The effect of stream-groundwater exchange on

stream water source composition

Zhi-Yuan Zhang, Christian Schmidt, Jan Fleckenstein

HELMHOLTZ | ZENTRUM FÜR | UMWELTFORSCHUNG | UFZ

HDG Seminar, April 9, 2021

1 Introduction & Questions

(Source J. Fleckenstein)

Solute and hydrologic signals ← transport processes in the stream network

(1) Stream gains \rightarrow stream water source (composition) Q_{gain} : heterogeneous C_{gain} : heterogeneous

(Batlle-Aguilar et al., 2013)

(2) Stream losses \rightarrow stream water source composition

(3) Stream gains $\leftarrow \rightarrow$ stream losses

Influence of hydrologic conditions on stream water source composition?

Time series of stream–groundwater head gradient (Zimmer et al., 2017. HP)

2 Method & Model

Solute transport simulation

Simulating nitrate transport with MT3D (Almasri et al., 2007) Advection: Velocity from flow model **Dispersion:** Longitudinal dispersivity: 50 m, Transerve/vertical ratio: 0.1 Diffusion coefficient for nitrate: $5 \times 10^{-5} \text{ m}^2/\text{d}$ (Frind et al., 1990) Chemical reaction: Denitrification \rightarrow first-order decay First-order decay coefficient: 0.001 /d $\lambda = \frac{0.693}{\tau_{1/2}},$ $\tau: 1 \sim 2.3$ year, $\lambda: 0.000825 \sim 0.0019$ /d.

Source: Uniform Nitrate loading: 5 kg/ha/yr. (Jiang et al., 2019)

Soil nitrogen transformation such as plant uptake is not considered.

Calculation of source composition

Sequential stream-groundwater exchange

$$R_{i} = \begin{cases} 1, & \text{if } Q_{gain,i} \ge 0 \\ \frac{Q_{i}}{Q_{i-1}}, & \text{if } Q_{gain,i} < 0 \end{cases}, i = 1, 2, 3... \\ Q_{i,j} = \begin{cases} 0, & \text{if } Q_{gain,j} \le 0 \\ Q_{gain,j} \times \prod_{k=j}^{i} R_{k}, & \text{if } Q_{gain,j} > 0 \end{cases}, i = 1, 2, 3..., j = 1, 2, 3, ..., i \\ LC_{i,j} = \begin{cases} 0, & \text{if } Q_{gain,j} \le 0 \\ C_{gain,j} \times Q_{gain,j} \times \prod_{k=j}^{i} R_{k}, & \text{if } Q_{gain,j} > 0 \end{cases}, i = 1, 2, 3..., j = 1, 2, 3, ..., i \\ C_{s,i} = \frac{L_{s,i}}{Q_{s,i}} = \sum_{k=0}^{i} LC_{i,k}, & \text{i} = 1, 2, 3... \end{cases}$$

 R_i : remaining fraction ;

 $Q_{gain,l} \& C_{gain,j}$: stream gains across reach *i* and corresponding conc. ; $Q_{i,j} \& LC_{i,j}$: flow and load contribution from reach *j* to *i*. $Q_{s,l} \& L_{s,i} \& C_{s}$: discharge, solute load and conc. in stream reach *i*;

Scenarios

2.8 Model calibration

3 Results & discussion

Stream-groundwater exchange and source composition

Initial stream gains vs. Remaining fraction

 q_{gain} : water initially gained from gw

*q*_{gain-out}: water contributed to stream

water at the outlet

Source composition of stream water at the outlet

As $P \uparrow or Q \downarrow$, Gaining velocity ↑ Gaining length ↑

Seite 14

3.3 Effect of hydrologic conditions on stream source composition

As P \uparrow or Q \downarrow

Hydrologic turnover ↑ (Upstream contribution ↓ Downstream contribution ↑)

3.4 Source composition of stream water at the outlet

As $P \uparrow \text{ or } Q \downarrow$, Groundwater contribution \uparrow

80/20 rule !

3.5 Three types of reaches

Monotonous change

Seite 18

3.5 Three types of reaches

Implication of three types of reaches on stream management

Consistently gaining reaches (CGR)

 \rightarrow stream water source

Transitional reaches

 \rightarrow biogeochemical reaction

Consistently losing reaches

 \rightarrow groundwater

3.6 Source composition of nitrate load in stream water

3.7 Effect of hydrologic conditions on source composition of load

As P \uparrow or Q \downarrow

Hydrologic turnover ↑ (Upstream contribution ↓ Downstream contribution ↑)

3.8 Source composition of nitrate load in outlet's water

Scenario	Q ₀ (m³/s)	P/P _{mean}
S1	0.087	
S2	1.15	0.5
S 3	2.3	
S4	0.087	
S5 (baseline)	1.15	1
S 6	2.3	
S7	0.087	
S8	1.15	2
S9	2.3	

(1) Flow contribution \neq solute load contribution

(2) 80/20 rule

4 Limitations

Not considered:

Transient flow conditions;

Vadose zone ;

Hyporheic exchange ;

Complex nitrate reaction.

5 Take home messages

- 1. Both stream gains and stream losses matter in stream water composition;
- 2. Groundwater flow contribution \neq solute load contribution;
- 3. Most of the groundwater contributions to outlet's stream water

are generated over only a few reaches.

Welcome for comments and questions!

References

- Batlle-Aguilar, J., Harrington, G. A., Leblanc, M., Welch, C., & Cook, P. G. (2014). Chemistry of groundwater discharge inferred from longitudinal river sampling. Water Resources Research, 50(2), 1550-1568.
- Covino, T., McGlynn, B., & Mallard, J. (2011). Stream-groundwater exchange and hydrologic turnover at the network scale. *Water Resources Research*, *47*(12).
- Mallard, J., McGlynn, B., & Covino, T. (2014). Lateral inflows, stream-groundwater exchange, and network geometry influence stream water composition. Water Resources Research, 50(6), 4603-4623.
- Zhi, W., & Li, L. (2020). The Shallow and Deep Hypothesis: Subsurface Vertical Chemical Contrasts Shape Nitrate Export Patterns from Different Land Uses. Environmental Science & Technology, 54(19), 11915-11928.
- Zimmer, M. A., & McGlynn, B. L. (2017). Bidirectional stream–groundwater flow in response to ephemeral and intermittent streamflow and groundwater seasonality. Hydrological Processes, 31(22), 3871-3880.

