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Abstract
1.	 Functional traits offer promising avenues to investigate how community 

composition and diversity define ecosystem functioning and service delivery. In 
recent years, many empirical studies on the importance of functional traits for 
ecosystem service provisioning have been undertaken, but a general understand-
ing and synthesis of results is lacking for many ecosystems.

2.	 Here we focus on temperate grasslands and present a systematic literature 
review synthesizing how plant functional traits are interrelated with ecosystem  
services.

3.	 Based on 108 studies, we identified a core set of 40 functional traits and 11 eco-
system services. Several of these traits were only linked to one, while 75% of traits 
were linked to two or more ecosystem services.

4.	 We found that trait-specific constraints can lead to both synergies and trade-offs 
in the supply of multiple ecosystem services. For instance, synergies between bio-
mass production and climate regulation can be achieved by changing morphomet-
ric root traits such as increasing root diameter, tissue density or shoot to root ratio. 
On the other hand, supporting fast-growing exploitative species characterized by 
high specific leaf area and nitrogen content typically leads to trade-offs between 
fodder quality and water purification.

5.	 Synthesis and applications. By applying network analysis, we found five groups of 
ecosystem services sharing common functional traits. Within and among these 
groups, we identified trade-offs among traits as well as among services and found 
options for synergies. These can be particularly useful in landscape planning, and 
when management aims focus on maintaining multifunctionality of ecosystems 
and maximizing corresponding ecosystem service delivery.

K E Y W O R D S

ecosystem services, functional traits, grasslands, multifunctionality, network analysis, plant 
traits, synergies, trade-offs

www.wileyonlinelibrary.com/journal/jpe
https://orcid.org/0000-0001-8779-2335
https://orcid.org/0000-0003-3183-8482
mailto:﻿
https://orcid.org/0000-0001-5792-4691
http://creativecommons.org/licenses/by-nc/4.0/
mailto:sonja.knapp@ufz.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2664.13644&domain=pdf&date_stamp=2020-05-10


1536  |    Journal of Applied Ecology HANISCH et al.

1  | INTRODUC TION

Appropriate responses to the impacts of global change require 
an understanding of how changes in biodiversity translate into 
changes in the functioning of ecosystems. Such an understanding 
enables (a) the assessment of potential consequences for society 
and (b) the development of efficient and target-oriented manage-
ment strategies. The concept of ecosystem services provides a 
framework for linking human benefits and well-being to the under-
lying biophysical realm of ecosystem functioning (Díaz et al., 2018; 
Lavorel, et al., 2017). Ecosystem services can be described from a 
demand perspective addressing human needs, well-being and po-
tential valuation by stakeholders (Goodness, Andersson, Anderson, 
& Elmqvist,  2016; Lindemann-Matthies, Junge, & Matthies,  2010; 
Seppelt, Dormann, Eppink, Lautenbach, & Schmidt, 2011), or from 
a supply perspective emphasizing the underlying ecological func-
tions, for example, by referring to the functional traits of species 
in a community (Díaz et  al., 2007; Lavorel & Grigulis, 2012; Violle 
et al., 2015). These traits are characteristics at the individual level, 
including phenological, physiological or morphological features 
(Cornelissen et al., 2003; Violle et al., 2007). Functional traits hence 
depict mechanistic linkages between organisms and their environ-
ment (Lavorel & Garnier, 2002) and may serve as predictors of eco-
system service supply (Garnier & Navas, 2012).

Given the different societal demands and the necessity to man-
age land for different purposes (cf. concept of multifunctionality of 
landscapes or ecosystems; Butterfield, Camhi, Rubin, & Schwalm, 
2016; Manning et al., 2018), we need to improve our understanding 
about which functional traits are involved in the delivery of which 
ecosystem services (de Bello et  al.,  2010). Links among individual 
services, driven by a shared set of ecosystem functions or corre-
sponding functional traits, may lead to distinct groups of ecosystem 
services—with functions being the ‘ecological processes that control 
the fluxes of energy, nutrients and organic matter through an envi-
ronment’ and services being ‘the suite of benefits that ecosystems 
provide to humanity’ (Cardinale et al., 2012, p. 60). Predicting multi-
ple interactions within and among such groups based on functional 
traits can help identifying land management options that reduce 
trade-offs among seemingly contradicting ecosystem service de-
mands. Moreover, this may support the identification of potential 
synergies among different services, that is, the possibility to support 
several services simultaneously by supporting plant species with 
traits involved in the delivery of these services. The term synergy is 
used here when a trait affects two or more ecosystem services in the 
same way such as an increase in leaf nitrogen content (LNC) that can 
increase both productivity and fodder quality at the same time. The 
term trade-off is used when a trait affects two or more ecosystem 
services in opposing ways. Therefore, an approach aimed at identi-
fying functionally linked groups of ecosystem services shows several 
advantages over assessing services separately (de Bello et al., 2010; 
Spake et al., 2017).

In addition to local and landscape-scale assessments of ecosys-
tem services, large-scale mapping efforts of groups of ecosystem 

services have been undertaken recently (Dittrich, Seppelt, Václavík, 
& Cord, 2017; Lavorel, et al., 2017). However, such approaches mostly 
rely on spatial surrogates that provide only non-mechanistic proxies 
for ecosystem services (Mouchet et al., 2014) or on co-occurrences 
of services defining spatially or temporally linked groups (Spake 
et al., 2017). Identified links between ecosystem services and func-
tional traits can improve our ability to assess and predict the spatial 
and temporal distribution of services and their trade-offs consid-
erably by already known or newly assessed relationships between 
environmental drivers and the respective traits.

A first study that synthesized literature on trait–service associ-
ations was provided by de Bello et al.  (2010). By associating traits 
with ecosystem services and their underlying ecosystem processes 
across trophic levels and ecosystem types, the authors were able to 
identify globally consistent trait–service associations, allowing the 
assessment of biotic effects on combined ecosystem service deliv-
ery. Here we provide a systematic review of trait–service associa-
tions, building on the approach of de Bello et al. (2010), but focusing 
on grasslands and plant functional traits. Focusing on a specific eco-
system allowed us to particularly investigate within-system relation-
ships rather than obtaining cross-system relationships, for example, 
by comparing traits of trees and herbaceous plants. Our approach is 
thus less dependent on the environmental context than it would be 
when including a range of ecosystems.

Temperate grasslands belong to the best studied ecosystems 
world-wide (Violle et  al.,  2015). They are severely threatened by 
agricultural expansion for food production (Erb et  al.,  2016), graz-
ing pressure (Zhang et  al.,  2015) and climate change (Schlaepfer 
et  al.,  2017), creating a strong need for understanding and man-
aging their ecosystem services (Hoekstra, Boucher, Ricketts, & 
Roberts,  2005; Thébault, Mariotte, Lortie, & MacDougall,  2014). 
We further focus on vascular plants since they are the best studied 
taxon with respect to functional traits (de Bello et  al.,  2010; Díaz 
et al., 2016) and are key to some of the most intensively utilized eco-
system services such as primary production (Costanza et al., 2014).

We identify groups of services defined by sets of shared traits. 
These trait–service groups are intended to support the future mon-
itoring and management of ecosystems to achieve the delivery of 
multiple services and to reduce undesired trade-offs. Particularly, 
we focus on the following questions: (a) Which plant functional traits 
show positive, negative or neutral associations with one or more 
ecosystem services in grasslands? (b) Which trait–service groups 
emerge from these associations? (c) What are the trade-offs and 
synergies among ecosystem services, driven by specific functional 
traits?

2  | MATERIAL S AND METHODS

2.1 | Literature search

We performed a systematic literature search using the ISI Web 
of Science Core Collection on 16 December 2016, taking into 
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account all articles published since 2005 (Figure  1). The search 
term consisted of ‘“plant*” AND “trait*” AND “service*”’ and was 
selected in order to include a wide array of studies that addressed 
the associations between plant functional traits and ecosystem 
services. This search yielded 545 articles that were comple-
mented by 56 datasets on linkages between plant functional 
traits and services in grasslands included in de Bello et al. (2010). 
We excluded duplicates and screened the resulting set by title 
and abstract. Articles were included if (a) they reported spe-
cific plant traits and not only functional groups, (b) they related 
functional traits to at least one specific ecosystem service and 
(c) the research was carried out in grassland ecosystems. Articles 
were excluded if the focus was on breeding, genetic modifica-
tion, geo-engineering or invasion of alien species. In a next step, 
the full text of the paper was screened and all articles that only 
mentioned but did not explicitly test for trait–service associa-
tions were excluded. Additionally, articles that only looked at 
trait responses to management changes or that were errone-
ously incorporated in the first steps were excluded leading to a 
final set of 108 articles. A list of these articles is provided in the 
Data sources section. Extracted data encompassed ecosystem 
service type, plant functional traits, direction or quantified val-
ues of trait–service associations, named trade-offs or synergies 
and additional information on the type of study (i.e. case study, 
meta-analysis). We standardized trait terminology according to 
the Thesaurus of Plant Characteristics (Garnier et  al.,  2017). The 

classification of ecosystem services followed the Millennium 
Ecosystem Assessment (2005).

2.2 | Identification of trait–ecosystem service 
associations

For identifying trait–service associations, we used the following ap-
proach: (a) to limit uncertainty in trait–service associations due to low 
numbers of studies investigating them, only traits with ≥2 reported as-
sociations to any ecosystem service and services with overall >2 entries 
in our database were considered. (b) Associations of traits with multiple 
services were treated as independent entries. (c) If a trait was explicitly 
mentioned as tested in the methods section but no results were re-
ported, no effect was assumed. This was done to account for a poten-
tial bias resulting from reporting significant effects only. (d) Regarding 
the direction of trait–service associations, effect sizes were extracted 
if possible. However, as the number of reported effect sizes was lim-
ited, a transformation to positive, negative or non-directional effects 
from the qualitative and quantitative information was conducted. The 
analysed studies reported effect direction for continuous traits mostly 
based on correlations between ecosystem services and respective trait 
values. For categorical traits, this relationship was usually based on 
measures of trait diversity. The overall trait–service associations were 
then calculated as in Equation 1 following Harrison et al. (2014), with 
the modification that in addition to significant positive and negative 

F I G U R E  1   Flow diagram of literature 
review synthesizing how plant functional 
traits are interrelated with ecosystem 
services in temperate grasslands, 
following PRISMA reporting standards 
(Shamseer et al., 2015). Articles from de 
Bello et al. (2010) were not screened but 
directly used for data extraction
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effects also non-significant associations were considered as no effect 
and taken into account for the calculation of the total number of as-
sociations. Values range from −1 to 1.

Additionally, a measure of uncertainty for trait–service associations 
was calculated by dividing 1 by the total number of associations re-
ported, leading to values between 0 (lowest) and 1 (highest uncertainty). 
Associations reported by a number of studies will hence have lower un-
certainty values than those reported only once. Moreover, if different 
studies reported contrasting trait–service associations (i.e. negative vs. 
positive), we recorded the number of such discrepancies.

2.3 | Network analysis to identify trait–
service groups

A bipartite network analysis was conducted to investigate cluster-
ing within the associations of traits and services. A bipartite net-
work is made up of two separate groups, of which linkages between 
members of the different groups but not within groups are possible 
(Dormann & Strauss, 2014). Ecological applications of this approach 
usually focus on trophic interactions (Schleuning et  al.,  2016), but 
network analyses have also been applied in other disciplines, for ex-
ample, for investigating social or trade networks (Newman, Watts, & 
Strogatz, 2002; Saavedra, Stouffer, Uzzi, & Bascompte, 2011).

We identified trait–service groups based on a quantitative bipartite 
network of plant functional traits and ecosystem services, weighted 
by their calculated effects to include information about the strength 
of interaction. Clustering was assessed by network modularity which 
was analysed by allowing for the identification of nested submodules 
(Dormann & Strauss, 2014) using the r (R Core Team, 2018) package 
‘bipartite’ (Dormann, Fründ, Blüthgen, & Gruber, 2009). In our study, the 
different modules can be regarded as trait–service groups with many 
linkages (Dormann & Strauss,  2014). These groups were identified 
based on the higher prevalence of their within-interactions compared 
to between module interactions. To stabilize modularity computation, 
we re-ran the calculations 20 times using the function metaCompute-
Modules. Bipartite graphs and corresponding calculations of modules 
were based on absolute values of trait–service associations, that is, 
ignoring effect direction but only considering links and their strengths, 
leading to groups of services impacted by the same traits but not nec-
essarily in the same direction. However, for visualization of potential 
trade-offs or synergies among services and species traits, we display 
effect directions in the corresponding bipartite modularity diagram.

3  | RESULTS

Of the 545 articles that we screened, 52 were included in the analy-
sis and merged with 56 articles from de Bello et al.  (2010). Six per 

cent (7/108) of the articles were reviews, 3% (3/108) meta-analyses 
and 90% (98/108) were primary studies. The geographical range of 
studies was global, yet studies conducted in France and in whole 
Europe accounted for 38% and 82% of all studies respectively. Less 
than 29% of the studies quantified the services directly and only 
one publication (Lavorel & Grigulis, 2012) used a stakeholder-based 
approach.

3.1 | Trait–service relationships

In total, 179 plant functional traits were reported together with 16 
ecosystem services. Out of these, 40 traits were included in the 
analysis. About 127 traits were only reported once and were there-
fore not considered. Twelve traits were excluded for reasons like 
unclear categorization and insufficient trait definition or for refer-
ring to community-level but not species-level traits. The services soil 
formation, contamination reduction and hazard prevention were ex-
cluded because they were reported once or twice only. Biodiversity 
and habitat provision were not considered because of (a) the ongo-
ing debate if they should be perceived as ecosystem services at all 
(Mace, Norris, & Fitter, 2012; Silvertown, 2015) and (b) insufficient 
information. Of all trait–service associations, 5.6% included cultural, 
5.5% provisioning, 56.1% supporting (including biomass production) 
and 32.6% regulating services. Uncertainty ranged from 0.05 to 1 
(M = 0.6); 48% of the identified associations had an uncertainty of 1, 
meaning that they had only been reported once.

We found that the number of ecosystem services that can be 
associated to a particular trait varies substantially, ranging from 1 
to 9 (see Table 1; Figure 2; Appendix S1). We define traits showing 
only effects on one service as ‘service-specific traits’ (25% of traits) 
and traits showing directional effects on at least two services as 
‘multi-service traits’ (75% of traits in our dataset). Typical examples 
of ‘multi-service’ traits were specific leaf area (SLA), LNC, vegetative 
plant height (VPH) or leaf dry matter content (LDMC). These were 
associated with services such as biomass production, soil fertility, 
climate regulation or aesthetic appeal amongst others. ‘Service-
specific’ traits were for example, root nitrogen content, percentage 
of fine roots (both linked to erosion control) or generative plant 
height (linked to biomass production).

Root traits were mainly associated with erosion control, climate 
regulation and biomass production, floral traits with aesthetic ap-
peal and pollination, stem and whole plant traits with biomass pro-
duction. Especially for multi-service traits, inherent trade-offs for 
ecosystem service provisioning were evident. For example, a higher 
LNC positively affected biomass production, fodder quality, soil fer-
tility and climate regulation, yet it negatively affected biocontrol, 
water purification and cultural heritage services. Similarly, increas-
ing LDMC values reduced fodder quality and aesthetic appeal of the 
landscape while supporting climate regulation. The number of plant 
functional traits linked to a particular service varied considerably. 
For example, erosion control and soil fertility were linked to more 
than half of the traits, while water purification and biocontrol had 

(1)
Predominantdirection

=

∑

(positiveassociations) −
∑

(negativeassociations)

Totalnumberofassociations
.
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only few reported linkages (cf. Creswell, Cunningham, Wilcox, & 
Randall, 2017).

3.2 | Trait–service groups

The trait–service groups we identified (Table 2) based on the results 
of the bipartite network analysis (Figure  2) are: (a) chemical com-
pound-related services; (b) water-related services; (c) above- and 
below-ground services; (d) cultural services and (e) multi-trophic 
level services. Within each of these groups we found synergies 
and trade-offs—both among species traits and among ecosystem 

services. Aesthetic appeal and recreation/heritage represent an 
example for trait-mediated synergies among ecosystem services 
since they are both negatively associated with lignin-to-nitrogen 
ratio, a trait that alters the decomposition of biomass and thereby 
the appearance of landscapes (Figure 2). Furthermore, in the group 
of water-related services, synergies between erosion control and 
water regulation were evident, with both being positively associ-
ated to canopy structure and leaf area that is, two plant structural 
traits which can affect the erosive forces of rainwater and the water 
cycling between plant and soil. Within the group of chemical com-
pound-related services, a trade-off appeared between fodder and 
water quality. While high SLA and LNC (investment in fast-growing 

F I G U R E  2   Bipartite modular web 
diagram illustrating associations among 
plant functional traits and ecosystem 
services in temperate grasslands. Each 
reported trait–service association is 
displayed with a square. Colours show 
the direction (violet, positive; yellow, 
negative) and colour intensity the 
strength of associations (light colours, 
weak associations; strongest colours, 
all associations in the same direction). 
Outer rectangles (violet) show modules 
and within rectangles (light blue) show 
nested modules as detected by re-running 
the analysis within the subset of the 
module. Stable results after 20 iterations; 
modularity = 0.28; likelihood = 0.40
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highly productive tissues) promote higher fodder quality on the cost 
of lower water quality due to high nitrogen concentrations, low SLA 
and leaf nitrogen (investment in slow-growing well-protected tis-
sues) are negatively associated with fodder quality but positively af-
fect biocontrol and water purification.

4  | DISCUSSION

We here provide the first comprehensive overview of associations 
between plant functional traits and multiple services of grassland 
ecosystems. The geographic bias of studies included in our review 
(82% in Europe, especially in France) may be partly explained by the 
importance of grassland ecosystems in this area, representing re-
gional hotspots of biodiversity and generating high basic and applied 
research interests (Gaujour, Amiaud, Mignolet, & Plantureux, 2012; 
Violle et al., 2015). Results have to be interpreted within these geo-
graphical limitations, and in the light of uncertainties (Table 1) and 
discrepancies in trait–service relationships (Appendix S1). Another 
limitation arises from the uneven distribution of services within 
the studies investigated, with especially cultural and provisioning 
services being underrepresented. Differences in how intensively 
trait–service associations have been investigated are reflected in the 
number of discrepancies, where commonly investigated associations 
show more discrepancies than those investigated once or twice only. 

Yet, by looking at a range of functional traits and ecosystem services, 
inherent trade-offs and synergies among services and traits became 
apparent that single studies could not identify. We also found that 
a large number of traits are related to multiple services. However, 
since our definition of these ‘multi-service’ traits includes both traits 
with the same effect direction (i.e. consistently positive or negative 
effects on all related ecosystem services) and traits with opposing 
effect directions (i.e. positive effects on one or more ecosystem ser-
vices but negative effects on other services), this approach should 
not be confused with the concept of ecosystem multifunctionality.

The existence of ‘single-service’ traits might partly be explained 
by the lack of research on some, in particular hard-to-measure, traits 
like root traits (Burylo, Rey, Mathys, & Dutoit, 2012). However, we 
also found evidence for the ‘service-specific’ nature of some traits, in 
cases where studies tested a particular trait for its association with 
multiple ecosystem services (Table 1). For instance, growth form has 
been analysed in relation to biomass production, soil fertility, fod-
der quality, aesthetic appeal and water regulation, but was only re-
lated to erosion control (Burylo, Dutoit, & Rey, 2014). Furthermore, 
root traits are thought to determine particular soil services (Faucon, 
Houben, & Lambers,  2017), but for root nitrogen content neither 
an effect on soil fertility (Klumpp & Soussana,  2009; Soussana 
& Lemaire,  2014) nor on biomass production (Schroeder-Georgi 
et  al., 2016) was observed. For other traits, their ‘service-specific’ 
character was more obvious. For example, flower pollination 

TA B L E  2   The five main trait–service groups that we identified, underlying ecosystem services, key traits and hypotheses for mechanisms 
and processes leading to this grouping with supporting references

Trait–service 
group Ecosystem services Key traits Hypotheses References

1. Chemical 
compound-
related 
services

Fodder quality, 
biocontrol, water 
purification

Nitrogen fixing capacity, leaf 
dry matter content, leaf 
toughness, specific leaf area, 
leaf nitrogen content

Amount of nitrogen uptake 
affects water eutrophication

Fast-growing versus well-
protected leaf tissues affect 
fodder quality

Violle et al. (2015), Lamarque, 
Lavorel, Mouchet, and 
Quétier (2014)

2. Water-related 
services

Water regulation, 
erosion control

Root depth, canopy structure, 
leaf area, % fine roots, stem 
dry matter content, root 
nitrogen content

Roots and plant structural traits 
affect water cycling and erosion

Everwand, Fry, Eggers, and 
Manning (2014), Burylo, 
et al. (2012), Gould, Quinton, 
Weigelt, De Deyn, and 
Bardgett (2016)

3. Above- and 
below-ground 
services

Biomass production, 
climate regulation

Relative growth rate, root 
distribution evenness, root/
shoot, root length, root tissue 
density, specific root length, 
plant nitrogen content, leaf 
litter mass, flowering duration

Below-ground plant investment 
positively affects below-ground 
carbon storage

Root and stature traits are 
important for population 
growth performance

Abalos et al. (2014), Gos 
et al. (2016), Schroeder-
Georgi et al. (2016)

4. Cultural 
services

Aesthetic appeal, 
recreation and 
heritage

Flower colour, beginning of 
flowering, leaf phosphorous 
content, lignin/N ratio, 
vegetative plant height

Floral traits affect landscape 
perception

Leaf chemical traits affect 
decomposition which affects 
landscape appreciation

Lindemann-Matthies 
et al. (2010), Graves 
et al. (2017)

5. Multi-trophic 
level services

Soil fertility, 
pollination

Root dry matter content, seed 
number, leaf C/N, plant C/N

RDMC negatively affects 
nitrification rate and thereby 
soil fertility

C/N ratios affect denitrification 
enzyme activity

Pommier et al. (2018), Legay 
et al. (2014)
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syndrome was relevant for pollination services (Fontana et al., 2014; 
Pakeman & Stockan, 2013). Only seed mass was not associated with 
any service (Table 1) and thus with any module (Figure 2).

Whether trait–service associations are due to mechanistic links 
among services and species traits (via ecosystem functions that 
result in ecosystem services and that can be indicated by species 
traits—cf. ‘functional markers’; Garnier et  al.,  2004) or potentially 
caused by covariation among some of the services or traits remains 
to be further investigated for which our results provide a first basis.

4.1 | Trait–service groups

Associations among ecosystem services highlight the multifunctional 
character of ecosystems as they provide insights into shared drivers 
and ecosystem processes (Pretty et al., 2006). So far, most studies 
analysing such associations focused on co-occurrences of ecosystem 
services in time and space, usually described as ecosystem service 
bundles (see Spake et al., 2017 for an overview), but often without 
addressing underlying mechanisms. Yet, the groups of services that 
we found are not defined by spatial or temporal co-occurrence, but 
they are correlatively linked through shared functional traits leading 
to trait-specific synergies or trade-offs among services. Our modular 
web analysis identified five trait–service groups. These groups do not 
follow the usual classification of supporting, provisioning, regulating 
and cultural services but are defined by trait–service associations. 
One group consisted solely of cultural services, whereas two groups 
consisted of both regulating and provisioning services (above- and 
below-ground services, chemical compound-related services). Two 
more groups comprised regulating and supporting services (water 
related-services, multi-trophic level services).

Consequently, management actions focusing on improving a 
particular ecosystem service need to consider potential conse-
quences for other services linked via species traits. There are only 
few services related to a limited number of traits, while the major-
ity of services are linked to multiple traits. This paves the way for 
targeted management of trait-specific services by altering species 
composition according to single traits. Service-specific traits may 
be used to manage an ecosystem towards a maximization of single 
services. Examples can be found in root characteristics (root den-
sity, root length density, percentage fine roots), relevant for erosion 
control, or floral traits (flower colour, beginning of flowering, flow-
ering duration) relevant for pollination or aesthetic appeal. Possible 
applications that could be further investigated are seed mixtures for 
environmental improvements like vegetation strips or cultivation 
and renewal of grasslands as these could be optimized to deliver a 
desired mix of ecosystem services (Storkey et al., 2015).

For multi-trait services, on the other hand, a range of relevant 
traits is available, and plant community-based management strate-
gies can choose among these to increase synergies and avoid trade-
offs among services. Examples are biomass production and erosion 
control that are both associated with LNC and LDMC, amongst 
others. Thus, slopes could be seeded with high LDMC- and low 

LNC-grassland species, while pastures should be seeded with low 
LDMC- but high LNC-species (cf. Table 1).

However, this kind of trait-based ecosystem management be-
comes more complicated when opposing results for the same trait–
service association exist. Those discrepancies might be due to the 
fact that many traits are not independent from one another and due 
to context dependency. Even though we focused on grasslands, thus 
reducing context dependency, different types of grasslands with dif-
ferent types of use exist within different climates and landscapes. 
Consequently, studies investigating trait–service associations would 
benefit from taking environmental context into account, so in the 
future, this could be controlled for in meta-studies.

4.2 | The role of functional traits for ecosystem 
service trade-offs and synergies

In our review, we identified traits that indicate a synergy between 
biomass production and climate regulation (e.g. LNC, VPH, SRL, 
root tissue density, root/shoot). This finding contradicts the often 
reported trade-off between biomass production and climate regu-
lation (Gos et  al.,  2016; Grigulis et  al.,  2013; Lavorel et  al.,  2011). 
Our results indicate that high values of LNC and VPH can promote 
climate regulation as well as biomass production and soil fertility—
the former by means of reduced decomposition and higher inputs 
of organic matter into soils, the latter by increasing soil fertility in 
C-poor soils or lower soil layers, by reducing decomposition, plant 
uptake and thus supporting leaching to deeper soil layers (Grigulis 
et al., 2013) Yet, the often reported trade-off between biomass pro-
duction and climate regulation (Gos et al., 2016; Grigulis et al., 2013; 
Lavorel et al., 2011) was supported by our findings as well, by traits 
such as root length, plant N content, LPC and LDMC. Further traits 
(leaf carbon content, root diameter, plant dry mass, canopy struc-
ture, VPH, lignin/N ratio) were associated with synergies among 
services or showed no interdependency. Hence, classifying groups 
of ecosystem services by their trade-offs and synergies is not as 
straightforward as suggested earlier (Rodríguez et al., 2006).

Also, cultural and above- and below-ground services share pos-
itively related traits such as onset and duration of flowering, high 
LPC and SLA and low LDMC. Yet, management focusing on changes 
in VPH and LNC will lead to trade-offs between above- and be-
low-ground services and soil fertility on the one hand and cultural 
services on the other hand. Also, in this case, functional traits are 
linked to both synergies and trade-offs among different services 
and thereby enable to maximize the provision of multiple services. 
This can for example be achieved by managing spatial and temporal 
patterns of different habitat types within a landscape (Verhagen, 
van der Zanden, Strauch, van Teeffelen, & Verburg, 2018). Yet, cul-
tural services are influenced by appreciation and perception, with 
cultural appreciation being especially important in grasslands as a 
traditional agroecosystem in Europe (Garnier et al., 2007; Gaujour 
et al., 2012). High VPH and LPC associated with high litter accumu-
lation have been related to a reduction in landscape appreciation 
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(Lavorel & Grigulis,  2012; Lavorel et  al.,  2011), where litter is at-
tributed as an undesirable landscape feature. Graves, Pearson, and 
Turner (2017) found an effect of the number of flower colours on 
people's aesthetic preferences for wildflower communities. Still, 
our results indicate that empirical evidence for the effect of traits 
on cultural ecosystem services is scarce for services like recreation 
and aesthetic appeal and needs further exploration (but see Duru, 
Cruz, Ansquer, & Navas, 2014; Gos et al., 2016). For water purifi-
cation, biocontrol and pollination only limited numbers of related 
traits were evident (Creswell et al., 2017). Reasons for this can be 
plentiful. For instance, water-related services might not be of par-
ticular interest in some grassland ecosystems, especially in those 
with weak water dynamics or without any water quality problems 
(Gaujour et al., 2012).

4.3 | Suggested future research priorities

The list of candidate traits provided in Table 1 can be highly use-
ful for further studies as it provides a selection of traits with 
documented impact on ecosystem services and as it highlights 
uncertainties or missing information (cf. Creswell et  al.,  2017). 
Also, using standardized sets of traits can largely benefit ecosys-
tem service research by means of increased comparability among 
studies (Mouchet et al., 2014). The list can be further improved if 
comparative studies will consistently report the relative predic-
tive power of traits for each service (Garnier & Navas, 2012). The 
apparent geographical bias needs to be addressed, meaning an 
increased number of studies within European grasslands beyond 
the French Alps and even more so outside of Europe. Furthermore, 
research might investigate if the number of traits needed to study 
trait–service associations can be limited, yet still covering the full 
complexity of synergies and trade-offs in ecosystem service deliv-
ery. Additionally, to improve applicability, future work should di-
rectly quantify services and engage stakeholders, along with the 
actual needs of planning and managing ecosystems and landscapes 
(Cardinale et al., 2012; Cord et al., 2017). Taking mechanistic trait–
service associations into account can improve management and 
avoid undesired outcomes of ecosystem service-related policy in-
centives (Bennett et al., 2015).

Moreover, below-ground plant traits are still underrepresented 
in the literature (Laliberté, 2017) as are stem and seed traits, al-
though in our study, the latter had at least explanatory power. 
Similarly, water regulation, pollination, recreation and heritage 
value, biocontrol and water purification could be further investi-
gated with trait-based approaches (Blowers, Cunningham, Wilcox, 
& Randall, 2017).

5  | CONCLUSIONS

We here provide an overview of trait–service groups and their in-
herent trade-offs and synergies among the services of grassland 

ecosystems that are not based on simple co-occurrences in space and 
time, but rather indicate mechanistic linkages via shared functional 
species traits. Interestingly, provisioning and regulating or cultural 
services not only showed trade-offs, but also synergies, mainly based 
on service-specific traits. The presented list of candidate traits is use-
ful for the evaluation of service delivery at local and landscape levels. 
It provides an overview about trait–service associations helpful for 
designing experiments (Dias et al., 2013) and for supporting regional 
land-use management. It can hence prove valuable for policy- and 
decision-making (Jax et  al.,  2018). However, it needs to be high-
lighted that in real-world situations not all ecosystem services can 
be improved simultaneously (Turkelboom et al., 2018). If trade-offs 
at small scales cannot be avoided, possibilities for meeting multiple 
demands still exist at larger scales by changing landscape composi-
tion. Operationalization of the diverse outcomes of ecosystem ser-
vice studies remains a major research need (Lautenbach et al., 2019).
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