$$\frac{dx(t)}{dt} = x(t) = I(t) \cdot b + x(t) \cdot re(t) \cdot A$$

Name

RothC

Important publications

Coleman and Jenkinson, 1996; Dechow et al., 2019; Falloon et al., 1998

Special features

- RothC has an inert Carbon Pool
- The Carbon in BIO and HUM gets partially recycled
- It includes a simple soil water model

Input distribution: b

In the manual, plant input is distributed into DPM and RPM with $b=(0.59,041)^{T}$, Manure additionally into HUM with $b=(0.49, 0.49, 0.02)^{T}$. (Dechow et al., 2019) developed a more sophisticated approach

Initialisation: x(t₀)

There is no official initialisation method besides a 'spin-up run'. IOM is calculated by: $10^{(-1.31 + 1.139 \cdot log10(soc_ini))}$ (Falloon et al., 1998).

Assuming a partition of FOM into DPM and RPM of 0.59 and 0.41 (standard for roots), the partitions of x_0 of the active pools are (0.0065, 0.1500, 0.0212, 0.8224)^T. Multiplied by (SOC_ini - IOM), the respective stocks can be derived.

Environmental response: re(t)

re(t) is split in three parts: a, b and c, for temperature, water and soil cover, respectively.

$$a:\frac{47.91}{1+e^{\frac{106}{T+18.27}}}$$
 with T = average monthly air temperature (°C)

b: is a simple soil moisture model dependent on clay content, building on the monthly difference of precipitation (P) and evapotranspiration (E)

c: is 1 if the soil is bare and 0.6 if it is covered.

pool concept of RothC (from Heitkamp et al., 2012)

Mass Flow Matrix: A

flow rates are in $[a^{-1}]$. Rows are flows into each pool; columns are flows from each pool. All flow rates are clay dependent. Shown values are for pure sand.

	CO ₂	DPM	RPM	BIO	HUM	IOM
CO ₂		8.521	0.256	0.562	0.017	
DPM		-10				
RPM			-0.3			
BIO		0.680	0.020	-0.615	0.001	
HUM		0.799	0.024	0.053	-0.018	
IOM						

References

- Coleman, K., Jenkinson, D.S., 1996. RothC-26.3 A Model for the turnover of carbon in soil, in: Powlson, D.S., Smith, P., Smith, J.U. (Eds.), Evaluation of Soil Organic Matter Models. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 237–246. https://doi.org/10.1007/978-3-642-61094-3_17
- Dechow, R., Franko, U., Kätterer, T., Kolbe, H., 2019. Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land. Geoderma 337, 463–478. https://doi.org/10.1016/j.geoderma.2018.10.001
- Falloon, P., Smith, P., Coleman, K., Marshall, S., 1998. Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol. Biochem. 30, 1207–1211. https://doi.org/10.1016/S0038-0717(97)00256-3
- Heitkamp, F., Wendland, M., Offenberger, K., Gerold, G., 2012. Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model. Geoderma 170, 168–175. https://doi.org/10.1016/j.geoderma.2011.11.005

Additional info

	CO ₂	DPM	RPM	BIO	HUM	IOM
CO ₂		10 * β/(β+1)	0.3 * β/(β+1)	0.66 * β/(β+1)	0.02 * β/(β+1)	
DPM		-10				
RPM			-0.3			
BIO		10 * α /(β+1)	0.3 * α /(β+1)	- 0.66 + 0.66 * α /(β+1)	0.02 * α /(β+1)	
HUM		10 * (1-α) /(β+1)	0.3 * (1-α) /(β+1)	0.66 * (1-α) /(β+1)	-0.02 + 0.02 * (1-α) /(β+1)	
IOM						

 $\alpha:$ partitioning between BIO and HUM: BIO: 46%, HUM: (1- $\alpha).$

 β : partitioning of C to CO2 and HUM+BIO. Dependent on the clay content:

 $\beta = 1.67 (1.85 + 1.60 \exp(-0.0786 \% clay))$

Then β / (β + 1) is evolved as CO2 and 1 / (β + 1) is formed as BIO + HUM.