

"Grundwassersysteme und Numerik" Veranstaltung im Modul Hydrosystemanalyse

- Strömungsgleichungen der Grundwasserhydraulik

Prof. Dr. Olaf Kolditz

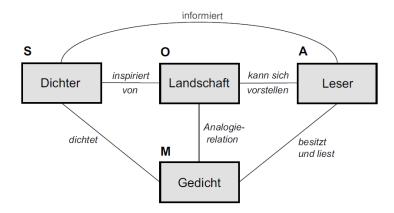
Dr. Erik Nixdorf

07.05.2021

Wiederholung letzte Veranstaltung

Modelltheorie

"Modell ist stets Modell-wovon-wozufür wen."



Peters, 1998

Mathematische Modelle zur Grundwassermodellierung

Hauptprozess	Abhängige Variable	Anwendungsabhängige Komponenten
Strömung	Fluiddruck, Standrohrspiegelhöhe, Grundwasserflurabstand Sättigung,	Poren/Kluft/Karstaquifere Teilsättigung Einphasen/zweiphasen Strömung Ungespannt/gespannte GWL
Wärmetransport	Temperatur, Enthalpie, Innere Energie	Dieselben wie Strömung + Konvektion Wärmeleitung Strahlung
Stofftransport	Konzentration	Dieselben wie Strömung + Konvektion Dispersion Reaktion
Mechanik	Verformung Spannung	Elastische Medien Plastische Medien Viskoelastische Medien

 Sie wollen ein numerisches Grundwassermodell nutzen um Fragestellung XYZ per Simulation zu beantworten. Welche/welchen Prozess/Prozesskomponenten, Diskretisierung, Datenbedarf benötigen sie dafür?

Erhaltungsgesetze

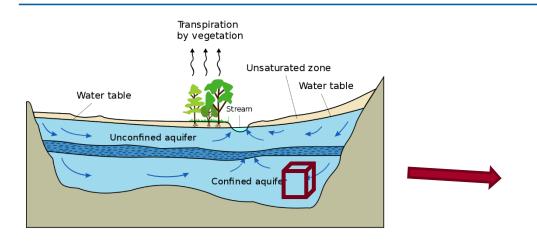
 Numerischen Grundwassermodelle basieren auf der Zerlegung eines Systems in Teilgebiete und der Aufstellung von Bilanzgleichungen (partielle Differentialgleichungen) für jedes Gebiet

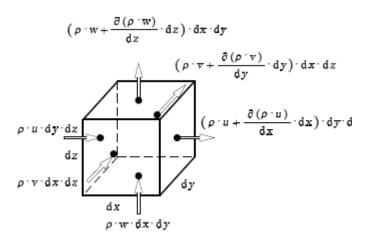
$$\frac{\partial}{\partial t} \int_{\Omega} S(\ (x,t)) \mathrm{d}x = -\int_{\Gamma} \left\langle J(x,t) | n(x) \right\rangle \, \mathrm{d}\sigma + \int_{\Omega} Q(x,t) \mathrm{d}x, \qquad \stackrel{\vec{n}}{\underset{\mathsf{S}}{\longrightarrow}} \Omega$$
 In Worten:
$$\left\{ \begin{array}{c} \mathsf{Akkumulations} \\ \mathsf{rate} \ \mathsf{f\"{u}r} \ \mathsf{S} \ \mathsf{in} \ \Omega \end{array} \right\} \ = \left\{ \begin{array}{c} \mathsf{Fluss} \ \mathsf{von} \ \mathsf{J} \ \mathsf{in} \ \Omega \\ \mathsf{durch} \ \mathsf{die} \\ \mathsf{Oberfl\"{a}che} \ \Gamma \end{array} \right\} \ \ \mathbf{+} \left\{ \begin{array}{c} \mathsf{Quellen} \ \mathsf{und} \\ \mathsf{Senken} \ \mathsf{in} \ \Omega \end{array} \right\}$$

Die Kontinuitätsgleichung kann mit dem Gaußschen Integralsatz hergeleitet werden:

$$\frac{\partial \rho}{\partial t} + div[\rho v] - Q_m = 0$$
 mit $S = \rho(x, t, p, X, T)$

Massenerhaltungsgesetz für ein Kontrollvolumen





High hydraulic-conductivity aquifer

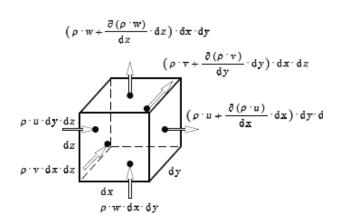
Direction of ground-water flow

https://tinyurl.com/veafz3ch

$$\vec{v} = \begin{pmatrix} u \\ v \\ z \end{pmatrix}$$

Massenerhaltungsgesetz für ein Kontrollvolumen

Änderung der Masse in einem Volumenelement über die Zeit = Σ des einströmenden Massenstroms in das Volumenelement - Σ des ausströmenden Massenstroms aus dem Volumenelement



$$links: \dot{m} = \rho \cdot u \cdot dy \cdot dz$$

Taylor Reihe

rechts:
$$\dot{m} = \left(\rho \cdot u + \frac{\delta (\rho \cdot u)}{\delta x} \cdot dx\right) \cdot dy \cdot dz$$

Schauen wir uns das ganze Element mit den Kantenlängen dx, dy and dz and dem Volumen dV= dx*dy*dz an

Massenbilanz in einem Kontrollvolumen

mathematischen Ausdruck f"ur die zeitliche "Anderung der Masse im Volumenelement

$$\frac{\partial \rho}{\partial t} \cdot dx \cdot dy \cdot dz = \left(\rho \cdot u - \left(\rho \cdot u + \frac{\partial(\rho \cdot u)}{\partial x} \cdot dx\right)\right) \cdot dy \cdot dz +$$

$$\left(\rho \cdot v - \left(\rho \cdot v + \frac{\partial(\rho \cdot v)}{\partial y} \cdot dy\right)\right) \cdot dx \cdot dz +$$

$$\left(\rho \cdot w - \left(\rho \cdot w + \frac{\partial(\rho \cdot w)}{\partial z} \cdot dz\right)\right) \cdot dx \cdot dy$$

• Resultiert in:
$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \cdot u)}{\partial x} + \frac{\partial (\rho \cdot v)}{\partial y} + \frac{\partial (\rho \cdot w)}{\partial z} = 0$$

• Umschreiben und Quellterme:
$$\frac{\partial \rho}{\partial t} + div[\rho v] - Q_m = 0$$

- Wie definieren wir die Druckabhängigtkeiten
- Wie hängt die Geschwindigkeit vom Druck ab?

(1)
$$\frac{\partial \rho_f}{\partial t} + div [\rho_f \mathbf{v}] - Q_m = 0$$

(2)
$$\frac{\partial(\phi\rho_f)}{\partial t} + div[\phi\rho_f v_f] - Q_m = 0$$

- Welche Geschwindigkeit meinen wir hier? Relativ-Fluid
- Wie ist die Eigenschaften des Korngerüsts und der Körner zu betrachten? \rightarrow Nur der Porenraumanteil ϕ

 Anwendung der Ketten- und Produktregel auf den ersten Term:

(3)
$$\frac{\partial(\phi\rho_f)}{\partial t} = \left(\left(\rho_f \frac{\partial\phi}{\partial p}\right) + \phi \frac{\partial\rho_f}{\partial p}\right) \frac{\partial p}{\partial t}$$

Massenänderungsrate durch Porenraumveränderung

Dichteänderung des Wassers

• (1) in (2)

$$\left(\frac{\partial \phi}{\partial p} + \frac{\phi}{\rho_f} \frac{\partial \rho_f}{\partial p}\right) \frac{\partial p}{\partial t} + div \left[\phi v_f\right] - \frac{Q_m}{\rho_f} = 0$$

 Der Term in den Klammern wird (in der oberflächennahen Hydrogeologie) oft als Summe zweier Konstanten, der Matrixkompressibilität und der Fluidkompressibilität, gesehen:

$\left((1-\phi)\beta_m + \phi\beta_f\right)\frac{\partial p}{\partial t} + div\left[\phi v_f\right] - \frac{Q_m}{\rho_f} = 0$		
---	--	--

Rocks	Porosity (%)
Fractured basalt	0.05 - 0.50
Karst limestone	0.05 - 0.50
Sandstone	0.05 - 0.30
Limestone, dolomite	0.00 - 0.20
Shale	0.00 - 0.10
Fractured crystalline rock	0.00 - 0.10
Dense crystalline rock	0.00 - 0.05
Unconsolidated Deposits	
Gravel	0.25 - 0.40
Sand	0.25 - 0.50
Silt	0.35 - 0.50
Clay	0.40 - 0.70

From groundwatergeek.com

$$\beta_m = (1 - \phi)^{-1} \delta \phi / \delta p$$
$$\beta_f = \rho_f^{-1} \delta \rho_f / \delta p.$$

$$\left((1 - \phi)\beta_m + \phi\beta_f \right) \frac{\partial p}{\partial t} + div \left[\phi v_f \right] - \frac{Q_m}{\rho_f} = 0$$

 Der Term in den Klammern ist gleich dem Speicherkoeffizienten geteilt durch die Fluiddichte und die Erdbeschleunigung, die zu einer neuen Konstante S'zusammengefasst werden kann:

$$\dot{S}\frac{\partial p}{\partial t} + div[\phi v_f] - Q_V$$

Schließlich können wir das Darcy-Gesetz anwenden:

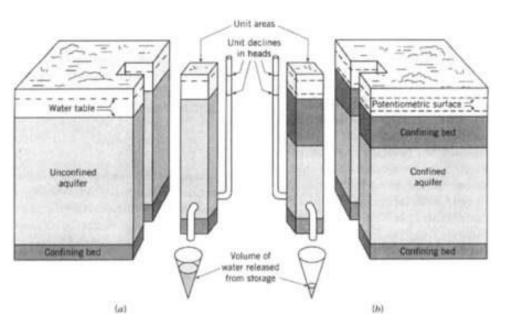
$$\phi(v_f - v_s) = -\frac{\kappa}{\mu} \nabla (p + \rho_f gz) \qquad \Psi = p + \rho_f gzz$$

• Mit v_s =0 erhalten wir:

$$\dot{S}\frac{\partial p}{\partial t} - div\left[\frac{\kappa}{\mu}grad(p + \rho_f gz)\right] - \frac{Q_p}{\rho_f} = 0$$

- Zwei Fluideigenschaften ρf , die Fluiddichte und μ , die dynamische Viskosität
- **k** ist die intrinsische Permeabilität des porösen Mediums, die raum- und richtungsabhängig ist
- S' ist der zuvor eingeführte Speicherterm, der raumabhängig ist
- Die druckbasierten Grundwassergleichung k\u00f6nnen f\u00fcr die numerische Modellierung unter hinzuziehen von Rand- und Anfangsbedingungen (Vorlesung 5) genutzt werden

Speicherkoeffizient



Values of s	pecific	vield.	from Jo	hnson	(1967)

Material	Specific Yield (%)			
Material		min	avg	max
Unconsolidated deposits				
Clay		0	2	5
Sandy clay (muc	d)	3	7	12
Silt		3	18	19
Fine sand		10	21	28
Medium sand		15	26	32
Coarse sand		20	27	35
Gravelly sand		20	25	35
Fine gravel		21	25	35
Medium gravel		13	23	26
Coarse gravel		12	22	26

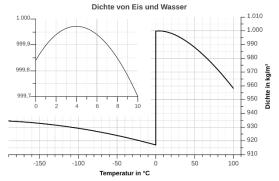
Table 4 Values of specific storage for given values of aquifer compressibility assuming porosity equal to 15 % (After Younger, 1993)

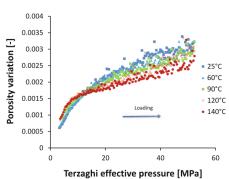
Typical Lithologies	Aquifer Comp- ressibility (ms²/kg)	Specific Storage (m ⁻¹
Clay	10-6	9.81x10 ⁻³
Silt, fine sand	10-7	9.82x10 ⁻⁴
Medium sand, fine gravel	10-8	9.87x10 ⁻⁵
Coarse sand, medium gravel, highly fissured rock	10.9	1.05x10 ⁻⁵
Coarse gravel, moderately fissured rock	10-10	1.63x10 ⁻⁶
Unfissured rock	10-11	7.46x10 ⁻⁷

ungespannt

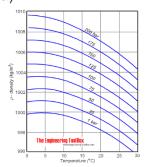
gespannt

Koeffizientendiskussion





Temperaturabhängigkeit der Wasserdichte (Wikipedia)



Druckabhängikeit der Porosität in Sandstein (Hassan et al, 2014)

GSF code	Porosity model	Matrix compressibility
FEHM (Zyvoloski et al., 2011)	$\phi = \phi_0 + \beta_m^* (P - P_0)$	$\beta_m^* = d\phi/dP$
PFLOTRAN (Lichtner et al., 2015)	$\phi = 1 - (1 - \phi_0)e^{-\beta_m(P - P_0)}$	$\beta_m = (1-\phi)^{-1} (d\phi/dP)$
STOMP ^a (White & Oostrom, 2000)	$\phi = 1 - (1 - \phi_0)e^{-\beta_m(P - P_0)}$	$\beta_m = (1-\phi)^{-1} (d\phi/dP)$
ECLIPSE ^b (Espevold, 2015; Pettersen, 2006)	$\phi = \phi_0 e^{\beta_m'(\rho - \rho_0)}$	$\beta'_m = \phi^{-1} (d\phi/dP)$
BOAST ^c (Fanchi et al., 1982)	$\phi = \phi_0 e^{\beta_m(\rho - \rho_0)}$	$\beta'_m = \phi^{-1}(d\phi/dP)$
TOUGH2 ^{b,d} (Pruess et al., 1999)	$\phi = \phi_0 e^{\beta_m(P-P_0)}$	$\beta'_m = \phi^{-1}(d\phi/dP)$

Implementation im Code (Birdsell et al, 2014)

Vertical, drained compressibilities[5]

Vertical, drained compressibilities[5]				
Material	β (m ² /N or Pa ⁻¹)			
Plastic clay	2 × 10 ⁻⁶ – 2.6 × 10 ⁻⁷			
Stiff clay	$2.6 \times 10^{-7} - 1.3 \times 10^{-7}$			
Medium-hard clay	1.3 × 10 ⁻⁷ – 6.9 × 10 ⁻⁸			
Loose sand	$1 \times 10^{-7} - 5.2 \times 10^{-8}$			
Dense sand	2 × 10 ⁻⁸ – 1.3 × 10 ⁻⁸			
Dense, sandy gravel	1 × 10 ⁻⁸ – 5.2 × 10 ⁻⁹			
Ethyl alcohol ^[6]	1.1 × 10 ⁻⁹			
Carbon disulfide ^[6]	9.3 × 10 ⁻¹⁰			
Rock, fissured	$6.9 \times 10^{-10} - 3.3 \times 10^{-10}$			
Water at 25 °C (undrained)[7]	4.6 × 10 ⁻¹⁰			
Rock, sound	< 3.3 × 10 ⁻¹⁰			
Glycerine ^[6]	2.1 × 10 ⁻¹⁰			
Mercury ^[6]	3.7 × 10 ⁻¹¹			

Druckabhängighkeit der Wasserdichte

Potentialbasierte Form

$$H = \frac{p}{\rho_f g} + z$$
 • Hydraulische Leitfähigkeit: $K = \frac{\kappa g \rho_f}{\mu}$

$$K = \frac{\kappa g \rho_f}{\mu}$$

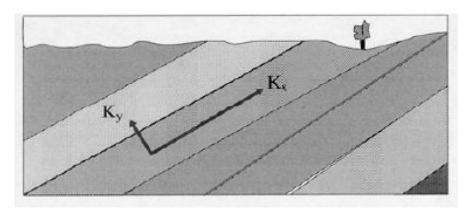
Speicherkoeffizient

$$\hat{S} = \frac{S}{g\rho_f}$$

 Potential-basierte Form für Strömung durch ein anisotropes gesättigtes poröses Medium:

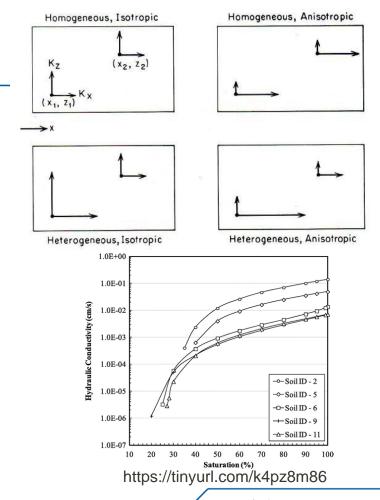
$$S\frac{\partial H}{\partial t} - div[Kgrad \ H\] - Q_V = 0$$

Hydraulische Leitfähigkeit



- Hydraulische Leitfähigkeit ist abhängig von Strömungsrichtung, Aquifertyp und Sättigung
- Für isotrope, homogene Bedigungen gilt:

$$S\frac{\partial H}{\partial t} - K\Delta H - Q_V = 0$$



Lösungen mit reduzierter Dimensionalität

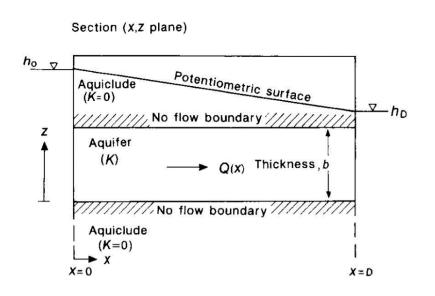
Integration über die Tiefe (z-Richtung) führt zur zweidimensionalen Grundwassergleichung (δh/ δz=0, δK/ δz=0)

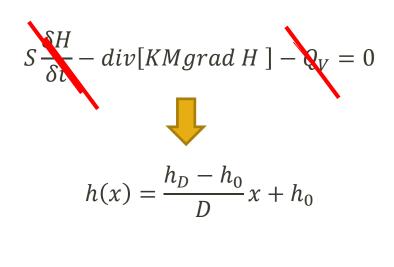
$$S\frac{\partial H}{\partial t} - div[KMgrad \ H\] - Q_V = 0$$
 Gespannt, linear

$$S_y \frac{\partial H}{\partial t} - div[KHgrad H] - Q_V = 0$$
 Ungespannt, nichtlinear

- Das Produkt aus Hydraulischer Leitfähigkeit (K) und Aquifermächtigkeit (M) wird auch als Transmissivität
 (T) bezeichnet
- Beachten sie, S, ist der spezifische Speicherkoeffizient und Sy der "specific yield", ~ effektive Porosität

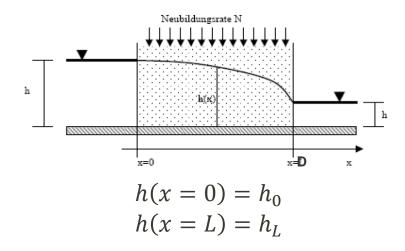
Einfache Lösungen, Beispiel





Gespannter Aquifer ohne Neubildung und zeitliche Änderungen

Einfache Lösungen, Beispiel



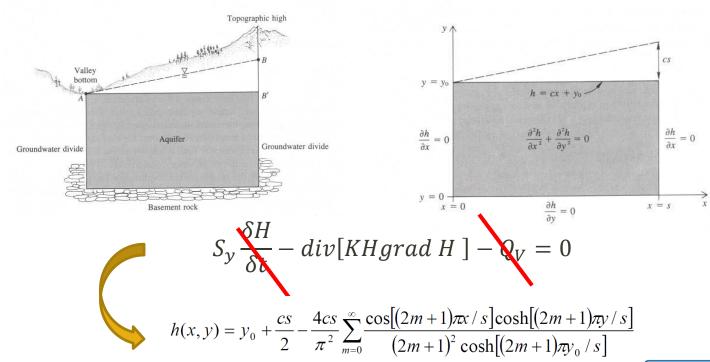
 Ungespannter Aquifer mit Grundwasserneubildung

$$S_{y} \frac{\delta H}{\delta \lambda} - div[KHgrad H] - Q_{V} = 0$$

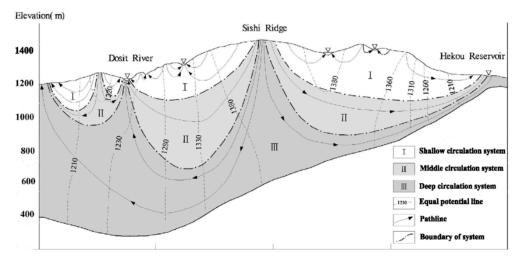
$$h^{2}(x) = \frac{h_{D}^{2} - h_{0}^{2}}{D}x + h_{0}^{2} + \frac{N}{K}x(D - x)$$

Einfache Lösungen, Beispiel

Gespannter 2D Aquifer zwischen zwei Wasserscheiden (Toth Strömung)



Einfache Lösungen Beispiele



https://tinyurl.com/y289htxz

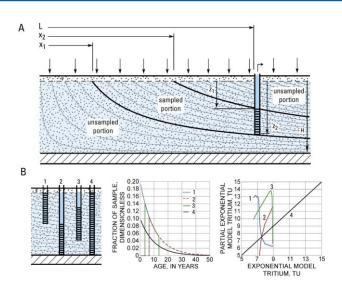
Handkalkulationen im 21. Jahrhundert, wozu?

- Benchmarking von numerischen mathematischen Modellen
- Vermeidung unnötiger Komplexität (Transient, 3D, etc)
- Abschätzung Parametersensitivitäten und Unsicherheiten
- Schärfen der "Modellierintuition" (Haitjema, 2006)

A homogeneous aquifer with constant thickness (H), and porosity (ϕ), and uniform recharge rate (r) has the following depth-dependent age relation (Vogel, 1967):

$$T(z) = -\frac{H\phi}{r} \ln\left(\frac{H-z}{H}\right) \tag{3}$$

$$au_s = au_{aq} = \left(rac{H\phi}{r}
ight)$$



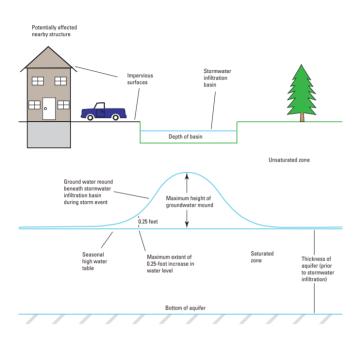
Jurgens et al 2016; Vogel 1967

Faustregeln numerische Modellierung

Finnemore and Hantzche (1983)

$$z_{m} = IC\left(\frac{L}{4}\right)^{n} \left(\frac{1}{K\overline{h}}\right)^{0.5n} \left(\frac{t}{S_{y}}\right)^{1-0.5n}$$

- Haitjema (1995)
- $\Delta h = \frac{RL^2}{mkb}$
- Erkenntnis für die Modemerung:
 - Kalibrierung auf Wasserstände ergibt nur Aussagen übe das Verhältnis Neubildung/Transmissivität
 - Kalibrierung ist insensitive für hohe Transmissivitäten und im Umfeld von Randbedingungen
- Viele Weitere "Faustregeln" sind ableitbar!!!



Grundwasserhügel