g., [-1,..,1]) if the model is calibrated. The objectives �i (i = 1, ..4) were normalized by their
potential ranges to avoid the dominance of any objective:

�i =
�i � �min

i

�max
i

� �min
i

(7.15)

Table 7.1 The applied ranges for
normalizing the error measures.

�min
i

�max
i

�1 -0.99 0.9
�2 -0.99 0.9
�3 0.64 0.66
�4 0.93 0.97

where min and max denote the upper and the lower bounds of the particular
objective i, respectively. �min

i
and �max

i
were determined based on 55 000

simulations in two of the basins under investigation, i.e., Ems and Neckar,
using random parameters. To ensure sampling over the entire parameter do-
main a stratified sampling strategy was applied to generate 55 000 parameter
sets (Morris, 1991). Empirical ranges were determined for the maxima and
minima of the objective functions. We reviewed 20 calibrations in each of the
six catchments under investigation and assessed the minimum and maximum
ranges of each objective. The adopted ranges of each error measure are given
in Table 7.1.

7.4.4 Experimental Design

To address three different hypotheses, several numerical experiments were conducted, which will be explained
within this section. In common to all of the experiments were the six basins under investigation depicted in
Figure 7.1. All the experiments were designed as ensemble simulations based on 20 independent parameter op-
timization runs to address the issue of parameter estimation uncertainty. The standard calibration of hydrologic
models with streamflow served as a reference or baseline scenario. All the model calibrations were conducted
using the Dynamically Dimensioned Search algorithm (Tolson and Shoemaker, 2007) and employing a budget of
1000 iterations.

We calibrated the hydrologic model mHM using land surface temperature alone to assess its streamflow pre-
diction performance. The resulting model performances were compared to simulations based on 1000 random
parameter samples that were derived using Latin hypercube sampling (McKay et al., 1979). The determined pa-
rameter sets were transferred to 222 uncalibrated locations to assess their validity and stability.

The aim of the second experiment was to assess the impact of a combined calibration of streamflow Q and land
surface temperature Ts. It is expected that this approach had a high impact on the modeled evapotranspiration be-
cause the land surface temperature characterizes the near-surface atmospheric conditions and is directly connected
to E via Equation 7.7.

We hypothesize that calibrating the hydrologic model mHM using land surface temperature and streamflow
will lead to a better constraint of parameters without deteriorating the model performance regarding streamflow
significantly. The degrees of the parameter constraints were determined by analyzing the final parameter values
of the 20 independent model calibrations. To avoid influential effects of outliers, the spread in the ensemble
parameters was determined using the difference between the 5th and 95th percentiles, r5 and r95:

Ri

r
= 1 �

ri95 � ri5
ri
max

� ri
min

, i = 1, . . . , n (7.16)
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where rmin and rmax denote the lower and upper limits of the initial parameter range of each parameter i. If the
parameter range reduction Rr equals 1, the parameter range converges to a single value in the independent runs. If
Rr, equals 0 the optimized parameter is spread over the entire initial range and therefore is not constrained during
calibration.

In addition, we hypothesize that the spatial variability of the resulting evapotranspiration fields will decline. The
spatial variability of the modeled E was estimated using the signal-to-noise ratio (S), which is defined as

SE(t) =
µE(t)

�E(t)
(7.17)

where µ denotes the mean and � the standard deviation of an evapotranspiration field E at a particular time
step t. We will present an evaluation of the evapotranspiration estimates at the local scale based on eddy flux data.
This comparisons at a different model resolution, i.e., 100⇥100 m2, follows the methodology presented in Zink
et al. (2017).

The calibration period was limited to the year 2009 due to the availability of streamflow and land surface
temperature observations. All the simulations had a model spin up period of 5 years. The majority of the analyses
focused on the year 2009, but the simulations within the 222 basins were based on the entire observational time
series. The separation of the time series into calibration and validation period was unnecessary because this study
focused on the benefit of using Ts for parameter inference compared to classical Q calibration.

7.5 Results and Discussion

7.5.1 The Performance of Land Surface Temperature Calibrations Regarding Streamflow

In this section, we will present results obtained by calibrating the hydrologic model mHM with patterns of land
surface temperature Ts alone using the objective functions �3 and �4 as described in section 7.4.3 in order to assess
the performance of land surface temperature calibrations regarding streamflow.
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Figure 7.3 Simulated daily streamflow when calibrating the hydrologic model mHM
with streamflow Q (panels A and B) and with land surface temperature Ts (panels C and
D) for the basins Ems (panels A and C) and Main (panels B and D). The gray bands
depict the uncertainty in the 20 ensemble model simulations as assessed by the range of
the 5th and 95th percentiles of the estimated streamflow. The black line is the median of
the ensemble streamflow simulations. Its performance NSEp50 is given in the top right
corner of each panel.

An ensemble of 20 parameter
sets, that are calibrated individ-
ually in each basin is used for
a forward run to predict stream-
flow. Panels C and D of Fig-
ure 7.3 exemplarily show the
observed and simulated stream-
flow time series of the two
basins Ems and Main out of
the six basins under investiga-
tion (Figure 7.1). For compar-
ison, panels A and B of Fig-
ure 7.3 depict streamflow pre-
dictions obtained by 20 inde-
pendent classical calibrations
with streamflow. The median
streamflow estimated from the
Ts calibrations shows an un-
expected good mapping of the
observed streamflow, revealing
NSEs of 0.8 and 0.54 for the
Ems and Main basins, respec-
tively. As seen, the perfor-
mance of the median NSE de-

creases when mHM is calibrated with Ts (Figure 7.3 panels C and D). Especially low flow periods are usually
underestimated (July to September).
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This underestimation results from insufficient estimated slow interflow and baseflow. These hydrologic pro-
cesses are insufficiently modeled because Ts is non-informative regarding them. This means that parameters that
are connected to slow interflow and baseflow are insensitive to a calibrations using land surface temperature. Sim-
ilar studies that used Ts for model calibration limited the number of calibrated parameters to those connected to
soil water storage and evapotranspiration (Corbari and Mancini, 2014; Corbari et al., 2015; Crow et al., 2003;
Gutmann and Small, 2010; Silvestro et al., 2013, 2015). In those studies, all other parameters are determined by
prior knowledge, e.g., transfers from remote locations or expert knowledge.

The uncertainties arising from the parameter estimation process are depicted as gray bands in Figure 7.3. The
streamflow uncertainty increases for the Ts calibration compared to the classical calibration with streamflow. In
the case of the Ems river basin, the highflows of the flood event in spring 2009 are within the uncertainty bands
for the Ts calibration, which was not the case for the Q calibration. In contrast, some of the parameter sets from
Ts calibration performed very poorly when estimating flood events, e.g., in spring in the Main basin (Figure 7.3
panel D). The high uncertainty in the streamflow simulations is reasoned in the weak estimation of interflow and
routing parameters when the model is calibrated with land surface temperature (see section 7.5.2). The Ts cal-
ibration approach shows stronger pronounced flood peaks as compared to Q calibration. This indicates that the
direct runoff and fast interflow component are enabled more rapidly when compared to the calibration with stream-
flow. The uncertainty ranges are, however, reasonable given that streamflow itself was not involved in the model
calibrations.
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Figure 7.4 A) shows the model performance regarding streamflow when the model
is either calibrated with land surface temperature (Ts) or driven by parameters using
Latin hypercube sampling (Monte-Carlo). For the calibration with Ts, 20 independent
calibration runs are performed, whereas 1000 sampled parameter sets are used for the
Monto-Carlo simulations. B) depicts the model performance when calibrating mHM
with either Q or Ts and transferring the parameters to the other basins. The variability,
therefore, arises from the 100 parameter sets, which are derived at the remaining five
different donor basins.

The median NSE of the
20 model calibrations with Ts

varies between 0.36 and 0.66
for the six basins and is on aver-
age 0.51 (Figure 7.4 panel A).
Note that these are the medi-
ans of the NSEs obtained from
the 20 calibrated parameter sets,
whereas the reported NSE in
Figure 7.3 is calculated using
the median streamflow time se-
ries. The median NSE of
Monte-Carlo simulations using
1000 Latin hypercube sampled
parameter sets is on average
0.20 lower. The lower median
is caused by low model perfor-
mances leading to insufficient
NSEs falling below 0. These re-

sults indicate that the calibration based on Ts prevents poor model performances (NSEs < -0.1) and results in
streamflow performances which could be meaningful if no discharge data are available for calibration. The vari-
abilities in the performance criteria obtained by Ts calibration are significantly lower (average standard deviation
of 0.22) compared to those resulting from the Monte-Carlo simulations (average standard deviation of 0.39). Please
note, that the streamflow simulation performance of both experiments, Ts calibration and Monto-Carlo simulations
(Figure 7.3 A), are significantly below calibrations using streamflow (shown in Figure 7.11 panel B). The average
median and standard deviation of these calibrations are 0.87 and 0.01, respectively.

The NSE uncertainties of the Ts calibrations increased (average standard deviation of 0.26) if the model pa-
rameters are transferred to remote locations (Figure 7.4 panel B). One reason is the five times higher number of
ensemble simulations using 100 parameter sets, consisting of 20 parameter sets from each of the other five basins.
Another reason is that some transferred parameters were not well adjusted for transfer to another location because
different hydrologic processes are important in distinct basins. The Neckar basin, for example, has a significant
groundwater contribution to the runoff process due to the karstic nature of the subsurface. Such processes will
play a minor role in the Ems basin, for example, which is mainly located on a ground moraine. Hence, some
subsurface parameters are not well constrained in the Ems basin and will lead to an insufficient representation of
karstic processes in the Neckar basin. Nevertheless, the median NSEs are comparable to the on-site calibrations
(Figure 7.4 panel A) which confirms the transferability and stability of the inferred parameters.
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The comparison of transferred parameters obtained by Q calibration with those acquired by Ts calibration show
an average deterioration of the latter by 39% (Figure 7.4 panel B). This behavior was expected because a cross-
validation of land surface temperature inferred model parameters with streamflow cannot outperform a calibration
employing Q. The best results of the Ts calibrations (upper edges of the box-plots) are, however, at least as good
as the median model performances of the Q calibrations for most of the basins.

The 120 optimized parameter sets (20 from each basin) are transferred to 222 additional basins to assess their
ability to reproduce streamflow observations (Figure 7.5). Some of those basins are sub-basins of the six donor
basins. This cross-validation experiment assesses the stability and validity of the derived parameters since the
basins were not involved in the parameter inference process (Klemeš, 1986). The average median model perfor-
mance is 0.4 for the basins (Figure 7.5 panels A and B). The median NSE of 0.5 is exceeded by 45% of all basins
when considering daily streamflow. On a monthly basis, the average median NSE increases to 0.61 and the num-
ber of catchments with NSE�0.5 increases to 77% (Figure 7.5 panels D and E). These results further support the
hypothesis that land surface temperature can inform the model calibration if no streamflow data is at hand. The
reported NSEs are significantly lower compared to NSEs originating from parameter sets obtained by streamflow
calibrations as presented by Zink et al. (2017). Please note the remarkable uncertainty in Figure 7.5 panels D
and E. These uncertainties differ substantially for daily and monthly streamflow and show significant higher values
than those derived by calibrations using streamflow data (Zink et al., 2017).

Figure 7.5 Budyko plot and performance maps for 120 parameter sets of the six donor basins (Figure 7.1) at 222 basins
spread over Germany. The parameter sets are based on calibrations using land surface temperature alone. The upper row
depicts evaluations based on daily values (panels A, B, and C), whereas the lower row depicts monthly streamflow evaluations
(panels D, E, and F). In the first column the basins are presented as Budyko plots (panels A and D), which are color-coded based
on the ensemble median NSE for daily (panel A) and monthly (panel D) streamflow values. The gray band envelops different
estimations of the Budyko curve (Budyko, 1974; Ol’dekop, 1911; Schreiber, 1904). A separation to energy- (Ep/P < 1) and
water-limited basins (Ep/P > 1) can be made based on the x-axis. The center column depicts the location of the 222 basins
shown in the Bydyko plots using the same color code (panels B and E). The right column shows the range of the 5th and 95th

ensemble percentiles for the NSE on daily (panel C) and monthly (panel F) basis. Panels A, B, D, and E share the left color bar,
and panels C and F share the right color bar. The simulation period is adopted according to the available streamflow observations
but is at least 10 years (average=42 years).
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Using satellite-derived land surface temperature for calibrating hydrologic models is consistent with efforts to
predict streamflow in ungauged basins (Hrachowitz et al., 2013; Sivapalan et al., 2003). In particular, the results
of the six study basins (Figure 7.4) show that Ts could be worth considering if no discharge data are available.

Corbari and Mancini (2014) found similar results for the calibration of a distributed “Energy-Water Balance”
model. In their study, the calibration with Ts did not outperform the streamflow estimation employing the standard
parameterization of Energy-Water Balance model. Silvestro et al. (2015) also found that a land surface temper-
ature calibration lead to performance losses if compared to streamflow calibrations. The deteriorations shown in
those studies are lower than those mentioned above. However, that can be attributed to the calibration procedures
employed. Corbari and Mancini (2014) and Silvestro et al. (2015) restricted the number of parameters to be cal-
ibrated only to those connected to soil moisture and evapotranspiration. The remaining parameters are estimated
from prior knowledge under the assumption that they are insensitive to Ts. To restrict the calibration to a subset of
parameters is a good idea in general but implies a risk. The parameters that remain for calibration may be insen-
sitive or have low sensitivities with regard to Ts if compared to a full parameter calibration (see, e.g., Cuntz et al.,
2015). Hence, a proper sensitivity analysis or parameter screening should be performed before excluding parame-
ters from calibration. In this study, all the parameters are therefore purposed for optimization, and parameters that
are insensitive to Ts but are important for streamflow prediction may have been included.

7.5.2 Calibration of mHM with Streamflow and Land Surface Temperature

This section addresses the question wether a combined calibration of land surface temperature and river streamflow
can improve the model parameter identifiability. We analyze the impact of such an approach on the spatial vari-
ability of evapotranspiration, estimation of streamflow, and estimation of evapotranspiration at eddy flux towers.
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Figure 7.6 The parameter range reduction Rr (Equation ref) is shown. The panels
show wether mHM was calibrated against streamflow (upper row), streamflow and land
surface temperature (middle row), or land surface temperature (lower row). The parameter
range reduction is assessed by scaling the range of a particular parameter resulting from
20 independent calibration runs with the initial parameter range (see Equation 7.16). A
low value (light yellow) indicates a small range reduction, whereas a high value (dark red)
indicates a well-constrained parameter. The parameters are grouped according to their
appearance in the different model processes. Abbreviations: I - interception, D - direct
runoff, E - evapotranspiration, Ts - land surface temperature.

Identifiability of Model Param-
eters: Parameter Range Re-
duction The parameter range
reductions for the calibration of
the models with a) streamflow
alone, b) streamflow and land
surface temperature, and c) land
surface temperature alone are
determined according to Equa-
tion 7.16. One hypothesis of
this study is that adding a di-
agnostic land surface temper-
ature model to an exiting hy-
drologic model helps to bet-
ter constrain certain model pa-
rameters. As indicated in sec-
tion 7.4.3, only the patterns of
Ts were involved in model
calibration of mHM through
the pattern similarity criterion
(Equation 7.13), which uses the
nominal values only indirectly.
The spreads of the ensemble pa-
rameters normalized using their
initial ranges are shown in Fig-
ure 7.6. Dark red colors char-
acterize well-constrained model
parameters, whereas light yel-

low colors identify parameters that are almost randomly drawn from their initial ranges and are thus uninformed
by the data. The figure gives some indications of the identifiability and hence the sensitivity of the parameters
regarding the various variables used for calibration (Q, Ts, or both).
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The interpretation of the sensitivity is analogous to the parameter range reduction - if the parameter range is
reduced, the particular parameter is sensitive with respect to the individual variable.

The most obvious difference between the three optimization strategies can be observed in the group of soil
moisture evapotranspiration parameters (p19 to p24). These parameters primarily govern water extraction from the
soil due to evapotranspiration. They are constrained best if calibrated with Ts (Figure 7.6 bottom panel). The
ranges also narrow significantly when mutually calibrated with Q and Ts (Figure 7.6 center panel). Two out of
the three evapotranspiration parameters (parameters 25 and 26) show a similar behaviors when Ts is involved
in the calibration. This confirms that using patterns of satellite-derived land surface temperature for parameter
optimization helps better constrain model parameters, especially those connected to evapotranspiration.

The results shown in Figure 7.6 also indicate that using Ts only for parameter optimization may not be sufficient
because some parameters are not well constrained. The snow threshold temperature (parameter 2), for example, is
not as well constrained when Q is not considered in the model calibration in most of the basins. The snow threshold
temperature parameter defines the aggregate state of precipitation. If the air temperature is below that threshold,
precipitation is treated as snow, and otherwise, it is considered as rain. Ts is a bad estimator for snow threshold
temperature because that parameter is only important in winter. During the cold season, evapotranspiration is low,
and as a consequence, the impact of Ts on the modeled water fluxes is also low. The Neckar basin, is an exception;
for which the snow threshold temperature is well constrained if calibrated with Ts.

The fifth routing parameter, i.e., parameter 44, is almost insensitive to Ts (Figure 7.6 bottom panel). Parame-
ter 44 is the dominating parameter for routing water through the model domain. Further, the interflow parameters
(parameters 31-34) show lower range reductions when compared to parameter optimizations that included the
Q observations. These insensitivities explain the mismatches in low flows observed in Figure 7.3. Moreover,
the strongly pronounced peaks in Figure 7.6 are reasoned in the weak estimation of the threshold for activat-
ing/deactivating of the fast inflow process (parameter 29 in Figure 7.6).

The high parameter range reductions of the parameters 45-50 confirm the proper implementation and parame-
terization of the diagnostic land surface temperature module. This is an important aspect because increasing the
number of model parameters due to the implementation of a new process should not lead to a distraction of the
optimization algorithm caused by those parameters.

Parameter 51, which is one of the newly introduced Ts parameters, characterizes a bias correction parameter
for Ts. That parameter was implemented during the investigation of different objective functions, in which we also
tested bias sensitive error measures, e.g., NSE or SSE (results not shown). The fact that the parameter is not well
constrained underpins the conclusion that the pattern similarity criterion is bias insensitive.

These results confirm the hypothesis that the consideration of spatially distributed, satellite-retrieved land sur-
face temperature fields next to streamflow improves the identifiability of parameters of the hydrologic model mHM.

Spatial Patterns of Land Surface Temperature and Evapotranspiration Here, the aforementioned higher con-
straint in evapotranspiration related parameters among others using a simultaneous calibration with streamflow and
land surface temperature is analyzed regarding its effect on the spatial variability of land surface temperature and
evapotranspiration.

Table 7.2 Improvement of Spearman rank correlations for
streamflow and land surface temperature calibration compared
to streamflow only calibrations for every catchment and season
season of the year 2009.

Improvement [%] Winter Spring Summer Autumn
Mulde 3.09 3.27 3.63 1.38
Ems 2.4 3.45 4.04 -1.63
Neckar 0.63 2.47 2.73 0.27
Saale 3.13 2.24 3.9 0.64
Main 3.11 3.64 6.29 1.75
Weser 1.42 5.24 5.61 1.8
average 2.14 3.41 4.51 0.57

A pattern analysis, independent from the Pearson cor-
relation coefficient and the pattern similarity criterion,
is based on the Spearman rank correlation coefficient.
This metric is estimated between satellite retrieved and
simulated land surface temperature. Table 7.2 reports
the differences of the Spearman rank coefficients in
terms of improvement using Q and Ts compared to
streamflow only calibrations. The average improve-
ment over the median of the six basins is approximately
3%. The main improvements of the spatial patterns of
Ts are observed in spring and summer as shown in Ta-
ble 7.2.

The maximum improvement of approximately 6% in the Main basin in summer can be understood from the
structure of the hydrologic model mHM. Most of the model internal, effective parameters are based on physio-
graphic input data, e.g., the soil textural properties. Hence, the optimization of the global parameters using land
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surface temperature additionally to streamflow can only improve spatial patterns in a limited range. Nevertheless,
the impact on the spatial distribution of evapotranspiration can be significant, e.g., if evapotranspiration simula-
tions improve in the same order of magnitude. A boxplot of the annual average Spearman rank correlations for
both calibrations, i.e., Q only and Q&Ts, can be found in the supplemental material.

Figure 7.7 Comparison of A) the satellite retrieved land surface temperature (Ts) and simulated land surface temperatures
obtained by B) streamflow only (Q) and C) simultaneous (Q&Ts) calibrations. The plot shows the average land surface
temperature in summer 2009 (June, July, August - JJA) for all six basins under investigation (see Figure 7.1). Observations
and simulations refer to different color bars because of an inherent bias of the satellite retrieved land surface temperature (see
section 7.3.1). Please note that the land surface temperature is derived with the best objective function value of each basin.

Figure 7.7 illustrates the patterns of satellite retrieved and simulated land surface temperatures for summer
2009. The visual inspection of this figure shows that the patterns obtained by the simultaneous calibration with
land surface temperature and streamflow have a lower spatial variability than those using the Q only calibration.
The resulting simulated Ts pattern is closer to the observed pattern but is not identical. The pattern matching, i.e.,
the Spearman rank coefficient, between panels A and C is approximately 5% larger than that between panels A and
B. Plots of the remaining seasons can be found in the supplemental material.

Figure 7.8 Simulated evapotranspiration for model calibrations
based on A) streamflow (Q) or B) streamflow and land surface
temperature simultaneously (Q&Ts). The plot shows the sum
of evapotranspiration in summer 2009 (June, July, August - JJA)
for the six basins (see Figure 7.1). Please note that the shown
evapotranspiration is derived with the best objective function value
of each basin.

Figure 7.8 shows the evapotranspiration in the sum-
mer of 2009 in all basins under investigation.
Panel A displays the results of an optimization with
streamflow alone, and panel B shows the results
of the calibration with streamflow and land surface
temperature. The pattern of the evapotranspiration
when calibrated with streamflow shows higher spa-
tial variability in comparison to the simultaneous Q
and Ts calibration. The mean E is approximately
6% higher if the model is calibrated with Q and
Ts. The average evapotranspirations for the Q ver-
sus Q and TS calibration are 245 mm season�1 and
259 mm season�1 in the summer of 2009, respec-
tively. The locations with evapotranspiration values
less than 160 mm season�1 are sealed areas. Plots
of the remaining seasons can be found in the sup-
plemental material. The visual comparison in Figure
7.8 supports the hypothesis that the spatial field of
evapotranspiration has a higher spatial variability if
the model is optimized with streamflow only.
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The spatial variability of the evapotranspiration decreases if land surface temperature, which carries some infor-
mation about the spatial distribution, is included in the calibration process. McCabe et al. (2005) also found that
Ts had an effect on the spatial variability of evapotranspiration but did not quantify it.

In this study, we quantify the impact on the spatial fields of evapotranspiration using signal-to-noise ratio (SE ,
see Equation 7.17). For the two example basins, Ems and Main, the smoothed signal-to-noise ratio over the course
of 2009 is shown in Figure 7.9. The SE is higher for the calibration with streamflow and land surface temperature.
This means the fields of E are smoother and have lower spatial variability than those obtained by calibration
with streamflow. This smoothing is not only caused by Ts but to a significant extent by the air temperature as well,
which is a very sensitive variable in Equation 7.7. Air temperature has very high spatial covariance, i.e., low spatial
variability, compared to, e.g., precipitation, which propagates to evapotranspiration in the proposed framework.
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Figure 7.9 Kernel-smoothed signal-to-noise ratio (S, Equation 7.17) of evapotranspiration fields for the A) Ems and B) Main
basins. Low values characterize noisy fields, whereas high values describe spatially smooth patterns. The uncertainty bands
depict the difference between the 5th and 95th percentiles of the signal-to-noise ratio of the 20 on-site calibrated parameter sets.
The solid line represents the 50th percentile of the respective basin. The red band/line marks calibrations using land surface
temperature (Ts) and streamflow (Q) simultaneously, whereas blue indicates calibrations using streamflow alone. Please note
that the y-axes do not start at 0.

A significant impact of the calibration procedure on simulated evapotranspiration can only be observed between
April and September (Figure 7.9). During winter, evapotranspiration is very low and thus uncertain model param-
eters do not have a significant effect on either the magnitude or the spatial variability of E. The uncertainty of the
modeled E is, however, low during winter.

Figure 7.10 panel A presents the average signal-to-noise ratios for 2009 for the six basins and panel B presents
the streamflow NSE. The signal to noise ratio SE is higher for all of the Q-Ts calibrations, as panel A shows.
Furthermore, the spreads are smaller compared to the Q calibration for all the basins, with exception of the Mulde.
Figures 7.9 and 7.10 confirm that the spatial variability of evapotranspiration is reduced if land surface temperature
is considered during model calibration.

Streamflow Simulations Finding a compromise solution for optimizing hydrologic models with Q and Ts should
not deteriorate the streamflow simulation significantly. Figure 7.10 panel B shows that for four out of the six basins
this condition is fulfilled. For the Neckar and Weser basins the streamflows deteriorate significantly by more than
5% for the simultaneous calibrations. A possible reason could be the weighting scheme between the two objectives,
Q and Ts. For some basins, it may be necessary to increase the weighting of the objective function considering
streamflow, i.e., �1 and �2 in Equation 7.12. Crow et al. (2003) studied the effects of weighting Q and Ts differ-
ently and found that the model performance differs based on the chosen weighting scheme. The herein proposed
weighting was determined during precedent tests for the Ems and Neckar basin and showed good results for these
test cases. Generally, the weighting of different objectives can be argued in one way or another. Ideally, a Pareto
optimization would provide closer insight to the offset between both objectives. However, the decision regard-
ing which objective should be preferred remains a subjective choice. The NSE does not improve by assimilating
Ts in any of the basins, with exception of the Mulde (Figure 7.10 panel B). On average, the median streamflow
performance deteriorates by 6% if Ts is considered in the calibration. A range of -11% to 14% in performance dif-
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Figure 7.10 Comparison of the optimization strategies using Q only or Q and Ts regarding A) the average spatial variability
of evapotranspiration (here SE) and B) Nash-Sutcliffe performance criterion (NSE) of daily streamflow (panel B). The results
shown in panel A are estimated by averaging the daily signal-to-noise ratios of 2009 (e.g., Figure 7.9). Panel B shows the
performance of the simulated streamflow of 2009. The spread of the values (uncertainty) stems from the 20 independent
parameter estimations. In both panels, large values indicate better performance. Please note that the y-axes in both panels do
not start at 0.

ferences was found by Corbari and Mancini (2014) if the model is calibrated by Ts and Q simultaneously, which
is comparable to the findings of this study.

Evapotranspiration at Eddy Flux Towers Figure 7.11 compares the performances of simulated evapotranspira-
tion, determined on a 100 ⇥ 100 m2 spatial resolution, using the classical streamflow calibration with the com-
bined Q-Ts calibration. The Pearson correlation coefficient between the observations and simulation is increasing
when mHM is calibrated with both Q and Ts (Figure 7.11 panel A). The medians of the correlation and RMSE
improve by 5% and 8%, respectively. Major improvements are achieved in summer when the evapotranspiration is
highest; for example, the median correlation coefficient in summer improves from 0.36 to 0.67 at station E3.
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Figure 7.11 Evaluation of the evapotranspiration (E) estimates at 7 eddy flux towers (Figure 7.1). A) shows the Pearson
correlation coefficient and B) shows the root mean square error (RMSE) between the flux tower observations and model
simulations using 20 parameter sets inferred by either calibration with streamflow Q (blue) or streamflow and land surface
temperature Q&Ts (red). The observational periods of the flux towers range from 3 to 10 years, and, on average there are 6
years of data. Note that high Pearson correlation coefficients are beneficial, whereas the opposite holds for the RMSE. Please
note that the y-axes do not start at 0.

Another important effect is the reduction in uncertainty of the evapotranspiration simulations (Figure 7.11). At
some stations, the uncertainty bands are hardly visible for the Q-Ts calibration. This behavior can be directly at-
tributed to the parameter range reduction (see section 7.5.2). The uncertainties in the E estimates have to decrease
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because the parameter estimation uncertainties of the parameters related to evapotranspiration decreased (parame-
ters 19 to 27 in Figure 7.6). Please note that the eddy flux towers are unevenly distributed among catchments and
their analyses are biased towards the Mulde and the Saale catchment because each of them are hosting 3 out of the
7 stations under investigation. Comparing the improvements in E estimation and the deterioration in Q simulation,
it is difficult to draw a conclusion. We consider that a combined calibration with Q and Ts is beneficial based
on the tradeoff of performances of the two major water balance variables E and Q and, moreover, the improved
parameter identifiability.

7.6 Summary and Conclusions

The results of the study confirm that accounting only for spatial variabilities in land surface temperature in the
parameter inference process results in model simulations whose efficiency could be meaningful if no streamflow
data are available for calibration and evaluation. It is, however, a step forward towards predictions in ungauged
basins. Land surface temperature data are broadly and freely available over the entire globe and thus represent a
valuable source of information for hydrologic modeling.

A second finding of this study is that calibrating the hydrologic model mHM with Q and Ts leads to better-
constrained model parameters, even if the implementation of the diagnostic land surface temperature module re-
quires additional model parameters. In particular, parameters connected to evapotranspiration were better con-
strained when compared to streamflow only calibrations. This finding indicates that the classical calibration of
hydrologic models can be improved by incorporating spatial information originating in satellite data.

The herein presented methodology is a step forward for considering such spatially distributed observations,
even if they are inherently biased. The developed pattern similarity criterion is a first attempt to assess the spatial
structures of spatially distributed observations.

Some limitations of this methodology were also observed. Model performance with regard to streamflow de-
creased despite the fact that the model parameters were better constrained. At the same time, the model perfor-
mance regarding evapotranspiration increased at the seven eddy flux measurement sites.

Parameters connected to interflow and routing could not be sufficiently constrained if only Ts was considered in
the calibration process. Further research must be performed to explore other sources of satellite data, which may
overcome this discrepancy. GRACE data, for example, seem to be a promising alternative for assessing subsurface
model parameters.

Research must also be dedicated for investigating new measures to incorporate either spatial or temporal infor-
mation of satellite data. Cloke and Pappenberger (2008) and Koch et al. (2015) have already made some efforts in
that direction, but the studies concerning bias-insensitive pattern matching criteria in hydrology remain rare.

Two-step calibration is another approach that could make better use of satellite information. However, a sensitiv-
ity analysis must be used initially to identify model parameters that are sensitive to the respective model variables,
e.g., streamflow or land surface temperature. Based on that knowledge, the hydrologic model would be calibrated
first with land surface temperature and second with streamflow by only considering the sensitive parameters for the
respective variables.
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Apendix: General Solution of a Depressed Quartic Equation

Based on the energy balance equation (see Section 3.2, Equation 7.7), the following functional relationship for cT s

was found
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The aim of this appendix is to find the real roots of Equation 7.18. For simplicity, it would be easier to rearrange
this equation as

cT s

4
+ qcT s + r = 0, (7.19)
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Because the cubic term of the cT s formulation (Equation 7.7) is absent, the resulting equation is called a de-
pressed quartic equation having this general form:

x4 + px2 + qx + r = 0. (7.22)

A depressed quartic equation can be solved explicitly by a method discovered by Ferrari in 1545 (Cardano,
1993). The first step of his method consists on rewriting the depressed quartic equation into two parts as follows
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In the second step, an arbitrary variable m is introduced into the left-hand side so that the right-hand side can be
factorized. To keep the equality, the corresponding terms are added to the right-hand side. The resulting equation
is
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Since m is an arbitrary factor, it can be selected so that one get a perfect square on the right-hand side (i.e., a
single positive solution). A perfect square solution for a quadratic equation can be obtained when the discriminant
of x on the right-hand side is equal to zero, in other words, when

(�q)2 � 4(2m)(m2 + mp +
p2

4
� r) = 0. (7.25)

By rearranging the discriminant, we obtain the “resolvent cubic of a quartic equation” (R):

R = 8m3 + 8pm2 + (2p2 � 8r)m � q2 = 0 (7.26)

whose real roots can be found using Cardano’s formula (Cardano, 1993) (see section “General Real Roots of the
Resolvent” below). Assuming that we have found a solution for the resolvent such that m 6= 0, the right-hand side
of Equation 7.24 can be factorized as follows
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which can be rearranged and decomposed into two factors to obtain the following expression
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Finally, Ferrari’s method solves the depressed quartic equation by applying the quadratic formula to every factor
independently. Note that the solution is dependent on the real root m of the resolvent R:
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where ±1 and ±2 denote the four corresponding occurrences of + and -.

General Real Roots of the Resolvent

The real roots of the resolvent R can be found with Cardano’s solution for a general cubic equation (Cardano,
1993) of the form

m3 + am2 + bm + c = 0. (7.31)

Using this notation, the real root of this equation is given by the expression:
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Solution of cT s

Since the quadratic term of the Equation 7.19 is missing (p = 0), the equation of the resolvent (7.26) can be
simplified to a depressed cubic equation
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whose real root m0, based on Equation 7.32 (with a = 0, b = �r and c = �
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This finally leads to the real solution of the quartic Equation (7.30) in the interval [0 K, 500 K] (which is the only
root of interest for this study):
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8.1 Abstract

Droughts diminish crop yields and can lead to severe socio-economic damages and humanitarian crisis (e.g.,
famine). Hydrologic predictions of soil moisture droughts several months in advance are needed to mitigate the
impact of these extreme events. In this study, the performance of a seasonal hydrologic prediction system for
soil moisture drought forecasting over Europe is investigated. The prediction system is based on meteorological
forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale Hydro-
logic Model (mHM). The skill of the NMME based forecasts is compared against those based on the Ensemble
Streamflow Prediction (ESP) approach for the hindcast period of 1983-2009. The NNME based forecasts exhibit
an Equitable Threat Score that is on average 69% higher than the ESP based ones at a six month lead time. Among
the NMME based forecasts, the full ensemble outperforms the single best performing model CFSv2, as well as all
subensembles. Subensembles, however, could be useful for operational forecasting because they are showing only
minor performance losses (less than 1%), but at substantially reduced computational costs (up to 60%). Regardless
of the employed forecasting approach, there is considerable variability in the forecasting skill ranging up to 40%
in space and time. High skill is observed when forecasts are mainly determined by initial hydrologic conditions.
In general, the NMME based seasonal forecasting system is well suited for a seamless drought prediction system
as it outperforms ESP based forecasts consistently over the entire study domain at all lead times.

8.2 Introduction

Droughts appear worldwide and belong to the most devastating natural catastrophes. Droughts are defined as dry
anomalies and occur in all compartments of the hydrological cycle (Sheffield and Wood, 2011) such as the atmo-
sphere (meteorological drought), streamflow and groundwater (hydrological drought), and root zone soil moisture
(agricultural drought). We focus here on agricultural droughts because they are able to reduce crop yields leading
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to substantial socio-economic damages. For example, the 2003 European drought has caused losses in the order of
13 bn EUR (COPA-COGECA, 2003), whereas in the U.S. it is estimated that droughts lead to damages of 10 bn
USD on average per event (mainly agricultural but also others such as livestock, Smith and Katz, 2013; Smith
and Matthews, 2015). In developing countries, droughts even threaten the livelihood of societies. The 2010-2011
drought in the Horn of Africa, for example, led to a severe humanitarian crisis affecting around 12 million people
(Dutra et al., 2013; Relief , 2011). Drought early warnings can help to mitigate the impact of these disasters several
months in advance, but only if they are based on skillful seasonal forecasting systems.

State-of-the-art seasonal forecasting systems employ either dynamical or statistical frameworks to generate a
drought forecast. Statistical frameworks, for example, use conditional distribution functions of observed historical
datasets for drought prediction (Shahrbanou Madadgar and Hamid Moradkhani, 2013). Dynamical prediction
systems represent the physics of the Earth system and typically constitute of Coupled General Circulation Models
(CGCMs), which provide climate forecasts (CFs) of meteorological variables (e.g., precipitation and air temper-
ature). These forecasts are then used to force a hydrological model that can reliably simulate the land surface
components of the hydrological cycle such as root zone soil moisture (SM). Previous studies have assessed the
forecast skill of experimental prediction systems for specific drought events (Dutra et al., 2013; Luo and Wood,
2007) as well as for multi-decadal hindcast periods (Mo and Lettenmaier, 2014; Mo et al., 2012b; Shukla and
Lettenmaier, 2011; Shukla et al., 2014; Wang et al., 2011; Yuan et al., 2011, 2013a,b, 2015). In these studies, the
Ensemble Streamflow Prediction (ESP) approach is frequently used as a benchmark for representing climatologi-
cal skill (Day, 1985). ESP is a statistical method that resamples meteorological forcings from a historic dataset to
represent the forcing uncertainty under unknown future conditions. It has been used to discriminate between the
impact of initial hydrologic conditions (IHCs) and that of CFs on hydrologic predictions (Shukla and Lettenmaier,
2011; Shukla et al., 2013; Wood and Lettenmaier, 2008).

Previous studies indicate that SM predictability depends strongly on the region considered. For example, ESP
based SM forecasts in the Western United States are as skillful as CF based ones while the latter only add value at
one month lead time (Mo et al., 2012b; Shukla and Lettenmaier, 2011). In contrast, the National Center for En-
vironmental Prediction Climate Forecasting System (CFS) version one and two provide more skillful SM drought
forecasts than ESP in the Central and Eastern United States up to six months lead time (Yuan et al., 2013a). This
might be related to stronger correspondence of drought to the El Niño-Southern Oscillation (ENSO) in these re-
gions and thus a higher atmospheric predictability (Mo, 2011; Mo and Lyon, 2015). A similar finding has been
observed by Dutra et al. (2013) for a hindcast of the 2010-2011 Horn of Africa drought using the European Centre
for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting systems S3 and S4. They reported high
predictability for periods associated with a La Niña event and less predictability otherwise. Although such ENSO
teleconnections are weaker in Europe, Yuan et al. (2015) observed that CGCM based drought forecasts exhibit
higher skill than ESP based ones up to five months lead times over the Danube river basin. In that study, the
authors employed the recent North American Multi-Model Ensemble (NMME) which comprises 71 realizations
of a multi-institutional, multi-model ensemble of climate forecast models up to lead times of 9-10 months (Kirt-
man et al., 2014). The spatio-temporal distribution of SM drought forecasting skill using NMME over Europe
has, however, not yet been fully evaluated. A high forecasting skill irrespective of the location and lead time is a
fundamental requirement for a seamless prediction system.

Few studies focused on drought predictability during particular drought phases such as the development, onset,
and recovery. In one of these, Mo (2011) reported that drought recovery is more difficult to predict in the United
States as it evolves on a shorter time scale than the development. Yuan and Wood (2013) reported that NMME
models add skill to forecasts of meteorological drought onsets in tropical regions, but not in extra-tropical ones. In
contrast to precipitation, SM drought predictability depends strongly on the IHCs (Wood and Lettenmaier, 2008),
which are substantially drier during the recovery than during the development phase. This characteristic has not
been exploited when investigating the impact of IHCs on SM forecasts.

Multi-model forecasting ensembles such as CFSv2, ECMWF S4, and NMME have ever-increasing ensemble
sizes to provide a better estimate of model uncertainty. This implies that they also offer more than one meteoro-
logical forcing time series for assessment studies. Nonetheless, most assessment studies focus only on the grand
ensemble mean (Dutra et al., 2013; Mo et al., 2012b; Yuan et al., 2013a, 2015, among others). Few studies related
the performance of the grand ensemble to that of individual models (Mo and Lettenmaier, 2014; Yuan and Wood,
2013). Thober and Samaniego (2014) recently showed that investigating subensembles, which do not take all re-
alizations into account, has the potential to increase ensemble performance for reproducing extreme precipitation
and temperature indices. Considering the fact that SM predictability is highly dependent on the quality of precip-
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itation forecasts, subensembles could help either to increase the forecasting skill, or to reduce computational load
for operational forecasts without loosing predictability.

Given the current knowledge regarding NMME based SM drought forecasts over Europe, four research ques-
tions constitute the main goal of this study. 1) Are NMME based drought forecasts more skillful than ESP based
ones over larger parts of the European domain? 2) How is the drought forecasting skill distributed in space and
time? 3) How skillful are subensembles in forecasting European droughts in comparison to single NMME mod-
els and the full ensemble? 4) How do IHCs impact drought forecasting skill during drought development and
recovery?

To address these research questions, the mesoscale Hydrologic Model (mHM, Kumar et al., 2013; Samaniego
et al., 2010a) is used to simulate SM for monthly NMME based precipitation and air temperature forecasts for
the hindcast period of 1983-2009. These NMME based forecasts are contrasted against those based on the ESP
approach, which serve as a benchmark in this study. The mHM derived SM forecasts are then transformed to
a quantile based soil moisture index (SMI). The SMI lies in the interval [0,1] and a threshold of 0.2 is used to
classify droughts. This cutoff implies that the lower 20% of SM states occurring in a given period (e.g., a month)
are considered as drought. Reference SMI fields are created using the observation based E-OBS dataset (Haylock
et al., 2008) to assess the skill of the different forecasting approaches employing the Pearson correlation coefficient
and the Equitable Threat Score (ETS).

8.3 Methods and Datasets

8.3.1 Climate Forecasts

The forecasting dataset used in this study incorporates realizations of eight global climate models from the North
American Multi-Model Ensemble (NMME) with ensemble members varying between 6 and 24 per model (Ta-
ble 8.1, see also Kirtman et al. (2014)). Monthly CFs of precipitation and air temperature are provided globally at
a 1� ⇥ 1� spatial resolution for lead times up to eight months. In total 101 realizations are used in this study avail-
able from the International Research Institute for Climate and Society. The performance of these models for soil
moisture drought forecasts is analyzed for the overlapping hindcast period of 1983-2009. It has to be mentioned
that not all of these models are participating within the NMME phase two real-time dataset (NMME, 2014). The
analysis of the hindcast dataset in this study, however, provides the opportunity to investigate the performance of
a large ensemble of seasonal climate model predictions in comparison to that of a simple statistical approach. The
analysis is conducted over the European domain covering an area between 10�W-45�E and 35�N-55�N.

Table 8.1 Climate Forecasting models used in this study, Institute they are developed at, and ensemble members available
(see Kirtman et al. (2014) for details).

Acronym Model Institute Ensemble

members

CCSM3 Community Climate System Model, Version 3 University of Miami, Rosenstiel School of Marine and Atmo-
spheric Science

6

CM2p1 Climate model version 2.1 Geophysical Fluid Dynamics Laboratory 10
ECHAMA ECHAM version 4.5 anomaly coupled International Research Institute for Climate and Society 12
ECHAMD ECHAM version 4.5 direct coupled International Research Institute for Climate and Society 12
GEOS5 Goddard Earth Observing System Model version 5 National Aeronautics and Space Administration 12
CFSv1 Climate Forecasting System version 1 National Center for Environmental Prediction 15
CFSv2 Climate Forecasting System version 2 National Center for Environmental Prediction 24
CanCM3 Canadian Coupled Global Climate Model version 3 Canadian Meteorological Center 10

8.3.2 Construction of Soil Moisture Forecasts

The well-constrained mesoscale Hydrologic Model (mHM, Kumar et al., 2013; Samaniego et al., 2010a) is used
here to generate gridded estimates of soil moisture (SM) fields over the study domain. mHM is a spatially explicit
distributed hydrologic model in which hydrological processes are conceptualized similar to these of other existing
large-scale models like the VIC (Liang et al., 1996a) and the WaterGAP model (Döll et al., 2003). It is driven by
daily gridded fields of precipitation, air temperature, and potential evapotranspiration to simulate different compo-
nents of the terrestrial hydrological system such as canopy interception, snow accumulation and melt, soil moisture
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and infiltration, runoff generation and evapotranspiration, deep percolation and base flow, and flood routing be-
tween grid cells. The model is open source (www.ufz.de/mhm) and readers interested in more details may refer to
Samaniego et al. (2010a). To date, mHM has been successfully applied to several river basins in Germany, North
America, and Europe (Kumar et al., 2013,b; Samaniego et al., 2010a, 2013, 2014). In this study, a similar model
setup with respect to terrain, soil, and land cover characteristics as used by Rakovec et al. (2016a), who demon-
strated the ability of mHM to adequately represent the spatio-temporal dynamics of runoff, evapotranspiration, soil
moisture, and total water storage anomaly over a wide range of European river basins.

The reference monthly SM field is obtained by forcing mHM with the observation based gridded E-OBS dataset
(v8.0, Haylock et al., 2008) during the period 1950-2010. The E-OBS dataset is aggregated to 1� grid resolution to
be compatible with the resolution of the North American Multi-Model Ensemble (NMME) dataset. This reference
SM field is then used to represent initial hydrologic conditions (IHCs) at the beginning of each month during the
hindcast period (1983-2009).

Furthermore, the E-OBS dataset is used to set up the NMME and ESP based forecasts. The Ensemble Stream-
flow Prediction (ESP) forecast ensemble is created by resampling the meteorological dataset (i.e., E-OBS) of the
hindcast period for a given target month excluding the year of that month, which is similar to the approach of pre-
vious studies (Day, 1985; Shukla et al., 2013; Twedt et al., 1977; Wood and Lettenmaier, 2008, among others). In
total, the ESP forecasting ensemble consists of 26 members. The spatio-temporal variability of the E-OBS dataset
is employed to disaggregate NMME based monthly precipitation forecasts to their corresponding daily values using
a multiplicative cascade approach (Thober et al., 2014). This approach preserves the observed spatial patterns at
the daily time scale as well as the monthly amount of the forecasted precipitation. Each monthly NMME forecast
is stochastically disaggregated to an ensemble of 25 daily realizations, thus increasing the overall ensemble size
to 2525 (= 101 ⇥ 25). The daily weights for disaggregating the monthly temperature forecasts are derived from
the E-OBS dataset for a given target month. This procedure is similar to the rescaling technique used by Yuan
et al. (2015). The rescaled temperature estimates are then also used to adjust potential evapotranspiration, which
is calculated using the Hargreaves-Samani approach (Hargreaves and Samani, 1985). The daily mHM derived SM
fields for both forecasting systems are then averaged to their monthly estimates. A representative SM field for a
given NMME model realization is created by averaging the corresponding estimates derived from the 25 disag-
gregated meteorological forecasts because there is no significant variability among the latter fields as they are all
forced with the same monthly precipitation and air temperature.

8.3.3 Calculation of Soil Moisture Index

The monthly soil moisture (SM) fields are converted into their respective quantiles using a non-parametric kernel
density estimation method for the drought analysis. The kernel density f̂(x) is estimated by

f̂(x) =
1
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for a given sample of n SM fractions x1, . . . , xn, bandwidth h, and kernel function K. A Gaussian kernel is used
in this study and the bandwidth h is estimated by an optimization against a cross-validation error estimate (see
Samaniego et al. (2013) for details). The respective quantiles, hereafter denoted as soil moisture index (SMI), and
the corresponding distribution functions are estimated for each grid cell and calendar month independently. This
procedure removes the seasonality of simulated SM and allows the comparability of SMI across locations. A SMI
threshold value of 0.2 is used here to identify drought events following previous studies (Andreadis et al., 2005;
Samaniego et al., 2013; Sheffield et al., 2012; Vidal et al., 2010, among others).

The monthly SM estimates are converted to their respective standardized anomalies prior to the conversion of
SM to SMI to ensure their comparability across different realizations, climate models, and forecasting methods
(Koster et al., 2009). The standardized anomalies are obtained by removing the seasonal mean and standard devi-
ation. In this approach, the distribution function f̂ is estimated only once using the reference SM anomalies. The
forecasted SM anomalies are converted to SMI using this unique distribution function. This procedure provides a
fair comparison between NNME and ESP based forecasts. In this study, no bias correction is applied to the NMME
forecasts because the SMI calculation and the standardization of SM forecasts accounts for biases, particularly in
the mean and standard deviation, as long as these biases are small and do not lead to unrealistic model behavior.
The standardization of SM has also been exploited in previous studies to ensure comparability among different SM
products (Dirmeyer et al., 2004; Koster et al., 2009; Wang et al., 2011). It is worth mentioning that bias correction
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is crucial for the correct quantification of hydrological fluxes in other applications where even small biases would
modify the results substantially such as streamflow predictions (e.g., Luo et al., 2007; Mo and Lettenmaier, 2014).

Three SMI forecasting ensembles are created in this study: two based on NMME forecasts and one based
on ESP. The two NMME based approaches differ with respect to the employed averaging scheme. In the first
approach, SMI forecasts are created for all 101 model realizations independently and these are then averaged to
obtain a grand NMME ensemble mean for SMI. This approach is denoted as SMI. In the second approach, the
SM fields are first averaged over all model realizations to create a grand NMME ensemble mean for SM. The
latter is then transformed to its respective SMI. This approach is denoted as SMI(SM). These two approaches will
provide different results, because the SMI calculation is a highly non-linear transformation. Investigating these
two averaging schemes will help to determine the best possible NMME drought forecasting skill.

8.3.4 Subensemble Selection

The North American Multi-Model Ensemble (NMME) based forecasts are further evaluated with respect to the
performance of subensembles, as these might give a better performance as the full ensemble but with a reduced
computational demand. There are several subensemble selection methods available to identify the best performing
subensemble and the backward search algorithm is used in this study as suggested by Thober and Samaniego
(2014). This algorithm is computationally efficient because it does not require the evaluation of all possible
subensemble combinations. The algorithm is summarized here:

1. Select all NMME models as the first subensemble.

2. Sequentially remove a remaining model from the subensemble and evaluate the corresponding performance
(e.g., Pearson correlation coefficient R).

3. Repeat step 2 for all remaining models contained in the subensemble.

4. Replace the subensemble with the combination exhibiting the highest performance found in steps 2 and 3.

5. Repeat steps 2 to 4 until the subensemble contains only a single model.

6. Select the combination with the highest performance as the best performing subensemble.

8.4 Results and Discussion

8.4.1 Representation of Spatio-Temporal SMI Dynamics

The overall skill of the NMME and ESP based forecasts to mimic the spatio-temporal dynamics of the reference soil
moisture index (SMI) is analyzed for different lead times using the Pearson correlation coefficient R (Figure 8.1).
Two different averaging schemes have been employed to create the NMME based forecasts (Section 28.3.3). All
three methods have a comparably high skill at one month lead time (R ⇡ 0.9), confirming the strong influence of
initial hydrologic conditions (IHCs) on SM forecasts at a short lead time (Shukla et al., 2013; Wood and Letten-
maier, 2008). Expectedly, the forecasting skill decreases with increasing lead time, but the rate of this decrement
is method dependent. For instance, the spatially averaged R value for ESP based forecasts drops from 0.90 at one
month lead time to 0.32 at six months lead time (around 65% loss; Figure 8.1, panels g-i). For NMME based
forecasts, which have been created by the SMI averaging approach, the skill decreases from 0.87 to 0.25 (around
71% loss; Figure 8.1, panels a-c). This is the strongest decrement among all considered methods, and also the
lowest performance at any lead time. On the contrary, NMME based forecasts created by the SMI(SM) averaging
approach, have the highest performance and the lowest decrement among all considered methods (around 42%
loss; Figure 8.1, panels d-f).

The outperformance of the SMI(SM) approach is also present for all four seasons (Table 8.2). The SMI fore-
casting skill is highest in winter (DJF) for all considered methods which might be related to snow pack that has a
high influence on soil moisture development in the following months. NMME based forecasts also benefit from
a higher precipitation forecasting skill during these seasons, particularly at a one month lead time (see Figure 2
in Mo and Lyon, 2015). For one and three month lead times, low forecasting skills are observed during autumn
(SON). Interestingly, these shift to summer (JJA) for six month lead time. This implies that the forecasting skill is
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small for forecasts ending at the beginning of winter. This might be related to the fact that higher evapotranspira-
tion during summer and autumn reduce SM persistence during these seasons. Since the ordering of the different
methods does not change with season (Table 8.2), the average forecasting skill over the whole year is investigated
in the following analysis.

Figure 8.1 The skill to reproduce reference SMI is illustrated in terms of the Pearson
correlation coefficient R between the forecasted and reference SMI for lead times of one,
three, and six months. The skill of the NMME ensemble is depicted for two averaging
schemes: SMI and SMI(SM) in panels a-c and d-f, respectively. In the panels g-i, the skill
of the ESP approach is shown. The persistence of reference SMI (estimated as Pearson
auto-correlation) is displayed in the panels j-l. The spatial average of the corresponding
R is depicted in the upper right corner of each panel.

Although the different fore-
casting methods yield distinc-
tively different skill, the spa-
tial patterns among the cor-
responding forecasts are very
similar (Figure 8.1, panels a-
i). This is observed for any
lead time. Regions exhibit-
ing consistently higher skill
are located for all methods
in Poland, Northern France,
and Eastern Ukraine and rel-
atively less skill in the Alps
(i.e., Northern Italy, Switzer-
land, and Austria) and in the
Pyrenees along the Spanish-
French border. These patterns
compare remarkably well with
those of the persistence map
of reference SMI (Figure 8.1,
panels j-l). A high persis-
tence (i.e., auto-correlation) of
reference SMI indicates that
SM states are exhibiting a long
memory, which induces a high
dependence of SMI forecasts
on IHCs. In this study, per-
fect knowledge of IHCs is as-
sumed (i.e., they are the same
for all forecasts and the refer-
ence dataset), which leads to a
high SMI forecasting skill (i.e.,
a high R) at locations exhibit-
ing high SM persistence. On
the contrary, SMI forecasts at
locations having a short mem-
ory will be more dependent on

CFs and the large uncertainty therein reduces the ability to represent reference SMI dynamics.

NMME precipitation forecasting skill is very low over Europe (Figure 8.2, panels a-c) as found in previous
studies (Mo and Lyon, 2015; Yuan and Wood, 2012a; Yuan et al., 2015). It is, however, significant for one month
lead time. Temperature forecasting skill is comparatively high and does not decrease with increasing lead time
(Figure 8.2, panels d-f). Notably, the cumulative precipitation and average air temperature are considered at three
and six month lead times because droughts are creeping events that depend more on the integrated forecasting skill
than at the forecasting skill of a particular month. It appears that the seasonality helps to achieve a skillful forecast
for temperature at a long lead time. ESP based predictions do not exhibit any skill for temperature and precipitation
forecasts because this method uses only climatological information. It is thus not surprising that the relatively high
skill in temperature and the significant skill in precipitation for one month lead time induces a higher skill into the
NMME based forecasts compared to those based on ESP.
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Figure 8.2 Meteorological forecasting skill is quantified for NMME based precipitation
(panels a-c) and air temperature (panels d-f) predictions using the anomaly correlation
(i.e., the Pearson correlation between forecasted and reference standardized anomalies).
The anomalies of cumulative precipitation and average air temperature are considered
at three and six month lead times. The spatial average of the corresponding anomaly
correlation is depicted in the upper right corner of each panel.

The spatial patterns of
SMI(SM) forecasting skill
show a higher agreement with
the reference SMI persistence
than with those of meteorolog-
ical forecasting skill (compare
Figure 8.1 and Figure 8.2).
This highlights the fact that the
IHCs have a higher impact on
the spatial variability of SMI
forecasting skill than the CFs.
The latter, however, causes
the outperformance of NMME
based forecasts in comparison
to ESP based ones. These
results illustrate the complex
interactions between IHCs,
CFs, and SMI forecasting skill.

In general, the NMME based
forecasts outperform the ESP
based ones by 69% on average
at a six month lead time (Fig-
ure 8.1; compare ETS in panel f
and i).

Table 8.2 The skill to reproduce reference soil moisture index (SMI) is presented in
terms of Pearson correlation coefficient R between the forecasted and reference SMI for
lead times of one, three, and six months averaged over the four seasons DJF, MAM, JJA,
and SON. Forecasting skill is depicted for the season the forecast is initialized.

Lead time Method DJF MAM JJA SON
SMI 0.93 0.89 0.86 0.83

1 month SMI(SM) 0.97 0.93 0.92 0.91
ESP 0.96 0.90 0.88 0.88
SMI 0.56 0.50 0.47 0.41

3 month SMI(SM) 0.77 0.73 0.69 0.63
ESP 0.73 0.57 0.55 0.55
SMI 0.29 0.29 0.18 0.24

6 month SMI(SM) 0.63 0.58 0.44 0.51
ESP 0.39 0.28 0.21 0.37

A similar outperformance
has also been reported by Yuan
et al. (2015) using bias cor-
rected CFs. No bias correc-
tion is applied to the CFs in the
present study because the SMI
calculation using standardized
SM anomalies implicitly ac-
counts for biases in SM as long
as the obtained SM dynamics
are not unrealistic (e.g., a con-
stantly saturated soil). This il-
lustrates that bias correction of
state-of-the-art CFs might not

be required to obtain a high forecasting skill for SM drought prediction. An analogous finding was reported
by Yuan and Wood (2012b) for streamflow, who demonstrated that driving a hydrologic model with raw CFs and
subsequently bias correcting the simulated streamflow results in a skillful prediction of the latter.

8.4.2 The Effect of Model Averaging

Additional to the initial land surface conditions, the averaging scheme employed to create the North American
Multi-Model Ensemble (NMME) based forecast has a decisive impact on the skill of representing reference soil
moisture index (SMI) dynamics (Figure 8.1, panels a-f). Notably, the ensembles created by the SMI(SM) averag-
ing scheme outperform Ensemble Streamflow Prediction (ESP) based forecasts, while the ensembles created with
the SMI approach do not. This implies that the kind of averaging applied can have large impacts on the conclusions
drawn in previous studies investigating the capabilities of ensemble drought prediction systems (Mo and Letten-
maier, 2014; Mo et al., 2012b; Wang et al., 2011; Yuan et al., 2013a, 2015). The SMI values of individual models
are often recasted to the one of the ensemble in these studies and the skill of drought prediction systems might
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be further increased by using averaging schemes that preserve the frequency of SMI values and therefore capture
extremes.

Figure 8.3 For a given grid cell (located in Central France at 47.19� N,
3.21� E), the exemplary time series of SM and SMI are depicted in panels
a and b, respectively. In both panels, the blue line delineates the dynamics
of the reference dataset and the gray band shows the uncertainty obtained
from the 24 ensemble members of the CFSv2 forecasts at two months lead
time. The gray dashed line in the top panel a denotes the average of the
CFSv2 SM ensemble. The gray and black dashed lines in the bottom panel b
denote the SMI ensemble derived by the SMI and SMI(SM) averaging
scheme, respectively. The thin horizontal dashed line illustrating the drought
threshold 0.2 is displayed for clarity.

The 24-member CFSv2 ensemble is
used as one example to illustrate the impact
of different averaging schemes on SMI dy-
namics (Figure 8.3). A strong annual cy-
cle can be observed for both the forecasted
and the reference soil moisture (SM) frac-
tions. The mean SM forecast tends to over-
estimate the reference one, but the latter
is mostly within the uncertainty bound of
the forecast (Figure 8.3a). The SMI, how-
ever, does not exhibit an annual cycle be-
cause the climatology of SM is treated sep-
arately for each calendar month in the SMI
estimation (Section 28.3.3). The ensemble
SMI forecasts tend to show a similar tem-
poral dynamic as the reference one, but at
the expense of an increased model spread
compared to their respective SM forecasts
(Figure 8.3b). Due to the increased model
spread for SMI, there is always a SMI fore-
cast which is not under drought at a given
forecast date. As a result, the SMI averag-
ing approach does not detect drought events
given a 0.2 drought threshold (i.e., no time
step is identified to be under drought). The
reason is that the average of different SMI
indices is not a quantile based index itself.
For example, it does not fulfill the condition
that 20% of the time steps exhibit a SMI
less than 0.2. The SMI(SM) scheme cap-

tures both the wet and dry extremes better than the SMI scheme and also preserves the property that 20% of the
SMI time steps are below 0.2, which is crucial for drought analysis. The same effect was noticed for the other
NMME models. Hence, the averaging scheme based on the SMI(SM) approach is used in the further analysis.

8.4.3 Subensemble and Single Model Performance for SMI and Drought Forecasts

Investigating the performance of subensembles is crucial to correctly determine the best possible performance
of a given ensemble dataset. The backward selection algorithm proposed by Thober and Samaniego (2014) is
used to identify subensembles of decreasing size based on Pearson correlation coefficient R and Equitable Threat
Score (ETS), separately. The former criteria accounts for both wet and dry extremes, while the latter ETS is used
to measure the skill of forecasts to capture drought events based on a 0.2 SMI threshold (see Appendix A for
further details of the ETS). The selected subensemble should exhibit a high skill regardless of location and time
step considered, which is a basic requirement for a seamless prediction system. Additionally, it is assumed that
different subensembles distribute forecasting skill over seasons in a similar fashion, which has been also observed
for the different forecasting methods (Table 8.2). For these reasons, the performance criteria are averaged over
space, lead time, and forecasting time step.

The skill of any considered subensemble is higher than those of the single models for both criteria (Figure 8.4a).
On the contrary, ESP has the lowest performance among all considered approaches for R and only marginally
outperforms the worst performing model (CCSM3) for ETS. CFSv2 is the best performing model and the ordering
of the single models is the same for R and ETS with the exception of the 2nd and 3rd best models which swap
their places (CanCM3 and GEOS5). As a consequence, the models selected within the subensembles are quite
similar for the two criteria (Figure 8.4b). Only the selected subensembles of size six are different by more than one
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model. For both criteria, the backward search algorithm correctly identifies CFSv2 as the single best performing
model. It is worth noting that the algorithm would select a different model if the best performing model would
have been deselected in a previous iteration. Such a result has been reported for the ENSEMBLES dataset (Thober
and Samaniego, 2014).

Figure 8.4 In the top panel a, the overall Pearson correlation and ETS
estimates are shown for the NMME subensembles (red bars), single models
(blue bars), and ESP (gray bar). These estimates are averaged over space
and lead times to meet the requirements of a seamless prediction system.
The SMI of NMME subensembles is obtained by the SMI(SM) averaging
scheme. In the bottom panel b, the single models contained within a selected
subensemble for Pearson correlation and ETS are depicted by blue boxes.

The performance of the subensem-
bles decreases monotonically with decreas-
ing ensemble size for both criteria (Fig-
ure 8.4a). This justifies the approach
pursued in previous studies to use the
full ensemble as it exhibits the best pos-
sible performance (Mo and Lettenmaier,
2014; Yuan and Wood, 2013; Yuan et al.,
2015, among others). However, the se-
lected subensembles containing four mod-
els require 60% of the computational costs
of the full ensemble to achieve a skill,
which is only 0.3% and 0.5% less than
that of the full ensemble for R and ETS,
respectively. This highlights that opera-
tional forecasting could benefit from us-
ing subensembles in favor of the full en-
semble because of the reduced computa-
tional demand. The performance of the
full North American Multi-Model Ensem-
ble (NMME) ensemble (NMME8) is con-
trasted with that of a subensemble con-
taining four models (NMME4) in the fol-
lowing analysis to further illustrate this as-
pect. Without loss of generality, NMME4
evaluated against ETS is chosen because it
shows a similar performance as that eval-
uated against R (R value is only 1% less).
The four models contained in NMME4 are
CFSv2, CanCM3, ECHAMD, and CFSv1
(Figure 8.4b). Only two of these models
(CFSv2 and CanCM3) are, however, cur-
rently operational in the NMME phase 2
(NMME, 2014).

Although subensembles consistently
outperform single models and ESP, the
spread of both criteria is relatively narrow.
This is due to the fact that the initial hydro-
logic conditions are the same for all fore-
casting methods, which reduces the vari-
ability among the different soil moisture
forecasts. In other words, the high variabil-
ity in climatic forecasts is dampened while
propagating through the hydrologic system
exhibiting long memory. It is worth men-

tioning that substantially different subensemble performances have been observed for atmospheric variables like
extreme precipitation indices (Thober and Samaniego, 2014).
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8.4.4 Spatio-Temporal Distribution of Drought Forecasting Skill

It is desirable for a drought prediction system to be seamless with a high forecasting skill regardless of the location
and the lead time. The forecasting skill of most prediction systems, however, varies in space and time (Dutra et al.,
2013; Shukla et al., 2013; Yuan and Wood, 2013). The spatio-temporal distribution of Equitable Threat Score
(ETS) is analyzed here to understand these variations as well as the factors that influence drought forecasting skill.

Figure 8.5 Spatial distribution of ETS at one, three, and six month lead time is displayed for the full NMME ensemble
(NMME8) in panels a-c, NMME subensemble containing four models (NMME4) in panels d-f, and ESP in panels g-i. The
NMME based forecasts are obtained by the SMI(SM) averaging scheme. The corresponding spatial averages of ETS are
denoted in the upper right corner of every panel.

Distinctive spatial patterns in ETS are observed for both NMME and ESP (Figure 8.5), which are similar
to those of the Pearson correlation for the reference soil moisture index (SMI) dynamics (Figure 8.1, panels j-l).
This illustrates that the impact of initial hydrologic conditions (IHCs) is also evident for extreme conditions. The
differences in ETS between two locations across the study domain are as high as 40% (e.g., difference between
Switzerland and Poland at one month lead time for NMME8; Figure 8.5a). These spatial differences are larger
than the differences between the NMME8 and ESP forecasting approaches, which range up to 8% on average at
six month lead time. It is worth noting that the spatial distribution between NMME8 and NMME4 is very similar
(Figure 8.5). At 90% of the grid cells, the differences between these two ensemble based forecasts are smaller than
5% in terms of ETS irrespective of the lead time.
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Figure 8.6 The top panel depicts the fraction of area under drought based
on the reference SMI dataset. The thin horizontal dashed line is added for
clarity displaying the threshold for droughts covering more than 20% of
the European domain. Panels b-d illustrate the temporal variability of ETS
for the ESP (blue lines) and the full NMME ensemble (red lines) based SM
drought forecasts. The NMME based forecasts are obtained by the SMI(SM)
averaging scheme. Additionally, the 95% confidence interval for the single
ESP and NMME ensemble members is depicted as light red and blue bands,
respectively. Ticks mark the end of the respective year. The scale of y-axis
are different for each panel for clarity.

This skill of both the NMME8 and
ESP forecasting methods also depends on
the forecast date (Figure 8.6, panels b-d).
The differences between the smallest and
highest ETS can be also as high as 40%
for both forecasting methods, whereas the
maximum difference between NMME8 and
ESP forecasts at any given time step is at
most 20%. Both forecasting methods, as
expected, show lower ETS values at longer
lead times, but the rate of decrement is less
for NMME8 than for ESP. This leads to
the relative outperformance of 69% on av-
erage at a six month lead time as discussed
above (Section 38.4.1). These results il-
lustrate the added value of an ensemble
seasonal forecasting system at longer lead
times (Mo and Lettenmaier, 2014). In gen-
eral, NMME8 forecasts significantly out-
perform ESP ones at any location and lead
time at a 5% significance level, which has
also been reported by Yuan et al. (2015) us-
ing the VIC land surface model over the
Danube basin in Europe. This result is ob-
tained by applying a Student’s t-test, which
has been previously used in drought predic-
tion studies (Wilks, 2011; Yuan et al., 2015).
A similar result is obtained for the NMME4
subensemble, which requires only 60% of
the computational demand as compared to
the NMME8 (not shown).

The spread of single model performance
is significantly narrower for the full NMME
ensemble (19% on average) as compared
to that of ESP (29% on average) at a 5%
significance level (Figure 8.6, panels b-
d). A similar result is obtained when the
same number of samples (forcing mem-
bers) is evaluated for NMME8 and ESP.
The higher uncertainty for the ESP based
forecasts can be mostly attributed to poorly
performing forecasts. The spread of ETS
for the NMME8 based forecasts is often lo-
cated within the upper tail of that estimated
for the ESP based ones. The skill of the full
NMME ensemble is comparable to that of

the best performing model at a given forecast date (i.e., the upper limit of single model spread shown in Fig-
ure 8.6, panels b-d), which has also been reported for an NMME based prediction system over the CONUS (Mo
and Lettenmaier, 2014). It is worth noting that there exists not a single model that outperforms all others at all
forecasting dates. For example, CFSv2 only outperforms all other models at 20% of all forecasting dates, although
it is the overall best performing model (as discussed above; Figure 8.4). This again highlights the advantage of
using ensemble based forecasts over ones based on a single model.

The temporal dynamics of ETS for the full NMME ensemble and ESP are quite similar (Figure 8.6, panels b-d),
which again signifies the role of IHCs for drought predictions. Low ETS values are generally observed during
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periods of drought recovery with less extensive droughts (e.g., 1988, during autumn 1998, and at the end of 2004;
Figure 8.6a). Both forecasting methods overestimate the drought extent during these periods, which results in a high
false alarm rate and thus reduces ETS. On the contrary, high ETS values are observed during drought development
phases (e.g., during 1990, 1994, and summer of 2005). These results illustrate that the drought forecasting skill
varies depending on the states of drought events (e.g., drought development and recovery). These are defined in
the following section.

8.4.5 Forecasting Skill during Drought Development and Recovery

Figure 8.7 Probability density function for drought severity
and drought area is illustrated for different lead times for
forecasts obtained by single NMME and ESP ensemble
members. The performance for all NMME models is shown
in panels a-c and only for four NMME models in panels d-
f. The performance for ESP based forecasts is displayed
in panels g-i. The area containing 90% of the density for
both characteristics is depicted in each panel as red and blue
regions for drought development and recovery, respectively.
Additionally, the spread for each characteristic is shown as box
plots for the different drought phases (95% confidence interval
as thin lines, the spread between the 25th and 75th quantiles as
thick lines, and the median is located at the intersection).

To further investigate the forecasting skill dur-
ing drought development and recovery phases, two
drought characteristics are analyzed for major drought
events that cover more than 20% of the European do-
main (e.g., the 1983, 1990, and 2003 drought; see also
Figure 8.6a). A drought time step is defined as devel-
opment (recovery) if it occurs before (after) the peak
extent of the respective event. The two characteris-
tics are the drought severity and the area under drought
(see Appendix B for details). Both of these charac-
teristics are normalized by their corresponding refer-
ence estimates (based on E-OBS) to make them com-
parable among different events. The perfect forecast
would correspond to a value of one for both character-
istics. The drought characteristics during both phases
are calculated for all NMME and ESP ensemble mem-
bers separately. Finally, a probability density function
is estimated jointly for the two characteristics using a
kernel estimation method (Equation A.1) to assess their
associated spread, following the procedure used by van
Loon et al. (2014).

In general, the forecasted drought severity matches
the median reference one quite well, with deviations
less than 20% irrespective of the lead time, drought
phase, and forecasting method (horizontal lines in Fig-
ure 8.7). On the contrary, substantial underestima-
tions in drought area are observed with increasing lead
time up to 55% for NMME8, 51% for NMME4, and
68% for ESP (vertical lines in Figure 8.7). Addition-
ally, these are more pronounced during drought devel-
opment phases than during recovery phases. In sum-
mary, the drought forecasts exhibit a higher mismatch
in correctly detecting reference drought location. If a
drought has been correctly forecasted at a given loca-

tion, then it is likely that the severity of this event would be comparable to that of the reference one.

The spread of drought severity and area increases with lead time for all forecasting methods (see regions containing
90% of the density in Figure 8.7). Expectedly, the relatively larger uncertainty in climatic forecasts at longer lead
times causes a higher spread in drought characteristics (Shukla and Lettenmaier, 2011; Wood and Lettenmaier,
2008). This spread is larger during the drought recovery than during the development phases at a long lead time,
which is in agreement with Mo (2011) who reported that drought development is more predictable than drought
recovery.

The spread is also remarkably similar for the NMME8 and NMME4 based forecasts. For example, there is a
comparable overlap of spread estimated during the drought development and the recovery phases at a three month
lead time. This overlap is considerably different from that observed for Ensemble Streamflow Prediction (ESP)
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based forecasts (Figure 8.7, compare panels b, e, and h). These results illustrate that the NMME4 subensemble also
has a similar performance as the full NMME ensemble during different drought phases, but only requiring 60% of
the computational resources.

In general, all forecasting methods underestimate the reference drought severity during the drought development
phases at all lead times (Figure 8.7). This results from too wet forecasts leading to higher soil moisture index
conditions as compared to the relatively drier reference ones. On the contrary, drought severity is overestimated
during the drought recovery phases at three and six months lead times. The forecasts are drier than the reference
one in this case. In other words, they are not able to add sufficient SM to recover from the drought. These results
illustrate the fundamental influence of initial hydrologic conditions (IHCs) that persist throughout the drought
forecasts leading to a consistent lag of these with respect to the reference soil moisture index dynamics (see also
Figure 8.3b). This is expected for ESP as it represents a climatological forecast and the skill is mainly derived from
the correct representation of IHCs (Koster et al., 2004; Shukla et al., 2013). The skill of NMME based forecasts
has a similar dependence on the IHCs as ESP despite that NMME models represent physical dynamics of the Earth
system. They do, however, provide a substantially better forecast for drought area as compared to ESP (Figure 8.7).

8.5 Summary and Conclusions

In this study, the skill of a seasonal hydrologic prediction system for soil moisture (SM) drought forecasts is
evaluated over Europe for a 27 year hindcast period (1983-2009). The prediction system is based on meteorological
forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale Hydrologic
Model (mHM). The skill of NMME based forecasts is contrasted with that of the Ensemble Streamflow Prediction
(ESP) approach. The obtained SM estimates from both forecasting approaches are transformed to a quantile based
soil moisture index (SMI) to conduct a drought analysis using a 0.2 SMI threshold. Drought prediction skill is
quantified in terms of the Equitable Threat Score (ETS) employing a reference SMI field. The latter has been
created using the observation based E-OBS dataset.

NMME based forecasts significantly outperform ESP based ones particularly at a long lead time (i.e., up to 69%
higher ETS at six month lead time). This is achieved only if the SMI has been calculated for the grand ensemble
SM mean. In contrast, the grand ensemble SMI obtained by averaging single NMME model based SMIs does
not outperform the ESP based one. Among the NMME based forecasts, the full ensemble outperforms the single
models as well as all selected subensembles. There is a considerable variability in the skill of SMI forecasts over
Europe (i.e., up to 40% in space and time), regardless of the forecasting approach. This variability is strongly
related to the persistence of reference SM, illustrating the strong impact of initial hydrologic conditions (IHCs) on
SM drought forecasts. The IHCs are respectively wetter during drought development phases than during drought
recovery phases, which induces an underestimation of drought severity during the former and an overestimation
during the latter phase.

The main conclusion of this study is that NMME based forecasts are useful for seasonal SM drought prediction
over Europe, which is in accordance with recent studies for the CONUS and GEWEX river basins using the VIC
land surface scheme (Mo and Lettenmaier, 2014; Yuan et al., 2015). The NMME based forecasts are well suited
for a seamless prediction system as their skill is consistently higher than that of ESP based ones over the entire
study domain at all lead times.

The selected subensembles only show performance losses less than 1% on average in comparison to the full
ensemble, but at 60% of the computational demand. Subensembles thus provide a promising alternative to the
full ensemble and might be useful for operational seasonal SM drought forecasting. The subensemble skill has
been averaged over space, lead time, and forecasting time step because the subensemble should exhibit a high skill
regardless of the location and time step to be useful for a seamless prediction system. Alternative selection methods,
however, could take the spatio-temporal variability of forecasting skill into account in the selection process. They
should also test whether the skill of subensembles is stationary in time, which is crucial requirement for operational
forecasting. Moreover, bias correction of raw meteorological data has little impact on SM drought forecasting skill
because the calculation of the quantile based SMI already accounts for systematic biases, particularly in the mean
and standard deviation, as long as these do not lead to unrealistic SM dynamics.

The results of this study illustrate the ubiquitous impact of IHCs on SM drought forecasting skill. The uncer-
tainty associated with imperfect IHCs is, however, not considered here. Methods for further evaluating this aspect
such as the reverse ESP approach have been investigated in previous studies using observational datasets (Shukla
and Lettenmaier, 2011; Shukla et al., 2013; Wood and Lettenmaier, 2008). With the increase of computational
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resources, these should also be considered in the evaluation of ensemble SM drought prediction systems such
as those based on the NMME. Future studies could investigate the NMME phase two data containing real-time
forecasts instead of the hindcast dataset explored in this study.
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Appendix A: Equitable Threat Score

Forecast verification for discrete events (e.g., a drought event) is commonly carried out using measures that are
based on a 2⇥2 contingency table (Wilks, 2011). In this study, we use the Equitable Threat Score (ETS) as skill
measure, which is defined as

ETS = 100
a � aref

a � aref + b + c
, (8.2)

where a is the number of drought events that occur in both the forecast and the reference dataset (commonly called
hits), b is the number of drought events that occur in the forecast but not in the reference dataset (commonly called
false alarms), and c is the number of droughts that occur not in the forecast but in the reference dataset (commonly
called misses). aref is defined as

aref =
(a + b)(a + c)

n
, (8.3)

where n is the total number of time steps. ETS is used in this study because it condenses the hit rate (a/(a + c))
and the false alarm rate (b/(a+ b)) into one metric. An ETS of 100% indicates a hit rate of 1 and a false alarm rate
of 0, which means that all drought events are forecasted perfectly.

Appendix B: Drought severity and area

Two drought characteristics are evaluated during the drought development and recovery phase. These are the
fraction of correctly forecasted drought area and the drought severity of this area. For a given time step t, the
former is defined as

A(t) =
a(t)

a(t) + c(t)
, (8.4)

where a(t) is the number of grid cells under drought both in the forecast and the reference dataset at time step t
and c(t) is the number of grid cells under drought that occur not in the forecast but in the reference dataset at time
step t. It is worth mentioning that this area is equivalent to the hit rate estimated over space.

The drought severity is calculated for the grid cells that exhibit a drought both in the forecast and the reference
dataset. For a given time step t, the drought severity is defined as

S(t) =
X

i2a(t)

[⌧ � SMIi(t)]+, (8.5)

where ⌧ is the SMI drought threshold (here 0.2), (·)+ is the positive part function, and a(t) is defined as above.
A large deviation from the drought threshold leads to higher severity indicating a more severe drought. The
severity of the forecast is then normalized by that of the reference dataset (calculated over the same area a(t) using
equation 8.5) to make them comparable among different drought events.
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9.1 Abstract

Recent climate change impact studies studies have presented conflicting results regarding the largest source of
uncertainty in essential hydrological variables, especially streamflow and derived characteristics that describe the
evolution of drought events. Part of the problem arises from the lack of a consistent framework to address compat-
ible initial conditions for the impact models and a set of standardized historical and future forcings. The ISI-MIP2
project provides a good opportunity to advance our understanding of the propagation of forcing and model uncer-
tainties on to century-long time series of drought characteristics using an ensemble of hydrological model (HM)
projections across a broad range of climate scenarios and regions. To achieve this goal, we used six regional
preconditioned hydrological models set up in seven large river basins: Upper-Amazon, Blue-Nile, Ganges, Upper-
Niger, Upper-Mississippi, Rhine, and Upper-Yellow. These models were forced with bias-corrected outputs from
five CMIP5 general circulation models (GCMs) under two extreme representative concentration pathway scenarios
(i.e., RCP2.6 and RCP8.5) for the period 1971-2099. The simulated streamflow was transformed into a monthly
runoff index (RI) to analyze the attributions of the GCM and HM uncertainties on to drought magnitudes and
durations over time. The results indicated that GCM uncertainty mostly dominated over HM uncertainty for the
projections of runoff drought characteristics, irrespective of the selected RCP and region. In general, the overall
uncertainty increased with time. The uncertainty in the drought characteristics increased as the radiative forc-
ing of the RCP increased, but the propagation of the GCM uncertainty on to a drought characteristic depended
largely upon the hydro-climatic regime. Although our study emphasizes the need for multi-model ensembles for
the assessment of future drought projections, the agreement between the GCM forcings was still too weak to draw
conclusive recommendations.

Drought Modeling and Forecasting, First edition.
By Luis Samaniego Copyright © 2021 Luis Samaniego
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9.2 Introduction

Droughts are creeping hydro-meteorological events that can bring societies and natural systems to their limits, and
induce large famines, drinking and irrigation water shortfalls, natural fires, the degradation of soil and water quality,
and, in many cases, considerable socio-economic losses. Many climate change impact studies have attributed
increases in the affected areas of drought and changes in the severity and the duration of droughts due to global
warming (Briffa et al., 2009; Dai, 2013; Held and Soden, 2006; Mueller and Zhang, 2015; Sheffield and Wood,
2008a). The projections obtained for the twenty-first century indicate that it is likely that “severe and widespread”
droughts may occur (Dai, 2013), and, if so, droughts will “set in quicker and be more intense” (Trenberth et al.,
2014). Contradictory results have been reported in recent years (e.g., Dai, 2013; Sheffield et al., 2013) regarding
this topic. For these reasons, the IPCC-AR5 summarized these plausible changes as follows: “There is medium
confidence that droughts will intensify in the 21st century in some seasons and areas, due to reduced precipitation
and/or increased evapotranspiration” (Seneviratne et al., 2012).

It is recognized that the quantification of the predictive uncertainties in essential hydrological variables (e.g.,
streamflow) and their attribution to the main sources is of particular interest (Pappenberger and Beven, 2006) in
climate change studies. Currently, however, the uncertainties intrinsic to historical meteorological observations
and those related to the modeling chains used to estimate drought indices and/or derived characteristics have not
yet led to conclusive results with respect to the effects of global warming on droughts (Dai, 2013; Sheffield et al.,
2013; Trenberth et al., 2014).

There are a number of factors that contribute to the epistemic predictive uncertainty (Beven et al., 2011) of
hydrological variables, including observational errors in hydro-meteorological data, errors induced by the inter-
polation of meteorological data, hydrological model (HM) structures and their internal parameterizations (Kumar
et al., 2013; Vetter et al., 2015) parametric uncertainties in hydrological models (Samaniego et al., 2013), un-
certainties related to mapping of subgrid physiographic information such as soil textures (Livneh et al., 2015;
Samaniego et al., 2010a) and land use/cover changes (Samaniego and Bárdossy, 2006), and uncertainties related
to water management practices. In the case of future hydrological projections, there are other important sources of
uncertainty such as the initial conditions of general circulation models (GCMs) (Buizza, 2002), parameterizations
of GCMs, errors caused by the numerical approximations used to solve the underlying GCM equations at a given
resolution (Buizza, 2002), assumptions made to downscale (Blöschl and Montanari, 2010) and bias-correct GCM
model outputs (Ehret et al., 2012), and uncertainties stemming from emission scenarios.

Few studies have sought to assess the ability of regional and global HMs to reproduce extreme hydrological
events (Donnelly et al., 2015; Gudmundsson et al., 2012) as well as disentangling the individual contributions of
different uncertainty components in hydrological projections (Pechlivanidis et al., 2016). In the recent literature,
there are different (contradictory) views regarding the dominant sources of the uncertainties. Prudhomme et al.
(2014), for example, concluded that the main source of uncertainty in projections of hydrological drought severity
and the deficit index arises from the variability among the HMs, whereas a substantial but smaller share was
attributed to GCM variability. Their analyses were based on outputs from several global hydrological and land
surface models that were forced with various GCMs projections for the 21st century under different representative
concentration pathways (RCPs). Similarly, Haddeland et al. (2011) concluded that HM structure is a major source
of uncertainty that should be considered in climate change impact studies. Their study was, however, limited to a
historical hydrological analysis based on WATCH forcing data to drive global (uncalibrated) HMs.

Other authors, however, concluded that GCMs can outweigh the contributions of the uncertainties in global
HMs (Giuntoli et al., 2015) and regional HMs (Arnell, 2011; Bosshard et al., 2013; Teng et al., 2012; Vetter et al.,
2015). Giuntoli et al. (2015) also observed that the dominant source of uncertainty in summer and autumn comes
from GCMs, with the exception of snow-dominated regions. Bosshard et al. (2013), however, suggested that the
uncertainties attributed to HMs and post-processing may gain importance in winter and spring or in regions affected
by declining water resources. The results from those studies have been used to note that the individual contributions
of these sources of uncertainty are not additive (Bosshard et al., 2013) due to the non-linearities of the modeling
chain. Along the same lines, Arnell (2011) concluded that the uncertainty in GCM outputs is considerably larger
than that of the parameter uncertainty in HMs based on simulations in UK basins.

Most of these multi-model climate change assessments were carried out in regions that share similar hydro-
climatic regimes, and in many cases, they lacked a consistent framework to address compatible initial conditions
(e.g., similar forcings during model spin-up and a consistent protocol for ensemble model setup) and a set of
standardized historical and future forcings for HMs. For these reasons, it is worth outlining frameworks that would
allow the identification and quantification of the various factors that contribute to the predictive uncertainties in key
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hydrological variables and derived drought characteristics (Bosshard et al., 2013; Haddeland et al., 2011; Schewe
et al., 2014; Vetter et al., 2015).

The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, www.isimip.org) provides a unique oppor-
tunity to analyze the propagation of uncertainties stemming from the emission scenarios, GCM-derived forcings,
and HM structural differences on to hydrological drought characteristics using an ensemble of model projections
across a range of climatic regions. In this study, we focused on these three dominant sources of uncertainty and
their impacts on monthly runoff index (RI) using an ensemble of six HMs setup at seven large river basins around
the globe. We acknowledge that other sources of uncertainty are also important, but they were not considered here
because of lack of information.

The main hypotheses guiding this research were formulated as follows. 1) The uncertainty contribution of
the GCMs on RI and derived drought characteristics outweighs that from the HMs regardless of the hydrological
regime represented by the selected large-scale river basins. 2) Given a GCM forcing, the drift in the RI time series
of a given HM is practically indistinguishable from the ensemble RI. Therefore, the drift mainly arises from the
uncertainty in the GCM forcings. 3) The uncertainty in drought characteristics is RCP dependent.

The rationale behind these hypotheses is based on the fact that simulations of the dynamics of the Earth’s at-
mosphere and oceans carried out using GCMs are affected by chaotic behaviors intrinsic to the atmosphere (Cretat
and Pohl, 2012) and are also very sensitive to initial conditions (Buizza, 2002), subgrid scale process parameteriza-
tions and the simulation of various feedback mechanisms. These effects, in turn, induce large variabilities in GCM
outputs (e.g., precipitation) that are later used as forcings for HMs. A HM, on the other hand, simulates a deter-
ministic hydrodynamic system that has storage components characterized by a long-range memory (e.g., vadose
zone), which induces a significant attenuation of the meteorological forcings. As a result, the internal variability
of an HM, ceteris paribus, is expected to be much lower than that of the GCMs. In addition to both sources of un-
certainty, the emission scenarios that guide future GCM projections would add considerable variability to forcing
variables, especially at end of the 21st century. In summary, in this study, we aimed to disentangle the effects of
those three sources of uncertainty on drought characteristics.

9.3 Method

9.3.1 Study area and data sets

This study is conducted in seven large river basins around the world that have an area greater than 105 km2 and
that represent a wide range of hydro-climatic and physiographic conditions: 1) the Upper-Amazon at the gauging
station Sao Paulo de Olivenca (equatorial fully humid), 2) the Blue-Nile at Kartoum (warm temperate with dry
winters and warm summers), 3) the Ganges at Farakka (warm temperate with dry winters and hot summers), 4) the
Upper-Mississippi at Alton (warm temperate or snow dominated, humid with hot summers), 5) the Upper-Niger at
Dire (equatorial, partly monsoonal with dry winters), 6) the Rhine at Lobith (warm temperate, humid with warm
summers), and 7) the Upper-Yellow at Tangnaihai (arid with dry winters and cold).

We use the daily streamflow simulations from the following six hydrological models: HBV, HYPE, mHM,
SWIM, VIC, and WaterGAP3. With an exception of HBV and HYPE, the remaining four models are run consis-
tently across all the study basins. HBV simulations are used where HYPE simulations are not available. Therefore,
the effective number of HMs is five. These HMs vary in their complexities, spatial discretizations, and process
representations. They are constrained against observed streamflows using the historical WATCH forcing (Wee-
don et al., 2011). Interested readers may refer to Krysanova and Hattermann (2016) for more details on HM
description, setup and the basins’ characteristics.

Every HM is driven by five CMIP5-GCM climate projections for the period from 1971 to 2099 under two
future emission scenarios that have radiative forcings by the end of century of 2.6 Wm�2 and 8.5 Wm�2 and
are denoted hereafter as RCP2.6 and RCP8.5, respectively. These scenarios are chosen because they represent
two extreme future conditions. The GCMs are GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, and NorESM1-M (Taylor et al., 2012). The ranges of uncertainty in annual temperature and precipitation
projections of the set of these five GCMs are comparable with those of all CMIP5 models (see protocol-report on
www.isimip.org). The required forcings, including precipitation and air temperature, are bias corrected to match
the corresponding long-term monthly means of the WATCH-forcing for the overlapping reference period 1960-
1999 (Hempel et al., 2013). The HM initializations and simulations corresponding to every GCM under the given
RCP scenarios are carried out following the ISI-MIP2 protocol (www.isimip.org), which specifies standardized
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forcings and periods for calibration and verification, spin-up and projection periods. Note that the selection of the
forcings, hydrological models and river basins is constrained by the data availability in the ISI-MIP2 project.

9.3.2 Runoff drought index and derived characteristics

Monthly discharge time series for every GCM under a given RCP scenario are estimated based on the simulated
daily discharges for the period 1971-2099. To ease the comparisons among the streamflow simulations obtained
with the different RCPs, GCMs, and HMs, the resulting monthly streamflow time series are converted into a
quantile based runoff index (RI) using a non-parametric kernel density estimator (KDE) (Wilks, 2011). The KDEs
are separately obtained for every calendar month, basin, and GCM/HM combination to allow comparability across
the time, space and model combinations. The KDEs estimated for the period from 1971 to 2000 are used as a
reference to recast the future streamflow time series (2001-2099) under both RCP scenarios. Details can be found
in Supplement 9.5. It should be noted that RI is a probabilistic index that denotes the monthly quantile of simulated
streamflow and therefore ranges between [0,1].

Two drought characteristics are considered in this study: total drought magnitude M and duration D. The
total magnitude ofdrought events occurring within a period T (30 years) is estimated as the temporal integral of
the monthly RIs below a threshold value ⌧ . In this study, a threshold value ⌧ of 0.2 is used as a reference. This
value denotes a 20% probability of occurrence, which is normally used to denote the onset of a moderate drought
(Andreadis et al., 2005; Kumar et al., 2016; Samaniego et al., 2013; Vidal et al., 2010). The duration of drought
spells within the period T is therefore the total number of months in which the RIs is below the threshold value ⌧ .
Further details are provided in Supplement 9.5.

Both drought characteristics are estimated for rolling windows of T years. T should be large enough to capture
climatological changes (e.g., T=30). The shift between two consecutive rolling windows is S years. For example,
if T=30, and S =10, as used in this study, the drought characteristics are estimated for the following rolling
windows: 1971-2000, 1981-2010, ... , and 2071-2099.

9.3.3 Uncertainty contributions of the GCMs and HMs

The goal here is to disentangle the GCMs’ and HMs’ uncertainty contributions on the simulated RIs and the derived
drought characteristics. A set of 25 hydrological simulations corresponding to the five GCMs and five HMs for
every study basin and RCP is used for this analysis. The individual contribution of a given GCM or HM is estimated
using a sequential sampling procedure similar to that proposed by Schewe et al. (2014).Based on this procedure,
the component of the GCM uncertainty RcG(.) for a given RCP scenario c, is characterized by computing the range
of a drought characteristic across all GCMs for each HM individually and then averaging it over all the HMs. The
HM uncertainty component RcH(.) is estimated in a similar fashion but by first computing the range across all
HMs for each GCM individually and then averaging it over all GCMs. This procedure is applied to every basin and
RCPs under investigation. Additional details on this procedure are provided in Supplement 9.5 and in Fig. 9-A.1.

The uncertainty components are quantified using a range statistic (R•) for both drought characteristics men-
tioned above. The range is preferred to other dispersion measures such as variance, inter-quantile range or the
median absolute deviation because it is the most useful statistic to understand the full range of the dispersion given
the small sample of GCMs and HMs available in the ISI-MIP2 project. Sampling with replacement can be used to
generate confidence intervals for the range statistics. The number of realizations should be large enough to obtain
reliable statistics (Demuth and Heinrich, 1997). In the present study, N=1000 is sufficient for convergence. The
advantage of this method stems from the fact that it can be easily implemented within a bootstrapping framework
by randomizing the selection of the HMs and GCMs with replacement (see Step 6 in Supplement 9.5). As a result,
the confidence interval and significance level of R• can be estimated without any assumptions of normality that are
necessary for parametric tests in standard procedures such as the Analysis of Variance (ANOVA). A non-parametric
(bootstrapping) procedure is preferred to reduce the effects of the biased variance estimation.

9.4 Results and discussion

9.4.1 Propagation of the forcing and model uncertainties on to the RIs

The multi-model ensemble of the RIs for every river basin exhibits a large predictive uncertainty. Fig. 13.1 depicts
the 30-year rolling averages of the ensemble means and ranges of the RIs based on all combinations of the GCMs
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and HMs. The moving average of RI is estimated to investigate potential hydro-climatological trends until the
end of the 21st century. The two extreme scenarios with respect to the GCMs’ radiative forcing (i.e., RCP2.6 and
RCP8.5) are selected to show two extreme situations under future climates. In general, this analysis shows that in
all cases the uncertainties in the RI ensembles increase with time. It can also be observed that in almost all cases,
the uncertainties in the projected RIs for RCP 8.5 are higher compared to those for RCP2.6. This behavior can be
directly attributed to the different GCM climate sensitivities of temperature and/or precipitation to increasing CO2

(Aich et al., 2014).

(a) (b)

1

Figure 9.1 Multi-model ensemble of the 30-year running mean RIs for scenarios (a)
RCP2.6 and (b) RCP8.5, for the period 1971-2099. Each running window is separated by
a one-month interval (e.g., 1971-01 to 2000-12, 1971-02 to 2001-01, and so on). The blue
line depicts the ensemble mean, and the gray bound denotes the ensemble uncertainty of
the RI index.

The non-parametric Mann-
Kendall test shows positive
trends (at the 5% significance
level) in the 30-year moving
average RIs under RCP8.5
for more than 70% of the
total model combinations (25)
for the Upper-Amazon(20),
Ganges(21), and Upper-Yellow
(18) basins (Fig. 13.1). This
implies that these basins will
be, on average, wetter at the
end of the century under RCP
8.5 than in the reference period.
Three basins (the Blue-Nile,
Upper-Mississippi, and Upper-
Niger) show inconclusive
results, which means that the
number of model combinations
that were positive or negative
were comparable (the maxi-
mum difference did not exceed
five). In contrast, for the Rhine
basin, 24 out of the 25 model
combinations agree that there
is a consistent negative trend in
RI (i.e., dryer than the reference
period) for this scenario. The
GCM projected precipitation
over this basin does not exhibit
a significant trend, but a strong
increase in temperature is
observed (Mishra et al., 2016).
This, in turn, affects the water

balance by increasing evapotranspiration and reducing runoff. This drying trend in runoff is consistent with the
recent findings in Vetter et al. (2015).

Under the RCP2.6 scenario, most model combinations show positive trends for the 30-year moving average
RIs in five out of the seven basins: Upper-Amazon(19), Blue-Nile(16), Ganges(20), Upper-Mississippi(20), and
Upper-Yellow (24) (Fig. 13.1). The remaining two basins show inconclusive results. In summary, under both
RCP scenarios, the 30-year moving average RIs in the Ganges and Upper-Yellow basins exhibit positive trends.
These trends are likely due to increases in precipitation. In both basins, all the GCMs project wetter than normal
conditions under both scenarios (Mishra et al., 2016).

The ensemble variability in the 30-year RIs corresponding to the RCP2.6 scenario is generally smaller than
that exhibited for RCP8.5. This is a likely consequence of an increase in the uncertainties in the precipitation and
temperature projections under RCP8.5 (Mishra et al., 2016). Among the basins, a relatively lower spread in RI is
observed in the Upper-Amazon, Ganges, and Rhine basins for both RCPs (Fig. 13.1). In contrast, comparatively
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large ensemble uncertainties are shown mainly for the Blue-Nile, Upper-Niger and Yellow river basins. These
results show that the overall RI uncertainty arising from the combination of the GCM and HM uncertainties varies
across the basins. For example, the Yellow River basin exhibits a small spread in the precipitation projections
(Mishra et al., 2016) among GCMs but a large uncertainty in the RI projections (Fig. 13.1). This example shows
that the differences in the parameterizations of hydrological processes among HMs (e.g., evapotranspiration, snow
melt) may lead to significant disagreements among HMs in some regions, as was also observed in previous studies
(Aich et al., 2014; Pechlivanidis et al., 2016; Prudhomme et al., 2014).

Figure 9.2 Mean range of RI (R̄) depicting the contribution of
the GCMs (top panels) and HMs (bottom panels) variability for
four selected periods between 1971 and 2099 under scenarios
RCP2.6 (a) and RCP8.5 (b). A lighter color implies small
ensemble variability for a given group (e.g., HM or GCM).
A darker color implies the opposite.

The summary of the uncertainty ranges of the
RIs depicted in Fig. 13.2 shows that the long-term
mean range of RI (R̄) is time and RCP dependent.
For a given RCP scenario, the mean range due to
GCM variability for M HMs is estimated as R̄ =

1
MnT

P
t
Rmt, where Rmt denotes the range of RIs

for the m HMs obtained by varying the GCMs (see
Fig. 9-A.1). A 30-year interval is selected to capture
climatological changes in the runoff index; therefore
nT = 360 months, and M = 5. Similarly, the mean
range due to HM variability can be estimated. Four
30-year periods are selected for depiction: 1971-2000
(historical), 2011-2040 (near future), 2041-2070 (mid
century), and 2071-2099 (end of the century). The
GCM and HM contributions to the mean range of RI
is shown in the upper and bottom panels of Fig. 13.2,
respectively. A lighter color in the upper panel of
Fig. 13.2, for example, indicates a small variability
among the RIs obtained by fixing the HMs and vary-
ing the GCMs. Therefore, a good agreement among
the GCM forcings should exist.

It can be concluded from Fig. 13.2 that the mag-
nitude of R̄ tends to increase with time. The propor-
tion of the GCM uncertainty in RI over all the basins
and time periods is at least 50% higher than that of the
HMs under both RCPs. The GCM uncertainty contri-
bution can be at least three times as much as those of
the HMs. These results provide evidence that supports
the working hypothesis that the uncertainty in RI due

to GCM forcings largely dominates the HM-induced uncertainty. This result supports the findings of previous
studies (Bosshard et al., 2013; Giuntoli et al., 2015; Schewe et al., 2014; Vetter et al., 2015).

It is worth noting that the contribution of the HM uncertainty, although small (0.15-0.40), cannot be neglected,
especially in the context of drought analysis, considering that the threshold used to estimate drought characteristics
is usually taken as 0.2 (Samaniego et al., 2013; Vidal et al., 2010). The variability in the ensemble RI (R̄) is slightly
higher in the RCP8.5 scenario compared to that of RCP2.6, for either the GCM or HM contributions (Fig. 13.2).
On average, the estimated difference is smaller than 5% across all the basins and periods.

The 30-year moving average RI time series under the RCP8.5 scenario are used to depict the degree of coherence
among the RIs estimated using the five HMs driven by a single GCM (GFDL-ESM2M) (Fig. 9-A.2a), and the lack
of coherence between the RIs estimated using a given hydrological model (mHM) but forced with the five GCMs
(Fig. 9-A.2b). Similar patterns are observed for all the HM and GCM combinations as well as those for RCP 2.6.

These results support the second postulation stated in the introduction that given a GCM forcing, the RI time
series of every HM is practically indistinguishable or very close from their ensemble mean. The null hypothesis
associated with this postulation can be safely rejected in 33% of all the model combinations (7 basins ⇥ 2 RCPs
⇥ 5 GCMs ⇥ 5 HMs) at the 5% significance level (based on the Studentized Bootstrap test). However, 90% of the
model combinations are rejected in the case variability in the GCMs. Therefore, given this evidence, it is unlikely
that the RI uncertainty due to HM variability would dominate over that of the GCM variability. The HM related
uncertainty on RI is, however, not negligible.
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Although the HMs have different conceptualizations for the dominant hydrological processes, their responses
after transforming streamflow into RI for a given forcing are comparable. To a large extent, a quantile index such
as RI can remove the systematic bias of every model simulation. This transformation leads to a large degree of
coherence among RIs obtained from different HMs driven by the same climatic forcing (Wang et al., 2009).

The variability in RI among the HMs is mainly due to the differences in the parameterizations of hydrological
processes such as evapotranspiration, soil moisture accounting and runoff generation mechanisms. For example,
models such as HBV and HYPE share many similarities with mHM with respect to runoff generation mechanisms,
but the latter differs from the former ones by the number of soil layers, the soil moisture redistribution and root-
water uptake process. WaterGAP, on the other hand, has a single soil layer and therefore has limits to account
for the dynamics of soil moisture redistribution. It should be noted that HYPE and SWIM can handle water
management activities but this capability was not implemented for the simulations used in this study. A detailed
description of the major hydrological processes in the HMs is given in Krysanova and Hattermann (2016). Other
factors that may lead to differences in the simulated RIs include spatial discretization, inadequate spin-up time, and
deficient parameter estimations. Additionally, the method adopted to account for evapotranspiration, as discussed
in Sheffield et al. (2013), plays a key role in estimating drought characteristics.

9.4.2 Propagation of forcing and model uncertainties on to drought magnitude and duration

(a) (b)

1

Figure 9.3 Ensemble mean drought magnitude (M ) [% months] (a) and
duration (D) [months] (b) corresponding to 25 model simulations (5 GCMs
and 5 HMs) for a running window of 30-y for RCP2.6 and RCP8.5. The bar
height correspond to the ensemble mean of the drought characteristic I (see
Section 2.3). Each running window is separated by 10 year intervals (e.g.,
1971-2000, 1981-2010, and so on). The contribution due to the HMs and
GCMs variability is shown as stack bars. The HM and GCM contribution are
estimated as fHM = RH/

�
RH+RG

�
, and fGCM = 1� fHM , respectively.

The 30-year ensemble means of the
drought magnitudes and durations between
1971 and 2099 for both RCPs are shown
in Fig. 13.3. The mean of each drought
characteristics is estimated from the multi-
model ensemble comprised of the 25
combinations of GCMs and HMs (Sec-
tion 9.3.3). The uncertainties in these char-
acteristics attributed to GCM and HM vari-
ability are depicted as stack bars. The re-
sults of this analysis clearly show that the
uncertainty contribution of the GCMs on
the drought characteristics outweigh those
from the HMs, regardless of the hydro-
climatic regimes and RCPs. Similar to the
results obtained for the RI, the HM uncer-
tainty contribution to the drought character-
istics, although smaller compared to that of
the GCMs, cannot be neglected. These re-
sults corroborate findings of previous stud-
ies (Bosshard et al., 2013; Giuntoli et al.,
2015; Vetter et al., 2015).

The share of the HM variability on the
projected drought characteristics tends to
remain constant and less important than
that of the GCMs in the basins that exib-
hit strong streamflow annual cycles such as
the Upper-Amazon, Blue-Nile, and Upper-
Niger (stack bars in Fig. 13.3). This behav-
ior is apparent under both RCP scenarios.
In the midlatitude basins (e.g., the Upper-
Yellow and Rhine), on the contrary, the
uncertainty contribution of the HMs tends
to increase by the end of the century, and
reaches levels that are almost comparable
to those of the GCMs.
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Overall, among all the river basins, the Rhine exhibits the strongest increase in drought magnitude and duration
under RCP8.5 (Fig. 13.3). Future climate projections from the 5 GCMs under the RCP8.5 scenario show a mod-
erate increase in monthly precipitation with respect to the reference period 1981-2010 for the entire Rhine river
basin. A change of 3.8% is expected for the period 2006-2035 and 1.0% for 2070-2099. Under scenario RCP2.6,
those changes are approximately 2.3% and 6.6%, respectively. The monthly temperatures for those periods are
expected to increase by 1.0 and 4.4�C under RCP8.5 compared to the reference period. However, under RCP2.6,
the increases are 1.1 and 1.5�C (Krysanova and Hattermann, 2016; Pechlivanidis et al., 2016). The changes due
to increased temperature overcompensate the effect due to the increase in precipitation. These factors lead to a
reduction in snow cover and an increase in evapotranspiration that would influence the hydrological regime of the
Rhine causing a strong reduction in streamflow, and hence a higher increase in drought magnitude by the end of
the century under RCP8.5. A contrasting effect (decreasing trend) is observed for RCP2.6 in this basin by the
mid-century onwards, which is in line with the finding of Pechlivanidis et al. (2016). A second strongest increase
in the drought magnitude under RCP8.5 is observed in the Upper-Niger basin due to the significant temperature
increase by the end of the century (Mishra et al., 2016).

On the contrary, the Upper-Yellow basins show declining trend in drought magnitude and duration by the end
of the century, particularly under RCP8.5. This trend corresponds to the increasing trend in the RI time series for
this basin, which may result from the projected increases in precipitation (Mishra et al., 2016).

The results depicted in Fig. 9-A.3 further confirm the dominance of the GCM uncertainties over those of the
HMs for drought characteristics. The darker blue lines that denote the GCM contributions are always above the
lighter blue lines that denote the HM contributions for both RCPs. In this case, the mean range R̄ of the 30-year
drought magnitude and duration is used as a measure of the uncertainty contributions from the GCMs and HMs
(see Section 9.3.3).

It is worth noting that the propagation of uncertainty from the RI to the mean drought magnitude and duration
is nonlinear. In general, an increase in uncertainty over time is observed for both characteristics. To enable
a comparison between the uncertainty estimates for RI and the drought characteristics, the ratios between their
respective ranges and mean values are estimated. Based on this statistic, an incremental change of approximately
60% on average was estimated for the propagation of uncertainty from the RI to drought magnitude under RCP8.5
for the three projection periods shown in Fig. 13.2. No systematic pattern in this statistic is detected among those
periods. The reason behind the increase is the non-linear behavior of the truncation level method used to estimate
drought magnitude (and duration) based on the RI times series. Note that a drought can occur only when RI falls
below a certain threshold (say 0.2). As a consequence, the uncertainty in the drought characteristics cannot be
inferred based only on the uncertainty in RI.

The results shown in Fig. 9-A.3 also indicate that the uncertainty in the drought characteristics due to GCM
and HM variability increases with time. Among the two scenarios, the uncertainty in the drought characteristics
increases as the radiative forcing increases. This is a consequence of the relatively larger uncertainty in the projec-
tion of the GCM forcings under RCP8.5 (Mishra et al., 2016). To some extent, the increase in the uncertainty due
to the HM variability with time could be related to the departure from the reference calibration conditions.

The relative contribution of HM uncertainty on to drought characteristics depends on the hydro-climatic regime,
which differ among the basins (Fig. 9-A.3). The HM uncertainty tends to be larger in snow-dominated regions and
lower when the climatic conditions are wet, which is in agreement with the findings of Giuntoli et al. (2015); as an
example, refer to the lighter blue lines in Fig. 9-A.3 for the Upper-Mississippi, Rhine, and Upper-Yellow basins in
comparison to those of the Upper-Amazon and Ganges basins, which are mainly characterized by a humid climate.

9.4.3 Expected changes in the CDF of the drought magnitude

Fig. 13.4 presents the cumulative distribution function (CDF) of the estimated drought magnitude based on all
25 model combinations for the two 30-year windows corresponding to the historical (1971-2000) and the end of
the century (2071-2099) periods. The results shown in this figure provide supporting evidence that the projected
drought characteristics are RCP dependent. Based on the Kolmogorov-Smirnov test, the null hypothesis associated
with this postulation can be safely rejected at the 1% level of significance for the Blue-Nile, Upper-Niger, Rhine,
and Upper-Yellow river basins and at the 5% level in the Upper-Mississippi basin. For the Upper-Amazon and
Ganges, the null hypothesis can be rejected at the 10% level of significance. The tests are conducted based on the
CDFs from RCP2.6 and RCP8.5 for the end of the century. The analysis of the drought duration (not shown) shows
similar tendency as that of the magnitude.
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Figure 9.4 Cumulative distribution functions of drought magnitude for historical and future periods under scenarios (a)
RCP2.6 and (b) RCP8.5 based on all 25 model combinations.

The propagation of the GCM related uncertainty for a given RCP scenario on to a drought characteristic depends
on the hydro-climatic regime of the basin. The Upper-Niger and the Rhine basins under RCP8.5, for example,
exhibit the largest increases in drought magnitude by the end of century compared to the historical estimates.
The Upper-Amazon, on the contrary, does not show such a large deviation. Despite these deviations, the drought
magnitude estimated for the 30-year period at the end of the century under RCP8.5 is on average higher than that
of the historical period. This implies that, on average, more severe droughts can be expected in the study basins
by the end of the century under the RCP8.5 scenario. For RCP2.6, not all the basins exhibit deviations in future
drought magnitude compared to the historical ones.

9.5 Conclusions

In this study an attempt is made to understand the propagation of forcing and model uncertainties on to century-
long time series of drought characteristics using an ensemble of five hydrological model (HM) projections across
a range of climate scenarios and regions. The models in seven large scale river basins are driven by an ensemble
of five GCMs under RCP2.6 and RCP8.5 for the period 1971-2099.

The following conclusions are derived based on the obtained results. 1) The GCM uncertainties dominated the
HM uncertainties for the runoff index and derived drought magnitude and duration, irrespective of the RCPs and
studied basins. The ranges of the drought characteristics due to the GCMs and HMs uncertainties were, however,
basin (hydroclimatic regime) specific. 2) The uncertainties due to the HMs, although smaller than those of the
GCMs, cannot be neglected for hydrological drought projections. Therefore, multi-model drought assessments
should consider an ensemble of HMs and GCMs. 3) By the end of the century under RCP8.5, most of the study
basins would probably endure, on average, higher magnitude droughts compared with those of the reference period
(1971-2000). In particular, a comparatively larger propensity to hydrological droughts is observed in the Upper-
Niger and Rhine basins.

We acknowledge that the selection of GCMs, HMs and basins may not fully encompass the entire variability
needed to generalize our results. A comparison across regions that have a range of consensus in future projections
of precipitation and temperature could be a subject of further studies. This study, however presents a method to
analyze the effects of the dominant sources of uncertainty for hydrological drought projections. We encourage
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that future studies should consider more hydrologically diverse river basins, GCMs, HMs and other sources of
uncertainty for climate change impact assessments, including HM parametric uncertainties, downscaling and bias
corrections of GCM forcing. Other essential hydrological variables such as soil moisture and groundwater levels
should be considered for regional drought assessments.
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Appendix

Estimation of the runoff index RI

The runoff index RI is estimated as RIt = F̂�1(xt), where, xt is the simulated monthly streamflow at time t and
F̂�1 is the inverse of the empirical distribution function associated with the kernel density estimator f̂(x) of the
corresponding calendar month at the time t. f̂(x) is estimated as

f̂(x) =
1

nh

nX

k=1

K

✓
x � xk

h

◆
(A.1)

where x1, . . . , xn denote the streamflow values corresponding to a given calendar month for the entire reference
period, n is the sample size, and K denotes a Gaussian kernel function with a bandwidth of size h.

The bandwidth h is estimated by minimizing a cross-validation error estimate (see Samaniego et al. (2013) for
details) for the historic period (1971-2000) separately for every calendar month, basin, HM, and GCM to allow
comparability across the time, space and model.

It should be noted that the standardized runoff index (SRI) proposed by Shukla and Wood (2008) is equivalent
to the RI because both indices denote percentiles associated with the monthly streamflow time series. The main
difference between these two indices is that the SRI is obtained by fitting a gamma density function to the stream-
flow sample and then expressing the corresponding quantiles as standard-normal deviates. The RI proposed in this
study, simplifies the procedure by estimating the distribution of streamflow with a non-parametric kernel density
function (eq. A.1).

Estimation of the drought characteristics

Total drought magnitude M and duration D are derived based on the monthly RI time series. The total magnitude
of drought events occurring within a period T is defined as the temporal integral of the RI below a threshold value
⌧ . It is estimated by

M(T ) =
t1X

t=t0

�t
�
⌧ � RIt

�
+

(A.2)

where, t0 and t1 denote the onset and the ending months of the period T , respectively. Therefore, the length of
the window T is t1 � to +1 months. The expression (·)+ is the positive part function and �t denotes the time step
in months. M is expressed in [% months] (Sheffield and Wood, 2008a).

The duration of drought spells within the period T is therefore the total number of months in which the RI is
below a threshold value ⌧ . It is estimated by

D(T ) =
t1X

t=t0

1RIt⌧ (A.3)
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where, 1(·) denotes the indicator function (i.e., one if the condition is true and zero otherwise) to estimate the
total occurrence of drought affected months during the period T .

Sequential sampling algorithm

The sequential sampling algorithm to evaluate the contribution of the GCM variability for a given basin and RCP
is listed below and visualized in Fig. 9-A.1.

1. Select a RCP scenario (c).

2. Select a HM (m), m = 1, 2, . . . , M .

3. Select a GCM (g), g = 1, 2, . . . , G.

4. Estimate the monthly streamflow for the entire simulation period (P0 to P1) and transform it to the RI time
series.

5. Estimate a drought characteristic Icmg (Section 9.3.2) over a rolling window of size T , with steps of size S.

6. Repeat steps 3-5 for all the GCMs or resample the GCMs N times with replacement (* see details below).

7. Estimate the range of Icmg over the GCMs for every rolling window, denoted as Rcm(T ).

8. Repeat steps 2-7 for all the HMs.

9. Estimate RcG(T ) = 1
M

P
m

Rcm(T ) for every rolling window T to represent the uncertainty of the drought
characteristic I due to the variation in the GCMs.

Note (*): Sampling with replacement can be used to generate confidence intervals for the range statistics (e.g.,
RcG(T )). The number of realizations should be large enough to obtain reliable statistics (Davison and Hinkley,
1997). In the present study, N=1000 is sufficient for convergence.
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NORESM1-M
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RCP8.5

Igm
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I1
m
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Figure 9-A.1 Graphical representation of the algorithm presented in Section 9.5 to estimate the GCM and HM uncertainty
contributions from a given emission scenario c. Here, for example, it is visualized the estimation of the GCM uncertainty
component RcG(.) under RCP8.5 (c = 2). The subindex c and the rolling window T are dropped to improve readability. The
GCM index g is written as superscript for the same reason.

Here, M and G denote the sample size for the HMs and GCMs, respectively (in this study, M = G =5). P0

and P1 denote the start and end of the simulation period (i.e., 1971 and 2099, respectively). T is the length of a



164 PROPAGATION OF UNCERTAINTIES ON TO DROUGHT CHARACTERISTICS

rolling window in years. It should be large enough to capture the climatological changes (e.g., T=30). S denotes
the shift between two consecutive rolling windows in years. For example, if T=30 and S =10, as used in this study,
Rcm(T ) is estimated for the following rolling windows: 1971-2000, 1981-2010, ... , and 2071-2099. A graphical
representation of this algorithm is shown in Fig. 9-A.1.

(a) (b)

1

Figure 9-A.2 A 30-year running mean of monthly RI for (a)
five HMs forced by the GFDL-ESM2M model and (b) the same
index from the mHM model forced with five GCMs. Both cases
consider RCP8.5 forcings for the period from 1971 to 2099.
Each rolling window is separated by one month interval (e.g.,
1971-01 to 2000-12, 1971-02 to 2001-01, and so on). Panel (a):
green = HYPE/HBV, red = SWIM, violet = VIC, light blue =
WaterGAP3, blue = mHM. Panel (b): green = GFDL-ESM2M,
red = HADGEM2-ES, violet = IPSL-CM5A-LR, light blue =
MIROC-ESM-CHEM, blue = NORESM1-M.

(a) (b)

1

Figure 9-A.3 Mean range of drought magnitude [% months]
(a) and duration [months] (b) depicting the contribution of the
HMs (RH ) and GCMs (RG) variability for a running window
of 30-y for RCP2.6 and RCP8.5. Each running window is
separated by 10 year intervals (e.g., 1971-2000, 1981-2010,
and so on).
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10.1 Abstract

Simulations of water fluxes at high spatial resolution that consistently cover historical observations, seasonal fore-
casts, and future climate projections are key to providing climate services aimed at supporting operational and
strategic planning, and developing mitigation and adaptation policies. The EDgE is a proof-of-concept project
funded by the Copernicus Climate Change Service programme that addresses these requirements by combining a
multi-model ensemble of state-of-the-art climate model outputs and hydrological models to deliver Sectoral Cli-
mate Impact Indicators (SCIIs) co-designed with private and public water sector stakeholders from three contrasting
European countries. The final product of EDgE is a water-oriented information system implemented through a web
application. Here, we present the underlying structure of the EDgE modeling chain, which is composed of four
phases: 1) climate data processing, 2) hydrological modeling, 3) stakeholder co-design and SCII estimation, and 4)
uncertainty and skill assessments. Daily temperature and precipitation from observational data sets, four climate
models for seasonal forecasts, and five climate models under two emission scenarios are consistently downscaled
to 5 km spatial resolution to ensure locally relevant simulations based on four hydrological models. The consis-
tency of the hydrological models is guaranteed by using identical input data for land surface parameterizations. The
multi-model outputs are composed of 65 years of historical observations, a 19-year ensemble of seasonal hindcasts,
and a century-long ensemble of climate impact projections. These unique, high-resolution hydro-climatic simula-
tions and SCIIs provide an unprecedented information system for decision-making over Europe and can serve as a
template for water-related climate services in other regions.

Capsule Summary

Development of a high resolution multi-model ensemble of state-of-the-art climate and hydrological models to
deliver hydro-meteorological change metrics co-designed with key water sector stakeholders in Europe.

Drought Modeling and Forecasting, First edition.
By Luis Samaniego Copyright © 2021 Luis Samaniego
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10.2 The rationale behind EDgE

Existing water-oriented decision support systems are either designed as early-warning systems to provide forecasts
of hydrological floods and droughts, or as monitoring platforms aiming to provide information on the current state
of variables of interest such as streamflow or soil moisture. Such systems normally target national-, continental-,
and global-scales with examples of systems developed for Australia (Emerton et al., 2016), Africa (Sheffield et al.,
2014), Europe (EFAS, Thielen et al., 2009), and North America (Demargne et al., 2014).

Whilst the multiplication of water-focused climate services undeniably helps downstream decision making, a
number of areas of improvements can be identified. First, only few systems operate at different prediction horizons,
most focusing on a single function targeting monitoring, short to medium-range forecasting, seasonal or climate
time scales. This means that users need to refer to different systems and services depending on their planning
scale, each generally associated with different and inconsistent types of information and delivered services, hence
requiring users to develop different application tools for each independent one, and to take much care when inter-
preting their different outcomes, as they might not provide exactly the same information. Two notable exceptions
are the European Flood Awareness System (Arnal et al., 2018; Thielen et al., 2009) and the Global Flood Aware-
ness System (Alfieri et al., 2013), both components of the Copernicus Emergency Management Service, which
are currently the only operational forecasting systems providing ensemble streamflow forecasting and flood early
warning at both medium range and seasonal time frames for Europe and the world, respectively; however, none
currently offer predictions beyond a few months, limiting their use to short and medium term planning.

Second, existing continental or global-scale systems (e.g., for Africa, Sheffield et al. (2014); North America,
Lawrimore et al. (2002); or Europe, Horion et al. (2012)) typically operate at resolutions of 0.25� or coarser (note
the European Drought Observatory has a multi-scale approach) and do not quantify the uncertainty associated with
the monitoring and forecasting hydro-meteorological chain. At national scale, monitoring systems are typically
available at a high spatial resolution (e.g., the German Drought Monitor at 4 km scale, www.ufz.de/droughtmonitor,
Zink et al. (2016); or the UK Drought portal at 5 km scale, https://eip.ceh.ac.uk/apps/droughts/)
and provide timely information for decision-making and the general public, whilst high resolution national forecast-
ing services are normally based on a single hydrological model, not capturing some of the important uncertainty.
This limits robust local decision-making as single deterministic estimates are often given instead of probabilistic
ones.

Third, most climate service portals, especially when designed for climate projections, only focus on a few
specific climate-related variables. For example, the Royal Netherlands Meteorological Institute Climate Explorer
(climexp.knmi.nl/) is a web application to visualize and analyze global climate data, but does not include
hydrological-derived indices relevant for the water sector (see e.g., National Research Council, 2001). This can
limit downstream applications because the information relevant for local decision making is absent and would
require further processing (and associated resources) by users, thus, hampering potential uptake.

The project EDgE “End-to-end Demonstrator for improved decision-making in the water sector in Europe”
(EDgE, https://youtu.be/PqoRi6eSM2w) was designed to address three specific gaps in existing climate
services for a more user-focused delivery for the water sector: 1) development of a high-resolution (5 km), multi-
model system (using two land surface models (LSM) and two hydrological models (HM) established with a com-
mon set of land surface properties across continental Europe) where both uncertainty in the atmospheric forcing
and hydrological impact are accounted for and summarized to users; 2) delivery of a consistent and comparable
multi-scale sets of seasonal forecasts and climate impact projections based on the same hydro-climate modeling
chain; and 3) provision of 36 climate and water indicators (so-called sectoral climate impact indicators SCIIs) and
a unique web information service co-designed with over 30 different public- and private-sector stakeholders from
different hydro-climatic regions and water-related industries across Europe, to facilitate the uptake of the service.
The rationale of EDgE is simple: better-informed operational and strategic planning decisions can be made only
with a timely, coherent and co-designed water-oriented information system (Lourenço et al., 2015). EDgE was one
of two proof-of-concepts (PoC) for the water sector for the European Copernicus Climate Change Service Sectoral
Information Systems programme.

In this paper, we present briefly the technical features of the EDgE modeling chain, discuss the continental scale
application of the underlying model components, including the forcing data, and discuss the co-design and inter-
pretation of impact indicators. Although the stakeholder feedback process and the development of visualization
tools were fundamental parts of the PoC, they are not covered here. For completeness, note that EDgE was a proof-
of-concept project and does not provide a real-time service; however, all indicators estimated under both seasonal
forecast and climate impact prediction mode are accessible at http://edge.climate.copernicus.eu.

www.ufz.de/droughtmonitor
https://eip.ceh.ac.uk/apps/droughts/
climexp.knmi.nl/
https://youtu.be/PqoRi6eSM2w
http://edge.climate.copernicus.eu


CLIMATE DATA PROCESSING 167

10.3 Climate data processing

Daily temperature and precipitation from the E-OBS 25-km gridded product (v12) and the underlying station data
(Haylock et al., 2008) were used as historical meteorological forcing data for the period 1950 to 2015. In addition,
gridded daily wind speed was obtained from the European Flood Alert System forcing (Thielen et al., 2009), made
available by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period 1990–2014.
Gridded historical observations were used to develop the hydrological model historical simulations, to bias correct
the future climate prediction forcings and to generate the hydrological initial conditions for the seasonal hindcasts
(i.e., forecasts of past periods).
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...

ESP

HadGEM2-ES

...

NorESM1-M

mHM

Noah-MP
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Figure 10.1 EDgE modeling chain for seasonal forecast (SF) and climate prediction
(CP) modes, shown here for the high flow indicatorQ10. Both chains use four hydrological
models to compute values for the terrestrial Essential Climate Variables (tECVs) which
are the basis to estimate the sectorial climate impact indicators (SCIIs) requested by focus
groups. For the SF-mode the number of climate realizations can vary across models
(i = 10 to 15). For the CP-Mode, the representative climate pathway (RCP) are set to
RCP2.6 an RCP8.5 (r = 1,2). ESP is included as benchmark for the dynamic SF models.

For the climate change sim-
ulations, daily temperature and
precipitation from five bias-
corrected Global Climate Mod-
els (GCMs) from the Coupled
Model Intercomparison Project
Phase 5 (CMIP5: HadGEM2-
ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM, GFDL-ESM2M
and NorESM1-M) were used to
drive the HM/LSMs during the
period from 1950 to 2099 under
two Representative Concentra-
tion Pathways (RCPs; RCP2.6
and RCP8.5, see CP-mode in
Figure 10.1). This data set was
made available by the Inter-
Sectoral Impact Model Inter-
comparison Project (ISI-MIP,
Warszawski et al., 2014) at a
spatial resolution of 0.5�, and

was selected as it benefited already from a trend-preserving bias-correction ((Hempel et al., 2013); see further
detail in Appendix A).

For the seasonal forecast simulations, daily temperature and precipitation hindcasts from four GCMs run in
seasonal forecast mode (SF-GCM) were used to drive the HM/LSMs (see SF-mode in Figure 10.1). These com-
prise two models from the North-American Multi-Model Ensemble (NMME: Canadian Climate Model version 4
CanCM4 and the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution model (GFDL-
FLOR) and two European models from the Copernicus Climate Change Service (C3S: ECMWF system 4 (ECMWF-
S4) and the Météo-France modeling system version 5 (LFPW)). The number of NMME SF-GCMs were selected
to counterweight those provided by the ECMWF. The number of realizations among SF-GCMs were chosen so
that each member become a similar weight in the multi-model ensemble. In total, the EDgE SF-GCM multi-model
ensemble contained 52 realizations comprised of 10 members from CanCM4, 12 members from GFDL-FLOR,
and 15 members each from ECMWF-S4 and LFPW. Daily hindcasts starting on the first day of each month within
the hindcast period 1993–2011 were used. The SF-GCMs forcings were downscaled from their native spatial res-
olution (of 1� for NMME models and 0.75� for C3S models) to the hydrological model resolution (see section
below) without previous drift or bias correction, the relatively short hindcast period (1993–2011) being considered
not sufficiently long to train a robust bias correction algorithm.

The spatial resolution of all forcing data was considered too coarse for deriving water sector indicators rele-
vant for water managers and practitioners at local and regional levels in Europe. Instead, a spatial resolution of
5⇥5 km2 was selected to derive all EDgE products as a trade-off between a spatial resolution that is informative for
practitioners across Europe and a scale at which it is still feasible to estimate water-related variables using current
computational facilities and geophysical forcing information. The forcing data were hence downscaled from their
native resolution to the common 5⇥5 km2 resolution prior to their use as input to the hydrological modeling chain.
Details of the statistical downscaling technique is provided in Appendix A.
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10.4 Hydrological modeling

Hydrological and land surface models (HM/LSMs) are the backbone of the EDgE modeling chain (Figure 10.1);
they comprise: the mesoscale Hydrological Model (mHM); the PCRaster Global Water Balance model 2 (PCR-
GLOBWB); the Variable Infiltration Capacity model (VIC); and the Noah Land Surface model with multi-paramete-
rization option (Noah-MP). All four models are process-based, simulating canopy interception, snow accumulation
and melting, infiltration, evapotranspiration, and runoff generation. They were selected based on the diversity of
their underlying process representations and their wide-spread use in hydrological applications to capture as much
as possible the structural uncertainty within the hydrological modeling component. A summary of the land surface
data used to parametrize these models up can be found in the Appendix B.

mHM (Kumar et al., 2013; Samaniego et al., 2010a) is a grid-based distributed hydrological model equipped
with a multiscale parameter regionalization scheme, developed with a special focus on running seamlessly at
multiple spatial resolutions ranging from 1 km to 50 km (Kumar et al., 2013b; Rakovec et al., 2016c; Samaniego
et al., 2017), and ready to be implemented in an operational setting (Kauffeldt et al., 2016). PCR-GLOBWB
(Sutanudjaja et al., 2018; van Beek et al., 2011; Wanders and Wada, 2015) is a grid-based hydrological and water
resources model, developed to represent the terrestrial water cycle at global and continental scales, with a special
emphasis on including human water uses. VIC (Cherkauer et al., 2003; Liang et al., 1994) is a macro-scale
hydrological model that solves full water and energy balances to represent the land-surface hydrology and near-
surface atmospheric fluxes. The VIC model has been implemented in catchment to global scale applications for
understanding catchment behavior, extreme hydrological events, hydrological predictability, and climate change
impacts (a.o., Sheffield and Wood, 2008b; Sheffield et al., 2014; Yuan et al., 2015). The Noah-MP model provides
several upgrades of the Noah LSM (Niu et al., 2011), which was originally developed as the land-surface scheme
for numerical weather prediction (Ek et al., 2003). In this study, we use the same process parametrizations as in
Cuntz et al. (2016).

Within EDgE, all four HMs/LSMs were established using the same high resolution (500 m) morphologic, land
cover, and soil databases (Appendix B). Differences between models originate only from different process repre-
sentations. All HMs/LSMs are setup at a spatial resolution of 5 km, simulate daily water fluxes and states, and
were calibrated with standard procedures described in Appendix C. These models were subsequently evaluated in
hundreds of river basins across Europe that cover a wide range of hydro-climatological regimes. For more details,
refer to Figure10-A.1.

Figure 10.2 Simulated mean daily streamflow from 1950 to 2011
for the EDgE domain at 5 km spatial resolution. Simulated daily
runoff was obtained with the mHM model forced with downscaled
E-OBS forcing data. River routing was carried out with the mRM
algorithm.

Another hallmark of the hydrological model-
ing chain is the use of a common river routing
scheme to minimize predictive uncertainty from in-
consistencies in the channel network. The gridded
runoff fields generated by the four HMs/LSMs are
routed through the same 5 km river network using
the multi-scale routing model (mRM, Thober et al.,
2019b) that was originally developed for mHM
(Samaniego et al., 2010a). mRM has the abil-
ity to simultaneously route cell-generated runoff to
multiple outlets, allowing streamflow to be gener-
ated over the entire domain simultaneously (Fig-
ure 10.2). The key characteristic of mRM is its ca-
pacity to estimate streamflow at various spatial res-
olutions without recalibration of river-routing pa-
rameters within the employed Muskingum scheme.
This simplification of the Saint-Venant equations
that only accounts for wave advection and attenu-
ation is justified in all hydrological models used in
this project because the river reaches within the do-
main are unlikely to exhibit abruptly changing hy-
drographs with supercritical flows over large dis-
tances (see details in Thober et al. (2019b) and ref-
erences therein).
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10.5 SCII: stakeholder co-design and estimation

The general graphical representation of the hydro-meteorological modeling chains used to generate terrestrial Es-
sential Climate Variables (tECVs, Sessa and Dolman, 2008) for climate predictions and seasonal forecasts is
shown in Figure 10.1. Four tECVs (Table 10.1) were stored from each simulation for the historical, climate pre-
diction and seasonal forecast modes. These are: streamflow (Q), soil moisture in the top 2 m (SM), snow water
equivalent (SWE), and groundwater recharge (R).

Table 10.1 Sectoral Climate Impact Indicators (SCIIs) derived from terrestrial Essential Climate Variables (tECVs):
Streamflow (Q) (m3s�1); top 2 m soil moisture as fraction of saturation (SM) (m1m�1), groundwater recharge (R) (mm
d�1) and snow water equivalent (SWE) (m) and meteorological forcing data: potential evapotranspiration (PET) (mm d�1),
precipitation (P) (mm d�1), daily average temperature (T) (�C). X denotes any of the tECVs. Xp denotes the value of X that
is equaled or exceeded p% of the time over a time horizon. Lead time is denoted by `.

Index type Statistic Time tECV Notes
Horizon Variables

Climate Predictions
Relative change Daily X10 30 y Q,R Relative change in high values (X10) w.r.t the reference period.
Relative change Median annual Xmax 30 y Q Peak values. w.r.t the reference period.
Relative change Daily X90 30 y Q,R Low values. w.r.t the reference period.
Relative change Daily X95 30 y Q,R w.r.t the reference period.
Relative change Monthly mean X 1 month Q,R, PET,P,SWE,T w.r.t the reference period. For each calendar month.
Relative change Seasonal mean X 3 month Q,R,PET,P,SWE,T w.r.t the reference period. Seasons considered DJF, MAM, JJA, SON.
Relative change Annual mean X 1 y Q,R,PET,P,SWE,T w.r.t the reference period.
Percentile index Monthly F (X) Monthly SM,R F (X) indicates the percentage of the time that X at a given location

and point in time will take a value less than or equal to X

Duration F (X) < 0.2 Monthly SM Number of consecutive months over a 30-year window in which the
F (X) < 0.2, which indicates the onset of a moderate drought.

Relative change Area F (X) < 0.2 Monthly SM Relative change of area of a basin F (X) < 0.2 w.r.t. a ref. period.
Seasonal Forecast

Probabilistic Monthly quintiles, Xp 1, ..., 6 Q,SM,R % of realizations of monthly forecasted X for every quintile category
and lead-time. Cutoffs 20th, 40th, 60th, 80th percentiles.

Probabilistic Above X10 1, ..., 6 Q,SM,R High values. % of realizations above the reference monthly X10 for
each `

Probabilistic Below X90 1, ..., 6 Q,SM,R Low values. % of realizations above the reference monthly X90 for
each `
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Figure 10.3 Workflow of the Climate Projection (a) and Seasonal Forecast (b) model
chains. Both chains include occasional (red) and routine tasks (blue).

In the Climate Projections
(CP) chain, all four HMs/LSMs
were forced with the down-
scaled GCM data for the pe-
riod from 1950 to 2099 un-
der RCP2.6 and RCP8.5. The
period 1971 to 2000 selected
by the IPCC was adopted
to represent present-day con-
ditions (Hoeg-Guldberg et al.,
2019) based on the historical
HMs/LSMs simulations driven

by the GCM data sets. The workflow of the operationalization of the CP-chain includes the following steps (Fig-
ure 10.3(a): a) obtain GCM projections, b) perform bias correction (in this case, this step was not necessary be-
cause the ISI-MIP forcing data are already bias-corrected.) and downscaling, c) run the multi hydro-meteorological
modelling chain to generate an ensemble of target variables (tECVs), d) generate an ensemble of indicators (SCIIs)
based on the tECVs, e) estimate uncertainty in the ensemble, and f) export ensemble outputs/indicators for vi-
sualization. This workflow also includes occasional re-configurations, such as re-calibration of the HMs/LSMs,
modification of the SCIIs according to user needs, and updates of the web service.
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In the Seasonal forecast (SF) chain, all four HMs/LSMs were forced monthly with the downscaled SF-GCM
7-month hindcast data representative of the period 1993–2011. The SF-chain differs from the CP-chain because
it requires initialization of state variables for each monthly simulation. The workflow of the SF-chain is depicted
in Figure 10.3(b), with monthly operations (blue) carried out on a routine basis, and occasional operations (red).
The main steps of the operational SF-chain are: a) update initial state variables through restart files obtained
from the respective E-OBS reference historical run, b) obtain and downscale SF-GCM data, c) run the multi
hydro-meteorological modelling chain to generate an ensemble of tECVs, d) estimate an ensemble of SCIIs based
on the tECVs, e) estimate the ensemble forecast uncertainty and skill, and f) export ensemble outputs/indicators
for visualization. Occasional tasks include the creation of historical initial states for the HMs/LSMs and the re-
calibration of the HMs/LSMs.

The EDgE Sectoral Climate Impact Indicators (SCIIs) for the water sector were identified from an open survey
conducted at the onset of the project (see Appendix E). The users —which included members from consultancy,
academia, NGOs, water user associations, local, regional and national authorities— were asked for the information
that they would require from a climate service delivering seasonal forecasts (SF) and long-term climate projections
(CP). The end-users requested SF-based indices for lead times from 1 to 6 months, and CP-based indices for each
decade up to 2100. To restrict the number of projections, two Representative Concentration Pathways (RCPs) were
chosen, that define the lowest (RCP2.6) and highest (RCP8.5) emission scenarios. End-users were also interested
in obtaining information regarding relative changes compared to the baseline 1971–2000.

The selected SCIIs for the CP and SF modeling chains are listed in Table 10.1. SCIIs based on forcing variables
(i.e., precipitation, temperature and potential evapotranspiration) were derived directly from the bias-corrected and
downscaled forcing data sets.

a b

Figure 10.4 Multimodel ensemble mean of the projected changes in a high streamflow indicator (Q10) for two future time
periods: (a) 2011–2040 and (b) 2066-2099, both under the RCP8.5 scenario. Q10 is the daily streamflow equaled or exceeded
10% of the time over a 30-year window. The historical reference period is from 1971 to 2000.

The majority of CP-based SCIIs denote the changes in a given hydro-climatic variable (e.g., high flow as Q10)
over a future 30-year period with respect to their historical reference values. A reference value was established
for every GCM/HM or GCM/LSM combination using the model simulations for 1971–2000. Subsequently, SCIIs
were estimated for every 30-year period, starting from 2011 until 2095 with a gap of 5 years between each 30-
year periods (i.e., 2011–2040, 2016–2045, . . ., 2066–2095). Some of the CP-based SCIIs related to soil moisture
and groundwater recharge are expressed as quantile indices of monthly values for the entire period 1971–2099
(Samaniego et al., 2013). Figure 10.4 shows the projected changes in one of the SCIIs (high flow indicator – Q10)
for different future periods using the multi-model ensemble consisting of 5 GCMs and 4 HMs/LSMs. This figure
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shows, for example, the level of detail made available by the EDgE simulations. Significantly drier hydrological
conditions are expected across the Mediterranean region. Extended analyses of the implications of global warming
on floods, low flows, and soil moisture droughts based on EDgE water projections are available in Thober et al.
(2018), Marx et al. (2018), and Samaniego et al. (2018), respectively.

The SF-based SCIIs are expressed as the percentage of realizations that detect a reference-based indicator at a
given month and lead-time (varying from 1 to 6 months) to assess the accuracy of the available seasonal forecast
data. The reference is based on the E-OBS historical simulations conducted for every HMs/LSM separately. For
example, the high flow indicator quantifies the percentage of ensemble realizations above the reference monthly
river flow (Q10) for each lead-time, with Q10 previously derived for each calendar month from the relevant ref-
erence model run. Similarly, the low flow indicator was based on assessment of the streamflow forecasts falling
below the reference monthly river flow (Q90). Another category of SF-SCIIs are the counts of monthly forecasts
falling within each of the quantile levels ( 20%, 20% – 40%, 40% – 60%, 60% – 80%, > 80%), with the five level
limits derived for each calendar month from the relevant historic reference run.

a b

c d

Figure 10.5 Multimodel ensemble mean percentage of forecast realizations detecting the reference run based high flow
(Q10) and soil moisture drought indicators at one month lead time for the ensemble streamflow predictions (ESP, (a) and (c))
and climate model (GCM, (b) and (d)) forced hydrological model runs. The reference runs are based on hydrological model
simulations driven by the observed meteorological forcing data (here the E-OBS data set).



172 HYDROLOGICAL FORECASTS AND PROJECTIONS IN EUROPE

Figure 10.5 presents the results of two SF-based SCIIs related to high river flow and soil moisture drought (i.e.,
quantile level  20%) at one month lead time. It shows two extreme events, a flood occurring in May 2001 in
France and the Alps regions (panels a, b); and the 2003 soil moisture drought in central Europe (panels c, d).
The climatological-based Ensemble Streamflow Prediction (ESP) (Day, 1985) was used to provide a benchmark
of the GCM-based seasonal forecasts. In general, the GCM-based seasonal forecast showed a larger agreement
with observations than the ESP-based forecast. A detailed analysis of the seasonal forecasting skill and uncertainty
associated with EDgE seasonal streamflow hindcasts is reported by Wanders et al. (2019).

It was clear from the consultation with users that information on the uncertainty of climate projections and
the skill of seasonal forecasts is critical for outputs to be used to their full potential (Taylor et al., 2015). This
is especially true for large ensembles, like the EDgE seasonal forecast and climate projection chains, that contain
many combinations of models, seasons, and geographical locations. Within this project, skill and uncertainty
information were combined with expert knowledge to provide end-users with both quantitative and qualitative
information, designed to facilitate interpretation. The simulation quality was determined for each individual hydro-
meteorological model combination and initialization months, and was conducted for all parts of the geographical
domain independently. In the following two sections we analyze the uncertainty and the skill of both modeling
chains.

10.6 Uncertainties in Climate Projections

Due to project limitations, uncertainty analysis did not include that from parameter data, downscaling method, and
geophysical data. Consequently, the term uncertainty here refers to the spread among the hydro-meteorological
ensemble members, calculated overall meteorological and hydrological model combinations.

All GCMs

Single HM

All GCMs

All HMs

Single GCM

All HMs

Combination
�GCM

�HM

> 1 �GCM

�HM

< 1

a b

c d

e f

(North Germany) (Central Sweden)

Figure 10.6 Uncertainty of the multi-model ensemble of the relative change of high
streamflow indicator (Q10) for consecutive 30-year periods with respect to the reference
period for different combinations of GCMs and HMs/LSMs and for two distinctive
locations in Central Europe (⇡ E9.38�,N52.12�) and Scandinavia (⇡ E16.72�,N62.98�)
characterized by a larger and smaller ratios of GCM/HM uncertainty (�GCM

�HM
), respectively.

The reference runs are based on hydrological model simulations driven by the historical
forcing data of the respective GCM.

The ability of GCMs and
HMs/LSMs to capture the pre-
dictive uncertainty of key wa-
ter fluxes and state variables
has been extensively discussed
in the literature (e.g., Giuntoli
et al., 2015; Prudhomme et al.,
2014, and sources therein).
The propagation of forcing data
and meteorological model un-
certainties and its dependency
on RCP and time horizon were
shown by Samaniego et al.
(2016) for streamflow for a few
selected basins. In EDgE, the
assessment was extended to all
indicators shown in Table 10.1,
and estimated over a large do-
main and at the high resolution
of the EDgE modeling frame-

work. Figure 10.6 provides clear evidence, when investigating the impact of climate change on water-related
variables, of the importance of a multi-hydrological model ensemble over a single hydrological model to better
capture the uncertainty propagation in water fluxes and state variables. There are regions where GCM forcing
uncertainty clearly dominates the HM/LSM structural uncertainty for the high streamflow indicator (Q10, see pan-
els: a, c, and e in Figure 10.6), but there are other locations in which the opposite is true (panels b, d, and f in
Figure 10.6). Notably, the spatial distribution of uncertainty varies between all indicators. Consequently, it is not
possible to establish a priori the optimal size, or membership, of ensemble GCMs and ensemble HMs/LSMs. Ide-
ally, the ensemble size should be as large as possible to be able to identify the uncertainties originating from either
GCMs or HMs/LSMs. These results clearly indicate that a single model or a sub-ensemble may work well in a
given location but perform poorly in another, and hence should not be recommended for an operational system.
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a

b

Figure 10.7 Ensemble inter-quartile range of the relative change
of high streamflow indicator (Q10) for two 30-year periods with
respect to the reference period: (a) 2011-2040 and (b) 2066-2099,
both under the RCP8.5 scenario. Southern Europe exhibits, for
example, a significant decrease in uncertainty by the end of the
century. The historical reference period is from 1971 to 2000.

The uncertainty of the climate projections un-
der a given RCP were estimated as in Samaniego
et al. (2016), which used the long-term mean of
the inter-quartile range for a given SCII as the un-
certainty metric, so that the contributions stemming
from GCMs and HMs/LSMs could be disentangled.
The 40-member ensemble inter-quartile range of
the relative change of the high streamflow indica-
tor (Q10) shows significant regional changes within
a given RCP scenario for two future periods (2011-
2040 and 2066-2099, panel a and b in Figure 10.7,
respectively). Southern Europe, in particular, ex-
hibits a significant decrease in uncertainty by the
end of the century. This suggests that GCM projec-
tions and HMs/LSMs tend to have a consistent es-
timate of the projected changes. The same method
applied to sub-samples of the ensemble can be used
to systematically quantify uncertainties stemming
from different origins (i.e., uncertainties from hy-
drological model structure and input uncertainty —
given that all HMs/LSMs use an identical set of un-
derlying physiographical land surface characteris-
tics), using, for example, the full ensemble inter-
quartile range spread as the benchmark uncertainty.
Users of the online platform can experiment with
different combinations to assess the quality of a
given combination of GCMs and LSMs/HMs. Note
however, that a smaller ensemble might not capture
the full uncertainty of the hydrological and meteo-
rological combinations.

A detailed analysis of the contribution by GCMs
and HMs/LSMs to the total uncertainty has been
evaluated within the High-resolution Climate In-
dicators for 1.5 Degree Global Warming project
(HOKLIM; www.ufz.de/hoklim), which em-
ployed EDgE simulation data. It was found that the
total uncertainty in modeled variables is dominated
by the choice of hydrological models in Alpine and
semi-arid regions for both floods and low flows
(Marx et al., 2018; Thober et al., 2018). In these
regions, different representations of snow processes
and soil water redistribution in the HMs/LSMs have
an impact on the projected climate change signal
comparable to the different meteorological forcing

data from the GCMs.

A further analysis of the GCMs and HMs/LSMs uncertainty contribution to the soil moisture drought dura-
tion (duration in Table 10.1) under different global warming levels reveals that the ensemble spread is dominated
by the GCMs in comparison to the HMs/LSMs (Figure 10.8, lower panels), with the ratio of GCM and HM/LSM
uncertainties (�GCM

�HM
) being particularly high in the Continental and Atlantic region. In these humid regions, the vari-

ability of precipitation among GCMs has the largest effect on soil moisture drought development. In Scandinavia,
the Southern Alps and parts of the Mediterranean, the HMs/LSMs contribute at least as much to the uncertainty
as GCMs. In cold regions, this might be related to the importance of snow processes, where the rate of snowmelt
and accumulation varies substantially among the HMs/LSMs. In arid regions such as the Mediterranean, the soil
water restriction on evapotranspiration also varies among HMs/LSMs. This process greatly influences how fast
soils dry and thus drought development. These results provide substantial evidence against the assumption that

www.ufz.de/hoklim
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the uncertainty of derived SCIIs is equally distributed between atmospheric (GCM) and land surface/hydrological
models(HMs/LSMs), in accordance with the findings of Samaniego et al. (2016) for low-flow duration.

Figure 10.8 Uncertainty in the estimated number of drought months per year expressed as signal to noise ratio (upper panel),
and as the ratio of the uncertainty contribution of global climate models with respect to hydrological models (lower panel, using
the method described in Samaniego et al. (2016)). The columns from left to right correspond to a global warming level of 1.5 K,
2 K, and 3 K, respectively. The number in the brackets of each panel denotes the mean value over space.

The spatial distribution of the signal to noise ratio for drought duration calculated as the median divided by the
inter-quartile range is shown in the upper panels in Figure 10.8. Low signal to noise ratios are generally found in
Scandinavia, Germany, and Poland, irrespective of the amount of global warming. Note that the spatial distribution
of GCMs/HMs/LSMs uncertainty contribution does not correlate with that of the signal to noise ratio (compare
Figure 10.8, upper and lower panels). For example, for a global warming of 3 K (Figure 10.8, right column), the
signal to noise ratio is low in Scandinavia, where uncertainty is dominated by HMs/LSMs, but it is also low in
Poland, where uncertainty is dominated by GCMs. In other words, low confidence in future projections (i.e., low
signal to noise ratio) can be created by both HMs/LSMs and GCMs, and be undifferentiated.
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10.7 Skill of Seasonal Forecasts

Figure 10.9 Effects of the sub-ensemble selection on the Brier Score (BS)
skill in SF-mode for the 1st. soil moisture quantile indicator (drought events).
Panels (a,c) depicts the ensemble mean and standard error of BS obtained
with the full ensemble, which includes all SF-GCMs and all HMs/LSMs,
respectively. Panel (e,g) shows the same statistics for the sub-ensemble of
one SF-GCM (ECMWF-S4) with all HMs/LSMs. The right hand-side panels
(b,d,f,h) show the corresponding statistics of BS obtained with ESP instead
of the SF-GCM model combination. The number in the brackets of each
panel denotes the mean value over space.

The seasonal forecast skill was calculated
employing one of the most commonly used
skill scores for seasonal forecasting in me-
teorology and hydrology: the Brier Score
(BS, Brier, 1950). The BS uses cate-
gorical forecast thresholds to determine the
quality of the forecast compared to a refer-
ence simulation. E-OBS-based simulations
were used as reference. Quintile classes
were defined for the qualification of the
streamflow skill whereas a threshold soil
moisture value was used to discriminate
soil moisture drought events (a soil mois-
ture value that is exceeded 80% of the time
in a given calendar month and location).
Forecasts that hit the reference class of the
E-OBS reference simulation were consid-
ered as “skillful”, whereas those that did
not are denoted as “unskillful”. The lower
the BS is, the better the forecast. The
spread of the BS values is estimated as a
standard error: ✏ = t↵(n � 1) S

p
n

. Here, n
denotes the sample size (i.e., the ensemble
size), S, the standard deviation of the en-
semble statistic (BS), and t↵ denotes the t-
Student critical value for 1 � ↵ confidence
interval (95%) and n � 1 degrees of free-
dom. Consequently, the uncertainty of the
mean Brier score BS at a given location is
BS ± ✏. A forecast with large standard er-
ror is deemed highly uncertain because the
accuracy of the forecast is low.
The ESP approach (Day, 1985) is an often-
used benchmark in seasonal hydrological
forecasting (e.g., Thober et al., 2015; Wan-
ders et al., 2019) and provides the fore-
cast skill that can be obtained from the ini-
tial hydrological conditions. The method
was implemented in EDgE using a hind-
cast starting at month m and year y, gen-
erated from 15 years randomly drawn from
the E-OBS forcing data during the period
1993–2011, starting at the calendar month
m. The sample size was selected to re-
semble the maximum number of ensemble
members of the seasonal forecast models,
so that the forecast quality cannot be in-
fluenced by different ensemble size. For

shorter lead-times and in regions that have a long hydrological memory, the ESP can provide a highly skillful
forecast because the impact of the initial hydrological conditions dominates the seasonal predictability (Wanders
et al., 2019). For longer lead-times, the ESP tends to become close to hydroclimatology, resulting in a decreasing
forecast skill. Users can evaluate the added value of the dynamical (GCM-based) seasonal forecast by comparing
it with ESP.
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The full ensemble of GCMs and HMs/LSMs exhibits a BS of 0.14 over the entire domain for seasonal soil moisture
droughts at one month lead time (Figure 10.9, panel a). The standard error of the BS values for the full ensemble is
0.02 on average. In comparison, the average BS values using ESP is slightly higher than that of the full ensemble
(0.16), but has a standard error that is on average five times higher than that of the full ensemble. Notably, the
spatial patterns in BS are comparable among the full ensemble and ESP. This indicates that forecasting skill does
not only depend on the meteorological input, but also on other factors such as the persistence of initial hydrologic
conditions (Wanders et al., 2019). Notably, the skill of the full ensemble (SF-GCM + LSM/HM) is consistently
higher than that of ESP at almost all locations in Europe (BS tends to have lower values). This is remarkable
because the analysis is favorable to ESP for two reasons: 1) the SF-GCMs were not bias-corrected prior to being
used as forcing data to the hydrological models, and 2) the reference values for the BS estimates are based on
HMs/LSMs simulations using E-OBS forcing. As a consequence, the ESP forecasts and the reference values
have the same climatology, which may not be the case for the SF-GCMs. The single best performing SF-GCM,
ECWMF-S4, provides a minor improvement with respect to the full ensemble, but has a threefold standard error
as the latter (Figure 10.9, panel e and g). Similarly, the skill of individual ECMWF-S4/HMs/LSMs combinations
is slightly higher than that of the full ensemble and all of these outperform ESP (see Figure10-A.2 for individual
combinations). However, the uncertainty for the individual model combinations cannot be estimated which lowers
the credibility of their skill. Overall, any combination of SF-GCMs/HMs/LSMs provides a higher forecasting skill
than ESP for soil moisture droughts at one month lead time. The full ensemble exhibits the highest forecasting skill
with respect to both bias and uncertainty among all possible combinations. This may not be true everywhere, which
is why users can choose the SF-GCMs/HMs/LSMs that provides the best ensemble forecast for a given location
and time in the web interface of the demonstrator.
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Figure 10.10 Brier skill score (BSS) for dynamical seasonal forecasts over
Europe. BSS is calculated for each gauging station individually (shown
in Figure 10-A.1), for each lead time and model separately, using ESP as
reference (BSESP ). No separation has been made with respect to the forecast
season. The red dash line indicates the median of the distribution over 465
streamflow stations during the hindcast period. Positive BSS values indicate
an improvement in the dynamical forecasts compared to the climatological
forecast.

Improvement of skill using SF-GCM-
driven forecasts instead of ESP can be
measured using the Brier Skill Score
(BSS), with a BSS > 0 showing
an improvement. BSS was calculated
at every location and for every SCII,
and is available on the online demon-
strator (EDgE, 2017). Figure 10.10
gives the histogram of the BSS for
streamflow at 465 selected gauging lo-
cations, and Figure10-A.1 shows the
LSM/HM model performance. Results
show a strong relationship between the
LSM/HM model performance and BSS,
with high-performing hydrological mod-
els being associated with high median
BSS values and a histogram skewed to-
wards the right. For example, the median
BSS are around 0.2 for mHM and Noah-
MP but are slightly less than 0.2 for VIC
and less than 0.1 for PCR-GLOBWB
(except for 6-month lead time forecasts).
This could be related to the initial model
skill, but is also linked to the impact of
the initial hydrological conditions. PCR-
GLOBWB tends to show a long hydro-
logical memory (Wanders et al., 2019),

which limits the impact of the dynamical forecast improvement. Hydrological models that respond rapidly to pre-
cipitation or temperature changes are more likely to benefit from accurate dynamical seasonal forecasts and thus
show a strong improvement in the BSS. This suggests that future hydrological models with more accurate repre-
sentations of the observed hydrology and applied in regions with shorter hydrological response times are likely to
profit more from SF-GCMs.
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10.8 Conclusions and Outlook

The EDgE project was one of the two proof-of-concepts (PoC) commissioned as precursors to the development
of a fully operational system for the water sector in Europe. Three highlights of the EDgE approach are: 1)
the unprecedented high-resolution and consistency of inputs of the multi-model hydrological simulations at time
scales of seasonal forecasts and climate projections, 2) the systematic uncertainty estimation for 36 co-designed
water impact indicators, and 3) the delivery of a high quality water information service tailored to the needs of
end users. These characteristics of EDgE are preconditions for users to make informed decisions and therefore
constitute the key for improved decision-making. The results shown here also highlight the relevance and value of
having a multi-hydrological model ensemble capable of capturing the total uncertainty of the prediction chain.

Operationalization of the modeling chain would be straightforward because it was designed to be upgradable and
scalable. Including new hydrological models or updated versions of Noah-MP, mHM, VIC, and PCR-GLOBWB
would be possible due to the flexibility of the operational framework. Similarly, adding new climate models for the
CP and the SF modeling chains would only be limited by the storage capacity and computational power available.

Skillful seasonal forecasts will depend on the quality of the initial conditions, the performance of the hydrolog-
ical models against observations, the employed spatial resolution, and skill of the SF-GCM model. One limitation
of this PoC is that no bias correction is applied to the SF-GCM data because of the short hindcast period of 19
years. A longer hindcast period should be used during an operationalization phase. As shown in this PoC, model
cross-validation at gauged locations is an excellent diagnostic tool to assess model deficiencies (i.e., model pa-
rameterization and/or structure). Ideally, a diagnostic tool should be part of the operational system giving updated
information on a regular basis, with updates on skill assessments regularly conveyed to end-users.

Next steps within the development of this water information system should focus on anthropogenic influences
that alter the natural course and water balance of the hydrologic cycle in all hydrological models. These will greatly
improve the quality of seasonal forecasts and the usability of the climate projections. For this reason, high resolu-
tion data of water bodies, dam systems and water distribution infrastructure in Europe should be further assembled.
For climate projections, it is crucial to include dynamic land-cover/use models coupled with hydrological models.
Further work should also provide indicators related to water quality and river temperature as needed by end users.
All hydrological and land surface models in EDgE used the same underlying static data sets (e.g., soil and land
cover). These were, however, processed differently for the individual models. Applying a seamless parameteriza-
tion following Samaniego et al. (2010a, 2017), would help to further increase the consistency among hydrological
model simulations. All these factors would improve the quality and realism of the impact indicators.
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Appendix

(A) Bias correction and downscaling

The bias correction technique proposed by Hempel et al. (2013) corrects systematic deviations of simulations from
historical observations, but preserves the absolute warming signal for temperature and the relative warming signal

edge.climate.copernicus.eu
edge.climate.copernicus.eu
http://ensembles-eu.metoffice.com
http://www.ecad.eu
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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for precipitation. Daily variability around the monthly means has been adjusted by a quantile mapping assuming a
normal and gamma distribution for temperature and precipitation residuals, respectively (Hempel et al., 2013).

Coarse GCM daily values (CP- and SF-modes) of precipitation, daily mean temperature, daily maximum and
minimum temperature were downscaled from their native resolution (`2 = 1�, 0.75�, or 0.5�) to `1 = 5 km using
the external drift kriging (EDK) algorithm. EDK is an interpolation technique that provides the best linear unbiased
estimation at unknown locations (Kitanidis, 1997). It also includes a drift governed by the terrain elevation. The
advantage of this procedure over other estimation approaches is that it can account for the fine-scale orographic
effects in interpolated precipitation and temperature fields. In this case, EDK can be considered as a simple but
unbiased form of statistical disaggregation because it uses coarser predictors and terrain characteristics within
a variance minimization scheme. The spatial weights determining the EDK interpolation depend on the spatial
variability of the meteorological fields, which is quantified by a semi-variogram. The semi-variograms for the
daily precipitation and temperature were derived from daily E-OBS station data (Haylock et al., 2008) covering the
entire domain following the procedure proposed by Zink et al. (2017). It should be noted that EDK does not modify
the long-term trends, making this a suitable technique for climate change impact studies. After downscaling the
precipitation and temperature fields, the Mountain Climate simulator tool (Bohn et al., 2013) was used to generate
the 3-hourly forcing data of air temperature, downward short-wave and long-wave radiation, specific humidity and
surface pressure required for running the LSMs. Daily wind speed climatology was derived from the EFAS forcing
data set.

B: Land Surface Data

A key feature of EDgE is the use of consistent land surface data at a high spatial resolution of 500 m. A summary
of all open-source data used is listed in Table10-A.1. Terrain characteristics (e.g., elevation, slope, aspect, flow
direction, and flow accumulation) were derived from the joined Europe-wide (EU) and Global (GOTOP30) Digital
Elevation Model (DEM). The Global data set was used for delineating river basins at those locations that were not
covered by the EU-DEM data set. All data sets were re-projected to the ETRS 1989 Lambert Azimuthal Equal
Area Coordinate Reference System with a spatial resolution of 500 m for consistency. The spatial domain covers
the entire drainage area of all rivers within the Pan-EU territory.

Table 10-A.1 Physiographic information used for the EDgE Project
Description Data set name Data Owner Source

Elevation EU-DEM EEA http://www.eea.europa.eu/data-and-maps/data/eu-dem

GOTOPO30 USGS https://lta.cr.usgs.gov/GTOPO30

Pan-European River
and Catchment
Database

CCM2 v2.1 EC -JRC http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=

23

Soils texture SoilGrids1km ISRIC https://www.isric.org/explore/soilgrids

Land cover GlobCOVER v2 ESA http://due.esrin.esa.int/page_globcover.php

CLC00, CLC06,
CLC12, CLC90
v18.4

Copernicus,
ESA

http://land.copernicus.eu/pan-european/corine-land-cover

Hydrogeology IHME1500 v11/ BGR IHME http://www.bgr.bund.de/ihme1500

Leaf Area Index GIMMS UMD https://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF/

.GIMMS/.NDVIg/.global/.dataset_documentation.html

World Register of
Dams

WRD CIGB-ICOLD https://www.icold-cigb.org/GB/world_register/world_

register_of_dams.asp

C: HMs/LSMs calibration and evaluation

Different parameter estimation strategies have been used for the individual HMs/LSMs, based on the expert knowl-
edge of the different modeling teams involved, e.g., 1) estimation of global transfer function parameters; 2) manual
tuning of selected (sensitive) model parameters, and 3) bilinear interpolation based on coarser resolution param-
eter sets. The first approach, which leads to a seamless parameterization of hydrological model parameters, as
described in Samaniego et al. (2010a, 2017), was applied to mHM and PCR-GLOBWB. Given the resources and
time constraints of the EDgE project, a manual calibration was applied for Noah-MP focusing on adjusting the

http://www.eea.europa.eu/data-and-maps/data/eu-dem
https://www.isric.org/explore/soilgrids
http://due.esrin.esa.int/page_globcover.php
http://land.copernicus.eu/pan-european/corine-land-cover
http://www.bgr.bund.de/ihme1500
https://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/.dataset_documentation.html
https://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/.dataset_documentation.html
https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp
https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp
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surface evaporation resistance parameter, which was identified as highly sensitive by Cuntz et al. (2016). The pa-
rameters for the VIC model (Liang et al., 1994) were mapped from a global simulation (Sheffield and Wood, 2007)
so that they are consistent with the land surface parameters specified for the other models.

All models were driven with the downscaled 5⇥5 km2 historical E-OBS data (Haylock et al., 2008) and eval-
uated against observed GRDC streamflow data for 357 basins (http://www.bafg.de/GRDC/). It should be
noted that the GRDC basins mainly consist of large rivers which are often heavily modified by anthropogenic ac-
tivities and infrastructure (for example, large hydropower dams). As a result, it is difficult for models describing
naturalized streamflows to simulate GRDC-data influenced by river regulations. Parameter estimation for each
HMs/LSMs was conducted only on river basins without large hydro-infrastructure facilities because no dam man-
agement information was available at the time of the analysis.
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Figure 10-A.1 Evaluation of the hydrological models using the observed daily streamflow over 357 European basins forced
with the E-OBS meteorological data: (a) spatial maps of the daily Kling-Gupta Efficiency (KGE) for HMs/LSMs, and (b)
cumulative frequency of the daily KGE measure and decomposition into its three components (correlation - r, ratio of variability
- alpha, ratio of bias - beta). Model statistics are based on the 30-year period (1966–1995).

Figure10-A.1 summarizes the model performance in terms of predicting daily streamflow data for all HMs/LSMs.
In total, 357 diverse basins with a median area of around 1700 km2, and a complete streamflow record for a 30-year
period (1966–1995), are evaluated using the Kling-Gupta Efficiency (KGE, Gupta et al., 2009). Figure10-A.1a
presents the basin-wise spatial evaluation and reveals that the model performance based on historical forcing data
strongly depends on model type and region, which highlights the added value of using multiple hydrological mod-
els. All models have some difficulties in capturing streamflow dynamics in the northeastern part of the domain,
where snowmelt processes are dominant. Figure10-A.1b details quantitative estimates for KGE and its three com-
ponents: correlation (r), ratio of variability (↵), and ratio of mean (�). The median KGE varies between 0.1 and
0.6. The mHM and PCR-GLOBWB models provide unbiased streamflow estimates at the majority of the basins,
while Noah-MP and VIC tend to overestimate and underestimate the mean flows, respectively. In the majority
of the 357 basins, the variability of observed streamflow flow is well captured by all models except for PCR-
GLOBWB. Overall, mHM exhibits the best model performance followed by Noah-MP, VIC and PCR-GLOBWB.
Within the project, the stakeholders evaluated the model results in their target basins and found that the all models
exhibited reasonable performance.

http://www.bafg.de/GRDC/
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D: Performance of ECMWF-S4 driven forecasts

Figure 10-A.2 Effects of the sub-ensemble selection on the Brier Score
(BS) skill in SF-mode for the 1st soil moisture quantile. Panel (a,c,e,g)
depicts the BS obtained with ECMWF-S4 and the mHM, Noah-MP, PCR-
GLOBWB, and VIC, respectively. The right hand-side panels (b,d,f,h, show
the BS obtained with ESP and the corresponding HM/LSM. The number in
the brackets of each panel denotes the mean value over space.

The individual HMs/LSMs (i.e., mHM,
Noah-MP, PCR-GLOBWB, and VIC)
driven by ECMWF-S4 show unique spatial
patterns of the seasonal soil moisture
drought forecasting skill at one month
lead time (Figure10-A.2). This analysis
provides insights on how the individual
models contribute to the forecasting skill
of the full ensemble.

The spatial distribution of BS values for
the PCR-GLOBWB is very different from
that of the other models (Figure10-A.2c).
Notably, this model also has the highest
forecasting skill both for ECMWF-S4 and
ESP-based forecasts among all four mod-
els. It appears as a paradox that the model
with the least ability to simulate observed
streamflow receives the highest forecasting
skill. PCR-GLOBWB shows a high under-
estimation of both the observed variabil-
ity and correlation (↵ and r in Figure10-
A.1). This indicates that this model has
a high persistence, which implies that the
ECWMF-S4 and the ESP-derived forecasts
do not deviate too much from the E-OBS-
based reference run. ECMWF-S4 based
forecasts for mHM and Noah-MP outper-
form ESP and their forecasts are overall
comparable (Figure10-A.2: panels a to d).
Among all models, VIC shows the least
skill for both ECMWF-S4 and ESP-based
forecasts (Figure10-A.2: panels g and h).
Notably, it also has the largest difference
between these two forecasts. In other
words, VIC shows the highest skill im-
provements of 37% for ECMWF-S4 fore-
casts with respect to ESP-based ones. It
is unknown which characteristics of VIC
are causing this behavior. Among the four
models considered in the ECMWF-S4 en-
semble (Figure 10.9: panels a and c), VIC
contributes the most to the relatively higher
BS values of this ensemble with respect
to the ESP ensemble. Overall, there is no
model that outperforms the other models at
all locations, which highlights the necessity
of a multi-model approach.
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E: Stakeholder Focus Groups and Feedback

Stakeholder Focus Groups (FGs) in Norway, Spain and the UK were formed as part of the EDgE project, compris-
ing representatives of national government agencies, regional and local government authorities, international water
and hydropower companies, agricultural sector, river basin authorities, consultancies and academic sector.

To examine user needs in detail, each Focus Group considered a different aspect of water information and
decision-making: water supply in the UK; catchment planning and agriculture in Spain; hydropower generation
and local authority planning in Norway. The number of active Focus Group members totaled 29: 11 in the UK;
6 in Norway and 12 in Spain. Stakeholders in Germany were analyzed in a follow-up project (HOKLIM, www.
ufz.de/hoklim).

Stakeholders welcomed the information provided by the EDgE demonstrator that combines seasonal forecasts
and climate projections in a single platform, seeing it as a useful addition to the information they currently had
access to. The international companies saw also a large potential in this system because it provides a consistent
data set across Europe. In general, it was found that the seasonal forecasts need to have a better skill before they can
be used operationally, although they would be used as additional information to climatology. However, the value
of using multiple hydrological models to assess hydrological modeling uncertainty was generally appreciated by
stakeholders. A European Sectoral Information System like EDgE was thought to be useful for countries that
do not have national climate services providing seasonal forecasts and climate and hydrological projections but it
should have higher spatial resolution to replace currently available national systems.

www.ufz.de/hoklim
www.ufz.de/hoklim
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11.1 Abstract

The 2003 drought event in Europe had major implications on many societal sectors, including energy produc-
tion, health, forestry and agriculture. The reduced availability of water accompanied by high temperatures led to
substantial economic losses on the order of 1.5 Billion Euros, in agriculture alone. Furthermore, soil droughts
have considerable impacts on ecosystems, forest fires and water management. Monitoring soil water availability
in near real-time and at high-resolution, i.e., 4⇥4 km2, enables water managers to mitigate the impact of these
extreme events. The German Drought Monitor was established in 2014 as an online platform. It uses an oper-
ational modeling system that consists of four steps: (1) a daily update of observed meteorological data by the
German Weather Service, with consistency checks and interpolation; (2) an estimation of current soil moisture
using the mesoscale Hydrological Model (mHM); (3) calculation of a quantile-based Soil Moisture Index (SMI)
based on a 60 year data record; and (4) classification of the SMI into five drought classes ranging from abnormally
dry to exceptional drought. Finally, an easy to understand map is produced and published on a daily basis on
www.ufz.de/droughtmonitor. Analysis of the ongoing 2015 drought event, which garnered broad media
attention, shows that 75% of the German territory underwent drought conditions in July 2015. Regions such as
Northern Bavaria and Eastern Saxony, however, have been particularly prone to drought conditions since autumn
2014. Comparisons with historical droughts show that the 2015 event is amongst the ten most severe drought
events observed in Germany since 1954 in terms of its spatial extent, magnitude and duration.

11.2 Introduction

Drought is a natural phenomenon that results from deficiencies in precipitation compared to the expected or normal
amount (Wilhite, 2005). It may translate to water scarcity, a discrepancy between the actual demand and the
corresponding availability of water for environmental and societal needs. Compared to other natural disasters,

Drought Modeling and Forecasting, First edition.
By Luis Samaniego Copyright © 2021 Luis Samaniego
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droughts have the largest spatial extent and longest duration (Sheffield and Wood, 2011). These slowly developing
events easily persist over several years and can reach national to continental spatial coverage (Samaniego et al.,
2013; Sheffield and Wood, 2011). According to the EM-DAT database (Guha-Sapir et al., 2015), droughts affected
2.2 billion people worldwide between 1950 and 2014, thus making droughts the second most important natural
disaster after floods (3.6 billion people affected). In Europe, for example, the costs per event during this period are
estimated to be 621 Mio. EUR, the costliest amongst all natural disasters that occurred in this region (Guha-Sapir
et al., 2015). Droughts have impacts on many societal sectors, including forestry, water resources management,
energy generation, and health. Their impacts can be divided into direct and indirect impacts (Wilhite et al., 2007).
Examples of direct impacts are reduced crop yield and forest productivity, increased forest fire hazard, reduced
water levels, and increased mortality rates for livestock, wildlife and fish. They can usually be quantified, though
the assessment of indirect impacts is often challenging. An example of indirect drought impact is variable food
prices due to market effects in the agricultural sector. As a result, it is difficult to estimate the total costs and losses
at the regional and national levels. Indirect losses of droughts often exceed those of the direct ones (Wilhite et al.,
2007).

According to the European Commission, the frequency of droughts has increased since 1980 and will, very
likely, further increase (EEA, 2012). To date, 11% of the European population and 17% of the area of the EU have
been affected by water scarcity (European Commission, 2007, 2010). For example, the 2003 drought event, which
covered major parts of Europe, caused 7,000 fatalities in Germany alone (European Commission, 2012) and had an
agro-economical impact of 1.5 billion EUR. On the European level, the death toll was estimated to exceed 70,000
(Robine et al., 2008), and the agro-economical impact was estimated to be 15 billion EUR (COPA-COGECA,
2003). This severe drought impacted many components of societal life. It disrupted irrigation, inland navigation,
and power plant cooling (Fink et al., 2004; Parry et al., 2007).

A precise and generally accepted definition of drought does not exist (Wilhite, 2005) because drought impacts
are specific to the region of its occurrence and to the field of interest. According to the WMO (2006) and Mishra
and Singh (2010), four different types of drought exist: meteorological, hydrological, agricultural, and socioe-
conomic droughts. Meteorological droughts relate to a deficiency of precipitation. Agricultural droughts arise
as a consequence of this deficiency. They are characterized by low soil water availability for plants. Potential
consequences of agricultural droughts are reduced biomass and yield or crop failure. Long-term soil water de-
ficiencies diminish to surface and subsurface water availability, resulting in hydrological drought. It is denoted
by reduced streamflow and low water levels of reservoirs and lakes. Hydrological droughts mainly affect water
resources management, power plant cooling, irrigation and inland navigation. Groundwater droughts are a special
case of hydrological droughts (Kumar et al., 2016; van Lanen and Peters, 2000). They occur when water defi-
ciencies reach deep subsurface storages resulting in exceptionally low groundwater levels, groundwater recharge
and baseflow. They reduce the supply of fresh water, where groundwater is the major source for drinking water
supply. Socio-economic drought can emerge from all of the aforementioned drought types. It is characterized by
a shortfall of water supply (water scarcity) leading to monetary losses. In terms of duration, precipitation drought
has the shortest occurrence, followed by agricultural drought and finally hydrological and groundwater droughts.

The German Drought Monitor (GDM) presented herein focuses on agricultural droughts, which are highly
relevant for Germany because they may induce substantial agro-economic losses as shown by the 2003 drought
event. Within this study we review existing drought monitoring systems and the advantages of the newly developed
monitor for Germany. Furthermore, we present the technical implementation of the German Drought Monitor and
an analysis of the drought event 2015 for which the GDM received broad attention from several media and the
public. Finally, we provide an outlook on future developments of the German Drought Monitor.

11.3 Drought Monitoring

Drought monitoring and early warning systems are designed to identify water deficiencies in climatic or hydrologic
variables. They aim to detect emergence, probability of occurrence and the potential severity of drought events
(WMO, 2006). A drought monitoring system that delivers timely information about the onset, extent, and intensity
of drought events could help to mitigate drought related impacts such as economic losses (Wilhite, 1993).
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11.3.1 Existing Drought Monitoring Systems

Several drought monitors for large parts of the world are currently available to the public. On the continental scale,
drought monitoring or forecasting systems exist for North America (Lawrimore et al., 2002), Europe (Horion et al.,
2012), and Africa (Sheffield et al., 2014). On a national scale, online platforms are available for India (Shah and
Mishra, 2015), the Czech Republic (Trnka et al., 2014), and the United States of America (Luo and Wood, 2007;
Svoboda et al., 2002; Wood, 2008). Efforts to monitor drought evolution on the global scale have been made by
Pozzi et al. (2013) and Hao et al. (2014).

A variety of input data, spatial and temporal resolutions and estimated drought indices can be found among
these monitoring systems. The longest established system is the US drought monitor launched in 1999. The
weekly published map is a composite of different indices based on meteorological observations, i.e., standardized
precipitation index, the Palmer drought severity index, soil moisture percentiles derived from hydrologic model
simulations, and expert knowledge from more than 130 people (Svoboda et al., 2002). Thus, local experts like
agricultural and water resources managers can add information and help verify the drought map. The North Amer-
ican drought monitor was implemented in 2002 based on experience with the US drought monitor (Lawrimore
et al., 2002). It enlarges the investigated domain to Canada and Mexico and delivers monthly drought maps. The
drought monitors of the University of Washington (Wood, 2008) and Princeton University (Luo and Wood, 2007)
cover the continental United States, showing simulations and forecasts of soil moisture, snow and runoff at 1/8�
spatial resolution derived using the Variable Infiltration Capacity (VIC) macroscale hydrologic model (Liang et al.,
1994).

Systems established for India (Shah and Mishra, 2015) and Africa (Sheffield et al., 2014) are based on bias-
corrected satellite precipitation with the latter including a seasonal forecasting capability. These systems are run-
ning on 1/4� resolution using the VIC model and provide drought indices based on precipitation, soil moisture, and
streamflow. The Czech drought monitor (Trnka et al., 2014) is based on modeled root zone soil moisture, which is
derived from local meteorological observations. Maps are published on a weekly basis and have a spatial resolution
of 500 m.

The European Drought Observatory (EDO) publishes the current drought status for Europe at a ten-day interval
based on a combined drought indicator composed of the standardized precipitation index (SPI) as well as soil
moisture and vegetation conditions (Horion et al., 2012). The soil water and vegetation status are assessed by
its anomalies. EDO uses local observations to derive the SPI and the hydrologic model LISFLOOD (De Roo
et al., 2000) to estimate soil moisture. The status of the vegetation is estimated based on the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR) retrieved from ENVISAT. The spatial resolutions of precipitation,
soil moisture and fAPAR are 25 km, 5 km and 1 km, respectively, whereas their reference periods are 1981-2010,
1990-2010, and 1997-2010, respectively (Horion et al., 2012).

11.3.2 Aims of the German Drought Monitor

The implementation of a national drought monitoring system goes beyond the capabilities of the existing systems.
In our work with regional stakeholders from agriculture and forestry, the need for a high-resolution, near real-time,
regional monitoring system was expressed. Therefore, the drought monitoring system presented herein is based on
data provided by the German Meteorological Service (Deutscher Wetterdienst (DWD), 2015), which are the most
dense and reliable meteorological data available for this region. Furthermore, due to the long-term availability of
these data, we are able to use a 60-year reference period for the estimation of drought indices for every grid cell
and day of the year. This is substantially longer than those in other existing systems for this region.

The GDM addresses the need for daily up-to-date agricultural drought information. This broadens the deci-
sion base for local authorities complementing other available drought information based on e.g. precipitation or
streamflow. Finally, the implementation of a national drought monitor encourages local experts, stakeholders and
decision makers to take part in the future development. At the same time, it helps to validate the GDM.

11.4 Operational Drought Monitoring Framework

Ground-based monitoring of nation-wide soil moisture is to-date hardly possible. Hence, this study presents a
drought identification and classification framework based on near real-time observed meteorological data and dis-
tributed hydrologic modeling. The German Drought Monitor estimates soil drought conditions on a high spatial
resolution and allows for the evaluation of recent drought events with respect to historical events. A similar frame-
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work to that used in the GDM is applied to rank historic drought events in Germany (Samaniego et al., 2013) and
for seasonal drought predictions in Europe (Thober et al., 2015).

1a) Download of 
meteorol. data 

1b) Interpolation 3) Near real- 
time SMI 

2) Soil moisture 
estimation 

4) Drought map 
www.ufz.de/droughtmonitor 

Figure 11.1 Framework of the German Drought Monitor. After 1) downloading and interpolating of the meteorological data
from the National Weather Service (DWD) the data are fed to the hydrologic model mHM. 2) mHM estimates the soil moisture
for the entire root zone on a daily basis which is used to 3) calculate the Soil Moisture Index (SMI). The SMI is 4) classified
and visualized in a drought map published online.

The operational system consists of four processing steps (Figure 11.1). In the first step, local observations
from the German Meteorological Service are retrieved every morning (Deutscher Wetterdienst (DWD), 2015).
These data are initially quality checked by the DWD. Nevertheless, the GDM checks the downloaded data for
consistency and detects outliers as a supplementary quality control. Currently, approximately 1700 precipitation
and 500 climate stations, which observe the minimum, maximum, and average daily temperatures, are used to
derive daily fields of meteorological input data for the hydrologic model. The daily data are interpolated by
external drift kriging using terrain elevation as external drift. The spatial resolution of the resulting meteorological
fields is a compromise between the demands for highly resolved hydrological predictions, which are required
by stakeholders and practitioners, and the lowest reasonable resolution supported by the input data. The average
minimal distance between two neighboring precipitation stations is approximately 6 km in Germany. Thus, a target
of 4 ⇥ 4 km2 resolution was implemented, which would provide high-resolution information without facing the
risk of over-interpreting of the meteorological observations. These data are available with a time lag of four days.
Due to the high persistency of soil moisture, this near real-time estimation is considered sufficient for agricultural
or water management purposes.

In the second step, these interpolated fields are used to force the hydrological model mHM, a process-based
model that treats grid cells as unique hydrological units. It comprises hydrological processes such as interception,
snow accumulation and melting, infiltration, soil water dynamics, groundwater recharge and storage. The gener-
ated discharge of a model cell consists of direct runoff, baseflow, slow and fast interflow, which, after aggregating
its components, is routed through the model domain using the Muskingum-Cunge flood routing algorithm (Chow
et al., 1988; Todini, 2007). By using the Multiscale Parameter Regionalization (MPR) technique (Kumar et al.,
2013; Samaniego et al., 2010a), mHM directly accounts for the sub-grid variability of physiographic character-
istics. The model parameters are estimated in a preliminary step on the lowest possible input resolution of the
physiographic variables, i.e., 100 ⇥ 100 m2. In a second step, effective parameters at the hydrological modeling
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resolution of 4 ⇥ 4 km2 are estimated by applying particular upscaling operators. This technique makes mHM
scale- and location-independent because it connects effective parameters to physiographical inputs (Kumar et al.,
2013). In several studies, the model has shown to perform satisfactorily in a wide range of catchments with drainage
areas ranging from 4 to 530,000 km2 and with contrasting climatic regimes (Germany, India, USA, Europe; e.g.,
Kumar et al. (2013b); Rakovec et al. (2016c); Samaniego et al. (2011, 2013)).

A soil moisture field, updated daily, is estimated by running the model with an internal time step of one hour.
The soil water availability is estimated in three different layers. The thicknesses of the upper two layers are 5 cm
and 20 cm. A third layer is spatially variable in depth, depending on the soil horizon properties specified in the
input data. This variable depth, is on average, 1.8 m in Germany. The estimated soil moisture of each single layer
is used to estimate the total root zone soil moisture. The hydrological model stores specified state variables at the
end of a model run. To calculate the soil moisture statistical reference, we performed a 60-year simulation from
1954 to 2013. Within the operational framework, we are currently performing hydrological simulations initialized
with the model states of December 31, 2013. Thus computational time is minimized as the daily model simulation
runs from January 1, 2014, onwards. An evaluation of the hydrologic model on the domain of Germany is provided
by Samaniego et al. (2013).

The third step within the GDM is to transform the daily updated soil moisture into the Soil Moisture Index (SMI)
by estimating the percentile of the updated soil moisture value with respect to its climatology. The daily updated
soil moisture is estimated as the average of the soil conditions of the preceding 30 days. Therefore, it represents
values that correspond to a time period of one month. The SMI is estimated using a non-parametric kernel-based
cumulative distribution function based on a 60-year historic soil moisture reconstruction (1954-2013), as described
by Samaniego et al. (2013). The SMI is bounded between 0-1 and can be easily transformed to the unbounded
range of the standard normal distribution e.g. used for the Standardized Precipitation Index (SPI, McKee et al.
(1993)). It is estimated on every grid cell and for the particular time of the year (i.e., the average of the 30 days
preceding the estimation day). The one month running mean of soil moisture data for SMI derivation was chosen
because it is well established in scientific literature (Andreadis and Lettenmaier, 2006; Samaniego et al., 2013;
Sheffield and Wood, 2007; Vidal et al., 2010).

Table 11.1 The classification of droughts for the German Drought Monitor based on the Soil Moisture Index (SMI) (adapted
from Svoboda et al. (2002)).

SMI class Condition of the soil Description of potential impacts

0.2 < SMI  0.3 Abnormally Dry conditions before or after a preceding drought
0.1 < SMI  0.2 Moderate Drought damages to crops and pastures possible

0.05 < SMI  0.1 Severe Drought losses in crops and pastures are likely
0.02 < SMI  0.05 Extreme Drought high probability of major losses in crops and pastures

SMI  0.02 Exceptional Drought high probability of exceptional losses in crops and pastures

Finally, the fourth step consists of categorizing the estimated SMI into several drought classes and visualizing
the results. A main requirement for the appearance of the publicly available drought map is intelligibility. For
the visualization of drought events, we adapted the appearance of the German Drought Monitor to that of the US
Drought Monitor (Svoboda et al., 2002), using five classes. Four classes define drought conditions, and the fifth
class describes the pre-warning state of abnormally dry (Table 11.1). The four drought classes scale from moderate,
(vegetation prone to water stress) to exceptional (high probability of losses of crops and increased forest fire risk).

The classes are derived using the thresholds of the Soil Moisture Index (Table 11.1). These thresholds reflect
the occurrence of similar conditions in the past and thus indicate the potential impacts of these conditions. For
example, the class of exceptional drought is defined by an upper threshold of 0.02. This implies that this soil
moisture conditions were observed in less than 2% of the time within the 60-year reference period at this grid cell
and time of the year. Thus, this drought condition only occurred in less than 1.2 cases over the last 60 years, which
is equal to a return period of 50 a.

Because the SMI describes the status of the soil but not necessarily the impact on the vegetation, this classifica-
tion scheme still requires further research. Crops cope with drought conditions better or worse at different stages of
plant development and may not be influenced by heavy drought conditions. Revisiting this argument would mean
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that an effect of the Soil Moisture Index (SMI) on vegetation at different stages of plant development has to be
investigated.

The resulting maps are visualized and published online in the GDM. Currently, an up-to-date drought map is
published every morning at 3 am CET on www.ufz.de/droughtmonitor. This information is accompanied
by historical, monthly drought maps starting in 2014. We provide detailed maps available since 1954, of particular
regions as well as the underlying soil moisture and soil moisture index data on request.

11.5 Benchmark for the Recent 2015 Drought Event

Germany has experienced two drought events since the implementation of the GDM. The first took place in spring
2014, and the second occurred in summer/autumn 2015. These events are used to assess the performance of the
GDM. The 2014 event (see Figure 11.2, upper row) had its largest spatial coverage in April 2014. In Germany, 70%
of the area was under drought conditions (SMI0.2), with 25% of the total area being under exceptional drought
(SMI0.02). The situation improved significantly in May 2014 due to above average rainfall, and the total drought
area (moderate to exceptional drought) decreased to almost half of the area affected in April. Furthermore, the area
under exceptional drought reduced to only 1%. As a consequence, the vegetation and, in particular, agricultural
crops received sufficient amounts of water, especially during the crucial growing phase after seeding in April/May.
In consequence, even the deterioration of drought conditions in June did not have a negative impact on yield in
2014. On the contrary, the Federal Ministry of Food and Agriculture (BMEL, 2014) reported that productivity of
agriculture was superior to the preceding six years.

Figure 11.2 Soil water conditions from April to August in 2014 (upper row) and 2015 (lower row).

In 2015, the drought situation was different (Figure 11.2, lower row). In contrast to the situation in 2014, soils
were not experiencing extreme to exceptional dry conditions in spring. The drought primarily evolved during
spring and summer. Nevertheless, the growing phase of some crops was already delayed by water shortage in May
(BMEL, 2015). In some regions of Northern Bavaria and Eastern Saxony, soils were under drought conditions
since autumn 2014. These regions were especially prone to losses in crop yield and to increased forest-fire risk.

www.ufz.de/droughtmonitor
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According to (BMEL, 2015), corn yield was 22% below the average yield between 2009 and 2014 in Germany.
Additionally, some regions of Germany were prone to losses in animal food production, so they faced the decision
of either buying additional food or reducing livestock (BMEL, 2015). Due to the low water levels, inland navigation
was stopped on the Elbe River. A hotspot for very dry conditions was Berlin (Figure 11.2, lower row), where trees
had already started shedding their leaves in the middle of August. Reports on economic consequences have not
been published yet, but there were extensive fire watch activities due to very high forest fire risk and losses in crops
such as corn, which led to increased expenses. Almost 75% of the area of Germany was under at least moderate
drought in July 2015. During August 2015, the total area under drought decreased, but the areas of extreme and
exceptional drought conditions increased to 22% and 5%, respectively.

Figure 11.3 Percentage of area affected in Germany during the drought event in five
drought classes (legend is show in Fig. 11.2) and total hits on our drought monitor
webpage.

The recognition of the
German Drought Monitor in-
creased significantly during the
2105 event. The information
provided by the GDM were
used for public information and
drought assessment in local au-
thorities. We could iden-
tify users due to individual re-
quests of several federal state
agencies including the Saxon
State Office for the Environ-
ment, Agriculture and Geology,
the Thuringian State Office for
Environment and Geology, the
Bavarian State Office for Agri-
culture, and the North Rhine
Westphalia Chamber of Agri-

culture. They used the GDM to inform agriculture and forest managers about the current soil moisture status.
The drought monitor got attention in the public due to reports in several media ranging from regional to national
newspapers as well as television broadcasters. The number of page views of the GDM website followed the esti-
mated area under drought (Figure 11.3). This highlights that extreme events gather more public attention during
periods when they do actually occur. Attention rose in April 2015 when newspapers in Saxony started report-
ing drought conditions due to negative impacts on forestry and agriculture, e.g., seeding of maize and dying tree
seedlings. The highest interest was reached when several national media started republishing the maps of the GDM
in August 2015. In the private sector, we got feedback from insurance and seed production companies.

The benchmark of the 2015 event with respect to historical drought events is shown in Figure 11.4. The left
graph of this figure is created by applying the cluster identification algorithm proposed by Samaniego et al. (2013).
This three-step algorithm uses the duration, spatial extent and drought intensity to calculate a dimensionless drought
magnitude. The drought intensity is calculated as the negative deviation from the SMI value 0.2, whereas the
magnitude is the integral of drought intensity over time and space. The results show that the ongoing 2014-2015
event ranks among the 10 largest events observed in Germany since 1954.

A more detailed insight can be obtained from the four panels on the right in Figure 11.4. In these graphs,
drought events are evaluated for calendar months. The integral of drought intensity is based on monthly values. The
probability is calculated from the empirical cumulative density function of the area under drought. The numbers
next to the bubbles denote the respective year of the drought event. The drought conditions in June and July
2015, rank within the four largest events with respect to spatial extent. The magnitude is highly correlated to the
area under drought; hence, between June and September, the 2015 event ranks among the 7 largest events for the
respective months. The displayed 2003 event is well remembered in Germany due to its large socio-economic
impacts. In 2003, the drought event evolved more slowly than the 2015 one did, but the former peaked in August,
with a magnitude M=2067, which is greater than the maximum magnitude reached by the 2015 event in July
(M=1770).
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Figure 11.4 Ranking of the recently ongoing drought event in 2015. The panel on the left shows the relationship between
the area, duration and magnitude of drought events since 1954. The 4 panels on the right show the ranking of drought area
at specific months over the last 62 years. The magnitudes are represented by the size of the bubble and the color code. The
reference period for this figure is 1954/01/01-2015/10/31.

11.6 Conclusion and Outlook

The German Drought Monitor (GDM) provides an easily accessible agricultural drought information system on
both the regional and national level. It provides an added value through the daily, high-resolution availability of
formerly unaccessible information. Stakeholder feedback indicates that the main user groups are from regional
agencies and the agriculture and forestry sector. During the 2015 drought, the GDM was widely used by the media
and stakeholders when drought consequences became visible (e.g., in tree leaf coloring in summer).

The GDM is driven by an observational dataset, which enables drought estimates on a higher spatial resolution
(4⇥4 km2) compared to other available products. A soil drought map for Germany is released to the public on
a daily basis, with a latency of 4 days. This map is intended to be comprehensible and easy to access via a web
browser. Additional information, e.g., the underlying SMI data, are available on request. The GDM information
aims to support practitioners to optimize their actions.

A comparison of an ongoing event with historical drought events helps to understand their severity and to assess
potential impacts. The sensitivity of plant growth to soil water availability depends of the timing within the year.
This could be shown in the comparison of consequences of the drought situation in 2014 and 2015. Currently, the
SMI data is used in our research to investigate the relationship between soil moisture and crop yield for different
times of the year to gain more knowledge about the consequences of agricultural droughts.

Feedback from stakeholders has already been integrated in the GDM, e.g. in the publication of drought informa-
tion for the uppermost soil layer with a depth of 25 cm. The future development of the German Drought Monitor
will reflect the needs of stakeholders and decision makers. We use the Climate Office for Central Germany, a
regional climate service center, to inform agencies, agricultural engineers, water resources managers, hydrologists
and policy makers about the potential of the GDM. In this dialogue-based knowledge transfer, we identify 1) how
to improve the visualization of drought information (e.g., readability and information content of the maps); 2)
how to implement local expert knowledge into the daily published product, and 3) which additional information or
combination of drought indices may be beneficial (e.g., Standardized Precipitation Index).

Currently, the drought maps are based on a 30 day soil moisture average, which is a well established procedure
found in the literature. Shorter time aggregations may provide new information for particular crops. Thus, further
research has to be attributed to determine the sensitivity of temporal aggregation on the soil moisture index and
how this relates to agricultural crop development.
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An additional field of work remains in handling predictive uncertainties. These uncertainties stem from the
input data, the model structure and the model parameters (e.g., Wagener et al., 2003). Samaniego et al. (2013)
showed that parametric uncertainty alone can lead to significant classification errors in drought characteristics. A
major challenge is to investigate how to communicate such uncertainties to the public and decision makers without
counteracting the GDM’s simplicity and intelligibility.

Providing forecasts may help to better mitigate drought consequences. Studies like Thober et al. (2015), how-
ever, showed that soil moisture drought forecasts underlie significant uncertainties at seasonal lead times. Never-
theless, we aspire to assess the potential of short and medium range forecasts.

The German Drought Monitor presented herein provides free, high-resolution, near real-time drought informa-
tion for Germany and a contribution to mitigate negative effects of agricultural droughts.
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12.1 Abstract

Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary
source of water for plant growth. The aim of this study is to investigate the intra-seasonal predictability of soil
moisture to estimate silage maize yield in Germany. It is also evaluated how approaches considering soil moisture
perform compared to those using only meteorological variables. Silage maize is one of the most widely cultivated
crops in Germany because it is used as a main biomass supplier for energy production in the course of the German
Energy Transition. Reduced form fixed effect panel models are employed to investigate the relationships in this
study. These models are estimated for each month of the growing season to gain insights into the time varying
effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration
are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for
the inter-annual variation within each month. The main result of this study is that soil moisture anomalies have
predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture
anomalies in August and September reduce silage maize yield more than 10 % other factors being equal. On the
contrary, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May
compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature
and precipitation have higher predictabilities than models using only one meteorological variable. Also, models
employing only temperature exhibit elevated effects.

12.2 Introduction

In the course of the German Energy Transition, the demand for biomass has increased considerably with silage
maize being an important plant for high dry matter yields. The share of the total production in agriculture was
18 % in 2014 (Die Landwirtschaft Band 1, 2014), with an increasing share of agricultural area used for silage maize
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from 15.4 % in 2010 to 17.7 % in 2015 (Statisitisches Bundesamt, 2011, 2016). With that in mind, the observed
susceptibility of silage maize towards extreme dry conditions during summer time supports the detection of relevant
factors for yield variation (as for instance in 2015, Becker et al., 2015; BMEL, 2015). Knowing the determinants
of maize variation can help to mitigate welfare losses. For instance, detrimental effects of soil moisture shortage
and abundance can be mitigated by the means of irrigation and drainage and thus are key for targeted and efficient
development of adaptation measures (Chmielewski, 2011).

In general, two different kinds of modeling approaches are employed to assess the impact of weather or cli-
mate on the agricultural sector. These are structural (integrated assessment) models and reduced form models
(Auffhammer and Schlenker, 2014). Whilst structural approaches specify the economic behavior based on theo-
retical models and assumptions and thus have ”the ability to make predictions about counterfactual outcomes and
welfare” (Chetty, 2009), the advantage of reduced form approaches is ”transparent and credible identification”
(Chetty, 2009) by exploiting the exogenous variation of key parameters (Timmins and Schlenker, 2009). Regres-
sion models are used to estimate the variation in the dependent variable within various sectors by the means of
damage or dose-response functions (Carleton and Hsiang, 2016; Hsiang, 2016). In the agricultural sector, the ma-
jor explanatory variables are temperature based (Carleton and Hsiang, 2016; Lobell et al., 2008, 2011a; Schlenker
and Lobell, 2010; Schlenker et al., 2005). The use of temperature as the main explanatory variable is questioned in
this study by using reduced form models to identify the impact of different determinants on crop yield.

In the agricultural context, most advances have been made regarding dose-response functions through the de-
velopment of temperature estimates on high spatial and temporal resolutions (Hsiang, 2016). Based on this data,
many studies employ a precise term which integrates cumulative exposure to specific temperature ranges over
the growing period as major explanatory variable. Those are defined as growing degree days (Deschenes and
Greenstone, 2007; Schlenker et al., 2006) and accumulated measures of extreme heat above a certain threshold,
as for instance extreme, heat, killing, or damage degree days (Annan and Schlenker, 2015; Burke and Emerick,
2016; Butler and Huybers, 2013, 2015; Lobell et al., 2011b, 2013; Ortiz-Bobea and Just, 2013; Roberts et al.,
2013; Schlenker and Roberts, 2006, 2009; Schlenker et al., 2013; Teixeira et al., 2013; Urban et al., 2012, 2015a).
Schlenker and Roberts (2009) showed that the time in which a plant is exposed to a temperature above a threshold
during each day of the growing season can explain almost half of its yield variations. For corn, this threshold is
estimated to be 29 �Celsius. Thus, it is highly recommended to account for nonlinearity in temperature. This is
particularly important in the context of climate change, as the likelihood of significant and non-marginal changes
in relevant factors increases. Currently, non-linear measures with thresholds such as extreme degree days (EDD)
are considered to be the best predictor of crop yield variation (Auffhammer and Schlenker, 2014; Carleton and
Hsiang, 2016).

Recent research suggests, that the main reason of the importance of EDD is the high correlation with measures
of cumulative evaporative demand (Urban et al., 2015a), as for instance vapor pressure deficit (VPD, Lobell et al.,
2013; Roberts et al., 2013). There is evidence, that the effect of EDD and measures for evapotranspirative demand
is overstated when neglecting proper control for water supply (Basso and Ritchie, 2014; Ortiz-Bobea, 2013). For
instance, soil moisture is considered a major limiting factor to maize growth (Andresen et al., 2001). Extreme
high temperature amplifies the impact of soil moisture deficit because of surface-atmosphere coupling (Mueller
and Seneviratne, 2012), but the opposite is not necessarily the case as droughts occur independently of heat (Basso
and Ritchie, 2014). Urban et al. (2015b) highlight the impact of interactive effects between VPD and water
supply to further improve model predictability. In Germany, a recent statistical impact assessment of weather
fluctuations affecting maize and winter wheat recognizes water shortage as major limiting factor (Conradt et al.,
2016; Gornott and Wechsung, 2015, 2016). These studies employ proxies to control for the primary source of
water, such as precipitation and measures for evapotranspirative demand. The water holding capacity of the soil
and the persistence of soil moisture is often not considered.

One basic assumption in EDD is that temperature effects are additive substitutable, which means that their
impact is constant for all development stages of the plant. This assumption is rejected in both agronomic studies
(de Bruyn and de Jager, 1978; Sinclair and Seligman, 1996; Tubiello et al., 2007; Wahid et al., 2007) and large-
scale empirical analyses (Berry et al., 2014; Lobell et al., 2011b; Ortiz-Bobea, 2011; Ortiz-Bobea and Just, 2013).
For example, the susceptibility to high temperatures is increased during flowering (i.e. tasseling, silkening, and
pollination) and the reproductive period. Similar to heat measurements, the sensitivity to water stress is dependent
on the development stage of the plant (FAO Water, 2016). For instance, it is shown for climate projections in
India that a more uneven distribution of precipitation within a season overturns positive effects of an increase in
total precipitation (Fishman, 2016). It is argued to control for intra-seasonal varying weather induced effects on
crop yield variation. This issue is amplified for precipitation controls compared to temperature. The distribution of
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measures such as EDD partially overlaps with the sensitive phase of plant growth (see Figure A14 of Schlenker and
Roberts, 2009), but precipitation, as control for water supply, is commonly aggregated for the entire growing season
(Annan and Schlenker, 2015; Burke and Emerick, 2016; Roberts et al., 2013; Schlenker and Roberts, 2006, 2009,
among others). These studies do not explicitly account for seasonality of water supply related effects. Overall,
controls for meteorological effects averaged over the entire season may bias the estimated dose-response function
and diminish the predictive power of the models, because they do not account for the seasonal interaction between
water supply and water demand (Urban et al., 2015b).

Based on this analysis, it is the main aim of this study to investigate the intra-seasonal predictability of soil
moisture to estimate silage maize yield in Germany. It is also evaluated how approaches considering soil moisture
perform compared to those using meteorological variables. The examined hypothesis are, that a) models with soil
moisture are better able to predict yield than meteorology-only approaches and that b) temporal patterns in the
seasonal effects of the explanatory variables matter, i.e. there is no additive substitutability. In order to analyze
these hypotheses, the intra-seasonal effects of soil moisture and meteorological variables for non-irrigated arable
land in Germany are examined in this study. In detail, the following research questions are addressed: 1) Is there
predictability of soil moisture additionally to meteorology? 2) If so, how does it compare to the one by meteorolog-
ical determinants? 3) Is there temporal pattern in the seasonal effects of all explanatory variables (meteorology and
soil moisture)? Along this analysis we also evaluate 4) how models based on different meteorological determinants
perform compared to each other.

To answer this research questions, a reduced form panel approach is employed to examine the non-linear intra-
seasonal partial effects of soil moisture anomalies and the meteorological variables temperature, potential evapo-
transpiration, and precipitation. For this purpose, we use a new data set which is additionally comprised of soil
moisture anomaly data. The aim is to evaluate whether soil moisture anomalies have predictive skills and how
the effects differ from those using only meteorological variables. Soil moisture and any derived index is highly
autocorrelated in time and thus provide an integrated signal of the meteorological conditions in the preceding and
subsequent months (e.g., Orth and Seneviratne, 2012; Samaniego et al., 2013). This persistence does not allow
for cumulative measures as those used for temperature, but it avoids the inflation of the error terms. Commonly,
the predictive power of models only employing meteorological variables can be improved by accounting for the
regional specific temporal distribution of the phenological stages (Dixon et al., 1994). The integrated signal of the
meteorological conditions provided by any measure derived from soil moisture, however, allows the employment
of monthly averages to account for these intra-seasonal effects. In our study, it is implicitly controlled for the
interaction of both variables controlling for water supply and water demand, because these show high correlation
on a monthly basis. Different model configurations for each month of the growing season are compared by model
selection criteria to allow conclusions about the effect of soil moisture anomalies on the explanatory power of the
model and to test the assumption of additive substitutability. Further, the difference in explanatory power of models
either using potential evapotranspiration or average temperature is evaluated. The partial effects of all covariates of
the best model for each month are examined. For the purpose of a comprehensive examination, we also investigate
the effects of wet anomalies.

12.3 Data

12.3.1 Yield Data

Annual yield data for silage maize are provided by the Federal Statistical Office of Germany for the administrative
districts (rural districts, district-free towns, and urban districts) since the year 1999 (Statistische Ämter des Bundes
und der Länder, 2017). The yield data are de-trended using linear regression for the period 1999 to 2015 to control
for technical progress. A log transformation is applied to yield to better satisfy the normality assumption. This
transformation also mitigates issues related to heteroscedasdicity and the estimates are less sensitive to outliers. All
administrative districts with less than nine observations are removed from the analysis, because the influence of
single observations points is too strong in these cases. The threshold nine has been chosen after exploring Cook’s
distance and evaluating the systematic omission of yield data by the administrative districts (Cook, 1977, 1979).
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12.3.2 Soil Moisture Anomalies and Meteorology

The explanatory variables used in the study are the observed meteorological variables precipitation (P), average
temperature (T), and potential evapotranspiration (E), as well as model-derived soil moisture. The mesoscale
Hydrologic Model (mHM) has been used to estimate the soil moisture (Kumar et al., 2013b; Samaniego et al.,
2010a). The model uses grid cells as primary unit and it accounts for various hydrological processes such as
infiltration, percolation, evapotranspiration, snow accumulation, groundwater recharge and storage as well as fast
and slow runoff. The parametrization process of the model is based on physical characteristic, as for instance soil
texture. Three different forms of land cover are also integrated in the model, which are based on the CORINE
Land Cover maps of 2006 (European Environmental Agency, 2009). However, no endogenous processes of land
use management, as for instance drainage or irrigation, are considered within the model. The depth of the soil in
each grid depends on the soil type used in mHM. Details can be found in Zink et al. (2017).

Soil moisture is further transformed into a soil moisture index (SMI), which is a non-parametric cumulative
distribution function (cdf) derived from the absolute soil moisture estimated by mHM. A non-parametric kernel
smoother algorithm has been used for the calculation of the cdf for each calendar month in accordance to the
proposed method by Samaniego et al. (2013). It ranges from zero to one and represents an anomaly with respect
to the monthly long term median in soil water (SMI = 0.5). Low values represent extreme dry soils and high
values extreme wet ones. The SMI is calculated for entire Germany at a spatial resolution of 4 km. Monthly values
of soil moisture are transformed to SMI for the period from 1951 to 2015. These values have also been used for
drought reconstruction (Samaniego et al., 2013). A similar procedure has been applied for the seasonal forecasts
of agricultural droughts (Thober et al., 2015).

The monthly SMI values are categorized into seven classes which follow the notion of the US drought monitor
and the German Drought Monitor (Zink et al., 2016). This stepwise approach allows to measure nonlinear effects
of soil moisture. The dry categories SMI  0.1, 0.1 < SMI  0.2, and 0.2 < SMI  0.3 are denoted as severe
drought, moderate drought and abnormally dry, respectively. The wet quantile intervals between 0.7 < SMI  0.8,
0.8 < SMI  0.9, and 0.9 < SMI are labeled as abnormally wet, abundantly wet and severely wet, respectively.
The interval between 0.3 < SMI  0.7 serves as reference and characterizes normal situations. This classification
uses location depend cdfs and thus allows comparison of classes across locations. In the rest of this, the terms soil
moisture anomalies and soil moisture index (SMI) are used synonymously because of this categorization.

Daily data of precipitation and temperature are obtained from a station network operated by the German Weather
Service (Deutscher Wetterdienst, 2017). Details on interpolation can be found in Zink et al. (2017). These daily
values are also used to force mHM. For the analysis in this study, all daily values are aggregated to monthly ones
conserving the mass and energy of the daily observations.

Further, we introduce Potential Evapotranspiration (E) as a measure for evaporative demand. E is calculated
by the equation of Hargreaves and Samani (1985) based upon extraterrestrial radiation and temperature and is
estimated in millimeter per day:

E = R
p

T�(T + 17.8), (12.1)

where  is a free parameter (�C�1.5) that compensates for advection of water vapor (mm d�1), R is extrater-
restrial radiation converted into equivalent water evaporation, and T� is the temperature difference between daily
maximum and daily minimum temperature (�C). The term T + 17.8 is an approximation of saturated vapour pres-
sure, whereas the term T� is an approximation of cloudiness. 17.8 is an empirical constant found by calibration.

More complex alternatives exist, as for instance the standard method of United Nations Food and Agriculture
Organization after Penman and Monteith (Monteith, 1981). These data for example use net radiation that is more
difficult to estimate at the national scale in comparison to temperature particularly due to the lack of consistent
observations. Similar to Vapor Pressure Deficit, which has been introduced as effective crop yield predictor (Lobell,
2013; Roberts et al., 2013), potential evapotranspiration has a more direct physical link to crop water requirements
than temperature. One goal of this study is to evaluate whether potential evapotranspiration provides improved
yield estimates in comparison to temperature.

All meteorological variables are standardized to ease the comparison among different months. After this trans-
formation, the variables have a mean of zero and a standard deviation of one. The original mean and standard
deviation of the meteorological variables are depicted in Table 12.1 for completeness.
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Table 12.1 Mean and standard deviation of the meteorological variables, averaged over Germany. Data are obtained by the
Germany Weather Service.

May June July August September October
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

P (monthly sum in mm) 75.74 39.84 69.71 33.15 89.48 39.72 84.04 43.68 63.88 32.62 57.72 27.28

T (monthly average in �C) 13.46 1.42 16.52 1.45 18.48 1.74 17.90 1.57 14.07 1.63 9.64 1.83

E (monthly average in mm) 115.23 12.15 133.42 12.21 139.10 16.52 115.24 13.55 70.33 8.73 36.82 4.69

Figure 12.1 Illustration of the spatial processing of the SMI data of May 2003. On the left side, one can see the SMI with the
4 ⇥ 4 km2 grids. In the middle, the data are masked with the 0.1 ⇥ 0.1 km2 non-irrigated arable land-class of the CORINE
Land Cover. Those data are than averaged over all the grid cells which are inside an administrative district. This is done for
each district and the map on the right is derived. The processing steps shown in panel (a) and (b) are shown here exemplary for
the soil moisture index for consistency, but these processing steps are applied to soil moisture fractions.

12.3.3 Spatial Processing

The explanatory variables (meteorology and soil moisture) are mapped onto the level of administrative districts
to align with the spatial scale of the yield data. Maps st the different processing steps are shown in Fig. 12.1.
Figure 12.1a depicts the 4 ⇥ 4 km2 grid. These absolute soil moisture fractions are masked for non-irrigated
arable land-class of the CORINE Land Cover (2006) at a 0.1 ⇥ 0.1 km2 resolution to account for the variability
due to heterogeneous land use within the administrative districts (Fig. 12.1b). The 0.1 km values are then averaged
for each of the administrative district to obtain district level values (Fig. 12.1c). Blank administrative districts
occur because of the absence of non-irrigated arable land grid cells. These processing steps are also applied to the
meteorological variables (P, T, E). The soil moisture fractions of each administrative district is then transformed into
a percentile index (SMI) using the kernel density estimator explained above (Samaniego et al., 2013; Thober et al.,
2015; Zink et al., 2016). An index reduces the probability of measurement errors and the estimated coefficients in
the regression models are supposed to be less prone to attenuation bias (Auffhammer and Schlenker, 2014; Fisher
et al., 2012; Hsiang, 2016).

12.4 Regression Analysis

The main aim of this study is the identification of the monthly effects of soil moisture anomalies on crop yield.
The model relates silage maize yield deviation (Y) to a stepwise function of soil moisture anomalies (SMI) and
polynomials of the meteorological variables (P, T, E). Also, an error term is included which is composed of the
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fixed effects (c), a time-invariant categorical administrative district identifier, and the observation-specific zero-
mean random-error term, which is allowed to vary over time (✏). Each monthly model can be written as:

Yik =
6X

n=1

↵nI(SMIikm 2 Cn)

+
3X

j=1

�j(Pikm)j +
3X

j=1

�j(Tikm)j +
3X

j=1

�j(Eikm)j

+ cim + ✏ikm. (12.2)

The index i represents the administrative districts, k the years, and m each month of the growing season, while
the superscript j refers to degrees of the polynomials. I(·) is the indicator function of the soil moisture categories
Cj, being 1 if the SMI belong to class n and 0 otherwise. The six classes are defined as severe drought (SMI  0.1),
moderate drought (0.1 < SMI  0.2), abnormally dry (0.2 < SMI  0.3), abnormally wet (0.7 < SMI  0.8),
abundantly wet (0.8 < SMI  0.9) and severely wet (0.9 < SMI), respectively. The estimated coefficients of
the model are ↵, �, �, and � and are constrained to be the same for all administrative districts. Time-invariant
differences between administrative districts are taken into account by the fixed effects. These consist of the districts
specific mean values of the individual variables on the right and left side of the equation.

Table 12.2 Comparison of Pearson Correlation Coefficients of the Exogenous Variables.
Absolute values of the Pearson Correlation Coefficients are employed to calculated the
averages presented in the last two columns.

May June July August September October Average Avg. June to Aug.

E / T 0.84 0.86 0.92 0.84 0.65 0.4 0.75 0.87

E / P �0.38 �0.38 �0.52 �0.52 �0.56 �0.15 0.42 0.47

P / T �0.31 �0.22 �0.54 �0.47 �0.47 �0.06 0.35 0.41

SMI / E �0.27 �0.28 �0.44 �0.49 �0.46 �0.02 0.33 0.40

SMI / P 0.19 0.31 0.43 0.43 0.5 0.09 0.33 0.39

SMI / T �0.04 �0.16 �0.35 �0.35 �0.27 0.13 0.22 0.29

The explanatory variables
are correlated to each other
(Table 12.2). Thus, higher
non-orthogonal polyno-
mials induce singularity
in the moment matrix
which cannot be inverted
as required by the ordinary
least-squares estimation of
the coefficient. The polyno-
mials are limited to degree
three to avoid this and other
detrimental consequences
of multicollinearity such as

the inflation of the standard errors. Additionally, E and T are treated as mutually exclusive because of the high
correlation of E and T (Table 12.2). The coefficients � or � are set to 0, accordingly.

In addition to soil moisture, a meteorological and a fixed effect term is included. The fixed effects potentially
reduce omitted variable bias, because they take into account the time-variant confounding factors specific to each
spatial unit, such as average weather conditions and the water storage capacity of the respective soil. It is also
assumed that farmers have optimized the entire production process at their location given their experience about
that location. Soil and plant management, such as the choice of varieties, is adapted based on this long term
experience. Therefore, the coefficients of the exogenous variables are determined on the basis of year-to-year
variations. By restricting the coefficients to be same in all administrative districts, it is implicitly assumed that
the response of plants to inter-annual stressors is the same across all locations. Differences in the sensitivity to
exogenous weather and soil moisture fluctuations implied by the use of different silage maize varieties could thus
be neglected by the model. If it is also assumed that these interannual fluctuations in weather and soil moisture are
not fully taken into account by the farmer in the cultivation decisions, this corresponds to a randomised allocation of
the farmer to a treatment group and can therefore be regarded as a natural experiment (Auffhammer and Schlenker,
2014; Schlenker and Roberts, 2009). The outlined interpretation of the coefficients is particularly suitable for SMI,
because this index, which describes deviations from the median, is per definition an anomaly.

Endogenous variables are not included because these are considered as bad control in frameworks as those
defined by Angrist and Pischke (2008). For instance, prices are affected by weather realizations and climate and
are thus defined as endogenous (Gornott and Wechsung, 2015, 2016; Hsiang, 2016; Hsiang et al., 2013). Other
studies additionally use annual fixed effects and interaction terms of both time and entity specific fixed effects
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to control for time specific confounding factors (e.g., Moore and Lobell, 2014). These terms are not used in
this study because annual variation should be explicitly accounted for by the weather variation of the exogenous
variables. Annual fixed effects would diminish the entity specific inter-annual variation of the exogenous variables
and thereby potentially amplify measurement errors (Fisher et al., 2012).

Various estimation approaches are used to evaluate the quality of the models. Models can be distinguished
by the explanatory variables they use and the degree of polynomials in the meteorological terms. The maximum
number of parameters estimated in a model is 12. The Bayesian Information Criteria (BIC) is used for model
selection in the next section. The BIC is composed of the maximum of the likelihood function for a particular
set of variables as well as a penalty term (Schwarz, 1978). The latter adjusts the model selection criterion for the
number of parameters to account for over-fitting. This allows to choose across models with different number of
variables. The BIC criterion imposes a higher penalty on over-fitting compared to other model selection criteria
based on maximum likelihood such as the Akaike Information Criterion (Akaike, 1973b). The penalty particularly
affects the soil moisture anomaly term because it always adds six parameters. Overall, the model with the lowest
BIC is preferred. To derive the BIC, a generalized linear model is fitted using the glm function (R Core Team,
2015).

Additionally, the models are evaluated according to their adjusted coefficient of determination (adj. R2, Section
4.2). Ordinary least squares using the lm function (R Core Team, 2015) are employed with a dummy variable
for each administrative districts to explicitly account for the fixed effects. As default, a demeaning framework
(Croissant and Millo, 2008) has been applied to investigate the model performance in terms of R2. The demeaning
framework involves converting the data by subtracting the administrative district average from each variable. The
estimated coefficients are the same for the least squares dummy variable regression, a demeaning framework, and
maximum likelihood (BIC). This is in accordance to theory that normal distributed error terms estimators based on
maximum likelihood and least squares are the same.

The standard errors of the coefficients are corrected for spatial autocorrelation. For this purpose, the Robust
Covariance Matrix Estimator proposed by Driscoll and Kraay (1998) is employed to construct standard errors
based on asymptotic formulas. No weights capturing decaying effects in space are used because the administrative
districts have different areas and the spatial extent of SMI occurrences is heterogeneous. This can be regarded
as comparable to block-bootstrapping on country-level, which has been used in many comparable studies relying
on re-sampling methods (e.g. Butler and Huybers, 2015; Moore and Lobell, 2014, 2015; Urban et al., 2015a,b).
Further, serial correlation and heteroscedasdicity is also controlled for (Arellano, 1987; White, 1980). Overall, this
approach is rather conservative but in alignment with the proposal of Angrist and Pischke (2008) to take the largest
robust standard error as measure of precision.

12.5 Results and Discussion

12.5.1 Qualitative evaluation of different model configurations within the growing season

In this section, the Bayesian Information Criterion (BIC) is applied to evaluate the best combination with respect to
soil moisture, meteorological variables, and the polynomial degrees of the latter. The BIC is calculated separately
for each month to assess the intra-seasonal variability.

The distribution of the BIC for the various model configurations is presented in Fig. 12.2., which shows one
panel for each month of the growing season. Within the panels, models with different variable combinations in the
meteorological term are separated by vertical lines. A model configuration is defined by a set of meteorological
variables, the polynomial degree of each variable, and the stepwise function of the soil moisture anomalies. The
complexity of the configurations increase stepwise from the left to right within each panel. The model employing
SMI as single explanatory variable is represented by a point on the left in each panel. The black markers indicate
the models with soil moisture and gray markers without. The models 02 - 07 employ one meteorological variable
each. These have three markers for the different degrees of the polynomials. The models 08 - 11 entail two
meteorological variables and thus have nine markers.

The explanatory power is different across the months as indicated by the lowest marker within each panel.
Overall, July has the highest explanatory power. Nonlinear meteorological terms improve the fit of the model
on the data in all model configurations (not shown). The preferred polynomial in the meteorological term is
of degree three. The only exception is June, where the best model employs a second degree polynomial for P.
These observations are consistent with agronomic studies. Curvilinear relationships between maize yield and
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meteorological variables are already investigated in previous research. The rationale behind this is that optimal
conditions exist for certain growth stages and deviations from them are detrimental. For example, Thompson
(1969) found for corn in the U.S. Corn Belt that precipitation in July above and temperature in August below
the monthly average is desirable. Nonlinear configurations have been neglected so far in comparable approaches
employing constant elasticity models in Germany (Conradt et al., 2016; Gornott and Wechsung, 2015, 2016).
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Figure 12.2 Each panel shows the BIC distribution of one month. Within the panels
various models are compared, whilst the lowest marker is preferred. Each column
represents a particular selection of variables. The markers represent different degrees
of the polynomials in the meteorological term. The gray markers denote those models
that neglect the SMI, whilst the black include it.

The composition of the meteo-
rological term is evaluated by
comparing the gray markers in
Fig. 12.2. It is possible to asses
the impact on the model fit of
the single variables P, T, and E
by the comparison of the con-
figurations 02, 04, and 06, re-
spectively. In May, most of
yield variation is explained by
E. In June and July, P con-
tributes to model fit the most.
In July, for instance, the ex-
planatory power of a nonlin-
ear P term is almost as good
as the best combined configu-
ration. September and October
are determined by T. However,
in most months, using more
than one meteorological vari-
able results in the highest ex-

planatory power. The only exception is October, where model 05 (SMI & T) exhibits the lowest BIC.

The difference in BIC between configuration 08 (P & T) and 10 (P & E) is small from June to August. This
result can be expected because T and E are highly correlated in our sample. The models with mixed meteorological
terms in July and August slightly prefer E, while in June it is T. In the other months, the difference between T
and E is comparatively larger. In May, E is preferred, and in September and October T is the better measure.
Both measures, T and E, account for similar determinants of silage maize growth. The latter, however, is more
complex because it contains information on sub-daily radiation additionally to daily temperature (Hargreaves and
Samani, 1985). It can be assumed that this additional information are averaged out using monthly values and
monthly temperature becomes a close estimate of monthly E. This is in alignment with results on different time
resolutions, which indicate that measures of evapotranspirative demand are highly correlated with temperature
extremes (Lobell et al., 2013; Roberts et al., 2013). Therefore, it is sufficient to account for temperature when
simultaneously controlling for water supply (P, SMI) because it is easier to measure temperature data and there is
a smaller chance of attenuation bias.

The extent of the model improvement by adding soil moisture anomalies varies across the months. This can be
evaluated by comparing the gray and black markers in Fig. 12.2. Including soil moisture anomalies only improves
model fit to a little extent in May and July. In all the other months, large improvement can be made when addition-
ally controlling for soil moisture. In the second half of the season, i.e. August and September, the models using
only SMI have a similar or even lower BIC compared to all meteorology-only models.

These results indicate that soil moisture builds memory over the season that adds relevant information, which
are not integrated in the monthly meteorological variables. There are several reasons for this postulation remark.
First, the seasonality of soil moisture must be considered. The fraction of the saturated soil changes over time and
thus the base value for the index. For Germany, this seasonality is depicted in Fig. 4 in Samaniego et al. (2013). In
March, soil water content is the highest while soils are usually driest in August and September. This also implies,
that an agricultural drought has a lower absolute soil moisture in August and September compared to the preceding
months. Second, the anomalies in the later months integrate information about the water balance in the preceding
months because of the persistent character of soil moisture (evident from the autocorrelation of the soil moisture
indexes). For instance, extreme dry conditions during flowering and grain filling are reflected in a dry soil moisture
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Table 12.3 Comparison of the adjusted Coefficient of Determination R2. The results from the demeaning framework serve
as reference to the ones obtained by Least Square Dummy Variable Regression (LSDV). The latter explicitly accounts for the
fixed effects. Additionally model configurations without either T, P, or SMI are shown.

May June July August September October Average June - August

(a) Adjusted R2 demeaning 0.11 0.16 0.31 0.17 0.13 0.12 0.16 0.21

(b1) Adjusted R2 LSDV 0.56 0.59 0.66 0.59 0.57 0.56 0.59 0.61

(b2) ((b1) � (a)) / (a) in % 409.1 268.8 112.9 247.1 338.5 366.7 290.5 209.6

(c1) Adjusted R2 no T 0.07 0.13 0.28 0.16 0.08 0.08 0.13 0.19

(c2) ((c1) � (a)) / (a) in % �36.4 �18.8 �9.7 �5.9 �38.5 �33.3 �23.7 �11.4

(d1) Adjusted R2 no P 0.08 0.11 0.22 0.14 0.12 0.12 0.13 0.16

(d2) ((d1) � (a)) / (a) in % �27.3 �31.3 �29.0 �17.6 �7.7 0.0 �18.8 �26.0

(e1) Adjusted R2 no SMI 0.07 0.08 0.30 0.11 0.06 0.07 0.11 0.16

(e2) ((e1) � (a)) / (a) in % �36.4 �50.0 �3.2 �35.3 �53.8 �41.7 �36.7 �29.5

anomaly in the second half of the agricultural season of silage maize. The observation, that the SMI represents
additional information to the meteorology is also pronounced by the fact that the pairwise correlations including
SMI are lower compared to any other combination of the exogenous variables (Table 12.2). Further, dry anomalies
in the late part of the season may indicate a long lasting water shortage condition, as soil moisture drought lasts
over several month or potentially even years (Samaniego et al., 2013; Sheffield and Wood, 2011; Zink et al., 2016).

Similar results may be achieved by cumulated measures of the meteorology or the climatic water balance. How-
ever, the comparison of soil moisture measurements and different cumulates of precipitation (one to six months)
shows that it would be necessary to consider different precipitation accumulations for different sites in order to in-
clude the same information as for soil moisture (not shown). For example, Southern Germany exhibits higher water
retaining capacities and also higher correlation with three month precipitation as compared to Eastern Germany.
Further, a substantial share of the variability of soil moisture is not explained by precipitation (the mean coefficient
of determination is at most 50 %). One advantage of using soil moisture in such a study is that the coefficients
can be restricted to be the same at all locations, whilst assuming that the water retaining capacity is not the same
everywhere.

In summary, soil moisture anomalies improve the model fit in all model configurations. This is the case even
though soil moisture is strongly affected by the penalty for additional parameters within the BIC. Further, the
evidence of nonlinear effects in the meteorological terms is confirmed. The results also indicate that there is
substantial seasonal variability in the impact of exogenous variables. This is investigated further quantitatively in
the next sections for the meteorological variables and soil moisture.

12.5.2 Quantitative Assessment: Coefficient of determination for models using different ex-
planatory variables

In this and the next section (4.3), we present the quantitative results for the ”full” model with polynomials of
degree three of the variables temperature (T) and precipitation (P) in the meteorological term and additionally
the soil moisture anomalies (SMI). Using the same model configuration for each month allows the comparison of
partial effects and ensures that the source of variation is the same within the meteorological term (Auffhammer and
Schlenker, 2014). In this section, the coefficient of determination is employed to evaluate the share of the sample
variation only explained by the exogenous variables. Additionally, it is used to assess the in-sample goodness of fit
of the models 03 (SMI & P), 05 (SMI & T), 08 (P & T), and 09 (SMI & P & T), each using polynomials of degree
three.

The coefficients of determination for two model settings are evaluated to show the ability of exogenous explana-
tory variables, e.g. the meteorological term and the soil moisture anomalies, to improve the in-sample goodness of
fit of the full model: first, the model that only accounts for the variation in the exogenous explanatory variables,
which is derived by the demeaning framework (row (a) in Table 12.3); second, the least squared dummy variable
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model that accounts for both the variation in the exogenous explanatory variables and the administrative district
specific average yield (row (b1) in Table 12.3). The ratio of the coefficient of determination derived by these two
model setups is investigated (row (b2) in Table 12.3) to quantify the share of variance explained only by the exoge-
nous explanatory variables, e.g. the meteorological term and soil moisture anomalies. Expectedly, the exogenous
variation in weather and soil moisture improves the model fit in all months, but the level of improvement varies.
The month which gains the least in explanatory power when additionally accounting for the share of variation ex-
plained by the average crop yield of each administrative district is July (+ 112.9 %). This suggests that a large part
of the yield variation is explained only by exogenous explanatory variables. The month with the greatest variation,
which is explained only by the average yield of the districts, is May. During this month, 409.1 % of the explanatory
power is added if the average yield of each county is explicitly taken into account in comparison to the models that
only use soil moisture and weather variation as explanatory variables (line (b2) in table 3).

The adjusted R2 presented in this study explicitly including fixed effects for each month of the period June
(0.59), July (0.66), and August (0.59) is comparable to related approaches. Urban et al. (2015b), who employed a
comparable period to estimate their results, reported R2 of 0.65 and 0.67 for a model that successfully accounts for
the interaction between heat and moisture for a 61 - 90 day period following sowing for Iowa, Illinois, and Indiana.
Their study additionally employed time fixed effects which usually lead to higher R2. The seminal approach
employing extreme degree days (EDD, Schlenker and Roberts, 2009) reported R2 between 0.77 and 0.78. In their
sample, a comparatively large share of the variation was explained by the fixed effects and trend, which exhibited
an R2 of 0.66. A study using updated data of Schlenker and Roberts (2009) and controlling for evaporative demand
in July and August achieved adjusted R2 between 0.66 and 0.72 (Roberts et al., 2013).

In the previous section, all the models have been evaluated with respect to the BIC criterion which penalizes
over-fitting. The focus here is on reducing the sample bias of the model. The in-sample adjusted R2 of the models
is additionally compared when either one of the variables SMI, P, or T is not considered (rows (c1) - (e1) in
Table 12.1). The according relative change in model fit when one variable is removed from the full model can be
found in rows (c2) - (e2) of Table 12.3. In all months but May and July, the strongest loss in in-sample goodness
of fit is seen for removing soil moisture (for instance - 50.0 % in June and - 35.3 % in August). In July, which is
the month with the highest overall in-sample-goodness of fit, the largest effects is accounted for by precipitation
(- 29.0 %). The average relative model loss is largest for soil moisture for the entire season (-36.7 %) as well
as the period June to August (-29.5 %). As observed in the section before, the effect of each particular variable
is dependent on the month. For instance, the largest relative loss in adjusted R2 for SMI is estimated in June
(- 50.0 %) and September (- 53.8 %). The largest effect of precipitation is observed in June (- 31.3 %) and July
(- 29.0 %). Temperature is relevant the most in September (- 38.5 %) and May (- 36.4 %).

To summarize, the in-sample explanatory power of the full models are comparable to those reported in the
previous literature. The largest average gain in goodness of fit is achieved by including SMI. In July, the month
with the largest in-sample goodness of fit, most of the variation in yield is explained by precipitation. This section
has only presented a quantitative analysis of the explanatory power in terms of adjusted R2. A detailed assessment
of the partial functional form of individual explanatory variables is presented in the next section to better understand
their ceteris paribus impact on the crop yield.

12.5.3 Quantitative Assessment: Partial Effects of the Meteorological Variables

A better understanding of the relationship between individual explanatory variables allows to design effective
adaptation measures. The partial functions of the meteorological covariates are presented in the next two sections
and those of soil moisture in section 4.3.3. Those functional forms, which are significant at least in the first
or second order, are presented for individual months in Fig. 12.3. The range of the meteorological variables is
depicted from - 2 to + 2 standard deviations (SD). It can be assumed that larger deviations from the mean are
related to higher uncertainties in the estimated crop yield. A table with the estimated coefficients and standard
errors of all models can be found in Table 12.4.

Partial Effects of Precipitation The partial precipitation effects for the months May to August are shown in
Panel a) of Fig. 12.3. Given constant soil moisture and temperature effects, negative precipitation anomalies are
associated with reduced yield in these months. The largest effect is observed for June (- 5 % at - 1 SD) and July
(- 6.5 % at - 1 SD). These are the overall most significant months, but with different patterns compared to the
remaining two. In June and July, more than average precipitation is associated with comparatively higher yield (at
1 SD: + 2.2 % in June and + 2.1 % in July), whilst the opposite is the case for May and August.
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Table 12.4 Results of Regression Models employing precipitation and temperature to account for meteorology (both with
polynomials of degree 3, superscripts denote the degree of individual polynomials) and a stepwise function of SMI.

Dependent Variable: log(Silage Maize)

Model of the month
May June July August September October

Precipitation1 0.004 0.036⇤⇤⇤ 0.039⇤⇤⇤ �0.014 �0.011 �0.003
(0.011) (0.014) (0.013) (0.011) (0.013) (0.010)

Precipitation2 �0.023⇤ �0.014⇤ �0.023⇤⇤⇤ �0.019⇤⇤⇤ �0.005 0.002
(0.014) (0.007) (0.004) (0.006) (0.005) (0.008)

Precipitation3 0.004 0.001 0.005⇤⇤⇤ 0.004⇤⇤⇤ 0.002 �0.0001
(0.002) (0.001) (0.002) (0.002) (0.001) (0.002)

Temperature1 0.024 �0.006 �0.036⇤ �0.003 0.038 �0.002
(0.021) (0.015) (0.021) (0.014) (0.024) (0.018)

Temperature2 �0.005 �0.006 �0.007⇤⇤⇤ �0.008⇤⇤ �0.009⇤ �0.016⇤⇤

(0.007) (0.006) (0.002) (0.003) (0.005) (0.008)
Temperature3 0.0004 �0.002 0.004⇤ �0.002 �0.013⇤ 0.005

(0.003) (0.003) (0.003) (0.002) (0.006) (0.003)
SMI: severe drought 0.068⇤⇤⇤ 0.024 �0.044⇤⇤ �0.110⇤⇤⇤ �0.126⇤⇤⇤ �0.149⇤⇤⇤

(0.012) (0.020) (0.019) (0.035) (0.028) (0.037)
SMI: moderate drought 0.044⇤⇤⇤ 0.016 �0.007 �0.055⇤⇤⇤ �0.041⇤ �0.024

(0.011) (0.017) (0.011) (0.017) (0.023) (0.030)
SMI: abnormal dry 0.011 0.023⇤⇤⇤ �0.005 �0.024⇤⇤ �0.017 �0.005

(0.011) (0.007) (0.007) (0.011) (0.015) (0.017)
SMI: abnormal wet �0.007 �0.034⇤⇤⇤ �0.011 0.026⇤⇤⇤ 0.007 �0.006

(0.014) (0.011) (0.007) (0.008) (0.011) (0.019)
SMI: abundant wet �0.014 �0.052⇤⇤ �0.004 0.027⇤⇤⇤ 0.012 �0.001

(0.020) (0.025) (0.009) (0.008) (0.017) (0.015)
SMI: severe wet �0.009 �0.202⇤⇤⇤ �0.041⇤⇤⇤ 0.037⇤⇤⇤ 0.030 0.025

(0.019) (0.047) (0.016) (0.013) (0.027) (0.017)

Observations 5,376 5,376 5,376 5,376 5,376 5,376
R2 0.113 0.173 0.326 0.179 0.136 0.129
Adjusted R2 0.105 0.162 0.305 0.168 0.127 0.121
F Statistic 53.151⇤⇤⇤ 87.531⇤⇤⇤ 203.025⇤⇤⇤ 91.409⇤⇤⇤ 65.891⇤⇤⇤ 62.296⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

The results indicate the importance of sufficient water supply provided to plants by precipitation, especially in
June and July. In Germany, the begin of flowering is usually in July and extends into August (based on data pro-
vided by the German Weather Service - Deutscher Wetterdienst, 2017). Maize plants are susceptible to water stress
during this growing phase (Barnabás et al., 2008; Bolaños and Edmeades, 1996; Fageria et al., 2006; Grant et al.,
1989). Despite the necessity to control for intra-seasonal variability of precipitation effects, explicitly controlling
for this sensitive phase is not very common in recent reduced form studies (Carleton and Hsiang, 2016). Notable
exceptions are Lobell et al. (2011b), who used precipitation centered around flowering (anthesis) in statistical mod-
els based on historical data of trials in Africa, and Ortiz-Bobea and Just (2013), who controlled for the vegetative,
flowering, and grain-filling stages. Instead, many approaches employ total precipitation over the growing season
(Annan and Schlenker, 2015; Burke and Emerick, 2016; Roberts et al., 2013; Schlenker and Roberts, 2006, 2009),
monthly mean growing season precipitation (Urban et al., 2012) or the average of a subset of the season (Urban
et al., 2015a). Studies for Germany commonly separate the season into the periods May to July and August to
October (Conradt et al., 2016; Gornott and Wechsung, 2015, 2016), thus dividing exactly the time interval most
susceptible to water stress and averaging over periods with diverse effects (e.g. May and June in Fig. 12.3a). This
may hide water related effects. Other studies neglect precipitation entirely and only rely on temperature measures
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(Butler and Huybers, 2013, 2015; Schlenker et al., 2013). According to their results, the explanatory power is
not improved when adding precipitation. This is contradictory to our observations that precipitation is particularly
relevant (see also Section 12.5.1 & 12.5.2).
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Figure 12.3 The partial dose-response functions of the meteorological
variables are depicted for the range between - 2 and + 2 standard deviations
(SD). The upper row represents those models considering SMI, whilst the
lower row neglects SMI. A solid line is used for those variables which
are significant in both the first and second degree polynomials. A dashed
line is employed if only one of the first two polynomials is significant.
The vertical axis represents the change in silage maize converted into %

approximated by the formula 100(exp(
3P

j=1
�j(xikm)j)� 1), where xikm is

either precipitation or temperature. Under the assumption that the variables
are normally distributed, the range depicted accounts for about 95 % of the
observations. The dark gray areas denote the interval between the 0.023 %
(- 2 SD) and the 10 % as well as the 90 % and 97.7 % (+ 2 SD) quantile.
Similar, in medium gray the range between either the 10 % and the 20 % and
the 80 % and 90 % quantiles is marked. The light gray quantifies the impact
between the between either the 20 % and the 30 % and the 70 % and 80 %
quantiles.

The models employed here do not ex-
plicitly account for interactions between
the meteorological and the soil moisture
terms. Nevertheless, soil moisture is a
function of the meteorological variables
and all effects are correlated to each other
(see Table 12.2). The overall pattern in the
effects of the meteorological variables only
changes to a small extent when estimat-
ing the standard model configuration with-
out the term for soil moisture anomalies
(Fig. 12.3b). One of the most pronounced
differences is that the positive effect of pre-
cipitation in June diminishes when not ac-
counting for soil moisture. The coefficients
in June are also less significant. The ef-
fects in September become significant in
the second and third polynomial degree
when not considering SMI (blue dashed
line in Fig. 12.3b). On the contrary, May is
less significant and thus not included in this
panel. SMI improves the model fit but only
slightly affects the functional form of pre-
cipitation, which highlights that soil mois-
ture adds relevant but different information
as those entailed in precipitation. The next
section presents an analogue analysis for
temperature.

Partial Effects of Temperature The sig-
nificant partial temperature effects are de-
picted in Fig. 12.3c. A significant effect in
all polynomials is only estimated for July,
whilst in May and June, no significant co-
efficients can be found at all. In all months
but September, higher than average temper-

atures are associated with reduced crop yield. The extent of the effects, however, varies over time. In July, less than
average temperature is associated with above-normal crop yield. The estimated function peaks at - 1.24 SD, which
is 16.18 �C (mean in July is 18.34 �C). Additional 2.66 % crop yield can be expected at this temperature, all other
variables hold constant. In August, elevated temperatures are associated with negative effects. September exhibits
a large but not significant linear effect, whilst the second and third polynomials are significant. Because maize is
maturing during this time, higher temperatures up to a threshold are favorable as shown in Fig. 12.3c. Crop yield
is reduced beyond this threshold, which might be related to heat waves. Cold temperatures have a negative effect
in October, which is the strongest one observed. Harvesting commonly begins at the end of September within
the period from 1999 to 2015 (Deutscher Wetterdienst, 2017). Thus, low temperatures may be related to early
harvesting and result in lower yield.

When comparing the effects of precipitation and temperature in the months most relevant for meteorology, i.e.
June and July, those of precipitation clearly outweigh temperature. The largest effects can be found for negative
anomalies of precipitation in July (compare Fig. 12.3a and Fig. 12.3c). The limited effect of temperature is in
alignment with agricultural literature, which states that maize is tolerant to heat as long as enough water is provided
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(FAO Water, 2016). This is also the case in our study area given the fact that Germany lies in a rather temperate
and marine climate zone. Additionally, sufficient provision of water is associated with prolonged grain filling and
hence diminished heat sensitivity (Butler and Huybers, 2015). Recent literature often neglected precipitation and
emphasized mostly extreme temperature instead (Carleton and Hsiang, 2016; Lobell et al., 2008, 2011a; Schlenker
and Lobell, 2010; Schlenker et al., 2005), which may have lead to biased assessments.

The general functional form of temperature are hardly affected by neglecting SMI (Fig. 12.3d). For example,
crop yield changes from one - 3.82 % with SMI to - 4.11 % without for one SD of elevated temperature in July.
These effects are smaller than those seen for precipitation, which highlights again that soil moisture provides an
information that is independent to the one provided by T.

As mentioned before, a substantial amount of studies employed temperature as the major explanatory variable
neglecting knowledge about plant physiology and plant growth (FAO Water, 2016; Wahid et al., 2007). The func-
tional form of the partial temperature effects derived from different model configurations for July and August is
presented in Fig. 12.4 to evaluate the magnitude of bias between the full model (presented in Fig. 12.3) and a
temperature-only model.
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Figure 12.4 Sensitivity of the functional form of temperature
partial effects for various controls for water supply.

In both months, the in-sample explanatory
power is reduced compared to the full model when
only using temperature as explanatory variables. In
July, the model fit is - 34.2 % lower when employ-
ing the temperature only model compared to the full
model, while it is - 45.9 % in August (Fig. 12.4).
In July, the in-sample goodness of fit is affected
stronger by removing precipitation (- 29.0 %) than
by doing so for SMI (- 3.2 %), (Table 12.3). This is
not surprising because the partial effect of precipi-
tation in July is largest, whilst soil moisture anoma-
lies only show negligible effect. On the contrary,
considering SMI in August (- 35.3 %) exceeds the
losses in Adjusted R2 compared to a model without
precipitation (- 17.6 %), (Table 12.3). In July, the
functional form stays qualitatively the same across
all model configurations (Fig. 12.4a). The magni-
tude of the effects is, however, larger when precipi-
tation is not considered. In August, the temperature
effect is elevated by not considering SMI. Taking
out precipitation reverses the effects found for the
full models. This observation clearly demonstrates
that adequate control of water supply is necessary
to derive non-biased estimates of partial tempera-
ture effects. These results also indicate that the bi-
ases seen for different model configuration depend
on the month considered. Overall, a model using
only temperature as explanatory variable has larger
partial effects and potentially even different ones
with regard to the direction compared to those of

the full model. In the next section, the partial effects of the soil moisture index are investigated.

Partial Effects of the Soil Moisture Index (SMI) Similar to the meteorological terms, the susceptibility to SMI
changes over the months (Fig. 12.5). In particular, a change in the general patterns can be observed. In May
and June, dry conditions are associated with positive yield (up to + 7 % in May, and + 2.3 % in June), whilst wet
conditions are harmful (up to - 18.3 % under severely wet conditions in June). In July, both extremes have negative
impacts of around - 4 %. In all of the following months, dry conditions are associated with reduced crop yield (up to
- 10.4 % in August, - 11.8 % in September, and - 13.8 % in October), whilst only extreme wet conditions in August
are positive for annual silage maize yield (up to + 3.77 %). These deviations are as high as the ones observed for
the meteorological variables (Fig. 12.3).
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C6: severely wet
C1: severe drought
C2: moderate drought
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Figure 12.5 Percentage Change of silage maize yield caused by significant Soil
Moisture Anomalies for each month. The vertical axis represents the change in silage

maize converted into % approximated by the formula 100(exp(
6P

j=1
↵jI(SMIikm 2

Cj) � 1) , where Cj are the soil moisture classes. The standard errors are indicated
by the black error bars.

For the interpretation of the re-
sults, the climatology of mean
soil water content needs to be
taken into account. The SMI
of each month refers to differ-
ent fractions of absolute water
saturation in the soil. This sea-
sonality is depicted in Fig. 4 in
Samaniego et al. (2013) for dif-
ferent locations in Germany. In
general, the optimal water con-
tent for plant development is
defined by 60 % to 80 % of the
available field capacity, whilst
less than 40 % field capacity, as
for instance in the year 2003,
is associated with depression in
crop yield (Chmielewski, 2011).
In May and June, dry anomalies
represent soil moisture fractions
above critical water content be-
cause the soil has been replen-

ished with water in preceding winter and spring. For silage maize, however, rather dry conditions are preferable
during this time because high soil moisture saturation can induce luxury consumption and thus reduced root depths
(FAO Water, 2016). This is particularly relevant for maize due to its capability to develop deep roots (FAO Water,
2016). This feature allows the plants to access deep soil water under dry conditions during the sensitive phase
of flowering and grain filling. Empirical studies indicated that early wet conditions slow down the spreading of
seeds and young plants can be damaged through indirect effects, such as fungus (Urban et al., 2015a). A detailed
analysis indicates that the large effect of severely wet conditions in June can be partly associated to the 2013 flood
in Germany (not shown), which exhibited wet soils in large parts of the country. Starting in July, the level of
soil water content decreases (see Fig. 4 in Samaniego et al., 2013). As a consequence, dry anomalies represent
damaging conditions because plant available soil water starts to be too low to provide enough water during the
most susceptible phase. These effects are increasing over the subsequent months because of the seasonality, the
particular growing stage, and the persistence of soil moisture. Lower levels in absolute soil water also explain why
wet anomalies have a positive impact in August, but not in July. July exhibits the highest evapotranspiration among
all months. This leads to a highly dynamic soil moisture in July which is characterized by a transition from a wet
regime to a dry regime. Thus, small deviations from average soil moisture in this month have no significant effect
on yield (Fig. 12.5). These are only observed for the very extreme conditions.

Additionally, the growing stage modifies the impact of soil moisture coefficients. In our sample, flowering
commonly begins between mid- and end-July and milk ripening occurs in the second half of August (based on
own calculation from data provided by Deutscher Wetterdienst, 2017). Plants exhibit an increased susceptibility
to insufficient water supply during these development stages. As shown in section 4.3, July has the highest partial
effect with respect to meteorological variables. In August, soil moisture anomalies show a significantly higher
impact on annual silage maize yield than in July. Due its seasonality, absolute soil moisture values are in general
lower in August than in July. Further, soil moisture in August integrates temperature and precipitation effects of
the preceding months. Thus, dry soil moisture anomalies show harmful effects, while wet ones are beneficial. In
September and October, soil moisture usually starts to refill (see Fig. 4 in Samaniego et al., 2013). Maize is in
the less susceptible phase to dryness of ripening in September and harvesting usually starts in the second half of
this month (Deutscher Wetterdienst, 2017). This implies, that severe drought anomalies in September and October
might be associated with extended periods of water stress over the sensitive growing stages in the months before.

In this section, it was shown that the seasonality of soil moisture underlying the soil moisture index needs to be
considered to disentangled its temporal effects on silage maize yield. Thus, it is necessary to consider seasonality
in soil moisture content and silage maize growth when assessing effects caused by soil moisture anomalies.
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12.6 Conclusions

In this study, the intra-seasonal effects of soil moisture on silage maize yield in Germany are investigated. It is also
evaluated how approaches considering soil moisture perform compared to meteorology-only ones. A demeaned
reduced form panel approach is applied, which employs polynomials of degree three for variables of average
temperature, potential evapotranspiration, precipitation, and a step wise function for soil moisture anomalies to
capture nonlinearities. Potential evapotranspiration and average temperature are mutually exclusive. The model
selection is based on the Bayesian Information Criterion (BIC) and the adjusted coefficient of determination (R2).

This study provides a proof of concept, that a) soil moisture improves the capability of models to predict silage
maize yield compared to meteorology-only approaches and that b) temporal patterns in the seasonal effects of
the explanatory variables matter. It is shown that soil moisture anomalies improve the model fit in all model
configurations according to both the BIC and R2. SMI entails the highest explanatory power in all months but
May (most explained by T) and July (most explained by P). This highlights that soil moisture adds different
information than meteorological variables. All time invariant variables show seasonal patterns in accordance to
each particular growing stage of silage maize. Furthermore, the dynamic patterns of the SMI effects originate from
the seasonality in absolute soil moisture. Those results support the supposition that it is necessary to control for
intra-seasonal variability in both the index for soil moisture and meteorology to derive valid impact assessments.
Also, the comparison of various meteorological effects based on BIC showed that potential evapotranspiration adds
no explanatory power compared to average temperature. Further, partial effects of precipitation outweigh those of
temperature when controlling for intra-seasonal variability.

The temporal resolution for the meteorological and soil moisture data is months. This might be too low to
accurately resolve the stage of plant growth. Future improvements will involve the use of daily data from high
resolution remote sensing campaigns which would allow to determine growing seasons more accurately.

Our results have further implications for climate change impact assessment. First, it is shown that soil moisture
can improve agricultural damage assessment and enrich the climate adaptation discourse in this realm, which is
mostly based on temperature measures as major explanatory variable (Carleton and Hsiang, 2016). We recommend
to control for at least those seasonal dependent pathways that affect plant growth presented in our study. Measures
of soil moisture should be considered to derive evidence about climate impacts and adaptation possibilities. This
particularly concerns climate econometrics, where frequently used reduced form approaches and dose-response
functions should also control for soil moisture. For example, Butler and Huybers (2013) derived from a dose-
response function only relying on temperature measures that the sensitivity to extreme degree days is lower in
southern rather than northern U.S. counties. Based on these estimates they concluded that the south is better
adapted to hot condition compared to the north. Transferring those adaptation potential to future impacts diminishes
the estimated losses. However, various issues need to be considered when employing such an approach, such as
the costs of adaptation and wrong institutional incentives (Annan and Schlenker, 2015; Schlenker et al., 2013).
Also, Schlenker et al. (2013) argued that higher average humidity levels in the south diminish the correlation
between heat and measures based on evapotranspirative demand. Accordingly, it is recommended to directly
control for evapotranspirative demand by vapour pressure deficit (VPD). As shown in section 4.1, no superior
effect of potential evapotranspiration over temperature was found when controlling for either precipitation or both
precipitation and SMI. Potential evapotranspiration and VPD both account for the water demand of the atmosphere.
Instead, the results of this study show that controlling for water supply by measures of either soil moisture and
precipitation avoids biased effects in a humid climate. This study further indicates, that it is necessary to account
for the seasonal dynamics in both the meteorological and soil moisture effects that constitute the variation in crop
yield to employ spatial adaptation as surrogate for future adaptation.

Second, the definition of an index as anomaly has general implications for climate econometrics. Such an
index is less prone to systematic errors (Lobell2013, Gornott2015, Gornott2016), because any bias associated to
the spatial processing and the meteorological or climatological modeling is minimized (Auffhammer et al., 2013;
Conradt et al., 2016; Lobell, 2013). Also, the persistence in soil moisture and the resulting smoother distribution
in comparison to the meteorological variables might deliver more reliable estimates than climate assessment based
on meteorological variables because climate simulations only show robust trends at coarse temporal resolutions
(Gornott and Wechsung, 2015). An index can also be interpreted as inter-annual variability beyond the demeaning
framework. Any linear model employing a categorical variable for each spatial unit is equivalent to joint demeaning
of both the dependent and the independent variables and thus the source of variation is the deviation from the mean.
For instance, anomalies are used within the adaptation discourse to derive implications for short-term measures
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(Moore and Lobell, 2014). Again, in such a setting soil moisture can serve as more comprehensive measure than
the commonly used temperature.

Finally, this study has also several implications for the design of adaptation measures on weather realizations
to reduce current welfare losses of climate events (Kunreuther et al., 2009; UNISDR, 2015). First, indexes derived
from soil moisture can be used in risk transfer mechanism. For instance, insurance schemes based on a particular
weather indexes can be enhanced in both developed and developing countries (Agriculture Risk Management Team,
2011). Second, the detrimental effects of wet soil moisture anomalies might allow to extent the risk portfolio of
multi-peril crop insurance and thus foster the advancement and implementation of those schemes in Germany
(Keller, 2010). Third, the installation of agricultural infrastructure should be investigated because negative effects
of soil moisture anomalies can be mitigated by irrigation and drainage. In 2010, only 2,34 % of the agricultural
area used for silage maize is irrigated (own calculation from data provided by Statisitisches Bundesamt (2011))
and the latest numbers about drainage systems in Germany date back to 1993 (ICID, 2015).

Overall, an index of soil moisture considering intra-seasonal variability has relevant implications for current
and future damage assessment and adaptation evaluation, which are supposed to gain importance in the course of
climate change.
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13.1 Abstract

Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are
accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydro-
logical and land surface models, forced with bias-corrected downscaled GCM output, we estimate the impacts of
1–3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target,
an increase of 3 K – which represents current projected temperature change – is found to increase drought area by
40 % (± 24 %), affecting up to 42 % (± 22 %) more of the population. Furthermore, an event similar to the 2003
drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will
no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented
increases in soil moisture drought, presenting new challenges for adaptation across the continent.

13.2 Introduction

Global warming is projected to increase evaporation and to reduce soil moisture where it is present, at several
hotspot locations around the globe (Dai et al., 2004; Greve et al., 2017). Current research indicates that, although
climate change may not create droughts, it may exacerbate them (Berg et al., 2017; Dai, 2013; Hirschi et al., 2010;
Huang et al., 2015; Seneviratne et al., 2013; Trenberth et al., 2014). Consequently, droughts may set in more
quickly, be more intense and last longer (Cook et al., 2015). The recent Paris climate change agreement focuses
on holding the global temperature increase to well below 2 K or even 1.5 K above pre-industrial levels (UNFCC,
2015). It is worth noting that future global temperatures will likely exceed 2 K above pre-industrial levels by 2100
(Raftery et al., 2017). Limiting global warming to these levels has unknown effects on the characteristics of soil
moisture droughts (e.g., drought area and duration) because these characteristics have been quantified for different
future periods using emission scenarios that cover a wide range of temperature projections (Collins et al., 2012;
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Cook et al., 2015; James et al., 2017; Prudhomme et al., 2014; Wanders et al., 2015). Moreover, the definition of a
drought under a non-stationary climate must be carefully chosen such that drought events represent dry anomalies
with respect to reference conditions (Wilhite, 2000). The agricultural adaptation potential has been estimated
for Europe, taking into account crop yield and profit per hectare (Moore and Lobell, 2014). Here, we quantify
the extent and duration of future droughts and changes in aridity for different warming levels with and without
adaptation (see Appendic Methods). We aim to provide information on the benefits of limiting global warming to
1.5 K relative to 3 K in terms of agricultural droughts, which have substantial impacts on vegetation stress, crop
losses, the risk of forest fires, tourism (van Lanen et al., 2016), ecosystem services and greenhouse gas emissions
(Ciais et al., 2005).

The uncertainty in climate projections and hydrological model parameterisations introduces considerable vari-
ability into the resulting projections of the characteristics of soil moisture drought (Samaniego et al., 2013, 2016),
thus highlighting the need for multi-model ensembles to enable comprehensive assessments of these events. How-
ever, studies of soil moisture droughts at continental and global scales are limited to a few ensemble members
and/or employ a single hydrological model (Lehner et al., 2017). Existing multi-model analyses of future droughts
focus primarily on hydrological droughts (Prudhomme et al., 2014; Samaniego et al., 2016).

13.3 Methods

To address these shortcomings, we establish a modelling chain using multiple models to generate an unprecedent-
edly large (60-member) ensemble of high-resolution 5⇥5 km2 hydrological simulations that cover the European
domain (see Methods). We use two hydrological models (HMs) and two land surface models (LSMs) that employ a
consistent set of land-surface properties. The two hydrologic models use a temperature-based PET scheme, which
has been criticised within the application of drought analysis using the Palmer Drought Severity Index (PDSI)
(Sheffield et al., 2013; Trenberth et al., 2014). The soil moisture index (SMI) derived from these HMs, however,
do not show the same deficiency as the PDSI because of methodological differences on how these indices are
estimated (see Methods). All HMs/LSMs are driven by downscaled forcings obtained from five bias-corrected
Coupled Model Intercomparison Project Phase 5 (CMIP5) projections (Warszawski et al., 2014) that follow three
representative concentration pathways (RCPs; RCP2.6, RCP6.0, and RCP8.5). To guarantee the comparability
across the multi-model ensemble, all HMs and LSMs estimate soil moisture up to a depth of 2 m and the estimated
soil moisture values are transformed into a monthly soil moisture index (SMI) (Samaniego et al., 2013). These
high resolution SMI fields are required to perform a spatio-temporal drought cluster analysis (Samaniego et al.,
2013) which enables to quantify the area-duration characteristics of every soil moisture drought event. Based on
this cluster analysis, two key drought characteristics, the area under drought and the drought duration, are estimated
for all drought events simulated by each general circulation model (GCM) and HM/LSM model combination (see
Methods). These two characteristics are then analysed for the largest drought within each GCM-HM/LSM combi-
nation over specific 30-year periods that correspond to different warming levels under the three RCPs (Samaniego,
2017). A time sampling approach is used to extract future 30-year periods that correspond to global warming lev-
els of 1.0, 1.5, 2.0, 2.5, and 3 K with respect to pre-industrial levels for each of the GCM/RCP projections (James
et al., 2017) (see Methods). The period from 1971 to 2000 is selected to represent present-day conditions.

13.4 Results

Based on our multi-model ensemble analysis, Figure 13.1a shows that the ensemble median of the largest drought
areas increases from 18.7 % of the European territory under a warming of 1.5 K to 26.2 % under a warming of
3 K. The drought threshold from the reference period 1971-2000 is used to enable comparison with historic events;
that is, adaptation to climate change is not considered. If adaptation is not considered, then only the top 9.9 % of
simulated drought areas under a warming of 1.5 K exceed the ensemble median under a global warming of 3 K.
Note that the percentage of ensemble members that exceed the median of the 3 K ensemble increases non-linearly
with the degree of global warming. For example, this quantity increases by 13.3 % (2.5 % to 15.8 %) as the amount
of global warming increases from 1 K to 2 K; however, it increases by 34.2 % as the amount of global warming
increases from 2 K to 3 K.

Drought duration (Figure 13.1c) also exhibits substantial changes across the different warming levels. The
median duration of exceptional drought events shows approximately a two- to three-fold increase between the
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1.5 and 3 K warming levels (i.e., it increases from 20 months under a warming of 1.5 K to approximately 55
months under a warming of 3 K). Given these changes in the distributions of the areas and the durations of extreme
drought events, these future events may no longer represent droughts, which are defined as deviations from normal
conditions. This analysis indicates that, for amounts of global warming equal to or greater than 1.5 K, the normal
conditions that are used to define typical drought characteristics must be reassessed.

10 20 30 40 500
Area [%]

a

3 K

2.5 K

2 K

1.5 K

1 K

W
ar

m
in

g
Le

ve
ls

50.0 %1.2 %

34.6 %7.4 %

15.8 %11.4 %

9.9 %29.6 %

2.5 %50.0 %

M
ed

ia
n

1
K

M
ed

ia
n

3
K

10 20 30 40 500
Area [%]

b

3 K

2.5 K

2 K

1.5 K

1 K

W
ar

m
in

g
Le

ve
ls

50.0 %32.7 %

45.2 %42.8 %

42.3 %45.3 %

35.2 %50.9 %

39.4 %50.0 %

M
ed

ia
n

1
K

M
ed

ia
n

3
K

c

12 24 36 48 60 72 84 960
Duration [months]

50.0 %5.5 %

38.1 %11.3 %

21.6 %17.0 %

6.0 %23.9 %

0.1 %50.0 %

M
ed

ia
n

1
K

M
ed

ia
n

3
K

3 K

2.5 K

2 K

1.5 K

1 K

W
ar

m
in

g
Le

ve
ls

d

6 12 18 24 30 36 42 480
Duration [months]

50.0 %

31.0 %

32.7 %

24.4 %

19.6 %

30.0 %

41.6 %

42.2 %

54.6 %

50.0 %

M
ed

ia
n

1
K

M
ed

ia
n

3
K

3 K

2.5 K

2 K

1.5 K

1 K

W
ar

m
in

g
Le

ve
ls

Figure 13.1 Distribution functions are displayed for both the drought areas (a,b) and
durations (c,d) of the largest drought events over the 30-year periods corresponding to
each global warming level. The results without adaptation are presented in the panels
(a,c) and with adaptation in panels (b,d). The vertical dashed lines indicate the median
values for global warming amounts of 1 K and 3 K. The fractions of ensemble members
located towards the tails are also denoted as percentages. The x-axis limits are different
for the duration with and without adaptation (c,d) for clarity.

The impact of climate
change on drought character-
istics is strongly diminished
after adaptation (meaning
that the drought threshold is
re-calculated based on the
projected soil moisture un-
der different levels of global
warming as indicated in the
Methods section) to drought
events is considered. Overall,
the ensemble median drought
area is estimated to be between
16 % and 18 % of the European
territory, and the duration is ap-
proximately 9 to 12 months for
all of the considered warming
levels. A significant difference
is only found between the
warming levels of 3 K and
at most 1.5 K (applying a
Kolmogorov-Smirnov test with
a significance level of 5 %,
Figure 13.1d). Ideally, it is
expected that drought area and
duration remain unchanged
if the soil moisture drought
threshold is estimated for each
warming level separately (rep-
resenting adaptation to climate
change). Small deviations may

still occur because of the intrinsic uncertainty of the processes describing the soil moisture dynamics. It is
worth noting that these increases are also obtained using other SMI drought thresholds (see Methods, compare
Figure 13.1 and Figure 13-A.1.)

The substantial increases in drought area and duration without adaptation (Figure 13.1a,c) are not evenly dis-
tributed across the European domain. Figure 13.2 depicts strong spatial differences in the drought area and duration
over six major environmental regions in Europe (i.e., the Alpine North, Atlantic, Boreal, Continental, Mediter-
ranean, and Alpine South regions; see Figure 13.3a) (Kovats et al., 2011; Metzger et al., 2005). The exact values
are provided in Table 13.1. The largest increases in the drought area and duration are projected to occur in the
Mediterranean. Compared with the estimates for the historical period (1971–2000), the drought area will change
from 28 % on average to 49 % under a warming of 3 K (Figure 13.2a,f). The increase in drought area is less than
10 % in the Atlantic, Continental, Alpine North and Alpine South regions. Increased precipitation will decrease
the drought area in the Boreal region by about 3 % under a global warming of 3 K. Interestingly, the Alpine North
region shows the highest percentage in drought area among all regions for the historic period 1971–2000 (Fig-
ure 13.2a), which highlights that droughts have a relatively higher spatial dependence in this region than in the
other ones.

With the exception of the Alpine North and Boreal regions, the durations of the largest drought events are
three to four times higher under a warming of 3 K compared to historical values (Table 13.1). The increases in
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drought duration are non-linearly related to climate change because they double (at most) under a global warming
of 2 K. The longest droughts, which have durations exceeding 10 years (120 months), are projected to occur in the
Mediterranean, Alpine South and Continental regions under a global warming of 3 K. Overall, our results show an
alteration of the hydrologic regimes in the Mediterranean and Continental regions when a warming level of 3 K is
approached.

Table 13.1 Multi-model ensemble median results for the area under drought ([% of
total area]), drought duration [months], and months under drought conditions per year
for different levels of global warming and stratified for the IPCC regions. The period of
1971–2000 is used as a reference.

Warming level Atlantic Continental Boreal Mediter. Alpine North Alpine South
Drought area

Reference 21.9 34.7 19.4 28.2 41.3 28.9
1.0 K 24.0 36.8 25.2 29.8 31.8 28.7
1.5 K 23.5 35.1 24.7 34.1 34.5 28.7
2.0 K 22.8 35.8 23.4 38.4 34.8 29.4
2.5 K 26.5 36.1 23.0 41.0 35.9 34.4
3.0 K 27.8 39.9 16.4 49.1 41.1 37.1

Drought duration
Reference 31.5 32.5 25.0 28.0 12.0 37.0
1.0 K 32.0 38.5 25.0 41.0 22.0 40.0
1.5 K 52.5 60.0 25.0 58.0 20.5 56.0
2.0 K 60.5 65.5 32.5 71.0 21.0 68.5
2.5 K 84.0 86.5 41.5 89.0 18.5 86.5
3.0 K 101.5 121.5 59.5 125.0 17.0 124.5

Drought months per year
Reference 2.0 2.0 1.9 2.1 1.9 2.0
1.0 K 2.0 2.1 2.0 2.6 1.7 1.9
1.5 K 2.7 2.6 2.4 3.2 1.9 2.3
2.0 K 3.0 2.8 2.5 3.7 2.0 2.7
2.5 K 3.3 3.1 2.7 4.5 2.2 3.2
3.0 K 3.8 3.9 2.9 5.6 2.4 3.9

The frequency of drought
events (expressed in terms
of the number of drought
months occurring per year) also
exhibits marked regional and
sub-regional differences, due
mainly to the influence of local
physiographic and climatic
characteristics (Figure 13.2 m-
r). During the historical period,
the mean drought frequency
for all of the grid cells in all of
the regions is approximately 2
months per year. This histor-
ically low value increases to
an unprecedentedly high value
under climate change, if no
adaptation is considered. For
example, the Mediterranean
will experience a steady in-
crease in this quantity as the
warming level rises, reaching
5.6 months per year under 3 K.
Note that some parts of the
Iberian Peninsula are projected

to experience more than seven drought months per year under the 3 K warming level (Figure 13.2r). These events
may no longer be droughts, given that they occur half of the time. All HMs project increases in drought frequency
in the Mediterranean, which is a result of the reduced precipitation in this region (see Figure 13-B.2 and 13-B.3).
The Continental region shows a change from 1–2 months per year to 3–5 months. Most locations in the Alpine
South region will experience a shift in drought frequency from 1–2 months under present-day conditions to 4
months per year under a warming of 3 K.

The previous two figures highlight the need for constant adaptation to the changing climate and indicate that
historic drought thresholds may not apply in the future. Adaptation of society to the new normal is known to be
associated with substantial costs (Rötter et al., 2011). However, the crucial question for society as a whole and
water planners in particular is what the new drought conditions that will occur under different warming levels imply
for adaptation policies. To answer this fundamental question, the change in the drought threshold is estimated in a
2-m deep soil column in litres per square metre (i.e., in millimetres of soil water storage). This value is an indicator
of the available soil water content under drought conditions and quantifies the change in aridity.

The resulting ensemble average change in the available soil water content is estimated over the six environmental
regions for the different warming levels and seasons (i.e., winter, spring, summer, and autumn), including their
variability and statistical significance. The magnitude of this change generally increases with increased global
warming and is significant for changes larger than 3 % (Figure 13.3). Two major patterns are observed: 1) the
Mediterranean and Atlantic regions experience decreases in soil water content in all seasons and under all warming
levels; 2) the Alpine North, Alpine South, Boreal and Continental regions tend to become wetter in winter and
spring and drier in summer and autumn.

The Mediterranean region is the most affected in all seasons (Figure 13.3e), with the largest increase in aridity
appearing in the winter and spring under all warming levels. At the 3 K warming level, the available soil water
decreases by 35 mm (±24 mm), which corresponds to a shortage of 35 000 m3km�2. The Atlantic region exhibits
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Figure 13.2 The area under drought is evaluated for the six IPCC AR5 regions (Kovats et al., 2011) and quantified as a
percentage of the total area of each region (a–f). The drought duration is shown for the same regions (g–l). The area under
drought and the drought duration are calculated for the multi-model median of the largest drought events. The frequency of
drought months is depicted at the individual grid cell level, which is calculated based on the multi-model median estimates
(m–r). All of the results are calculated assuming no adaptation to climate change.

the smallest changes in the available soil water among all of the regions and for all of the warming levels (Fig-
ure 13.3b). The Continental region exhibits positive changes during the winter for warming amounts of up to 2 K
(Figure 13.3g). In contrast, negative changes are observed for all of the warming levels above 1.5 K during the
spring, summer and autumn. Earlier onsets of snowmelt cause increases in the available soil water in the winter
and spring for all of the warming levels in the Alpine North and Boreal regions (Figure 13.3c and d). These earlier
onsets also lead to increases in aridity in these regions of up to 20 mm in summer, when snowmelt is no longer a
source of water.

13.5 Discussion and conclusions

Global warming leads to significant intensification of European droughts, which confirms previous work (Trenberth
et al., 2014). We show that climate change has diverse regional and seasonal impacts on soil water availability
across Europe. An increase in surface water availability has been reported for different warming levels for the
Alpine and Boreal regions (Greve et al., 2017). However, this increase is unevenly distributed over the year.
Moreover, soil water availability appears to decrease significantly throughout Europe during the growing season
(i.e., summer and fall). Economic assessments of climate change adaptation for the agricultural sector are often
based on temperature-related characteristic curves (Moore and Lobell, 2014). These analyses could benefit from
incorporating soil moisture because it constitutes the primary source of water for plant growth.

The exacerbation of drought conditions in the Mediterranean under global warming of 1.5 K and 2 K will be
unprecedented since the last millennium (Lehner et al., 2017). If a global warming of 3 K is reached, southern
Spain and probably Italy and Greece will turn “into a desert” (Guiot and Cramer, 2016). This unprecedented
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Figure 13.3 Changes in the soil water availability (increases in aridity) during drought events between a given warming level
and the reference period, considering adaptation to climate change. The results are aggregated to the IPCC AR5 regions (Kovats
et al., 2011) for the different seasons (from left to right, DJF, MAM, JJA, and SON) and from for each warming level. The
whiskers indicate the inter-quartile range of the multi-model ensemble results. The markers at the bottom of the plots indicate
changes that differ significantly from zero, as determined using a Wilcoxon rank-sum test and a significance level of 5 %.

change will also have severe impacts on Mediterranean vegetation and biodiversity, and, thus on ecosystems and
their services.

The strong reductions in soil water availability during dry periods are mostly related to decreases in precipita-
tion and increases in evapotranspiration (Greve et al., 2017) (see Figures 13-B.3 and 13-B.1). The relatively high
decreases in soil water availability noted in this region are related to the relatively high increases in the maximum
daytime temperatures compared to other regions (Seneviratne et al., 2016). Whether economic adaptation assess-
ments (Moore and Lobell, 2014) can properly assess such severe changes remains an open question. Note that,
while we estimate soil moisture for a 2 m deep soil column, many plants, particularly crops, do not have roots that
extend to that depth. Consequently, we likely underestimate the effects of soil moisture droughts in the top-soil
layers because these layers tend to dry faster than the lower soil layers (Berg et al., 2017).

We relate our results to the 2003 drought event (estimated based on historical observations, see Methods) to
illustrate the severity of the projected changes. In water-limited regimes, agricultural droughts are intrinsically re-
lated to significant reductions of evapotranspiration and gross primary production (GPP), as well as the occurrence
of heat waves. For example, Europe emitted an amount of carbon dioxide that corresponds to the amount that is
normally sequestrated in four years during the 2003 drought event (Ciais et al., 2005). In the future, drought events
that are similar in magnitude and extent to that of 2003 will be twice as frequent. In detail, our results indicate
that the increase in frequency, which is defined as the ratio of SMI under a warming of 3 K with respect to that
of the reference period, is approximately 2.0 (±0.33). The estimated average soil water availability deficit during
the 2003 drought event was 27.6 mm. The change in the drought threshold at a warming level of 3 K (Figure 13.3)
is of the same order of magnitude as the average deficit during the 2003 event in most of the regions. This result
implies that much of this event will not be classified as a drought in the future, and the projected droughts will be
associated with substantially less available soil water than the 2003 event.

We estimate that 42 % (± 22 %) more people will be located within areas enduring extreme droughts under a
warming level of 3 K compared to a warming level of 1.5 K (170 million people vs. 120 million people, respec-
tively; Figure 13.4). In contrast, 15 % of the population (83 million people) was located under drought affected
areas during the 2003 event. At the peaks of the largest droughts, the population located within areas under drought
increases from 336 to 400 million people (Figure 13.4), and these numbers correspond to 61 % and 73 % of the
European population, respectively. The increases in population within drought prone areas mostly occur in the
Atlantic, Continental and Mediterranean region, because drought area is increasing the most in these regions (Ta-
ble 13.1). Global warming may constitute a new human health threat (Robine et al., 2008) and extreme droughts,
under particular situations, may trigger migration (Wilbanks et al., 2007). For these reasons, further studies should
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be conducted to investigate the potential effects of future extreme droughts on the European society and potential
mitigation strategies aiming at reducing their negative effects.

Figure 13.4 Average and maximum European population who are located within
the area enduring the largest drought at a given warming level (i.e., experience an
alteration in standard living conditions during an event). Population data for 2005
are used for reference, and these data were obtained from the SEDAC data set
(http://sedac.ciesin.columbia.edu). Based on this data set, the population of the study area
is estimated to be approximately 550 million people. Error bars represent the ensemble
standard deviation.

Overall, Europe will face
unprecedented increases in the
area affected by the largest soil
moisture drought and the du-
ration of such droughts if no
adaptation is implemented dur-
ing the coming decades (with
respect to the historical period).
The magnitudes of these in-
creases depend strongly on the
level of global warming. If
future global temperatures will
exceed 2 K above preindustrial
levels (Raftery et al., 2017), our
results show that drought areas
will be up to 40 % larger under a
warming level of 3 K compared
to a warming level of 1.5 K.

Similarly, the drought duration will increase by three times between these two warming levels. Decreases in aridity
are found only in the Alpine and Boreal regions during the winter and spring. Even if adaptation measures are
successfully implemented, aridity will increase throughout the continent during the summer from less than 10 mm
at a global warming of 1.5 K to approximately 20–35 mm at a global warming of 3 K. Such an increase in aridity
is comparable to the deficit during the 2003 drought event. Our study therefore highlights the need to adapt to new
normal conditions to minimise the impact of extreme drought events. The European agricultural sector must adapt
to summers with reduced soil water, and the risk of land degradation and desertification in sensitive environments
exists. Further research is urgently needed to assess the degree of impact of future extreme drought events on the
European society as a whole, if increased aridity threatens minimum living conditions (Wilbanks et al., 2007).
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Appendix: (A) Supplementary figures
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Figure 13-A.1 Same as Figure 1 in the main text, but using a drought threshold ⌧ of 0.1 for the spatio-temporal clustering
algorithm.

Appendix: (B) Methods

Modelling chain

Daily temperature and precipitation values for the period 1950 to 2099 obtained from five Coupled Model In-
tercomparison Project v5 (CMIP5) Global Climate Models (GCMs) (HadGEM2-ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM, GFDL-ESM2M and NorESM1-M) forced by three RCPs (RCP2.6, RCP6.0, and RCP8.5) are used as
input to four hydrologic models (HMs). These GCM data were made available by the ISI-MIP project (Warszawski
et al., 2014) and are downscaled to a global resolution 0.5� and bias-corrected using a trend-preserving approach
(Hempel et al., 2013). These models cover a range of 0.55 of the uncertainty of the entire CMIP5 ensemble for
precipitation and 0.75 for temperature (McSweeney and Jones, 2016). The uncertainty range of this 5-member
ensemble is comparable to that of a larger CMIP5 model ensemble (Figure 13-B.1) (Greve et al., 2017). The 0.5�

data are further disaggregated within the EDgE project (edge.climate.copernicus.eu) to a 5-km grid over Europe
using the external drift kriging (EDK) approach. EDK constitutes the best linear unbiased estimator of the selected
meteorological variable. This key characteristic of EDK constraints the mean of the interpolated (downscaled) val-
ues to not differ from the expectation of the meteorological variable at this location. Thus, EDK does not introduce
artefacts (e.g., trends) into the original forcing. Another advantage of this approach is that it introduces orographic
effects of precipitation and temperature that are not present in GCMs at the coarse resolution, while maintaining
the trend of the original data. The disadvantage of EDK is that it does not guarantee a conservation of mass and en-
ergy everywhere. Within the present study, however, the differences between original and downscaled values are in
general less than 1 % (at most 5 %) for precipitation and 0.1 K (at most 0.23 K) for temperature. These differences
are smaller than the differences between the individual GCMs and the changes induced by climate change.

Two hydrological models (HMs: mHM, PCR-GLOBWB) and two land surface models (LSMs: Noah-MP, VIC)
are used to simulate soil moisture up to a depth of 2 m. The same morphologic, land cover, and soil data are used to
setup these models; thus, the differences among the model simulations are due solely to differences in the represen-
tations of different processes used in the models. The mesoscale hydrological model (mHM; www.ufz.de/mhm) is
a process-based hydrologic model that was developed for use at scales ranging from 1 km to 50 km (Kumar et al.,
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Figure 13-B.1 Uncertainty in precipitation projections. In the top row, the map for the historical period shows the long-term
annual precipitation of the 5 GCMs used in this study. For the different warming levels, the map show the ensemble range
between the percentage change occurring with a probability of 90% and 10% according to the five GCMs used under three
RCPs. These values are then averaged for the different European regions and depicted in the lower row. For the Continental,
Boreal, and Mediterranean region, the red dashed line denotes the median change reported by Greve et. al. (2017) and the dotted
lines the 10% and 90% percentiles. These values are added for comparison although a different method (i.e., pattern-scaling)
has been used to derive them.

2013; Samaniego et al., 2010a). PCR-GLOBWB was developed to represent the terrestrial water cycle, including
artificial water management, at global and continental scales, and it places special emphasis on the groundwater
component (Sutanudjaja et al., 2018). Noah-MP is the land-surface component of the Weather Research and Fore-
cast model, and it represents both the terrestrial water and energy cycles (Niu et al., 2011). VIC was developed
to provide a simplified representation of land-surface hydrological processes that would be suitable for imple-
mentation in a GCM (Liang et al., 1994). The model parameters are calibrated using the E-OBS meteorological
data (Haylock et al., 2008) for nine distinct catchments located in Spain, the United Kingdom, and Norway. An
automatic calibration scheme is employed for mHM and PCR-GLOBWB (Rakovec et al., 2016c). Noah-MP is cal-
ibrated manually by adjusting the parameter describing surface evaporation resistance based on previous analyses
(Cuntz et al., 2016). The VIC parameters are taken from global simulation runs and are not calibrated using the
E-OBS or observed river discharge datasets over the EU domain.

Drought frequencies related to changes of meteorological forcings

Figure 13-B.2 provides a comparison of the number of drought months for the individual hydrologic models, con-
sidering no adaptation to climate change for various levels of global warming. All hydrologic models show a
similar increase in drought frequency in the Mediterranean region in southern Europe. This may be related to the
relatively large decrease in annual precipitation of up to 25 % at a warming level of 3 K (Figure 13-B.3). In central
Europe, all models exhibit a smaller increase of drought frequencies in comparison to those in the Mediterranean,
which can be expected given the relatively smaller changes in projected precipitation (Figure 13-B.3). Projected
temperature is increasing similarly in central Europe and the Mediterranean region, which highlights that the simu-
lated evapotranspiration in this model ensemble is limited by water availability rather than by energy in this region.
In contrast, precipitation is projected to increase in the Scandinavian region in northern Europe up to 20 %. In this
region, the hydrologic models differ in their projections of drought frequencies. For example, VIC and mHM show
increases in this region, PCR-GLOBWB shows a mixed pattern, and drought frequencies simulated by Noah-MP
remain unchanged by global warming. Because all models are forced with the same meteorological data, the pa-
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Figure 13-B.2 Drought frequency for every hydrological model for various global warming levels. The number of drought
months per year are calculated using the distribution functions of the SMI of the reference period, thus assuming no adaptation
to climate change.

rameterization of snow processes in this cold region and the parameterization of ET have a strong impact on soil
drought characteristics. For example, mHM allows ET when the surface is covered with snow, which is based
on the model assumption that snow cover has a large subgrid variability. On the contrary, Noah-MP explicitly
considers snow cover fractions within the calculation of evaporation. These results show that the hydrological
models have relative larger differences over various regions. For this reason, we consider it fundamental to use a
multi-model ensemble for climate change drought analysis.

Model verification

Streamflow simulations from the four hydrologic models, driven by five GCMs, were compared against obser-
vations during the historical 30-year period (1966–1995). Here, we analyse the model skill for reproducing the
median daily flows (p50) over 357 gauging stations located across the EU domain (Figure 13-B.4). The gauges
have been selected from the Global Runoff Data Centre database. All gauges have complete 30-year period (1966–
1995) of daily observations across the modelling domain, which allows for a robust statistical analysis. Addition-
ally, these basins have an error of less than 10 % in the basin delineation and the median basin area is 1680 km2.
Overall, the ensemble model simulations show reasonably high skill in capturing the observed variability of p50,
with a correlation coefficient value of 0.92 (Figure 13-B.4e) and the mean relative bias is 35 %. In general, the
model combinations (GCM/HM) appear to slightly overestimate the observed p50 values, with mHM being closest
to observations compared to the Noah-MP, PCR-GLOBWB and VIC model simulations. The basins in the central
EU region and in the Iberian peninsula generally exhibit a positive bias (Figure 13-B.4f). We note that these verifi-
cations are quite rigorous as the hydrologic models are forced with GCM simulated datasets, rather than observed
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Figure 13-B.3 Projected changes in precipitation and temperatures for different levels of global warming. Upper panels show
the historical annual average precipitation for the reference period and the corresponding anomalies for various global warming
levels. Lower panels show the same but for annual average temperature.

meteorological datasets. This implies that a comparison of simulated and observed streamflow for specific time
points is not feasible because GCM-based simulations do not reproduce observed weather and thus events.
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Figure 13-B.4 Verification of simulated streamflow. Scatter plots of the median daily streamflow (p50) between observations
and simulations for individual GCM/HM combinations (panels a to d) and the multi-model mean (panel e). Hydrologic model
simulations are obtained using the forcings based on five GCMs during the period (1966–1995) over 357 EU river basins. Also
shown are geographical location of the river basins with colours indicating relative bias between simulations and observations
(panel f).
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Estimation of warming levels
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Figure 13-B.5 Projected global mean temperatures. Development of centered 30-year
global average temperatures for all five General Circulation Models (GCMs) included in
this study. The horizontal lines mark when the global warming of 1, 1.5, 2, 2.5, and
3 K are reached. The coloured lines indicate the different Representative Concentration
Pathways (RCPs): RCP2.6, RCP6.0, and RCP8.5.

Within this study, the global
warming levels for 1, 1.5, 2,
2.5, and 3 K are identified em-
ploying a time sampling ap-
proach (James et al., 2017).
The 30-year average tempera-
ture of 1971–2000 is used as
a reference. The pre-industrial
warming between the periods
1881–1910 and 1971–2000 is
assumed to be 0.46 K (Vau-
tard et al., 2014). This off-
set is subtracted from the warm-
ing levels for determining the
30-year periods for the specific
global warming. These peri-
ods are identified as follows.
For each Global Climate Model
(GCM) and representative con-
centration pathway (RCP), cal-
culate the 30-year global av-
erage temperature for all 30-
year periods between 1960 and
2099 (prepending the histori-
cal data to each RCP). Note
down the period when a 30-
year global average temperature
first reaches or exceeds a given
global warming (1, 1.5, 2, 2.5,
and 3 K minus 0.46 K offset)
(James et al., 2017). The proce-
dure is illustrated in Figure 13-

B.5 for all GCMs and RCPs. It is worth mentioning that other periods than 1881–1910 have been suggested to
represent pre-industrial conditions, which might lead to offsets that are 0.11 K higher than the one used in this
study (Hawkins et al., 2017). We recalculated the periods based on this adjusted threshold and found shifts of 2 to
6 years (not shown). Given the fact that our analysis is using simulated soil moisture of 30 year periods, we expect
little influence of the adjusted offset on our results.

In total, 15 GCM realisations reach 1 K, 14 reach 1.5 K, 13 reach 2 K, and 8 reach 2.5 K and 3 K global warming.
As four HMs are used in this study, the obtained sample sizes are sufficiently large to quantify extreme soil moisture
droughts for each level of global warming.

Soil moisture index and drought characteristics

The soil moisture index (SMI) for a given cell and month is estimated as

SMIt = F̂T (xt), (B.1)

and it represents the quantile at the soil moisture fraction value x (normalised against the saturated soil water
content). xt denotes the simulated monthly soil moisture fraction at a time t and F̂T is the empirical distribution
function estimated using the kernel density estimator f̂T (x) of the corresponding calendar month at time t. f̂T (x)
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is estimated as

f̂T (x) =
1

nh

nX

k=1

K

✓
x � xk

h

◆
. (B.2)

Here, x1, . . . , xn represents the simulated soil moisture fraction of a given calendar month during the reference
period T ; n denotes the number of calendar months within a given period (i.e., 30 for a 30-year period); and K
represents a Gaussian kernel function with a bandwidth h. The bandwidth is estimated by minimising a cross-
validation error estimate (Samaniego et al., 2013) for the reference period separately for each calendar month, grid
cell, LSM/HM and GCM combination to ensure comparability across time, space and model combinations. A cell
at time t is under drought when SMI(t) < ⌧ . Here, ⌧ denotes that the soil water content in this cell is less than
the values occurring ⌧ ⇥ 100 % of the time. In this study, ⌧ is set to 0.2. All drought events are identified using a
multi-temporal clustering algorithm (Samaniego et al., 2013). This algorithm first masks all cells at each time step
that fulfil SMI  ⌧ and consolidates adjacent cells to a drought event. Second, drought events at consecutive time
steps that share a minimum overlapping area are consolidated into a single event. Third, drought statistics (e.g.,
areal extent, duration) are estimated for all identified drought events. The mean duration (D) of a drought event is
then defined as the mean of the drought duration estimated over every cell affected by a drought event. This statistic
is given in months. The mean areal extent (A) is defined as the average of the region under drought from the onset
until the end of the drought event, which is then expressed as a percentage of the total surface area of the region.
It should be noted that the value of the threshold ⌧ certainly determines A and D. Sensitivity analysis, however,
shows that the rate of increase of these characteristics between two warming levels is invariant of the value of ⌧
(compare Figure 1 and Figure S1). The reference period T within the estimation of the SMI F̂T is chosen in two
ways to quantify the effect of adaptation to climate change: 1) T is chosen as 1971–2000 to calculate the drought
area and duration for all warming levels, which represents no adaptation to climate change, 2) T is identical to the
period when a global warming level has been reached, which represents adaptation to climate change (Wanders
et al., 2015). In the latter case, it depends on the amount of global warming, the GCM and the RCP considered.

Estimation of available soil water (aridity)

The changes in the water soil storage (aridity) that occur at the different warming levels is estimated by varying
the reference period from T0 to T�, where T0 denotes the historical reference period (1971–2000), and T� denotes
the period until a particular value of �K is reached in a given RCP and GCM combination. Based on these two
periods, the change in aridity within a region (as represented by the average over all of the cells within the region)
for a given RCP-GCM-HM combination is estimated as

�x� = hF̂�1
T�

(⌧)i � hF̂�1
T0

(⌧)i. (B.3)

The operator h·i denotes the ensemble mean, and the overline indicates the spatial average. Finally, the seasonal
averages are estimated from the values obtained for each month. This index is depicted in Figure 3. Note that the
threshold ⌧ is kept constant (e.g., 0.2) for T0 and T�. The absolute soil moisture thresholds (e.g, F̂�1

T�
(⌧)), on the

other hand, depend on the period.

Estimation of soil water deficit for the 2003 event

For a given drought event occurring in a period T , the soil water deficit in a given grid cell is estimated by

d T

i
(t) =

h
F̂�1

T,i
(⌧) � xi(t)

i

+
. (B.4)

The average deficit estimated over the lifespan of a drought event occurring in a period T is given as

d T =
1

nT

X

t2T

d T

i
(t). (B.5)

Here, nT denotes the number of months under drought in the period T and the overline indicates the spatial
average. The operator

⇥
·
⇤
+

denotes the positive part function. The soil water deficit for the 2003 event is estimated
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as indicated above with every hydrological model forced with the E-OBS (Haylock et al., 2008) meteorological
data (1950–2015). The period T corresponds to 1960–2002. The ensemble average is afterwards estimated to be
27.6 mm.

Comparison of SMI and PDSI

Figure 13-B.6 Comparison between SMI and PDSI. Panels a)
to d): Soil moisture index (SMI) of the four hydrologic models
used in this study for one location in Eastern Germany (Saxony).
Each panel contains five realizations under RCP 2.6 (one for each
considered General Circulation Model, GCM). For clarity, only the
median (solid blue line) and the range from minimum to maximum
are shown. Panel e): Same as a) to d), but for PDSI instead of a
hydrologic model. For both indices SMI and PDSI, red and yellow
lines depict thresholds for drought events having an exceedance
probability of 95% and 80%, respectively.

Numerous studies on drought research used the
Palmer Drought Severity Index (PDSI) (Dai et al.,
2004; Palmer, 1965; Sheffield et al., 2013; Tren-
berth et al., 2014). The PDSI is a water bud-
get accounting index that cumulates soil moisture
anomalies derived from monthly precipitation and
temperature. Here, we use the self-calibrating ver-
sion of PDSI (Wells et al., 2004) at the monthly
timescale. PDSI requires two input parameters for
every grid cell. These are the latitude of the consid-
ered location and the available water holding capac-
ity (AWC). The latter is derived using the same soil
dataset used for the hydrologic models and the Mul-
tiscale Parameter Regionalization (MPR) method
used in the mesoscale Hydrologic Model (mHM)
(Samaniego et al., 2010a). The calibration period
for the PDSI is set to 1971 to 2000, which is con-
sistent with the period for the estimation of the
kernel density function of the soil moisture index
(SMI). Subsequently, both indices (SMI and PDSI)
are evaluated during the period 2010 to 2099. We
present results for one location in Eastern Germany
(lat: 51.09 �N, lon: 12.89 �E) to discuss the differ-
ences between the PDSI and the SMI. However, the
same features discussed below were also observed
at locations in Southern France, Spain, and Eng-
land.
The RCP 2.6 scenario results in stationary SMI
and PDSI data without any significant trend (Fig-
ure 13-B.6). This can be expected because the
RCP 2.6 scenario leads to a projected increase in
global mean temperature of 0.3–1.7 K until the end
of the 21st century. All indices detect relatively
more droughts under RCP 6.0 (Figure 13-B.7) and
RCP 8.5 (Figure 13-B.8) as compared to RCP 2.6.
However, there are substantial differences between
the PDSI and SMI. Most importantly, the median
PDSI is indicating extreme drought conditions for
the last third of the 21st century for both RCP 6.0
and RCP 8.5.

In the latter case, the median PDSI shows a strong negative trend. For the same period, the median SMI is indicating
non-drought conditions for the majority of time points. This indicates that the PDSI is extremely sensitive to the
projected climate change in this region. It is worth noting that climate change in this region is mostly increasing
temperature, whereas annual precipitation is increased by less than 10 % (Figure 13-B.3). It is known that the
PDSI method using the temperature-based Thornthwaite potential evapotranspiration scheme is oversensitive to
changes in temperature and that the Penman-Monteith method provides a less biased estimate (Sheffield et al.,
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2013). The hydrologic models mHM and PCR-GLOBWB also use a temperature-based PET formulation (i.e.,
the Hargreaves-Samani equation (Hargreaves and Samani, 1985)), but show a similar behaviour as Noah-MP and
VIC (Figures 13-B.6–13-B.8), which do not use a PET approach and calculate the full energy balance at the land
surface.

Figure 13-B.7 Comparison between SMI and PDSI. Same
as Figure 13-B.6, but for RCP 6.0.

Figure 13-B.8 Comparison between SMI and PDSI. Same
as Figure 13-B.6, but for RCP 8.5.

These results highlight that the combination of a temperature-based PET approach with the conceptualisation
of the PDSI leads to an overestimation of drought conditions. On the contrary, a drought index derived from
hydrologic models (i.e., mHM and PCR-GLOBWB) that use a temperature-based PET scheme, do not exhibit such
behaviour. The reason for this difference stems from the way these indices are estimated. PDSI is an autoregressive
model of the type

Xt = pXt�1 + qZt (B.6)

that estimates the current PDSI value (Xt) based on the previous value of the index and the current soil moisture
anomaly Zt (Wells et al., 2004). Here p and q are the so-called Palmer “duration” factors to be determined empiri-
cally for every location. Zt is determined with a two layer water balance model and several empirically parameters
that “allow for accurate comparisons of PDSI values over time and space” (Wells et al., 2004). The autoregres-
sive conceptualisation of PDSI under a non-stationary climate (i.e., increasing temperature, PET, and soil moisture
anomalies under RCP6.0, RCP8.5) induces a negative drift from the long-term mean. On the contrast, SMI is by
definition bounded between zero and one because it corresponds to the respective quantiles of the simulated soil
moisture (see Section above).

Population in drought areas

For each member of the multi-model ensemble, the spatio-temporal evolution of the largest drought event is iden-
tified during the reference period T0 and all of the 30-year periods representing different levels of global warming
T�. This information is then overlaid with the population density to estimate the population located in the area
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under drought at a given point in time. Based on these results, we estimate the average and maximum populations
affected over the lifespan of the drought. To identify the effect of future droughts, we use the distribution of the
population of Europe in 2005. The UN-adjusted Gridded Population of the World, data set, version 4, was ob-
tained from SEDAC (http://sedac.ciesin.columbia.edu). The year 2005 is selected because it best
represents the population distribution during the 2003 event, which is used in this study as a reference. According
to this data set, the population of the entire domain is approximately 550 million people. This analysis does not
account for demographic changes.

Appendix: (C) Data availability

All information used in this study has been obtained from the following open sources: 1) Terrain elevation EU-
DEM and GOTOPO30 from https://lta.cr.usgs.gov/GTOPO30 and http://www.eea.europa.
eu/data-and-maps/data/eu-dem; the river database CCM2 v2.1 from http://ccm.jrc.ec.europa.

eu/php/index.php?action=view&id=23; Soils texture maps SoilGrids1km from http://www.isric.

org/content/input-data-soilgrids; the land cover product GlobCOVER v2 from http://due.

esrin.esa.int/page_globcover.php; the land cover products CLC00, CLC06, CLC12, CLC90 v18.4
from http://land.copernicus.eu/pan-european/corine-land-cover; the hydrogeology map
IHME1500 v11 from http://www.bgr.bund.de/ihme1500; the climate projections CMIP5 from https:

//www.isimip.org/outputdata/isimip-data-on-the-esgf-server/; the historical forcings E-
OBS v12 from www.ecad.eu/E-OBS/; the GRDC streamflow data from http://www.bafg.de/GRDC.
Finaly, the EDgE simulations http://edge.climate.copernicus.eu, and the data that support the find-
ings of this study are available from the corresponding author upon request.
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http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23
http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23
http://www.isric.org/content/input-data-soilgrids
http://www.isric.org/content/input-data-soilgrids
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://land.copernicus.eu/pan-european/corine-land-cover
http://www.bgr.bund.de/ihme1500
https://www.isimip.org/outputdata/isimip-data-on-the-esgf-server/
https://www.isimip.org/outputdata/isimip-data-on-the-esgf-server/
www.ecad.eu/E-OBS/
http://www.bafg.de/GRDC
http://edge.climate.copernicus.eu
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CHAPTER 14

LESSONS AND OUTLOOK

“Intelligence is the ability to adapt to change.”
—Stephen Hawking

14.1 Subject and aims of the thesis

This thesis summarizes a decade of research carried out at the Helmholtz Centre for Environmental Research on the
subject of drought monitoring, modeling, and forecasting, from local to continental scales. This topic constitutes
one of the grand challenges of contemporary hydro-meteorology due to its complexity and socio-economic impacts.

The overarching objectives of this study, systematically addressed in the twelve previous chapters, are:

Objective 1 Create the capability to seamless monitor and predict water fluxes at various spatial
resolutions and temporal scales varying from days to centuries.

Objective 2 Develop and test a modeling chain for monitoring, forecasting and predicting drought
events and related characteristics at national and continental scales.

Objective 3 Develop drought indices and impact indicators that are useful for end-users.

14.2 General challenges and scientific relevance

The subject covered in this thesis was scrutinized with a holistic approach aimed at investigating the optimal
design of the various components of the modeling chain depicted in Fig. 1.6, to understand how to improve its
predictability of the overall chain, to understand how uncertainties affect final results, and to provide guidelines on
how to develop operational tools for monitoring and forecasting that are useful for decision making in the water
sector.

Drought Modeling and Forecasting, First edition.
By Luis Samaniego Copyright © 2021 Luis Samaniego
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Figure 14.1 Schema depicting the relationship of the theses with the elements of the modeling chain.

The Figure 14.1 depicts the theses stated in Section 1.9.1 and their relation to a specific element of the modeling
chain or the chain as a whole. As can be seen in this figure, most components have been investigated thoroughly
and in relation with other ones. It should be noted that there is additional research carried out on this subject, but
due to space limitations, have not been included in this thesis. Interested readers should refer to the references of
the papers included in this thesis.

This study covered several major issues of contemporary hydro-meteorology as listed below:

The detection of changes and causal relationships for drought characteristics at the mesoscale. These issues
were mainly dealt with in Samaniego and Bárdossy (2007), and are related to theses T1.1�2.

The development of a novel parameterization technique (MPR) and the corresponding model interphases
leading to satisfactory cross-validation results across locations and scales. These developments provided
significant insight on how to improve predictions in ungauged locations. The key for the development of
MPR was the reduction of overparameterization in HMs/LSMs and the embracing of the scaling problem.
These issues were mainly dealt with in Samaniego et al. (2010a, 2017) and are related to theses T1.3�5,
T1.9�11.

The development of novel bias-insensitive pattern matching objective functions to allow the conditioning of
HM/LSM with remotely sensed data. The assimilation of RS data is expected to improve the parameterization
of a HM/LSM. These issues were mainly dealt with in Rakovec et al. (2016c); Zink et al. (2018) and are
related to theses T1.12�17.

The development of robust drought indicators aimed at describing the evolution of hydrological and agricul-
tural droughts. These issues were covered in Samaniego et al. (2013, 2016) and are related to theses T1.6�8

and T2.4�6.

The qualification of the uncertainty related with drought characteristics and indices and their propagation
along a modeling chain. These issues were mainly dealt with in Samaniego et al. (2013, 2016) and are related
to theses T1.6�8 and T2.4�6.
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The development and investigation of preprocessing and sub-ensemble selection techniques to improve the
skill of dynamic forecasts compared with climatological based-forecasts (ESP) used as reference. These
issues were mainly covered in Thober et al. (2015) and related to theses T2.1�2.

The evaluation of the skill and efficiency of modeling chains aimed at monitoring, forecasting, and projecting
drought events across spatial and temporal scales. These issues were the subject of Samaniego et al. (2018);
Thober et al. (2015); Zink et al. (2016) and Samaniego et al. (2019a), which are related to theses T2.3, T2.7�10,
T3.1�3, T3.7�9.

The design and operationalization of drought (and flood) monitoring and forecasting modeling chains. These
issues were the subject of Zink et al. (2016) and Samaniego et al. (2019a), which are related to theses T2.7�10

and T3.1�3.

The design of robust statistical impact models and metrics that are suitable for end-users. These topics were
the subject of Peichl et al. (2018) and are related to theses T3.4�6.

14.3 Conclusions

This systematic work presented here has allowed us to derive several significant conclusions that are relevant for
the hydrological science community, water resources planners and practitioners. Below a synthesis of the main
lessons learnt in this series of papers.

Machine learning and statistical techniques can help us to identify causal relationships and stochastic depen-
dency among a chain of variables. Based on observed data alone, it is possible to find significant evidence that
anthropogenic land cover and climatic changes induce impacts on low-flow streamflow time series, especially
in summer. This implies, that all variables related with the hydrological cycle are modified in one way or
another. Findings derived from these studies were fundamental to develop and parameterize the mHM model.

Recognizing the role of subgrid variability of model parameters and their relationship with geo-physio-
graphic characteristics was a fundamental insight to developing the multiscale parameter regionalization
(MPR) scheme. We have demonstrated that any model (e.g., mHM, VIC, PCR-GLOBWB) that is param-
eterized with this technique outperforms, ceteris paribus, the same model but parameterized with standard
techniques such as hydrological response units (HRUs), standard regionalization techniques, or brute-force
calibration. MPR can be interpreted as a sophisticated statistical regularization technique that leads to a parsi-
monious model parameterization with excellent transferability performance across scales and locations. MPR
is, in conclusion, an excellent alternative to estimating parameters at the REA-scale of any land surface or hy-
drological model (LSM/HM). It also has the advantage of generating flux-matching simulations across spatial
scales and therefore of making a model quasi-scale invariant.

By using the MPR technique in mHM, it was possible to estimate water fluxes seamlessly across spatial scales.
This technique allowed us to run this model at the native scale of remotely sensed (RS) observations such as
GRACE TWS, MODIS ET, H-SAF LST. Using mHM and MPR, it was then possible to demonstrate that
streamflow assimilation (via inverse modeling) was a necessary but not sufficient condition to improve the
skill of the model to reproduce model states such as soil moisture, land surface temperature, terrestrial water
storage anomalies, and water fluxes such as evapotranspiration. Consequently, the assimilation of additional
information is of great importance to improving the model’s performance and transferability. Assimilating RS-
products is, on the contrary, quite cumbersome due to their intrinsic bias and uncertainties. The development
of a novel bias-insensitive pattern matching technique was a fundamental step to easing the use of these
products into LSMs/HMs.

There are countless drought indices and combinations of them. Most of these indices are based on pre-
cipitation data only (e.g., SPI) or precipitation and potential evaporation based on temperature observations
(e.g., SPEI) or empirical and over-parameterized indices such as the Palmer Drought Index. In this work, it
was proven that SPI and as an extension SPEI are not suitable for describing hydrological, agricultural, and
groundwater droughts. It was also shown that the self-calibrating Palmer Drought Index is not suitable for
climate projection studies.
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Figure 14.2 Seamless soil moisture index (SMI) at multiple spatial resolutions and scales based on mHM simulations using
E-OBS v18 forcing data for August 2018. The SMI drought classes indicate exceedance probabilities of the fraction of soil
moisture w.r.t. saturation, for a given cell and calendar month.

Instead, we demonstrated that a LSM or a HM (e.g., mHM) can be used to estimate the past, current and
future soil moisture states at any spatial resolution (see Figure 14.2). We also showed that for comparison
across location and time, a percentile-based index is appropriate for defining drought characteristics such as
duration, area, magnitude, intensity, and severity. We also showed that standard approaches to fit a theoret-
ical distribution function of soil moisture (or runoff) at a given location and calendar month (or day) is not
appropriate. Instead a non-parametric kernel-based approach was proposed.

It has been argued in the literature that the epistemic uncertainty (input, parametric, structural) in hydrolog-
ical models (or in LSMs) is significant. Little, however, has been done to estimate the implications of the
parametric uncertainty into drought identification and estimation. In this respect, we demonstrated that para-
metric uncertainty plays a fundamental role in drought modeling and developed a non-parametric algorithm
to decompose the uncertainty originating from GCMs and HMs in seasonal forecasts and climate projections.

Data availability plays a critical role for the development of drought modeling chains. We demonstrated that
the existing open-source data sets can be used to develop both drought monitoring systems, and seasonal
forecasting or climate projection systems. An example of the former type is the German Drought Monitor,
and for the latter the EDgE project portal.

Current seasonal forecast products have still coarser temporal and spatial resolutions. GCM model outputs
are also biased. Consequently, we needed to develop tools to bias-correct, disaggregate and select ensemble
members to maximise the model-chain skill scores. In this respect, we proposed the external drift Kriging
technique for spatial disaggregation and developed a stochastic temporal disaggregation approach based on a
multiplicative cascade for seamless temporal disaggregation of GCM forcings. Considering that not all GCMs
have the same skill in a given region, we proposed a forward/backward elimination ensemble search algorithm
to estimate the optimal ensemble size for a given region or time.

We also showed that the ensemble prediction is in all cases and locations a better predictor than the single
best HM, and that optionally selected subensembles only show performance losses less than 1% on average in
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comparison to the full ensemble but with a saving of 60% in computational demand. It was also demonstrated
that GCM seasonal forecasts have better skills than climatological forecast used as benchmarks (e.g., ESP).
These findings are of great significance for the development of an effective operational seasonal forecast ser-
vice at global scale, e.g., in the project ULYSSES commissioned by the Copernicus Climate Change Service
- ECMWF to the UFZ, under my coordination.

We showed that the forecasting skill is mainly determined by initial hydrologic conditions, and hence it is of
crucial importance to know how a given model processes the existing geo-physiographical datasets to derive
model parameters at a given target resolution.
In the EDgE project, for example, it was possible to demonstrate that the mHM model, the only model that
at that moment was fully parameterized with the MPR technique, has the best performance over the 300+
gauging stations across Europe. Similar experiences have been obtained in the ISI-MIP2a project, over the
MOPEX-CONUS dataset, and currently in a Canadian inter-comparison project (Mai et al., 2019).

We demonstrated that by using existing data sets and GCM outputs, it is possible to predict soil moisture
droughts over Europe, with a lead time of up to two months.

The high-resolution multi-model simulations carried out over Europe allowed us, for the first time, to estimate
the sensitivities of anthropogenic global warming on aridity, drought characteristics such as extent, duration,
and frequency, changes in low- and high-flow percentiles of streamflow as well as potential impacted pop-
ulation by the near- future, middle and end of the century. The sensitivities of the drought characteristics
were estimated with a time sampling approach because every GCM under an emission scenario reaches a
fixed temperature increase with respect to the global average at different points in time. The large ensemble
size allowed us to also estimate the uncertainty of each drought characteristic. In this study, we also showed
the necessity of adapting the reference period used to define the empirical distribution functions of the target
variables (e.g., soil moisture), which are used to estimate the percentile-based drought indices (e.g., SMI) as a
direct consequence of the non-stationarity of the meteorological forcings. As a result, we showed that events
similar to the 2003 drought in Europe will become twice as frequent be the end of this century.

The econometric climate impact yield models found in the literature mainly use climatic variables such as
precipitation and temperature, among other location specific variables, as predictors of yield change in the
future. In this work, we demonstrated that this is not enough and proposed to include the soil moisture index
as a better indicator of plant stress induced by agricultural droughts. As a result, the efficiency of the standard
models were significantly improved over Germany.

Finally, we concluded that the success of any water-oriented decision-support system used as monitoring,
early-warning, seasonal forecasting or prediction platform, should be co-designed with key stakeholders to
gain their acceptance and insights on the key variables and indicators that are relevant for their decision
making activities. The success of the German drought monitor, measured by the continuous increase of web
visitors, media references, as well as the positive evaluation of the focus-groups on the functionalities of the
EDgE online platform corroborate this assertion.

14.4 Outlook

14.4.1 Towards robust high-resolution GHMs

The recent IPCC SR-15 report states that anthropogenic activities have already caused a 1.0 �C increase in global
temperatures above pre-industrial levels. Hydrological impact studies for Europe listed in this IPCC report (among
them e.g., Marx et al., 2018; Samaniego et al., 2018; Thober et al., 2018) showed that the potential impact of these
changes will become substantial for ecosystems and society during the coming decades. These facts reinforce
the urgent need for supporting the United Nations’ Sustainable Development Goals towards developing tools and
impact models that help decision makers to implement ambitious adaptation and mitigation measures against global
changes, from local to continental scales. The quintessence of such tools are the global hydrological models
(GHM).

Three decades ago, Eagleson (1986) foresaw “the emergence of global-scale hydrology” as a fundamental
need to provide answers to emergent environmental changes and the increasing demand for long range hydrologic
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forecasting at global rather than catchment scale. Eagleson also envisioned the need to develop integrated models
accounting for physical and bio-chemical process related with the water, carbon, and nutrient cycles on Earth.
Recently, Bierkens (2015) presented an appraisal of the state, trends, and directions in global hydrology, and
one of the striking conclusions of his commentary is that the “runoff processes in GHMs are still represented
rudimentarily”. One year later, this assertion was confirmed by Beck et al. (2016), who evaluated available GHMs
against observed streamflow at 1113 river basins across the globe and reported that, on average, these models have
a Nash-Sutcliffe efficiency (NSE) of -0.09 if compared against monthly streamflow records! We have come a
long way since the first blueprints for primitive land surface and hydrological models (Freeze and Harlan, 1969;
Manabe, 1969) but the state-of-the-art of the majority of the GHMs, as demonstrated by Beck et al. (2016), is still
not satisfactory. In fact, the capability of these models to close the water balance over a basin is practically null.
Moreover, their spatial resolution is still too coarse (0.5�) for practical applications.

The crucial question is why these models performed so poorly? The hydrological community has struggled with
these facts and issues over the last four decades (Bierkens, 2015; Blöschl et al., 2013; Dooge, 1982; Hrachowitz
et al., 2013; Li et al., 2012b; Sivapalan et al., 2003). Potential answers to explain the poor performance are:
1) the forcing data does not represent the meteorological spatio-temporal conditions of the region; 2) the model
has poor parameterizations and parameter fields that do not account for the subgrid variability of the physiographic
variables; 3) the observed streamflow reveal large observational errors; and/or 4) the model misses key hydrological
processes.
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Figure 14.3 Monthly NSE for the uncalibrated mHM model
over 5500 GRDC stations (Samaniego et al., 2019b). ERA-
5 forcing was obtained from the CDS at ECMWF. MSWEP
forcing was kindly provided by E. F. Wood and H. Beck.

Considering that GHMs are basically using the same
water balance equations, then the root of problem is
very likely the parameterization of such models as
pointed out by (Dooge, 1982) (see Section 1.6) and
(Bierkens, 2015), who also remarked that a “sophis-
ticated regionalization scheme, such as the multiscale
approach by Samaniego et al. (2010a) could be a way
forward” in this respect. Of course, other issues afect-
ing model efficiency should be also taken seriously if
we aim to improve the performance of the GHMs in
the future.

To demonstrate the scalability and transferability
of the mHM model and its parameterization tech-
nique (MPR), we setup this model on selected GRDC
stations located in all continents and covering major
hydro-climatic regimes. The model was set up at two
spatial resolutions: 0.25� and 1.0� to match the spa-
tial resolution of the ERA-5 forcings (ECMWF) and
the GRACE (NASA) terrestrial water storage anomaly.
The mHM model was not calibrated at these sta-
tions but used the default transfer-function parameter
set. The results of such experiments is shown in Fig-
ure 14.3. The median of the monthly NSE for the un-

calibrated mHM model over 5500 GRDC stations reaches a value of 0.40 for monthly streamflow (simulations
from 1950-2016). In other words, an improvement of 544% with respect to the median value reported in Beck et al.
(2016). The model performance of mHM obtained with MSWEP is slightly better than that obtained with ERA-5.

The comparison of terrestrial water storage (TWS) anomaly of GRACE against the corresponding anomalies
derived from mHM simulations during the period from 2004 to 2016 at the resolution of 1.0� reveal an overall
good agreement. In this case too, mHM is uncalibrated and uses the same parameter set as in the example above.
The Pearson correlation between these two variables is depicted in Figure 14.4. This figure shows that there are
hotspots of weaker model performance, and mHM, in general, performing better in humid regions than in semi-arid
regions. Poor performance corresponds to regions were the water balance closure error is the largest. These errors
could also be associated with poor forcing data sets in those regions.

In summary, these two examples show that the proposed MPR approach has the great potential to estimate
parameters for high resolution mHM across the globe. Currently, an extraordinary large parameter estimation ex-
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Figure 14.4 Pearson correlation of monthly TWS anomalies of GRACE and mHM from 2004-2016 (Samaniego et al., 2019b).

periment to improve the performance of the global mHM beyond the current state-of-the-art is ongoing (Samaniego
et al., 2019b).

14.4.2 Towards a global drought monitoring and forecasting system

Figure 14.5 Prototype of the South-Asian drought monitor. The figure
depicts the 1987 drought event, one of the largest since 1950. The SMI is
simulated with mHM using ERA-5 forcings (Saha et al., 2020). Source:
http://southasiadroughtmonitor.pythonanywhere.com

The studies reported in this Thesis have
been carried out mainly in Europe, where
the historical meteorological records and
geo-physiographical data is among the best
in the world. Consequently, the remaining
question to answer is, how well the pro-
posed drought modelling chain performs
in a different hydro-climatological region
where the data situation is not as favorable
as in Europe? To answer this question, the
South-Asia subcontinent, covering an area
of about 5.1 millon km2, was selected for
two reasons: first, 24% of the world’s pop-
ulation live here and second, it is known
that droughts have caused enormous im-
pacts on regional agriculture, food storage,
and livelihood in the past decades. Re-
cent studies, for example, showed that the
droughts of 1987 and 2002-2003 affected

at least 50% of the crop area in India (Wassmann et al., 2009) and similarly, the drought events from 1979 and
1982 incurred a loss of about 2 million and 53 000 tons of rice in Bangladesh, respectively (Rakib et al., 2015).

The main meteorological drivers leading to extended droughts in this region are related to the increase in sea-
sonality of precipitation and extreme heat. These, in turn, disrupt the vegetation growing season in Pakistan, India,
and Bangladesh (Vinke et al., 2017). Consequently, it is expected that by 2100, 50% of the wheat production in the
Indo-Gangetic Plains will be reduced due to this natural hazard (Vinke et al., 2017).

Currently, the only readily available drought-related information for the subcontinent are the SPI and SPEI indices
provided by the Indian Meteorological service (www.imdpune.gov.in) and the International Water Manage-
ment Institute http://dms.iwmi.org. Pakistan Meteorological Department (http://www.pmd.gov.
pk/), only provides reports on droughts based on monthly rainfall data and satellite-based vegetation index. It is

http://southasiadroughtmonitor.pythonanywhere.com
http://dms.iwmi.org
http://www.pmd.gov.pk/
http://www.pmd.gov.pk/
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also known that SPI and SPEI are empirical indices that do not adequately represent extreme water stress conditions
on vegetation (Keyantash and Dracup, 2002; Mishra and Singh, 2010).

Consequently, the application of a model chain consisting of a quasi-real time reanalysis product, the mHM
model and the SMI index, could offer a simple but effective solution comparable to that of the GDM (Zink et al.,
2016). This chain also constitutes an effective proof-of-concept of the transferability of the proposed model chain
to other locations. As forcings, the ERA-5 was selected due to its high resolution and latency. The hydrological
model mHM was setup at the 0.25 � resolution based on the global open-data sources described in Samaniego
et al. (2019b). With this information, the daily soil moisture for the region was reconstructed from 1950 to 2019.
Subsequently, the SMI, as described in Samaniego et al. (2013), was estimated. For the operationalization of the
system, Saha et al. (2020) used the same scripts used by Zink et al. (2016) for the GDM. In addition to that, an
interactive web-portal was designed by Toma Saha, as shown in Fig.14.5. These results are very encouraging
considering that the model has not been calibrated, yet it is able to reproduce well the extension of the 1987
drought in the subcontinent, as simulated by the VIC model (Mishra et al., 2014), although both reconstructions
used different reanalysis datasets. Consequently, it can be concluded that the proposed system is ready to be
extended to other regions of the world suffering from this natural hazard. The operationalization of the South-Asia
and global drought monitoring systems at high resolution are ongoing projects.

14.4.3 The new generation of “smart” hydrological models

The scientific hydrologic community have pointed out that one of the unsolved grand challenges in hydrological
sciences is to be able to monitor and simulate water fluxes at the land surface at higher resolutions so that they
become available “everywhere and [are] locally relevant” (Bierkens et al., 2014; Wood et al., 2011). Equally
important will be also to inform stakeholders of the related uncertainties of these hydrological predictions.

The papers presented in this thesis have contributed to this overarching goal by providing tools (e.g., MPR,
mHM, mRM), a prototype of a model chain design and a protocol for parameter estimation and verification at
multiple scales. The proposed model chain is aimed at generating key terrestrial Essential Climate Variables
(tECVs) such as streamflow and soil moisture. These variables, in turn, are the basis for estimating user-specific
sectorial climate impact indicators such as soil moisture (or runoff) index, drought extension and severity, changes
in peak flows, among others.

The proposed model chain (Figure 1.6), however, should be seen as a proof-of-concept because of the following
reasons. First, it is the initial attempt to model a chain of effects leading to the evolution of a drought event
with its respective uncertainty. Second, the proposed model chain is scale-independent but does not account for
feedback from the land surface processes or human activities to the GCM processes. Ergo, it constitutes a first-
order simplification of the whole system. Future developments of this impact modeling chain should include all
kinds of feedback to account for secondary effects that were neglected in this first attempt.

Future hydrological models should also be improved with respect to efficiency and skill, and become locally
relevant but globally applicable. LSM/HMs should have an adequate complexity to be computational tractable
and fed by existing datasets; and should be transferable and robust but not over-parameterized. Moreover, next
generation LSM/HMs should be fully integrated into a new kind of “Earth System Model”, which should account
for all relevant physical, and geo-chemical processes related to water and matter cycles as well as accounting for
man-made interactions taken place at local, regional, and global scales.

The overall goal of future modeling efforts should be to keep the balance between process complexity, data
availability, and predictive uncertainty. This new kind of optimal-complexity land surface/hydrological models,
hereafter denoted as “smart” models, should help decision makers to develop adaptation and mitigation measures
at multiple scales and be globally aplicable. Smart models should become operational decision support tools.

New data-science methods and machine learning (ML) algorithms will play a key role in the future of hydro-
logical sciences and for developing the new generation of “smart” global hydrologic models at high-resolution.
ML-algorithms will be used to extend existing hydrological models by linking them to robust impact models
targeting specific sectors such agro-production, energy generation, water resources operations, hazard relief and
early-warning systems. ML-based modules will also need to be locally relevant but globally applicable.

The development of new “smart” impact models will largely depend on the available skills and the capability to
harness the recently available large data sets (ranging from tera- to petabytes). Data-Science methods are funda-
mental to distilling stochastic and causal dependency relationships as well as heuristic rules that will be the kernel
of such models. Suitable multi-variate inference methods applied to large data-cubes will be key to estimating the
predictive uncertainty of these new ML-based impact models. For example, the new generation of global hydro-
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logical models should include a more realistic integration of man-made driven activities affecting the water cycle
such as large-scale dams, diversion, groundwater pumping, and irrigation infrastructure.

Future generation of LSMs/HMs require large-scale modules for sediment transport, water quality, water tem-
perature, groundwater, and cold processes (e.g., permafrost and glacier evolution). This new generation of models
should routinely use multi-scale datasets to improve their parameterization. Among potential data sets are the
global networks of eddy covariance stations (e.g., ICOS or FLUXNET), cosmic ray neutron sensors, gravimeters,
as well as the new generation of remotely sensed products such as GRACE-FO, Sentinel 1-6, Copernicus LSTM,
CHIME and SWOT. In this regard, the MPR technique should be further developed to become model-agnostic (on
going development at https://git.ufz.de/chs/MPR) to support the parameterization of new processes
and the integration with LSM/HM of varying complexity.

After more than a decade of work on this subject, based on the results obtained in my research and that of many
other colleagues, and given the promising technological developments in the near future, I envision a situation, not
far in the future, in which humans, empowered by fully operational “smart” models for everywhere, will able to
“defeat” the “Bull of Heaven” and minimize its socio-economic and ecological impacts that have affected mankind
since its origins.

https://git.ufz.de/chs/MPR
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Blöschl, G. (2001), Scaling in hydrology, Hydrol. Process., 15(4), 709–711.
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Samaniego, L., and A. Bárdossy (2007), Relating macroclimatic circulation patterns with characteristics of floods
and droughts at the mesoscale, J. Hydrol., 335, 109–123.
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