

Towards Application of StorAge Selection Functions in Large-Scale Catchments with Heterogeneous Travel Times and Subsurface Reactivity

Tam V. Nguyen¹, Fanny Sarrazin², Stefanie R. Lutz¹, Rohini Kumar², Andreas Musolff¹, Jan H. Fleckenstein¹

¹Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany ²Department Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

HDG Department Seminar

...,

- Motivation
 - A mechanistic understanding of nitrate retention and export at a catchment scale (especially meso-scale catchment) to reduce environmental impacts of agricultural practices.

Results & Discussions

StorAge Selection (SAS) functions: concept

Introduction

Zentrum für Umweltforschung

- Catchment scale transport model based on water age
- How catchment mixes and releases water (solutes) of different ages via outflows (e.g., discharge)

- StorAge Selection (SAS) functions: research gap
 - Small-scale application

Introduction

- Application in large-scale catchment (10 10,000 km²) is limited
- Application in large catchments with heterogeneous transit times and reactivity rates unknown
- In stream solute transport & removal
- Neglect spatial heterogeneity

Research objectives

Introduction

• Understand the interplay of transport and reaction times between different subcatchments in a large-scale catchment with the semi-distributed approach of the SAS concept Case Study

The modified mHM-SAS

> The modified mHM-SAS: new routing compared to mHM-Nitrate

Methodology

Case Study

The modified mHM-SAS: SAS function with beta(a,b)

a=b=1

a=b>1

a>b>1

a1

(Yang et al., 2018)

ntroduction

The modified mHM-SAS: SAS function with beta(a,b): Temporal variations

 $r(t) = \frac{Sum(inflow during last n days)}{Sum(outflow during last n days)}$

$$beta(a(t), b(t)) = \begin{cases} a(t) = \frac{\alpha}{r(t)} \\ b(t) = \beta \cdot r(t) \end{cases}$$

Time-variant beta with 3 parameters: n, α, β

No old-water preference: if a < 1 < b then b = a

(Yang et al., 2018)

Case Study

Study area: Selke catchments (456 km²)

Heterogeneous meteorological conditions, land use, land management practices

short transit times (TTs) high reaction rates Lowland catchments: longer TTs slow reaction rates Study area: Selke catchments

- Beta function: α , β , n
- Subsurface storage: S₀

Zentrum für Umweltforschung

Case Study

Simulated instream N-NO₃ at Silberhütte: Parameter values

$$beta(a,b) = \begin{cases} a = \frac{\alpha}{r(t)} \\ b = \beta \cdot r(t) \end{cases}$$

Zentrum für Umweltforschung

Simulated Q, instream N-NO₃ at Hausneindorf

HELMHOLTZ Zentrum für Umweltforschung

Ongoing work...

- Extend the model to the most recent years as possible
- Test whether lumped SAS approach works <> semi-distributed approach
- Evaluate the simulated young water fraction
- Compare TTDs/RTDs of headwater catchment Lowland catchment
- Parameter sensitivity/uncertainty analysis
- Check if the model can represent high instream N-NO3 dring extrem dry periods

> Ongoing work...

REFERENCES

- 1. Nguyen, T. V., Kumar, R., Lutz, S. R., Musolff, A., Yang, J., & Fleckenstein, J. H. (2020). Modeling Nitrate Export from a Mesoscale Catchment Using StorAge Selection Functions. Water Resources Research, 56, e2020WR028490
- 2. Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., & Fleckenstein, J. H. (2018a). Exploring the dynamics of transit times and subsurface mixing in a small agricultural catchment. Water Resources Research, 54, 2317–2335
- 3. Yang, X., Jomaa, S., Zink, M., Fleckenstein, J. H., Borchardt, D., & Rode, M. (2018b). A new fully distributed model of nitrate transport and removal at catchment scale. Water Resources Research, 54, 5856–5877
- 4. Winter, C., Lutz, S. R., Musolff, A., Kumar, R., Weber, M., & Fleckenstein, J. H. (2021). Disentangling the impact of catchment heterogeneity on nitrate export dynamics from event to longterm time scales. Water Resources Research, 57, e2020W R027992

Thank you for your attention \bigcirc

Questions and Suggestions are welcome