

Optimizer

Description of Usage

Contributors:
Burkhard Oelschla gel, Uwe Franko, Eric Bo necke, Katharina
Meurer, Nadia Prays, Felix Witing
Optimizer Version 2015

II

III

INTRODUCTION .. 4

THEORY .. 7

SIMPLEX ALGORITHM ... 7

UNCERTAINTY CALCULATION WITH FISHER INFORMATION MATRIX ... 9

HANDLING .. 10

DEFINITION AND SELECTION OF PARAMETERS ... 10

DEFINITION AND SELECTION OF RESULTS ... 12

MODEL CALL ... 13

OPTIMIZER .. 13
Error Assessment ... 14
Sensitivity analysis ... 14
Adaptation of optimization effort ... 14
Finishing and results evaluation .. 15
Uncertainty analysis .. 15

BATCH CALL OF THE OPTIMIZER .. 16

ADDITIONAL TOOLS .. 17

MOVING DATA INTO TEXT FILES USING PARMADAPT.EXE... 17

EXTRACTION OF DATA FROM TEXT FILES USING RESIMP.EXE ... 19

DATABASE PROCESSING USING SQLPRO.EXE ... 21

MANAGING SERIAL TREATMENTS USING OMA.EXE .. 22

REFERENCES ... 25

4

Introduction

Optimizer (optimizer.exe) is a program which can be used to fit model parameters to
observed data and calculate sensitivities of model parameters. Although originally
designed for the models CANDY and CCB, optimizer.exe can be used for calibration
and optimization of any model which uses a database structure.

Generally a model can be seen as a composite of several inputs (constants, drivers,
and initial values), a calculating kernel, and an output dataset (Figure 1).

Figure 1: General model scheme.

The optimizer has a slightly different view point: all parts of the original model from
Figure 1 are wrapped in one model unit (Figure 2, dashed blue box). This model unit
is surrounded by a ‘parameter’ dataset (which can be related to any model input,
(Figure 2, brown boxes)) and by a result dataset (containing actual model outputs
together with specific destination values – the target (Figure 2, green boxes). The
optimizer calls this more abstract model composition (Figure 2, red dashed box) and
makes an assessment of the results (error function value (Figure 2, right blue arrow))
to decide about changing the problem-specific parameters by applying the simplex
algorithm (Figure 2, left blue arrow).

Figure 2: Optimizer framework.

5

Using the optimizer requires (Figure 3):

 the selection of items (parameters of the problem)

 specification of the objective (values that should match with the model
outputs)

 the model call

Figure 3: Requirements of the optimization set up.

To solve an optimization problem the optimizer.exe requires an ACCESS database
with one table describing the parameters of the problem (here called “parameter
interface”) and another table containing the destination values (further on called
“result table”). Furthermore a BATCH program is required containing a code that
includes the following steps:

a) preprocessing: transfer the actual parameters to the proper datasets of the inner
model

b) model call: run the inner model with this changed data environment

c) postprocessing: transfer the required outputs to the result table

The optimizer changes the parameter values following a special algorithm until the
best fit between both datasets (model & target) is found or the maximum number of
iterations is reached. The quality of the fit is calculated for each iteration step. It is
given by the value of an error function (usually the sum of squared deviations).

6

Good modeling practice demands that the modeler provides an evaluation of the
confidence in the model. This requires i) a quantification of the uncertainty in any
model results (uncertainty analysis) and ii) an evaluation of how much each input is
contributing to the output uncertainty. Sensitivity analysis addresses the second of
these issues, performing the role of ordering inputs by importance. It is analyzing the
impact of the inputs on the variation of the output. Model calibration is typically
done using only the most sensitive model parameters.

The sensitivity analysis of optimizer.exe is a local sensitivity analysis, which is
analyzing the effect of a single parameter change on the model results. It is designed
to give an overview on parameter sensitivities while having only little computational
demand. Local methods of sensitivity analysis are addressing sensitivity relative to
point estimates of parameter values. They do typically not attempt to fully explore
the input space. Methods of global sensitivity analysis examine sensitivity with
regard to the entire parameter distribution.

There are several other tools that might support the optimization process:

 parmadapt.exe (used to select data from the database that is relevant

for the optimization and write the data into model-specific input files.)

 resimp.exe (used to import simulation results from model-specific

output files into the database and to compare the results with measured

data (objective function))

 oma.exe (master call for sequential optimization of multiple tasks)

 sqlpro.exe (used for post processing of the results. Executes

calculations within the database via SQL queries)

7

Theory

Simplex algorithm

The optimization procedure of the optimizer.exe is based on the approach of Nelder
and Mead (1965), also known as downhill simplex method. This numerical method is
used to find a minimum of a nonlinear function having more than one independent
variable (Press et al. 1992). During a series of steps the process estimates a local
optimum of a problem until it possesses a unique value. The concept uses the
geometric figure of a simplex, which, in n dimensions, consists of n + 1 vertices
(points) and interconnecting line segments. Hence, in one dimension the simplex is a
line, in two dimensions a triangle and a polyhedron for three dimensions. Each point
corresponds to a parameter set for which a functional value can be calculated and
compared with the other points of the simplex. A decision process selects for each
iteration step if the “worst” point W is replaced by a new and (hopefully) better
point, while the “best” point is kept. The movement to the optimum is realized by
three specific operations: reflection, contraction, and expansion.

For minimizing the function yi at Pi (with yw = max(yi) and yB = min(yi)) the
procedure is as follows:

1. Ordering of points according to their function values as in 𝑦𝐵 < 𝑦𝑖 < ⋯ < 𝑦𝑁 < 𝑦𝑊

 (1:

𝑦𝐵 < 𝑦𝑖 < ⋯ < 𝑦𝑁 < 𝑦𝑊 (1)

Please note that the index “i” is the general index and “W”, “N” and “B” describe the
worst, next worst and best points.

2. Calculation of the centroid of all points (except for the worst point) (𝑀 =
1

𝑛
∑ 𝑃𝑖

𝑖≠𝑤
𝑖=1

 (2):

𝑀 =
1

𝑛
∑ 𝑃𝑖

𝑖≠𝑤
𝑖=1 (2)

3. Reflection of worst point W as in 𝑅 = (1 + 𝛼)𝑀 − 𝛼𝑊
 (3:

𝑅 = (1 + 𝛼)𝑀 − 𝛼𝑊 (3)

4. If the function value yR of the reflected point R lies between yB and yW, the actual
worst point W is replaced by R If yR is lower than yB (the current best) there is a new
minimum and the point R is expanded to E (𝐸 = 𝛾𝑅 + (1 − 𝛾)𝑀
 (4):

𝐸 = 𝛾𝑅 + (1 − 𝛾)𝑀 (4)

If yE < yB, W is replaced by E; else the expansion has failed a W is replaced by R.

8

5. In the case that the result for the previous reflected point R is between the worst
and the second worst case yW > yR > yN a new W is calculated by contracting W
using 𝐶𝑅 = 𝛽𝑅 + (1 − 𝛽)𝑀
 (5:

𝐶𝑅 = 𝛽𝑅 + (1 − 𝛽)𝑀 (5)

If the reflection was not successful (yR ≥ yW) this one dimensional contraction is
performed from the initially identified worst point (𝐶𝑅 = 𝛽𝑊 + (1 − 𝛽)𝑀
 (6):

𝐶𝑅 = 𝛽𝑊 + (1 − 𝛽)𝑀 (6)

Assuming the all previous trials for improvement failed (yE > yW), new points are
calculated by a n-dimensional contraction (shrinkage) towards the best point B

(𝑁𝑛𝑒𝑤 =
1

2
(𝑃𝑖 + N) and 𝑊𝑛𝑒𝑤 =

1

2
(𝑃𝑖 + W) (7)

and the process is restarted.

𝑁𝑛𝑒𝑤 =
1

2
(𝑃𝑖 + N) and 𝑊𝑛𝑒𝑤 =

1

2
(𝑃𝑖 + W) (7)

Within the next iteration step Nnew, Wnew and B will be re-ordered according to
𝑦𝐵< 𝑦𝑖 < ⋯ < 𝑦𝑁 < 𝑦𝑊 (1
and labelled accordingly.

The parameter values used for reflection (𝛼), expansion (𝛾) and contraction (𝛽) are
α = 1, β = 0.5 and γ = 2.

Figure 4 A: Basic triangle simplex is BNW (red) with the worst point W, next best point N and best point B. M
is the centroid of all Pi without W, thus of B and N. R is a reflected W. E is reflected and expanded W. CR and
Cw are contraction points from R or W depending on the result of the reflection. Adapted from Bezerra et al.

(2016) and Nelder and Mead (1965). B: If the direction is wrong and reflection, expansion and contraction
failed, a multiple contraction of the basic triangle BNW towards the best point B takes place and results in a

new triangle BNnewWnew.

9

10

Uncertainty calculation with Fisher Information Matrix

The Fisher Information Matrix (FIM) is calculated to get additional uncertainty
information about the optimized parameters for the best fit. It requires the sensitivity
of the model output f and the variance of the observed values at each observation
point.

The sensitivity S is calculated for each observation point o following 𝑆(𝑖, 𝑜) =
∆𝑓𝑜

∆𝑓𝑖
=

𝑓𝑜(𝑝𝑖
𝑜𝑝𝑡

)−𝑓𝑜(1.01∗𝑝𝑖
𝑜𝑝𝑡

)

−0.01∗𝑝
𝑖
𝑜𝑝𝑡 (8:

𝑆(𝑖, 𝑜) =
∆𝑓𝑜

∆𝑓𝑖
=

𝑓𝑜(𝑝𝑖
𝑜𝑝𝑡

)−𝑓𝑜(1.01∗𝑝𝑖
𝑜𝑝𝑡

)

−0.01∗𝑝
𝑖
𝑜𝑝𝑡 (8)

Every parameter pi is increased by 1% keeping the optimized values for all other
parameters.

The sensitivity describes the importance of each observation point for the parameter
estimation.

Figure 5: Example of the parameter sensitivity over time, showing the decreasing importance of the
observations after 50 days.

Knowing the sensitivities, the FIM elements for all parameter combinations can be

calculated ([FIM]ij = ∑
1

𝜎𝑜
2

∂fo

∂pi

∂fo

∂pj
o ≈ ∑

1

𝜎𝑜
2

∆fo

∆pi

∆fo

∆pj
o

 (9). FIM is a symmetric matrix ([FIM]ij = [FIM]ji).

[FIM]ij = ∑
1

𝜎𝑜
2

∂fo

∂pi

∂fo

∂pj
o ≈ ∑

1

𝜎𝑜
2

∆fo

∆pi

∆fo

∆pj
o (9)

The inversion of FIM provides the covariance matrix [COV] ([𝐹𝐼𝑀]−1 = [𝐶𝑂𝑉] =

[
𝜎1

2 ⋯ 𝜎1𝑛

⋮ ⋱ ⋮
𝜎1𝑛 ⋯ 𝜎𝑛

2
] (10):

11

[𝐹𝐼𝑀]−1 = [𝐶𝑂𝑉] = [
𝜎1

2 ⋯ 𝜎1𝑛

⋮ ⋱ ⋮
𝜎1𝑛 ⋯ 𝜎𝑛

2
] (10)

[COV] contains the relevant statistical information about the optimized parameters.
The main diagonal consists of the variances σi² and the other elements represent the
covariance σij between parameter i and j.

The mean parameter value including the standard deviation is: 𝑝𝑖 ± √𝜎𝑖
2. The

correlation between two parameters is: 𝑟𝑖,𝑗 =
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
.

Handling

After opening the optimizer.exe, the user has the possibility to

 select the parameters, which have to be optimized,

 define the result table, which includes the measurement data on which

the parameters shall be optimized

 define the batch call for the model run

 start a sensitivity analysis of a specified dataset and/or directly start

the optimization process

 calculate the uncertainty of the parameters after successful optimization

Definition and selection of parameters

The sheet [parameters] of the optimizer user interface enables the selection of
parameters, which should be integrated in the optimization routine. Therefore, they
have to be listed in the PARM_INT table of the database. If not yet existing, the
PARM_INT table will be incepted in the database after starting the optimizer.exe and
opening a database. Otherwise the [change database] button can be used to select a
new or another database. Selection of parameters can be made over the user interface
via [add parameter record] (Figure 6) or directly in the PARM_INT table using i.e.
Microsoft ACCESS. If PARM_INT is created over the interface of optimizer.exe and
more than one parameter is added, additional attributes for the correlation between
parameters are inserted.

12

Figure 6: User interface for the parameter definition.

The definition of the parameters can be done by clicking the [add parameter record]
button. In the parameter definition dialog (Figure 7) you may select the required
parameters from the specific table (double-click). All columns of the table are listed
in the window “selectable parameters”. Select the required parameter and the
corresponding record in the “selectable records” window as well as the “index field”
for a unique identification of this record. Insert the selection into the PARM_INT
table by clicking the [use selection] button. Proceed in the same manner for
additional parameters.

Figure 7: Parameter selection dialog for adding a new parameter record.

13

The PARM_INT table now contains closer specifications about the origin table
(fname), the column (pname), and selection criterion (selection) of each parameter
(Figure 6).
Standard values for e.g. maximum and minimum values will be inserted
automatically, after selecting a record with the [add parameter record] button. The
minimum value is set as a tenth and the maximum value is the threefold of the
current parameter value. However, it is important to ensure that minimum and
maximum values are in a scientifically appropriate range in order to get reasonable
parameter estimation.
Before starting an optimization, it is recommended to test the sensitivity of the error
function for each parameter. This is automatically accomplished by increasing the
initial value IVAL for each parameter by a defined step width (STEP). The current
parameter value of each optimization step, as well as the final optimized value, is
stored in the AVAL column.
If you detect a non-reasonable record in the PARM_INT table (Figure 6) you can
delete it by using Ctrl + Del.

The structure of the PARM_INT table is as follows:

attribute Meaning
item_ix unique index
fname table containing the parameter
pname attribute name (column) of the parameter
selection unique selection criteria to define a special record in fname
minimum lower limit of the parameter used for optimization
maximum upper limit of the parameter used for optimization
ival initial value; starting point of optimization
step step width for the first optimization run
aval currently optimal value
error standard deviation of the parameter
alias symbolic name for the parameter (user specific)

Definition and selection of results

By clicking on the sheet [result table], the user can select the database table that
contains the data, which shall be used to calculate the distance between the model
and the target within the error function. Selection of the specific table can be made
via the drop down menu (Figure 8, red box). With the filter condition (Figure 8, blue
box), data can be further limited to select only meaningful records and leave out
records that are not sensitive to parameter variation. If no limitation is required, the
input has to be a true condition, e.g. “1 = 1”. It ensures that all the data from the
selected file are shown in the window below (by clicking the [open … as result table]
button) and, consequently, taken into account for the optimization process.

Information about the model and observed value are mandatory. The specification of
an index field (required for grouping observations) and observed variance (required

14

for uncertainty analysis) are optional. All selections are made via the drop down
menus at the bottom of the window (Figure 8, green box).

Figure 8: Specification of the objective function: Selection of table including measurement values (red box),

filter conditions (blue box), and indication of observed and simulated values within the data table (green box).

Model Call

To specify the model call click on [open runfile] within the [model call] sheet and
select the right batch file which contains the model algorithm and possible pre- and
postprocessing steps for storing the results (Figure 9). The content of the batch file
will be visible in the window below. Changes can be made by the [edit runfile]
button. It is recommended to test the model run by using the option [check model
run] before starting the optimization. The model run was successful if it didn’t crash
and the result file is updated.

Figure 9: Example for a model call.

Optimizer

15

In the “optimizer” sheet you can start the optimization process as well as a couple of
supporting procedures. For different purposes it is possible to select the preferred
error assessment (Figure 10, yellow box), running a sensitivity analysis (Figure 10,
green box), as well as an uncertainty analysis (Figure 10, blue box), and start the
optimization process within limited settings (Figure 10, red box).

Figure 10: CANDY parameter optimization.

Error Assessment

The area “error assessment” provides the user the possibility to choose between three
types of error functions/objective functions (Figure 10, yellow box):

 root mean square error: 𝑅𝑀𝑆𝐸 = √
∑(𝑂𝑏𝑠−𝑀𝑜𝑑)2

𝑛

 sum of normalized RMSE’s for different observation types (groups):

 𝑁𝑅𝑀𝑆𝐸 = ∑
𝑅𝑀𝑆𝐸𝑖

𝑟𝑎𝑛𝑔𝑒(𝑂𝑏𝑠𝑖)

 sum coefficient of variation of the root mean squared error for different

observation types (groups): 𝐶𝑉(𝑅𝑀𝑆𝐸) = ∑
𝑅𝑀𝑆𝐸𝑖

𝑂𝑏𝑠𝑖̅̅ ̅̅ ̅̅ ̅

The last two options are recommended if the set of observations is not homogeneous
(i.e. the observations have different units). In this case the index field of the result
table (figure 8) is used to identify the groups.

Sensitivity analysis

Before starting the optimization process, it is strongly recommended to test the
sensitivity of the parameters (Figure 10, green box), in order to avoid an unnecessary
optimization of parameters that do not have a strong impact on the values within the
objective function.

16

During the sensitivity analysis each parameter is only once increased by a given
factor. The sensitivity analysis can be adapted by changing the parameter “step size”,
given as percentage of the specific parameter value (default: 5 %).

Adaptation of optimization effort

Depending on the task the optimization may take some time. Therefore the user can
define two restrictions (Figure 10, red box). With “Nmax” you can define the
maximum number of iteration steps the optimizer can run for finding the optimal
parameter value. The “criterion” defines the condition to finish the minimum search
of the error. The iteration will stop if the relative difference of the extreme values
(max and min) of the error function at the corresponding simplex points is lower
than the given tolerance criterion Ctol (here 0.0001):

2 ∗
|𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛|

|𝑌𝑚𝑎𝑥+𝑌𝑚𝑖𝑛|
< 𝐶𝑡𝑜𝑙 (11)

Results are stored in the PARM_INT table within the aval column, but can also be
found in an extra text file (opti_result.txt), which is stored in the same directory as
the optimizer.exe.

Finishing and results evaluation

The finishing window of the optimization provides two options (Figure 11): First, to
use result values for e.g. uncertainty analysis with Fisher Matrix Information or,
second, to exit using the initial parameter values (Figure 11, green box).

Figure 11: Finishing window of the optimization.

To check your results you have to pay attention to a few things.

1. Check in opti_result.txt if the number of iteration steps was sufficient and if

the optimization process has finished successfully.

17

2. Did you choose the right range for minimum and maximum parameter

values?

3. The Nelder-Mead-method is sensitive to the initial values. Change the starting

point of optimization (IVAL) to make sure, that the global minimum of the

error function was found instead of a local minimum.

Uncertainty analysis

This feature is only available if the result table contains information about the
variance of the observations. It will be skipped if the “ob.variance” field (Figure 8) is
left empty.

“Uncertainty (FIM)” (Figure 3, blue box) means uncertainty calculation from the
Fisher Information Matrix. This process includes additional model runs. The first run
uses the optimal values of the parameters, followed by model runs where each
parameter is changed by 1%.

You can find the result of the uncertainty calculation in the text file (opti_result.txt).
There optimized parameters with mean value, standard deviation (±), and
correlation between the parameters are stored. The results are also kept in the
PARM_INT table containing a record for each parameter:

 error: standard deviation of this parameter

 r_n: correlation coefficient between this parameter and the nth parameter.

With the drop down selection each parameter can be chosen to check the sensitivity
of each observation. Names are visible when parameters have an alias name in the
PARM_INT table. The graphic can be helpful for the proper selection of the dataset
and for future experiment design (compare with Figure 5).

Batch call of the optimizer

Calling the optimizer.exe is possible via BATCH call using the following parameters:

DB=<database file>

RT=<result table with observations and model results>

CD=<selection condition if not all records of the result table shall be included>

OB=<field name (column) of the observation data>

OV=<field name of the variance data>

MO=<field name of the model results>

18

IX=<field name of the index that separates different data types>

EF=<error function: RMSE/NRMSE/CV(RMSE)>

NX=<maximum of iteration steps>

KR=<tolerance criterion for the optimal solution>

RF=<run file (batch) for the model call>

RS_<dataset name> : textfile with the optimization protocol

GO : start the optimization process

Example:

optimizer.exe DB=CCB_bdfsa.mdb RT=cn_result CD="id = 5 and year = 2015"
OB=meas_value OV=? MO=sim_value IX=M_IX EF=CV(RMSE) NX=100
KR=0.0001 RS_Clossa_17 RF=modcall.bat GO

Additional Tools

In case that the model input and/or output are only available in *.txt files, the tools
parmadapt.exe and resimp.exe might be helpful to integrate the data into the
optimization scheme (Figure 12).

19

Figure 12: Interface connection of parmadapt.exe and resimp.exe within the optimizer framework to enable
the work with text files.

Moving data into text files using parmadapt.exe

The parmadapt.exe provides the opportunity to automatically
update data from the database into *.txt files. This can be a
helpful tool when using the optimizer.exe with models that
do not have a database interface. In this way parameters that
are to be optimized can be updated within the input files of
the model before each model run. Each data item is
considered as a list of the elements: '0'..'9','.','-'.

The name of the *.txt file, as well as exact information about the position (line and
column) of the parameters have to be given. The interaction between the elements is
visualized in Figure 13.

Description of the specific parameters has to be given in a new table within the
database:

attribute meaning type

parameter name of the parameter (not mandatory) Text
fname name of the original *.txt file into which the

parameters have to be updated (has to be in the
same directory as the database)

Text

line line number of the parameter within the *.txt file Integer
item column number of the parameter within the *.txt

file
Integer

cntnt value of the parameter which has to be updated Double
comment space for your own information (not mandatory) Text
hrz selection criteria of the parameter Text

Calling the parmadapt.exe is possible via BATCH call by the following parameters:

DB=<database file>

CL=<table name containing the control list>

T=<lag time in ms> (to synchronize the system cache on slow PC)

GO process the parameters and wait for start

! start after processing the parameters (no wait)

Example:

parmadapt.exe db=demo.mdb t=40 cl=parmsoils go !

20

Figure 13: Links between A) the parameter interface (PARM_INT) of the optimizer and the mandatory

parameter table (here “parmsoils”) within the database, and B) the transfer from the database into a text file.

If parmadapt.exe is called without the “!” command within the batch call the
interface appears as shown in Figure 14.

Figure 14: Interface of parmadapt.exe.

Extraction of data from text files using resimp.exe

With the resimp.exe the user has the possibility to load
values of selected columns from *.txt files (e.g. output/result
files) into the database. In this context a value is a list of the
elements: '0'..'9', '.', '-', '/'. Selected data is stored in an
automatically new created database table. It has to be noted
that the resimp.exe additionally loads the first and second
column of the *.txt file by default, since these columns
contain date information in most cases.

Calling the resimp.exe via BATCH call requires information about the *.txt file and
the column that has to be extracted. The following parameters are used:

21

DB=<database name>

RT=<result table> (if the call contains a “*” the table will be re-created)

HD=<number of headlines to be skipped of the text file to reach the required table
without header>

Ix=<item number x(x <=3) to be included in a list of variables (table column Wx)
with type double>

or

IN=<number of a single input column from the text file additionally to the first two
columns, that are supposed to contain year and day number >

Example:

resimp.exe db=demo.mdb rt=vwc2 in=3 fn=vswc.out go !

If resimp.exe is called without the “!” command within the batch call the interface
appears as shown in Figure 15Figure 14.

Figure 15: Interface of the resimp.exe.

The interaction between the elements is visualized in Figure 16Figure 13.

22

Figure 16: Batch call (A) for inserting specific rows of a model output file (here “nflux.out” - B) into the

database (C).

Besides the optimization purpose the application of resimp.exe can be helpful to
obtain more clarity when working with large text files.

Database processing using sqlpro.exe

To make the data suitable for the optimization process, it
might be necessary to apply the sqlpro.exe to bring data into
the result table. The sql processor sqlpro.exe is designed to
execute scripts of several sql statements (Figure 17).

It can be called with the following parameters:

DB=<name of the ACCESS database>

SQL=<name of the text file containing the sql statements>

GO (optional)

$xyz=<value> (optional)

Remarks:

Without specifying “GO” in the program call, you see a window comparable to
Figure 9. Here, it is possible to edit the script, check the parameters, and finally
execute the script. If the last statement provides a dataset, it will be shown on the
sheet [result data set].

23

Any string starting with “$” is interpreted as parameter in the SQL script. This is
helpful to make sql scripts more flexible, for example when different treatments with
changing IDs have to be addressed. All appearances of $xyz will be replaced by
<value> prior execution of the script. The number of parameters is not limited. The
use of meaningful names (other than $xyz) is strongly recommended.

Example:

sqlpro.exe DB=demo.mdb SQL=anything.sql $snr=17 GO

Supported sql statements are:

 Select

 Insert

 Update

 Delete

 Drop

Remarks:

An additional (non sql) statement is the term “edit_table” that opens a table in an
edit mode to change values.

Furthermore, it is possible to insert a dataset into a *.txt file using the keyword
“totxt”, followed by the desired name of a text file instead of “into” with a table
name.

For a better documentation of more elaborated scripts it is possible to include
comments by starting the line with the “#”.

24

Figure 17: Interface for the sql processor.

Managing serial treatments using oma.exe

Oma.exe is an optimization master, which can be used for e.g.
optimization of a series of treatments with almost one click.
The user has to provide a template for the model call which
includes preprocessing, model call, and postprocessing of the
data similar to the optimizer. The call may contain a
replaceable parameter symbol, which relates to the actual

treatment as described in Fehler! Verweisquelle konnte nicht gefunden werden.,
where “##” is used.

It is required to prepare the master table (Figure 18) with details about the
infrastructure and the table “master_int”, which is a collection of the parameter
interfaces for each optimization problem.

25

Figure 18 : Example for the master table. Here, the condition is set to 1=1 (true) for each treatment; therefore all

records in the result table will be used with the error function NRMSE (errfunc) for separating the different
observation types by means of the field M_IX in tmp_cn_result. No Variance field is specified (var_field: ?);

therefore the results will contain no error information.

The structure of the master table is equal to PARM_INT with an additional attribute
that is used as control field (trtmnt_id in Figure 19):

attribute meaning type

trtmnt_id treatment index integer
trtmnt name of the treatment text
restab text
condition text
obs_field text
mod_field text
state -99 excluded record, -1 record to be processed, 0

included record
integer

Var_field (optional) text
Idx_field (optional) text
Errfunc one of : RMSE / NRMSE / CV(RMSE) (optional) text

Figure 19 : Master_int table: structure and example of a record set.

26

After a blank start of oma.exe you have to specify the database that shall be used.
This automatically selects the directory of the database as working directory. From
this database you have to select the master table (Figure 18) with all required
information for the optimization run (see chapters “Definition and selection of
parameters” and “Definition and selection of results”). This table should specify at
least the names for columns with e.g. treatment ID as control field, treatment name
for the result file, selection condition, observed data, simulated data, and variance of
observed data (compare with Figure 8, green box). Then select the control field which
acts as a key. Furthermore you have to limit the maximum iteration steps and define
a value for the tolerance criterion at which the optimization is finished. After
choosing the model call, click on [go] and start the serial optimization. The batch file
will be called by the optimizer and needs to prepare the result table at each model
call. Results will be saved in *.txt files in the database folder. After each model run
the result table (here tmp_cn_result) and the columns obs_field and mod_field are
used by the optimizer.

Figure 20: Optimization master for an example where “##” is used as the replaceable parameter.

27

For each record of the master table oma.exe will prepare and execute a temporary
batch call for the optimizer (tmp_opti.bat) and a temporary model call
(tmp_modcall.bat) that will be used by the optimizer. Furthermore, it is possible to
have an additional batch file that is called after the optimizer has finished one task.
These batch calls are based on the specified templates where the optional parameter
string is replaced by the current value of the control field. If the optimization has
finished, the result values of the parameters are transferred into the master_int table
and a post optimization batch will be executed if prepared in advance.

Oma.exe itself can be called in a batch program using the following parameters:

DB=<database file>

MT=<name of the master table>

MF=<name of the control field (master field)>

RF=<template for the model call (may contain a parameter symbol)>

PF=<batch file that is executed after each finished optimization (optional)>

PRS=<parameter symbol that shall be replaced in batch files (optional)>

GO process is started automatically

Example:

oma.exe DB=ccb_data.mdb MT=master_opt MF=trtmnt_id RF=run_ccb.bat GO

Extended example using OMA

Problem: a model calibration has to be performed for a number of treatments where
always the same parameters have to be adapted. Here we use the CCB model and
want to find the optimal pool distribution at the beginning for eight different bare
fallow plots.

The master_opt table looks like this (Figure 21: content fo the
master_opt table in this exampleFigure 21):

Figure 21: content fo the master_opt table in this example

28

We have specified where the system will find the observed values (obs_field) the
simulation results (mod_field) and the variance of the observations that are available
in this case. As an index field (idx_field) we use the fl_id despite it is not necessary as
the error function (errfunc) is set to RMSE and anyway, we will optimize each
treatment separately. To test the approach we have selected only the treatments 1
and 2.

The master_int contains all the information for the optimizer- here already
containing the results for the first two treatments (Figure 22).

Figure 22: abbreviated content of the master_int table

29

The batch call for oma.exe is:

oma.exe DB=d:\..\ccb_bf.mdb MT=master_opt MF=trtmnt_id RF=ccb_run.bat PF=post_opt.bat
PRS=##

The batch files that are specified to run the model and for the post optimization
procedure are ccb_run.bat:

ccb.exe DB=d:\..\ccb_bf.mdb ID=## go !
sql_pro.exe DB=d:\..\ccb_bf.mdb SQL=d:\..\get_res.sql go !
copy ccb_report.txt ccb_report##.txt

and post_opt.bat:

sql_pro.exe DB=d:\..\ccb_b.mdb SQL=d:\..\postopt.sql $id=## go !
copy ccb_report.txt ccb_report##.txt

In each batch file is included the execution of one sql script that prepares the results
for the optimizer get_res.sql:

DELETE * from simres
go

INSERT INTO simres (sim_value, meas_value, fl_id, [year], m_ix ,vrnz)
SELECT sim_result.sim_value, measurements.meas_value, sim_result.fl_id,
measurements.year, sim_result.m_ix,measurements.vrnz
FROM (sim_result INNER JOIN measurements ON (sim_result.year_num =
measurements.year_number) AND (sim_result.m_ix = measurements.M_IX) AND
(sim_result.fl_id = measurements.FL_ID)) INNER JOIN site_state ON sim_result.fl_id =
site_state.FL_ID WHERE (((sim_result.m_ix)=7) AND ((site_state.status)=1));
go

And collects the final resulst of the optimization including the uncertainty analysis
postopt.sql:

DELETE from opti_result where fl_id=$id
go

INSERT INTO opti_result (parm, optval, ERROR, r_2, r_3, r_4, fl_id)
SELECT parm_int.alias AS parm, parm_int.aval AS optval, parm_int.error, parm_int..r_2,
parm_int.r_3, parm_int.r_4, $id AS fl_id FROM parm_int
go

DELETE from sim_result_all where fl_id=$id
go

INSERT INTO sim_result_all (sim_value, meas_value, fl_id, [year], m_ix ,vrnz)

30

SELECT sim_result.sim_value, measurements.meas_value, sim_result.fl_id,
measurements.year, sim_result.m_ix,measurements.vrnz
FROM (sim_result INNER JOIN measurements ON (sim_result.year_num =
measurements.year_number) AND (sim_result.m_ix = measurements.M_IX) AND
(sim_result.fl_id = measurements.FL_ID)) INNER JOIN site_state ON sim_result.fl_id =
site_state.FL_ID
WHERE (((sim_result.m_ix)=7) AND ((site_state.status)=1))
go

Obviously, the master process will replace the symbol ## in both batchfiles with the
current treatment ID. This is then used as parameter for the included program calls
and as parameter for the postopt.sql with the construction $id=##

References

Bezerra, M. A., Q. O. dos Santos, A. G. Santos, C. G. Novaes, S. L. C. Ferreira and V.
S. de Souza (2016). "Simplex optimization: A tutorial approach and recent
applications in analytical chemistry." Microchemical Journal 124: 45-54.

Nelder, J. A. and R. Mead (1965). "A Simplex Method for Function Minimization."
The Computer Journal 7(4): 308-313.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Downhill
simplex method in multidimensions. Numerical recipes in C: the art of scientific
computing. Cambridge University Press: 408-412.

