Investigating the value of regional water isotope data on transit time and SAS modelling

2. Data and methods

monthly $\delta^{18}O_P$ and $\delta^{18}O_O^{[2]}$

with GLUE approach

a) Power law time-invariant SAS

Region: upper Selke catchment (184 km²) in central Germany (Fig. 1)

Spatial interpolation: raw vs. kriging $\delta^{18}O_P$ with additional points^[2]

Temporal interpolation: step vs. sinusoidal function

Data: water quantity and stable isotope data from 2012 to 2015 (Fig. 2)

Input: daily P, Q and ET from hydrological model^[3] and measured

Model: tranSAS v1.0^[4] to calibrate SAS functions (i.e., power law time-

invariant, power law time-variant and beta law) against measured

 $\delta^{18}O_O$ and young water fraction (F_{vw}). Behavioral solutions represent

5% with the highest Kling-Gupta efficiency. Uncertainty quantification

<u>Output</u>: behavioral SAS parameters, simulated $\delta^{18}O_O$, TTDs and F_{VW}

A. Borriero¹, S. Lutz¹, R. Kumar², T. Nguyen¹, S. Attinger², and J. Fleckenstein¹

1 Department of Hydrogeology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany 2 Department of Computational Hydrosystems, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany

1. Introduction

Transit time distributions (TTDs) of discharge are important to describe water storage and release from catchment to streams under dynamic conditions. To investigate TTDs, catchment-scale models based on StorAge Selection (SAS) functions^[1] are a promising tool. Tracer data are often used to validate simulated SAS functions and TTDs. Nonetheless, tracer data are not always available as high-frequency data and at high spatial resolution. Therefore, we tested the impact of different temporal and spatial interpolation methods of the stable water isotopes in precipitation on SAS function parameterization.

Objectives:

- · Characterize the uncertainties in SAS parameterization and water TTDs with sparse tracer data and different SAS functions
- Apply the young water fraction as additional model constraint

3. Results and Discussions

SAS parameterization against measured $\delta^{18}O_{0}$

Water transit time and uncertainty (Fig. 4)

- Shorter median transit time (TT₅₀) with kriging $\delta^{18}O_P$ (mean TT₅₀=145 d) than raw $\delta^{18}O_P$ (mean TT₅₀=229 d)
- Larger TT_{50} with sine interpolation (mean TT_{50} =232 d) than step function (mean $TT_{50} = 142 \text{ d}$)
- Greater uncertainty (U) (i.e., bandwidth between 5th and 95th percentile of behavioral TT_{50}) during base-flow conditions (mean U = 315 d)

HS2.2.2 : Isotope and tracer methods: flow paths characterization, catchment response and transformation processes EGU21-11174

References 1627-1639

4. Outlook

 F_{vw} (water younger than 2-3 months^[5]) used as additional constraint Selection of a subset of behavioral solutions for which the simulated flow-weighted F_{vw} is matching F_{vw} from measured $\delta^{18}O_P$: F_{vw} =0.21±0.07 (raw $\delta^{18}O_P$) and F_{vw} =0.25±0.08 (kriging $\delta^{18}O_P$) TT with KGE of $\delta^{18}O_{c}$

5. Conclusions

- Sparse tracer data can provide useful information on a catchment's preference for release water of different ages and TT ranges
- We recommend to explore the uncertainties in water transit times resulting from different SAS functions and interpolation methods of sparse tracer data
- First results show that the young water fraction is a valuable metric in reducing these uncertainties

Zentrum für Umweltforschung

[1] Rinaldo, A., P. Benettin, C. J. Harman, M. Hrachowitz, K. J. McGuire, Y. van der Velde, E. Bertuzzo, and G. Botter (2015), Storage selection functions: A coherent framework for guantifying how catchments store and release water and solutes. Water Resour, Res., 51, 4840–4847 [2] Lutz, S. R., Krieg, R., Müller, C., Zink, M., Knöller, K., Samaniego, L., & Merz, R. (2018), Spatial patterns of water age: Using young water fractions to improve the characterization of HELMHOLTZ transit times in contrasting catchments. Water Resour. Res, 54

[3] Samaniego, L., R. Kumar, and S. Attinger (2010), Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46 ^[4] Benettin, P. and Bertuzzo, E. (2017), tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions, Geosci. Model Dev., 11,

[5] Kirchner, J.W. (2016), Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol, Earth Syst. Sci., 20, 279-29

