

# Spatio-temporal variations of high-degree mixing spots in a floodplain (assessed with a hydraulic mixing cell method)

Nogueira, G. E. H. Schmidt, C. Partington, D. Brunner, P. Fleckenstein, J. H.



## **1.Introduction**



## Why is mixing important?

**Floodplain:** mixing of different water sources, such as infiltrating stream water (SW); floodplain (rain/recharge, FD); and local flowing groundwater (GW).

**Different solutes get in contact:** higher potential for turnover of **groundwater-borne solutes** (e.g., NO<sub>3</sub><sup>-</sup>).

Thus, mixing dynamics can control reactive potential of groundwater-borne solutes.



## **1.Introduction**

# What has been done? What do we know?

- Directly quantification of mixing-dependent-denitrification below streambed: Hester et al. (2013, 2014, 2019), Trauth et al. (2015), Trauth & Fleckenstein (2017)

- Dynamics of the periheic zone (surficial fringe of HZ): Berezowski et al. (2019)

- Mixing and biogeochemical processes: Jones et al. (2014), Stegen et al. (2016)

- Mapping of different water sources at the floodplain (geostatistical/end-member models): Lessels et al. (2016), Traut et al. (2018), Biehler et al. (2020) (time-labor demanding, may not capture full dynamics of processes)

## What do we want to achieve?

- estimate different water sources at the flooplain and their variations;
- quantify and assess controls of (high-degree) mixing spots at the floodplain;
- assess their changes due to transient hydrological boundary conditions.



## How?

Combine field-data and a fully-coupled flow numerical model (HGS);

### +

The spatio-temporal tracking of water parcels and their composition with a hydraulic mixing cell (HMC).

# 2.Methods – HGS-HMC method





A) Field data acquisition

**B)** *HGS* flow model setup and calibration/validation (*Nogueira et al. – under review*)

C) 1) *HGS-HMC* for tracking water parcel sources and composition (in each model cell and time-step);
2) HMC validation (*f<sub>sw</sub>* x F<sub>RIV</sub> on wells);

**D**) Spatio-temporal analysis of water fractions and mixing at the floodplain

## 2.Methods – HGS-HMC method



HMC - Hydraulic mixing cell (Partington et al., 2011, 2013)

Water fractions calculated according to water fluxes and exchanges (based on flow solution - does not require any extra parameters)
Predefined water sources/regions (e.g., rain, stream water, groundwater, seawater).

- Usually, all model nodes are initialized with an artificial "initial" fraction of 1.

Sources' fractions mixed according to volumes of different water fluxes into/out of a cell. For a time t and a fraction w within cell i:



### Predefined HMC water sources

- Stream water  $(f_{SW})$
- Groundwater  $(f_{GW})$  + Floodplain water  $(f_{FD})$  (water coming from model top)
- Initial groundwater  $(f_{GWi}) \leftarrow$  "warm-up" period to flush it out prior analyses

### **HMC** validation

Comparison of simulated  $f_{SW}$  with calculated stream water fraction ( $F_{RIV}$ ) from Cl<sup>-</sup> mixing model

$$F_{RIV} = \frac{[Cl_{obs}^{-}] - [Cl_{GW}^{-}]}{[Cl_{SW}^{-}] - [Cl_{GW}^{-}]}$$

HMC fractions integration



### with m sinks and n sources for cell i

### 2.Methods – HGS-HMC method



### Mixing degrees (d)

$$d = 1 - \left[\frac{\sqrt{(1/_2 - f_{sw})^2 + (1/_2 - (f_{GW} + f_{FD}))^2}}{(\sqrt{2}/_2)}\right]$$

d=1 ("perfect mixing") = equal HMC water fractions within a cell high-degree mixing spot  $(d_h) = d \ge 0.75$ 

High-degree mixing spots  $(d_h)$  integration

$$V_{d_h} = \frac{\sum_{p=1}^{P} d_h}{V_{tot}} \times 100\%$$

### HGS flow paths extraction and transit-times calculation

Based on transient velocity-fields and particles positions (TecPlot+MatLab) Particles released at the streambed and floodplain ( $\approx$ 1,300 per time-step)

**Predefined HMC water sources** 

- Stream water  $(f_{SW})$
- Groundwater  $(f_{GW})$  + Floodplain water  $(f_{FD})$  (water coming from model top)
- Initial groundwater  $(f_{GWi}) \leftarrow$  "warm-up" period to flush it out prior analyses

### **HMC** validation

Comparison of simulated  $f_{SW}$  with calculated stream water fraction ( $\mathbf{F}_{RIV}$ ) from Cl<sup>-</sup> mixing model

$$F_{RIV} = \frac{[cl_{obs}] - [cl_{GW}]}{[cl_{SW}] - [cl_{GW}]}$$

HMC fractions integration



### 2.Methods – Case study and numerical model





Application of a pre-calibrated flow model (period 2017-2019) for a transient simulation between 2013-2016.

- Adjustment of flow boundary conditions
- & no additional calibration

### HELMHOLTZ Centre for Environmental Research

# 3.Results



### 3.Results – Model/framework validation





# **3.Results** – Temporal variation of HMC fractions



(B) HMC fractions for the entire domain

HMC results : water origin (not the water content!)

(C) HMC fractions for the fully-saturated domain

**3.Results** – Spatial distribution of HMC fractions

(A-C) SW-GW exchange patterns

**(D-F)** stream water  $(f_{SW})$ 

(G-I) groundwater  $(f_{GW})$ 

(J-L) floodplain water  $(f_{FD})$ 

|   | HMC water fraction [-] |     |     |     |     |     |     |     |     |   |  |
|---|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|---|--|
|   |                        |     |     |     |     |     |     |     |     |   |  |
| 0 | 0.1                    | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |  |



# **3.Results** – Mixing degree: vertical variation

(A) Mixing degrees vs. wells' depths

(B)  $NO_3^-$  concentration and ionic strength for a high-resolution obs. well (*Gassen et al.*, 2017)

**(C)** Stream Q and sampling of *Gassen et al.* (2017)



······



# **3.Results** – Mixing degree: spatial distribution

(A-C) SW-GW exchange patterns;

**(D-F)** mixing degrees within the HZ  $(f_{SW} \ge 0.5)$ ,

(G-I) mixing degrees on the entire domain.



Key point:

- Mixing mainly at the fringe of HZ, following

Q events



**3.Results** – Temporal variation of high-degree mixing spots  $(d_h)$ 

(A) Selected discharge events

**(B)** Total  $d_h$  volume (and % of domain)

(C) Q vs. normalized  $d_h$  plots for selected discharge events



- Q events increase overall  $d_h (\approx 5\%)$ 



# **3.Results** – Temporal variation of high-degree mixing spots $(d_h)$

### (A) Selected discharge events

**Table 1** – Overall Spearman's rank correlation between metrics of discharge events and the increasing of high-degree mixing spots  $(d_h)$  at the floodplain.

| Discharge events metrics                   | Correlation to increase in <i>d</i> <sub>h</sub> |
|--------------------------------------------|--------------------------------------------------|
| Event duration [days]                      | 0.009                                            |
| Time-to-peak [days]                        | 0.305                                            |
| Time-to-peak/event duration [-]            | 0.340                                            |
| Peak prominence (ΔQ) [m³ s <sup>-1</sup> ] | 0.963                                            |

| Lag between <i>peak-event</i> and peak <i>d<sub>h</sub></i> (after <i>peak-event</i> ) [days] |    |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Min                                                                                           | 1  |  |  |  |  |  |
| Mean                                                                                          | 14 |  |  |  |  |  |
| Max                                                                                           | 46 |  |  |  |  |  |
| Spearman's correlation between $\Delta Q$ and lag to peak $d_h$ : 0.28                        |    |  |  |  |  |  |
| Spearman's correlation between event duration and lag to peak $d_h$ : 0.66                    |    |  |  |  |  |  |

### Key points:

- Q events increase overall  $d_h (\approx 5\%)$ 

Peak prominence has the strongest control on increasing d<sub>h</sub>
Event duration has the strongest control on lag between Q peak and d<sub>h</sub>





# **3.Results** – Residence-time within high-degree mixing spots $(d_{h-\tau})$

(A) Median flow path transit-times (flow path  $\tau$ )

**(B)** Median residence-time within  $d_h$  zones  $(d_{h-\tau})$  as a fraction of total flow path  $\tau$ 



### Key points:

- Shorter transit-times during Q events (and also  $d_{h-\tau}$ )

- Hyporheic flow paths: greater  $d_{h-\tau}$  during baseflow (slightly stronger gaining conditions -higher  $d_h$ )

opposite to floodplain flow paths

# Take home messages

#### Key message 1:

- *HGS-HMC* is an easy-to-transfer (straight-forward) tool for tracking different water-sources and their contribution at the floodplain scale

#### Key message 2:

- (high) Mixing mostly at the lateral fringe of the HZ, and at the groundwater table interface (mainly after flooding events)

#### Key messages 3:

 Peak prominence has the strongest control on increasing mixing spots (on average 5% increasing, up to 50%)

### Key message 4:

- Transit-times generally decrease during Q events (also does  $d_{h-\tau}$ ); Discharge events seem to enhance "mixing-turnover" of groundwater-borne solutes at the floodplain more than at hyporheic regions.

### Limitations:

- No simulation of reactions (or validation)
- No spatial distribution of HMC fractions within a cell
- Reliance on flow model solution





# Something else?



### Mixing degrees: a vector in w dimensions

The distance between a "perfect mixing" point  $(V_p)$ and fractions in your node  $(V_n)$ 

For 3 end-members (3D):

the perfect mixing:

Vp = [1/3, 1/3, 1/3]

the mixture:

 $\operatorname{Vn} = [f_{SW}, f_{FD}, f_{SW}]$ 

distance between the two vectors:

dist =  $sqrt((x_p - x_n)^2 + (y_p - y_n)^2 + (z_p - z_n)^2)$ max\_dist =  $sqrt(2)^* sqrt(3)/3$ 

d= 1-dist/max\_dist



$$d = 1 - \left[ \frac{\sqrt{\left(\frac{1}{w} - f_1\right)^2 + \left(\frac{1}{w} - f_2\right)^2 + \dots + \left(\frac{1}{w} - f_w\right)^2}}{\left(\sqrt{2} \times \sqrt{w} / w\right)} \right]$$

or 
$$d = 1 - \left[ \frac{\sqrt{\left(\frac{1}{2} - f_{sw}\right)^2 + \left(\frac{1}{2} - (f_{GW} + f_{FD})\right)^2}}{\left(\frac{\sqrt{2}}{2}\right)} \right]$$

### Measured Cl<sup>-</sup> concentrations for HMC validation





# Flow paths, velocities and mixing degrees

Particles released at the streambed ( $\approx 300$ ) and floodplain (1,000)





