
Hydroinformatik II – V1/Ü1 Software-Grundlagen - Git, Qt
Lars Bilke, Environmental Informatics

Dresden, 05.04.2019

git-scm.org



About me

§ Lars Bilke

§ Computer Science

§ Since 2008 at UFZ / ENVINF

§ Visualization Center TESSIN VISLab

§ Software engineer OpenGeoSys

Page 2



Overview

§ Version control system

• Git by example

• Exercise: Online tutorial

• Hosting services

• Exercise: Get example files from GitHub

§ Exercise / HW: Qt Creator installation

Page 3



VERSION CONTROL 

SYSTEMS

Page 4

git-scm.org



Version control systems: What

§ „Database“ which takes snapshots (version) of files

§ Tracks time, changes, authors
§ Some content and images from www.git-tower.com/learn

Page 5

http://www.git-tower.com/learn


Version control systems: What

§ Independent of project / technology / tools

§ Best suited for all kinds of plain text files

• LaTeX, Markdown, TXT, CSV, Python scripts, source 

code, ...

§ Can handle binary files too, e.g. images

Page 6



Version control systems: Why

§ Collaboration

§ Storing versions

§ Restoring previous versions / undo

§ Understanding history of a project

§ Backup

Page 7



Version control systems: Collaboration

§ „Classic“ collaboration via shared folders or 

emailing files back and forth is error prone

• Manually (shouting through the office) „lock“ files

• Merging changes from several emails

• Where is the latest version?

• You will lose / overwrite changes!

§ With VCS anybody can work on any file at any time

• Merge changes into a common version

• Latest version is in a common central place

Page 8



Version control systems: Versions

§ „Classic“ approach:

• How do you handle versions? By file name postfix?

• What has changed between paper_v56.doc and 

paper_v61.doc?

• What if you want to have variants of a document?

§ VCS:

• Just gives you one state of a project

• Handles versions for you

• You can to go to any previous version

• Parallel variants are handles too („branches“)

Page 9



Version control systems: Restoring

§ Restoring a file or whole project

• You can‘t mess something up!

§ Undo changes

Page 10



Version control systems: History

§ VCS requires a short description on changes

• High-level overview

§ Detailed changes for the entire history

Page 11



Version control systems: Backup

§ VCS server component acts as a backup

§ Collaborators act as backups too

Page 12



Version control systems: Definitions

v Repository

• „Database“ stores all files, its versions and metadata

v Working directory

• Set of files of your project on your PC

v Commit

• Set of changes to files

Page 13



Version control systems

§ Centralized

• Subversion – subversion.apache.org

• UFZ provides server

• Perfoce ($) – www.perforce.com

§ Distributed

• Git – git-scm.com

• Mercurial – www.mercurial-scm.org

Page 14

Images from www.atlassian.com/git

https://subversion.apache.org
http://www.perforce.com
http://git-scm.com
https://www.mercurial-scm.org
https://www.atlassian.com/git


GIT

Version control system

Page 15



Version control systems: Git

§ Distributed is better than centralized

• No server necessarily needed / works offline / faster

• Multiple backups

§ Widely used / lots of tools / software

§ Many hosting provider (free / $)

§ Powerful / flexbile / does not impose a specific 

workflow

• But also harder to learn / more concepts

Page 16



Git: Getting started

§ Git is a command line tool, no GUI!

• Maybe harder to learn but you get what you type

§ Installer: git-scm.com/download/win

• Git Bash, Git Gui

Page 17

http://git-scm.com/download/win


Git: Graphical tools

§ GitHub Desktop (free) – desktop.github.com

§ Win / Mac

§ Clean and simple interface

Page 18

https://desktop.github.com


Git: Graphical tools

§ SourceTree (free) – www.sourcetreeapp.com

§ Win / Mac

§ Full featured

Page 19

https://www.sourcetreeapp.com


Git: Getting started (git init)

§ Tell git who you are

• Start Git Bash

• Type git config --global user.name <name>

• git config --global user.email <email>

§ Create a repository (start a new project)

• Create a directory, cd to it, git init

• Repo is hidden inside .git-folder

§ Create a file, write something ...

v File status

• Untracked: not under version control, git does not watch

• Tracked: under version control, git watches for changes

Page 20



Git: Getting started (git add)

§ Commit changes

• Tell git which changed files should be included:

• git add file.txt

• Does two things:

• Sets file.txt to be tracked

• Adds file.txt to the staging area

v Tracked

• Git is managing (versioning) this file

v Staging area

• Kind of a buffer between working directory and the 

repository

Page 21



Git: Getting started

v Staging area

Page 22



Git: Getting started (git commit)

§ With git commit all files / changes in the staging 

area make up a version

§ A commit should be described shortly

• git commit -m „Added a simple text file.“

v Commit

• Set of changes

• Author

• Timestamp

• Hash (unique identifier)

• Parent commit

Page 23



Git: Getting started (git diff)

§ Now make more changes, review & commit them

• Edit file

• Show changes with git diff

Page 24



Git: Getting started (git status)

§ Check current status

• git status

• git add file.txt

• git status

• git commit -m “...“

Page 25



Git: Getting started (git log)

§ Show history with git log

§ git log --oneline

Page 26



Git: Getting started (exercise)

§ https://www.katacoda.com/courses/git

§ Do scenarios 1 and 2

Page 27



Git: Syncing

v Local repository

• Hidden .git-folder in working directory

• The one you interacted with

v Remote repository

• Typically on a server on the internet

• Has no working directory, just contents of .git

• People use remote repos to share and exchange data

Page 28



Git: Syncing

Page 29



Git: Syncing (git remote add)

§ Connect to remote repo
• git remote add origin https://someserver.com/some-repo.git

§ Remote has a name (origin) and url

• Arbitrary name but origin is a convention

Page 30

https://someserver.com/some-repo.git


Git: Syncing (git push)

§ Sync current state to remote with

• git push origin master

• Pushes the current branch master to branch master on 

remote origin

v Branches (ignore for now)

• Independent line of work

• Fork at some point

• Merge two lines later

Page 31



Git: Syncing (git pull)

§ Download and merge changes from remote repo

• git pull origin

§ Shortcut for two steps:

• Fetches changes from remote repo named origin

• git fetch origin

• Merges the remote branch master into the local branch

• git merge origin/master

§ Homework: Continue exercise on Katakoda with 

scenario 3

Page 32



Git: Branching

§ Branching happens all the time

• Local master branch

• Remote master branch

• Collaborators local master branch

§ On push / pull branches get merged

Page 33



Git: Branching (git branch)

§ On default branch master

§ Creating a branch with git branch <name>

§ Nothing happened...

Page 34



§ git checkout <branchname>

§ „Activates“ a branch as the current

• Updates local files to match the state of the branch

• All future commits now go into this branch

Git: Branching (git checkout)

Page 35



Git: Branching (git merge)

§ Change back to master and erge commits from 

another into the current (master) branch:

• git checkout master

• git merge <branchname>

Page 36



Git: Branching (git merge)

§ New merge commit is created

§ Merged branch can be deleted:

• git branch -d <branchname>

§ Homework: Continue exercise on Katakoda until 

scenario 6

Page 37



Git: Conclusion

§ Important commands

• git init <directory> / git clone <url>

• git add <file>

• git status

• git commit -m “...“

• git push <remote> <branch>

• git pull <remote>

§ Tutorials

• rogerdudler.github.io/git-guide

• git-scm.com/book

• www.git-tower.com/learn/git/ebook/en/command-line

Page 38

https://rogerdudler.github.io/git-guide
https://git-scm.com/book
https://www.git-tower.com/learn/git/ebook/en/command-line/introduction


Git: Conclusion

§ Git enables you to

• collaborate with arbitrary number of people

• never lose something

• have the whole history available

§ on any text-based project, e.g.:

• Paper / reports / books

• Computer scripts (R, Matlab, ...)

• Plain text data sets (CSV, GeoJSON, XML-formats, ...)

• HTML web sites

Page 39



Git: Hosting services

§ Setup own server

§ GitHub – github.com

§ GitLab – gitlab.com

§ Bitbucket – bitbucket.org

Page 40

free, max. 3 people

free

free, max. 5 people

https://github.com
https://about.gitlab.com
https://bitbucket.org


Git: Hosting services

§ Host repositories (download, backup)

§ Graphical interface for git

• Create, modify, delete files

• History views

• Diff views

• Blame views

Page 41



Git: Hosting services

§ Issue tracker (TODOs, discussions)

§ Code reviews (Pull requests)

• Set of commits author wants to integrate in remote repo

• View changes / comment on them

• Collaborators review, author reiterates

• Pull request gets merged

§ Project management

• Milestones (with deadlines, responsible people, issues)

Page 42



Exercise: Get example files from GitHub

§ https://github.com/envinf/Hydroinformatik-II

§ Per Git:
git clone https://github.com/envinf/Hydroinformatik-II

§ Or as ZIP

Page 43

https://github.com/envinf/Hydroinformatik-II


Exercise / HW: Qt Creator installation

§ Download: https://www.qt.io/offline-installers

§ (OR USB Stick)

§ Installation

• Skip login

• Qt 5.12.2 (Windows / macOS / Linux)

• Qt Creator 4.8.2

§ Open exercise in Qt Creator

• Open project -> BHYWI-08-01-E.pro -> Click configure

• Build executable by clicking green arrow button

Page 44

https://www.qt.io/offline-installers


Exercise / HW: Qt Creator installation

Page 45


