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Why is mixing important?

Floodplain: mixing of different water sources, such as infiltrating stream water (SW); floodplain (rain/recharge, FD);
and local flowing groundwater (GW).

Different solutes get in contact: higher potential for turnover of groundwater-borne solutes (e.g, NO;").

Thus, mixing dynamics can control reactive potential of groundwater-borne solutes.
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1.Introduction

What has been done? What do we know?

- Directly quantification of mixing-dependent-denitrification below streambed: Hester
et al. (2013, 2014, 2019), Trauth et al. (2015), Trauth & Fleckenstein (2017)

- Dynamics of the periheic zone (surficial fringe of HZ): Berezowski et al. (2019)
- Mixing and biogeochemical processes: Jones et al. (2014), Stegen et al. (2016)

- Mapping of different water sources at the floodplain (geostatistical/end-member
models): Lessels et al. (2016), Traut et al. (2018), Biehler et al. (2020)

(time-labor demanding, may not capture full dynamics of processes)

What do we want to achieve?

- estimate different water sources at the flooplain and their variations;
- quantify and assess controls of (high-degree) mixing spots at the floodplain;
- assess their changes due to transient hydrological boundary conditions.
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How?

Combine field-data and a
fully-coupled flow numerical

model (HGS);
+

The spatio-temporal tracking
of water parcels and their

composition with a hydraulic
mixing cell (HMC).



2. Methods — HGS-HMC method UFZ) S e

Field data 0 Fully coupled Field data acquisition
rield adata : .
hydrological modelling
geological data, topography Hydrogeosphere model setup — HGS flow model setup and
1
time-series: stream Q,GW heads, \L calibration/validation
rainfall (Nogueira et al. — under review)

P model calibration/validation

riparian tracer-tests: tracer transit-times
and concentrations

Nogueira et al. (2021b)

hydrochemical time-series: water samples

1) HGS-HMC for tracking water parcel
sources and composition (in each model
cell and time-step);

2) HMC validation (fgy x Fgpy on wells);

Spatio-temporal analysis Water fractions e
of mixing degrees determination

River water fractions (£, Hydraulic mixing-cell (HMC) | <€
and infiltration extent <—‘
Spatio-temporal analysis of water
Volumes and patterns of J HMC validation: simulated f;, N fractions and miXing at the ﬂoodplain
0 high-degree mixing spots vs. CI” mixing model from samples




2.Methods - HGS-HMC method

HMC - Hydraulic mixing cell (Partington et al, 2011, 2013)

- Water fractions calculated according to water fluxes and exchanges
(based on flow solution - does not require any extra parameters)

- Predefined water sources/regions (e.g., rain, stream water, groundwater,
seawater).

- Usually, all model nodes are initialized with an artificial “initial” fraction
of 1.

Sources’ fractions mixed according to volumes of different water fluxes
into/out of a cell. For a time ¢t and a fraction w within cell i:

m n
t t—1
t—1 f

jlw)

V.
ji
1

t i j= t—1 j=

water fraction w
flowing from cell j to cell i

water fraction w water fraction w

at cell i leaving cell i to cell j

with m sinks and n sources for cell 1
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Predefined HMC water sources

- Stream water (fgy)

- Groundwater (fgy) + Floodplain water (fgp) (water
coming from model top)

- Initial groundwater (fgy;) <« “warm-up” period to
flush it out prior analyses

HMC validation

Comparison of simulated fy, with calculated stream water
fraction (Fgpy) from CI- mixing model

F — [ClEbs]—[Cle]
RIV [Clsw-[clew]

HMC fractions integration

P
fw
Vv, = z—pzl X 100%

Vtot



2.Methods - HGS-HMC method

Mixing degrees (d)

J(l/z ~ fu) + (/2= Gow + )
(%)

d=1 (“perfect mixing”) = equal HMC water fractions within a cell

high-degree mixing spot (d),) = d=0.75

High-degree mixing spots (d,) integration

P

Viot

V,, = x 100%

HGS flow paths extraction and transit-times calculation

Based on transient velocity-fields and particles positions (TecPlot+MatLab)
Particles released at the streambed and floodplain (=1,300 per time-step)
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5733000.0

catchment Berlin

Application of a pre-calibrated
flow model (period 2017-
e 2019) for a transient simulation

s between 2013-2016.

5732500.0

Observation wells
= River channel

Isoline elevations [5m]

Model mesh domain

- Adjustment of flow boundary
conditions

Elevation [masl]

[ 180.00
[ 1175.00
[ 170.00
[ ]165.00
[ ]160.00

- Boundary conditions -
A Specified water flux
W Critical depth

*« Prescribed heads
" Specified water flux

- & no additional calibration

5732000.0

4452000.0 4452500.0 4453000.0
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3.Results — Model/framework validation
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HMC - hydrochemistry
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F7, h=0,p= 0.051

1.2
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Wilcoxon-Test for groups medians (h=0, p-value); Correlation
coefficient (R")

Acceptable differences since a rigorous calibration to hydrochemical
data was not our goal
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3.Results — Temporal variation of
HMC fractions

(B) HMC fractions for the entire domain

HMC results : water origin (not the water content!)

(C) HMC fractions for the fully-saturated domain
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3.Results — Spatial distribution of
HMC fractions

(A-C) SW-GW exchange patterns

(D-F) stream water ( SW)
(G-I) groundwater (fg)

(J-L) floodplain water (fzp)

HMC water fraction [-]
.
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01-May-2013  (Q=1.50 m*s™)

01-Jun-2013  (Q=24.5m*s")

06-Jun-2013 (Q=6.30 m*s™)

SW-GW exchange fluxes

Exch. fluxes
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stream water fraction (fy,)

groundwater fraction ()

floodplain fraction (f,)




3.Results - Mixing degree:
vertical variation

(A) Mixing degrees vs. wells” depths

(B) NO;™ concentration and ionic
strength for a high-resolution obs.

well (Gassen et al., 2017)

(C) Stream Q and sampling of
Gassen et al. (2017)
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3.Results - Mixing degree:
spatial distribution

(A-C) SW-GW exchange patterns;

(D-F) mixing degrees within the HZ (f5,,>0.5),

(G-I) mixing degrees on the entire domain.

mixing degree (d) [-]

0o 01 02 03 04 05 06 07

Key point:
- Mixing mainly at the fringe of HZ, following

Q events

01-May-2013 (Q=1.50 m*s)

01-Jun-2013

(Q=24.5m*s")

06-Jun-2013 (Q=6.30 m*s”)

SW-GW exchange fluxes

Exch. fluxes

n gaining

M losing

Exch. fluxes
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M losing

Exch. fluxes
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M losing

HZ mixing degrees (d)

mixing degrees (d)
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3.Results — Temporal variation
of high-degree mixing spots (d,)
(A) Selected discharge events

(B) Total d, volume (and % of domain)

(C) Q vs. normalized d,, plots for selected

discharge events

Key points:

- Q events increase overall d, (255%)
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3.Results — Temporal variation
of high-degree mixing spots (d,)

Table 1 — Overall Spearman’s rank correlation between metrics of discharge events
and the increasing of high-degree mixing spots (dy) at the floodplain.

Discharge events metrics Correlation to increase in dn

Event duration [days] 0.009
Time-to-peak [days] 0.305
Time-to-peak/event duration [-] 0.340
Peak prominence (AQ) [m? s™] 0.963

Lag between peak-event and peak d, (after peak-event) [days]

Min 1
Mean 14
Max 46

Spearman’s correlation between AQ and lag to peak ds: 0.28

Spearman’s correlation between event duration and lag to peak di: 0.66

Key points:

- Q events increase overall d, (25%)

- Peak prominence has the strongest control on increasing d,

- Event duration has the strongest control on lag between Q peak and d,
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3.Results — Residence-time within U@ Cente o Eronmental Rsearh
high-degree mixing spots (d,_,)
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Key points:
- Shorter transit-times during Q events (and also d,, )
- Hyporheic flow paths: greater d,_. during baseflow (slightly stronger gaining conditions -higher d,)

opposite to floodplain flow paths 16
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Take home messages

Key message 1: Key messages 3:
- HGS-HMC is an easy-to-transfer (straight-forward) tool for - Peak prominence has the strongest control on increasing mixing
tracking different water-sources and their contribution at the spots (on average 5% increasing, up to 50%)

floodplain scale

Key message 4:

Key message 2: - Transit-times generally decrease during Q events (also does d;,.);

- (high) Mixing mostly at the lateral fringe of the HZ, and at the Discharge events seem to enhance “mixing-turnover” of groundwater-borne

groundwater table interface (mainly after flooding events) solutes at the floodplain more than at hyporheic regions.

Limitations:

- No simulation of reactions (or Validation)

oy N N

- Reliance on flow model solution : o 0

- No spatial distribution of HMC fractions within a cell
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Something else?







Mixing degrees: a vector in w dimensions

The distance between a “perfect mixing” point (V)
and fractions in your node (V)

For 3 end-members (3D):

the perfect mixing:

Vp = [1/3, 1/3, 1/3]
the mixture:

Vn = [fsw frp fsw]

distance between the two vectors:

dist = sqrt((x, - X,)*+(Y, - Vo) *+ (2, - 20)°)
max_dist = sqrt(2)*sqrt(3)/3

d= 1-dist/max_dist

d=1-

O R s o . J(l/z — faw) + (Y = Gow + fin)”
(V") (V)
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Measured Cl concentrations for HMC validation U@
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Flow paths, velocities
and mixing degrees

Particles released at the streambed (2300)
and floodplain (1,000)

Release locations:

01-May-2013

(Q=1.5m’s")

01-Jun-2013 (Q=24.5m’s")

subsurface flow paths (Vz)

Vz (vertical velocity component [m d])
-1.0 0 1.0

losing  (stream condition)  gaining

subsurface flow paths (d)

mixing degree (d) [-]

0 01 02 03 04 05 06 07 08 09 1

below streambed mixing (d)




