$$\frac{dx(t)}{dt} = x(t) = I(t) \cdot b + x(t) \cdot re(t) \cdot A$$

Name

Century (SOM)

Important publications

(Parton et al., 1994, 1987)

Special features

- The decay rate of the structural pool is dependent on the lignin fraction
- Mixture of FOM distribution and FOM decay parameters
- The complete model has also surface litter pools, totalling in 9 pools (we model only the SOM pools)

SOM pool concept of Century (from Parton et al., 1984)

Input distribution: b

Incoming plant material gets distributed between metabolic and structural by the following equation:

I_met = 0.85 – 0.018 * L/N, I_struc = (1-I_met) L/N: Lignine-to –Nitrogen-ratio

 $b = (I_struc, I_met)^T$

Initialisation: x(t₀)

After (Falloon and Smith, 2006), Century is initialized the following way: The Passive fraction (P) is dependent on the clay content: $P = -4 * e^{(-5*clay\%*clay\%)} + (0.0079 * clay\%) + 0.244.$ The Active fraction (A) is 3%, and the Slow fraction (S) is the minimum of (1-A-P, 55%). If still something remains, we assign it to the metabolic pool.

Environmental response: re(t)

re(t) = rT(t) * rW(t)

$$rT(t) = \left(\frac{45-T}{45-35}\right)^{0.2} * e^{0.2/2.63} \cdot \left(1 - \left(\frac{45-T}{45-35}\right)^{2.63}\right)$$
$$rW(t) = \frac{1}{1+30*e^{\left(-8.5*\frac{P}{E}\right)}}$$

with

T = monthly air Temperature [°C]P = monthly sum of Precipitation [mm]E = monthly Evapotranspiration [mm]

Mass flow Matrix: A

Flow rates are in [a⁻¹] from Parton et al., 1994. Rows are flows into each pool; columns are flows from each pool. Shown values are for pure sand and no Lignine.

	CO ₂	struc	met	active	slow	passive
CO ₂		2.64*	10.175	6.205**	0.11	0.002475
struc		-4.8*				
met			-18.5			
active		2.16*	8.325	-7.3**	0.0894**	0.002025
slow		0*		1.0731**	-0.2	
passive				0.0219**	0.0006**	-0.0045

* dependent on Lignine content, ** dependent on texture (see additional info)

References

- Falloon, P., Smith, P., 2006. Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use Manag. 18, 101–111. https://doi.org/10.1111/j.1475-2743.2002.tb00227.x
- Parton, W.J., Ojima, D.S., Cole, C.V., Schimel, D.S., 1994. A General Model for Soil Organic Matter Dynamics: Sensitivity to Litter Chemistry, Texture and Management, in: Bryant, R.B., Arnold, R.W. (Eds.), SSSA Special Publication. Soil Science Society of America. https://doi.org/10.2136/sssaspecpub39.c9
- Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands1. Soil Sci. Soc. Am. J. 51, 1173. https://doi.org/10.2136/sssaj1987.03615995005100050015x

Additional info

* Liginine-content dependencies: $K_f1 = -4.8 * exp(-3 * A)$ A =Lignin fraction in structural pool $K_f3 = K_f1 * 0.45 * (1-A)$ $K_f4 = K_f1 * 0.7 * A$ $K_f0 = K_f1 * (0.3*A + 0.55*(1-A))$

** texture dependencies: $K_{22} = -7.3 * (1-0.75 * ABT)$ ABT = silt and clay fraction (US system) $K_{24} = K_{22} * (0.003 + 0.032 * C)$ C = clay fraction $K_{20} = K_{22} * (0.85 - 0.68 * ABT)$ $K_{23} = K_{22} * (1 - K_{20} - K_{24})$

 $K_{35} = -0.2*(0.003 + 0.009*C)$ # different from Fig. 1 (+ insetad of -) $K_{32} = -0.2*(0.45 - K_{35})$

