Innovators and imitators: how environmental bacteria conquer new chemical spaces

Victor de Lorenzo
Systems Biology Program, Centro Nacional de Biotecnología, CSIC, C/ Darwin, 3 (Campus de Cantoblanco). Madrid 28049, Spain.
vdlorenzo@cnb.csic.es

The still-evolving 2,4-dinitrotoluene (DNT) pathway of Burkholderia cepacia R34 will be discussed as a case of emergence of new metabolic capabilities in environmental bacteria. In vivo reactions indicated that reactive oxygen species (ROS) generated by the faulty (i.e. uncoupled) reaction of the precursor enzymes with DNT elicit genetic diversification. This could in turn ease the solution of the biochemical and physiological problem. These observations provide a view of evolution as a sort of heterotic computing in which the problem is embodied in the physicochemical frame of the cell and the exploration of the solution space is pushed by its endogenous dynamics. On this basis, it is plausible that some members of a given microbial community are prone to innovate their metabolic capacities much faster than others while the rest may benefit from such innovation through horizontal gene transfer.