$$\frac{dx(t)}{dt} = x(t) = I(t) \cdot b + x(t) \cdot re(t) \cdot A$$

Name

CCB

Important publication

Franko et al., 2011; Franko and Merbach, 2017

Special features

pool concept of CCB, from Franko et al., 2011

- Uses a meta-model for the environmental response
- All FOM has its own decay behaviour
- Has an inert ("long-term stablilized") SOM Pool

Input distribution: b

As each FOM type that is used, is an own pool (no distribution, later amounts of the same type are added to the rest of the previous inputs)

Initialisation: x(t₀)

The pool size of the inert pool is derived by pedo-transfer functions. At moment, the functions of Brooks & Corey are implemented. The remaining SOM is distributed between A-SOM and S-SOM as: A-SOM_{t0}: \sim 25%, S-SOM_{t0}: \sim 75%

Environmental response: re(t)

Meta-Model derived from CANDY ((Franko, 1997)

 $r_{env} = p1 + p2 \cdot T(t) + p3 \cdot P(t)$

with

T(t) = annual mean air Temperature [°C] P(t) = annual sum of Precipitation [mm] (trimmed to be between 450 and 700 mm) p1,p2,p3 depend on Clay & Silt

Mass Flow Matrix: A

Flow rates are in [a⁻¹]. Rows are flows into each pool; columns are flows from each pool.

	CO ₂	FOM*	Ca	Cs	Clts
CO ₂			2.0294		
FOM*		-k(i)			
Ca		k(i)*hum(i)	-2.3579	0.1168	0**
Cs			0.3285	-0.1168	
Clts			0**		-0**

* Theoretically each FOM has its own k und hum-value.

** a non-linear relation, based on changes of the soil physics, is not implemented in the ensemble version

References

- Franko, U., 1997. Modellierung des umsatzes der organischen bodensubstanz. Arch. Agron. Soil Sci. 41, 527–547. https://doi.org/10.1080/03650349709366019
- Franko, U., Kolbe, H., Thiel, E., Ließ, E., 2011. Multi-site validation of a soil organic matter model for arable fields based on generally available input data. Geoderma 166, 119–134. https://doi.org/10.1016/j.geoderma.2011.07.019
- Franko, U., Merbach, I., 2017. Modelling soil organic matter dynamics on a bare fallow Chernozem soil in Central Germany. Geoderma 303, 93–98. https://doi.org/10.1016/j.geoderma.2017.05.013