PSGRAF

C/C++ FUNCTIONS FOR
SCIENTIFIC POSTSCRIPT GRAPHICS

Copyright © K. Roth, 1992-2004 Version: 3.0.1 June 23, 2004

LEGAL CONSIDERATIONS

PSGRAF is free software; which means that you are free to
use it and to redistribute free and verbatim copies of the
source code. PSGRAF is not in the public domain, however,
it is protected by copyright.

e You are free to modify the source of PSGRAF for your
own, private use.

e You may distribute modified, non-commercial versions
which retain the name “PSGRAF", provided that (i) you
indicate these modifications clearly in the file “PSgraf3.h”
under “modifications” as well as at the beginning of every
single file that you modified or added, (ii) you distribute it
under the same legal terms as PSGRAF is distributed, and
(iii) you include the copyright notice and the first paragraph
of the file “PSgraf3.h” without any change.

e You may incorporate parts or all of PSGRAF into your
own non-commercial software and distribute it, provided
that (i) you incorporate the PSGRAF copyright notice at
a prominent place in your software and documentation, and
(ii) you distribute it under the same legal terms as PSGRAF
is distributed.

e You are not allowed to include PSGRAF nor any part of
it in any product that is sold commercially, i.e. whose cost
exceeds that of media, shipping and handling, without prior
written consent of Kurt Roth.

PSGRAF 1S LICENSED FREE OF CHARGE. THEREFORE
ALL THE FILES WHICH IN THEIR ENTIRETY CONSTITUTE
PSGRAF, ARE PROVIDED “AS IS”, WITHOUT WARRANTY
OF ANY KIND, WHETHER EXPRESSED OR IMPLIED. YOU
ARE RESPONSIBLE FOR ASCERTAINING THE FITNESS OF
PSGRAF FOR ANY SPECIFIC USE, AND CONSEQUENTLY
YOU ASSUME ALL THE RESPONSIBILITIES AND COST THAT
MAY ARISE FROM USING IT.

Kurt Roth

Institute of Environmental Physics
University of Heidelberg

D-69120 Heidelberg

GERMANY

kurt.roth@iup.uni-heidelberg.de
http://www.iup.uni-heidelberg.de/ts/index.html

1 Preliminaries 1

1.1 Introduction e e e e e e e e e 1
1.2 Licensing e 1
1.3 Installation and Use in a UNIX Environment 1

1.4 Paradigms L 2
1.5 Data Structures 2
1.5.1 Vectorin Space 3

1.5.2 Color e 3

1.6 Operator Overloading 3
1.7 Compatibility with Previous Versions. 3
1.7.1 Removed Operators e 3

1.7.2 Modified Operators. 4

1.8 Usage of this Manual 4
1.8.1 Reference Manual 4

1.82 Cook Booko 4

I Reference Manual 5
2 Two-Dimensional Objects 7
2.1 Imitialization and Closing 7
2.2 Coordinate Systems and Clipping 7
2.2.1 Coordinate Systems 7

2.2.2 CHppING . . .« v o 9

2.3 Color. e 9
2.4 Pens and their Modes 10
2.5 Movements and Straight Lines L oo 11
2.6 Simple Objects e 12
2.6.1 Parallelogram L L 12

2.6.2 DataPoint 12

2.6.3 Symbol 12

2.6.4 ArTOW 12

2.6.5 Polygon 13

2.7 Text and Numbers e e e e 13
2.8 Contour Plots e 15
2.8.1 Grids 15

2.8.2 Setting Contour Levels 17

2.8.3 Contouring e 17

2.9 Bitmaps and TIFF Images 19

3 Three-Dimensional Objects 21
3.1 Projection L 21
3.2 Simple Objects e 22
3.3 Contour Blocks e 23

4 Auxiliary Functions 25
4.1 Output Options e e e e 25
4.2 Arithmetic Operations e 25
4.3 Vector Operations e e 25

5 Private Functions 27
II Cook Book 29
Coordinate Systems and Pen Attributes 32

Data Points and Functions 34

ii

Datafile

Text

Grids

Contours in Two Dimensions
Contours in Three Dimensions

Contouring and Slicing Data Blocks

36

38

40

42

44

46

iii

IIT Appendix
A The EBTEX style file PSgraf.sty

B The Header Files
B.1 PSgraf3.hi. e
B.2 PSgraf p.h e

C Private Implementation Notes
C.1 Layered Text with TeXfonts

D Bugs and Fixes
References

Index

49
51

53
23
95

59
59

61
63

65

1
Preliminaries

1.1 Introduction

PSGRAF is a set of C++ functions that facilitates the creation of scientific graphics. Actually,
the functions are written in traditional C and C++ is only required for the convenience of
operator overloading (see Section 1.6).

The product of PSGRAF is a plain ASCII file and as such it may be transferred to and used
on many different computers and operating systems. The file contains the device independent
PostScript program for rendering the graphics. A number of software products are available
that allow PostScript files to be incorporated into text and other graphics, and you may even
wish to edit it directly to add some whistles and bells.

A particular strength of PSGRAF is its interface to TEX for labeling the graphics. This allows,
for instance, to typeset mathematical expressions and in particular use definitions from the
incorporating text.

Notice that PSGRAF is a small and rather specialized collection of functions and is certainly
not optimal for all and every scientific graphics. Specifically,

1. PSGRAF is focused on two-dimensional objects and has only limited support for three-
dimensional objects. If you need to show complicated three-dimensional information look
for some other tool as for instance IBM’s DataFExplorer.

2. Diagrams and sketches are cumbersome to do with PSGRAF and a number of much better
tools are available, for example xfig. For sketches, scanned hand-drawings are a great
alternative.

3. Pixel data — bitmaps and tiffs — can be plotted with PSGRAF. However, there are no
functions provided for processing such data. Again, excellent tools exist as open source,
in particular QuantIm and gimp.

1.2 Licensing

To allow everybody to tailor PSGRAF to his or her particular taste and needs, PSGRAF is
licensed free of charge (see Legal Considerations).

1.3 Installation and Use in a UNIX Environment

The preferable way to use PSGRAF is to create a library that can be used by other programs.
This may be done with the following steps:

1. Copy the directory source from the distribution medium to a convenient place in your
system — let this be $HOME/C/PSgraf3/ — and change the default directory to source by
cd $HOME/C/PSgraf3/source

1 Preliminaries

2. Create the library by
make
which will produce the file 1ibPSgraf3.a and move it to directory /usr/local/lib/.
It will also copy PSgraf3.h to /usr/local/include/. These locations are suitable for
many Unix systems. Modify the last two lines of file source/makefile if they are not
appropriate for you.

Notice that writing to directory /usr/local/ usually requires root privileges. If you do
not have them on your system, place the library and the header file into a convenient folder
in the search path of your compiler/loader. On many Unix systems this is Unix/1ib/ and
Unix/include/, respectively. If this does not work you may always specify the locations
of the header file and of the library explicitly as explained below.

Finally notice that the private header PSgraf_p.h should not be used by a program that
is linked with the library and therefore need not be put into the compiler’s search path.

Once the library is created and moved to an appropriate place, programs may use PSGRAF
functions by including PSgraf3.h and by linking the program with the library, e.g., by invoking
the compiler by

g++ myGraphicsProgram.c [options] -1PSgraf3 [more libs]
where [options| are compile options and [more libs] indicate additional libraries, e.g., -1m which
is necessary on many systems for linking the math libraries.
If the compiler/loader cannot find the header file or the library, their paths must be provided
explicitly. Assuming that PSgraf3.h is located in /a/b/c/include/ and 1ibPSgraf3.a in
/a/b/c/1lib/, respectively, the program needs to contain the line

#include "/a/b/c/include/PSgraf3.h"
and compilation would be invoked by

g++ myGraphicsProgram.c [options] -L/a/b/c/1ib -1PSgraf3 [more libs]

Warning: As an alternative to creating and using a library, you might think of incorpo-
rating functions of PSGRAF directly into your source code together with the private header
PSgraf_p.h. This approach is clumsy, however, and is not recommended because of undoc-
umented (private) dependencies between various functions. A particularly bad and insecure
programming style would be to directly access or even change information stored in the private
part of PSGRAF.

1.4 Paradigms

PSGRAF uses the metaphor of a drawing paper, a pen, and associated operators. A point on
the paper may be defined in Paper coordinates (mm on the paper) or in World coordinates (user
defined scaling). Currently, only Cartesian coordinate systems are implemented. Furthermore,
the axes of Paper coordinates and World coordinates are collinear, at least in two-dimensional
drawing mode. In a slight generalization, the “drawing paper” may also be three-dimensional
in the sense that the pen moves between 3d points either in the up- (just moving) or in the
down-mode (drawing a line). This space, whether in Paper coordinates or World coordinates,
will be called the normal space.

All operations in PSGRAF are performed in normal space. If it is three-dimensional, the results
are shown as a projection onto an arbitrary plane, the Image Plane. This plane may be linearly
distorted in the sense that the coordinate axes need not be orthogonal.

Upon requesting a “new drawing paper” (gPaper), the coordinate systems are initialized with
default settings such that World coordinates are identical to Paper coordinates. Notice that
the settings for Paper coordinates are fixed while those for World coordinates may be changed
by s.WorldCoordinates. Default values are also assigned to all other parameters in PSGRAF
such that a reasonable graph can be obtained with a minimal number of commands.

1.5 Data Structures

Notice that PSGRAF uses double for floating point numbers, not float.

1.7 Operator Overloading

1.5.1 Vector in Space

For representing vectors, the data structure dvec is provided. It consists of an integer, the
dimension, and three doubles for the coordinates of the vector and is defined as

struct dvec {

int dim; /* dimension */
double x,y,z; /* coordinates */
};
1.5.2 Color

A color is defined by the color space and by its coordinates in this space.

struct color {
int CS; /* color space (G=0, RGB=2, HSB=4, CMYK=8) x*/
double c0,cl1,c2,c3; /* coordinates */

s

1.6 Operator Overloading

PSGRAF adopts the concept of operator overloading from C++ meaning that an operation may
be invoked with various parameters but still has the same name. Furthermore, parameters are
checked upon compilation. An example of this is the move command which is prototyped as

void movea(char CS,struct dvec X);
void movea(char CS,double x,double y);
void movea(char CS,double x,double y,double z);

and may thus be invoked in any of the following forms

movea(’W’,X);
movea (W’ ,x,y);
movea(’W’ ,x,y,2);

where X is a two- or three-dimensional vector and x, y, and z are numbers.

In this manual, all the permissable forms of a command are listed together. When overloading
is used to allow for explicit specification of vector components, only the first (vector) form is
explained. The other forms are then obvious analogs.

1.7 Compatibility with Previous Versions

PSGRAF3 is to a fair degree, but not completely, compatible with PSGRAF2.x. It may thus be
prudent to keep the old version operational. Starting with this version, the library created by
the default make file contains the version number. Hence different versions will not interfere.

1.7.1 Removed Operators

Some operators have been removed because they appeared to be of rather limited use. Following
is the complete list of removed operators and possible replacements:

dRectangle replaced by dParallel

initPS included into gPaper

sDefault fixed defaults set by gPaper

sPaperCoord removed without replacement

sWorldCoord removed, use sXWorldCoord and sYWorldCoord
WCtoPC replaced by pWP

1 Preliminaries

1.7.2 Modified Operators

Many operators have been modified to consistently accommodate three-dimensional objects. In
most cases compatibility with previous versions was retained through operator overloading. In
the following instances, however, the old operator takes rearranged or new arguments or acts
in a different way:

dArrow Shape parameters are now set by sArrowStyle and the number of arrow
types is reduced
dXAxis The first two arguments in the two-dimensional version with explicitly

given coordinates are now (g, yo0), not (yo, o) as in PSGRAF2.x.

g.Grid Internally, grids are now represented in Paper coordinates. Hence, World
coordinates, in 3d also the view, must be defined prior to generating a
grid. Similarly, whenever either World coordinates or the view changes,
the grid has to be generated anew.

1.8 Usage of this Manual

The manual consists of two parts: the Reference Manual where all PSGRAF-operators are
described tersely and the Cook Book which illustrates their usage for constructing some example
graphs.

1.8.1 Reference Manual

The reference manual is intended as a quick introduction to the capabilities and limitations of

PSGRAF and as an extended reference for its use. A quick reference for the seasoned user is

provided by the header file PSgraf3.h which lists all the commands and their allowed argu-

ments.

» Some more advanced aspects of the operators are described in fine print, like this paragraph, and may
safely be skipped upon first reading. They generally refer to implementation details, to inherent limitations,
or to drawing in three-dimensional space and to the associated complications of coordinate systems and
projections.

Many operators can be invoked in different forms that mostly emanate from the different meth-
ods to specify a location in space, i.e., vector versus explicit coordinates. Generally, one of
these form is the root in that all the others just transform their arguments and then invoke the
root operator. In the reference manual, the root operator is indicated by ¥. Using the root
operator may be more efficient although the gain is not dramatic for most applications. On
the other hand, an alternative form may be more robust against programming errors in that
they allow consistency checks. This is in particular the case when vectors are used instead of
explicit coordinates.

1.8.2 Cook Book

The cook book is an assortment of complete graphs together with the documented code for their
creation and possibly some prose about pertinent issues. It is best used by skimming through
the pages, looking at the graphs, and stopping to learn how to produce some interesting feature.

Part |

Reference Manual

2
Two-Dimensional Objects

The main field of application for PSGRAF are two-dimensional graphs which are the focus of
this chapter. Three-dimensional operators will be included, however, whenever they fit logically
and understanding of the more complicated 3d issues are not important. Hence, scaling of the
z-axis is covered together with the scaling of the z- and y-axis but three-dimensional coordinate
systems are only introduced in Chapter 3.

2.1 Initialization and Closing

void gPaper (char*name)
Provide a new drawing paper and set the graphics state to the default value. This function
must be invoked before any other PSGRAF function. The drawing will be saved to the file
‘name . eps’ if a new paper is requested or if PSGRAF is ended.
» Upon its first invocation, gPaper initializes the internal data structures of PSGRAF. It may be called

several times, each time with a different name of course, to produce several drawings.

void endPS(void)
End PSGRAF, save last drawing paper and release memory. If this function is missing, the
last drawing paper will be incomplete and will actually not open in a normal PostScript
viewer.

2.2 Coordinate Systems and Clipping

A coordinate system on the drawing paper is required for specifying locations. From PSGRAF’s
perspective the drawing paper is unlimited. Obviously, this is not true for the PostScript
interpreter that eventually renders the graphics. It may thus be desirable to clip the drawing
to some finite rectangle.

2.2.1 Coordinate Systems

Only linear Cartesian coordinates are implemented in PSGRAF. There are basically two co-
ordinate systems, Paper coordinates and World coordinates, which refer to the drawing paper
and to the world, respectively. In PSGRAF, these systems are collinear and they refer to the
“normal space” (Figure 2.1). While the coordinate systems are always collinear, the view — set
by sView introduced in Chapter 3 — may be employed to rotate the graph.

Paper coordinates are fixed to the drawing paper such that the origin is at the lower left
corner, with the z-axis pointing to the right and the y-axis pointing upwards. In three dimen-
sions, the coordinate system is right-handed, the z-axis thus points out of the plane towards
the observer. The unit for all Paper coordinates is 1 mm. Drawing tools, in particular the pen’s
thickness, are defined in Paper coordinates.

‘World coordinates are used to draw data that are given in a user defined Cartesian coordinate
system. This can be shifted and stretched relative to the Paper coordinates, but not rotated.
World coordinates are defined by specifying each of the (orthogonal) axes separately by relating
two “world points” with the corresponding “paper points”. The default setting, which has
World coordinates identical to Paper coordinates, is changed for each axis individually by

7

2 Two-Dimensional Objects

& @xx‘%\
50 ° 0\3
0.3 —
40 i
0.2 —
Figure 2.1: PSGRAF knows 30 N
two different coordinate Aot 0.1 — Q\/OQ
systems: (i) Paper coor- 20 © 4 & A&
dinates (black), which are 4 <&
used to navigate on the L T T
drawing paper in much the 10 N 2000 4000
same way as you would A o¢ ‘&\.’%\
dO it USingaruler’ aIld T T T \\\\\\\\\‘\\3\\\\\\‘\\\\\\\\\‘\\\\\\\9\?
(if) World coordinates
(magenta), which facilitate 10 20 40 60

the drawing of data in their
natural coordinate system.

s.WorldCoord. This is done by associating two coordinate values, low and high, in World-
and in Paper coordinates as illustrated by the dashed cyan lines in Figure 2.1. Notice that
the choice of the two values is immaterial, as long as they are different. However, it is often
convenient to choose the end points of the corresponding axis in World coordinates. Further
notice that the direction of an axis in World coordinates may be changed by relating the value
for the high end in World coordinates with the low end in Paper coordinates and vice versa.

void sXWorldCoord(double xwlow,double xwhigh,double xplow,double xphigh)
Set the z-component of World coordinates.

void sYWorldCoord(double ywlow,double ywhigh,double yplow,double yphigh)
Set the y-component of World coordinates.

void sZWorldCoord(double zwlow,double zwhigh,double zplow,double zphigh)

void sZWorldCoord()
Set the z-component of World coordinates. Notice that this is only required when working
in three dimensions (see Chapter 3) or with rotated World coordinates.

» By default, the z-axis in World coordinates is defined to be identical to the z-axis in Paper coordinates
as is the case for the other two axes. However, the default also sets an internal flag that inactivates
the third dimension, thereby enabling PSGRAF to better check some arguments. In addition to setting
the z-component of World coordinates, sZWorldCoord also changes this flag to indicate that the third
dimension is active. The default can be reset with sZWorldCoord().

void pPW(struct dvec Xp,struct dvec*Xw)
struct dvec pPW(struct dvec Xp)
Vvoid pPW(double xp,double yp,double*xw,doublexyw)

Project vector Xp in Paper coordinates to Xw in World coordinates. With the definitions

struct dvec Xw,Xp, the projector may be used either as pPW(Xp,&Xw) or as Xw=pPW(Xp).

Alternatively, Paper coordinates may be given explicitly as (xp,yp) and the corresponding

World coordinates are returned in (xw, yw).

void pWP(struct dvec Xw,struct dvec*Xp)

struct dvec pWP(struct dvec Xw)

Vvoid pWP(double xw,double yw,double*xp,doublex*yp)
Project vector Xw in World coordinates to Xp in Paper coordinates. With the definitions
struct dvec Xw,Xp, the projector may be used either as pWP (Xw,&Xp) or as Xp=pWP (Xw).
Alternatively, World coordinates may be given explicitly as (xw,yw) and the corresponding
Paper coordinates are returned in (xp, yp).

V¥ void dXAxis(struct dvec X0,double x1,int below)

void dXAxis(double x0,double yO0,double x1,int below)

void dXAxis(double x0,double y0,double z0,double x1,int below)
Draw the z-axis in World coordinates from X0 to x1. Notice that X0 is a vector while x1 is a
simple number. The ticks and numbers are drawn below the axis if below is different from

2.3 Color

0. With the alternative forms, the origin of the axis is given explicitly in two or in three
dimensions. Using a two-dimensional origin in a three-dimensional drawing is an error.
The appearance of the axis is defined by an internal default that may be changed with
sXIntervals and sXTicks.

void sXIntervals(double intO,double intl,double int2,int prec)
Set the intervals between ticks of orders 0...2 on the z-axis. If an interval is 0 or negative,
no ticks will be drawn for the corresponding order. If all intervals are 0, the default axis is
drawn. Ticks of order 0 are labeled with prec decimal places, if prec is not negative.

void sXTicks(double tickO,double tickl,double tick2)
Set the lengths (in Paper coordinates) of the tick marks of orders 0...2 on the z-axis.

V¥ void dYAxis(struct dvec X0,double yl1,int atleft)

void dYAxis(double x0,double yO,double yl1,int atleft)

void dYAxis(double x0,double y0O,double z0,double yi1,int atleft)
Analogous to dXAxis but for the y-axis.

void sYIntervals(double intO,double intl,double int2,int prec)
Analogous to sXIntervals but for the y-axis.

void s¥Ticks(double tick0O,double tickl,double tick2)
Analogous to sXTicks but for the y-axis.

V¥ void dZAxis(struct dvec X0,double zl,int below)

void dZAxis(double x0,double y0,double zl,int below)

void dZAxis(double x0,double y0,double z0,double zl,int below)
Analogous to dXAxis but for the z-axis.

void sZIntervals(double intO,double intl,double int2,int prec)
Analogous to sXIntervals but for the z-axis.

void s2ZTicks(double tick0O,double tickl,double tick2)
Analogous to sXTicks but for the z-axis.

2.2.2 Clipping

A clipping rectangle may be given either in Paper coordinates or in World coordinates. Once
invoked, no drawing and no labeling will occur outside this rectangle. Since clipping may be
changed arbitrarily, and also be removed, this is a convenient tool for clipping curves or data.
See Figure 2.5 for an example.

void sClipping(char CS,double xmin,double xmax,double ymin,double ymax)

void sClipping()
Restrict drawing to the rectangular area given, in coordinate system CS, by the interval
[xmin,xmax] in z- and [ymin,ymax] in y-direction, respectively. Notice that this command is
currently only implemented for two-dimensional graphs.
Clipping is deactivated with sClipping() which is also the default setting.

2.3 Color

In PSGRAF a particular color is defined by its coordinates in one of the color spaces G
(gray!), RGB (red-green-blue), HSB (hue-saturation-brightness), or CMYK (cyan-magenta-
yellow-black), which are set by the function sColorSpace. Each letter in the name of these
spaces denotes a coordinate that can vary in the interval [0,1], where 0 corresponds to minimal
intensity of the corresponding property and 1 to maximal intensity.

Example: The color defined by (1,0,0) is red in RGB-space, but black in HSB-space (red with
no saturation and no brightness). In HSB-space, the color red is represented by (1,1,1).

int sColorSpace(const char*cspace)

L Although G is not a color space in the traditional notation, it is included here to obtain a coherent model.

2 Two-Dimensional Objects

Vint sColorSpace(int cspace)
Set the color space which will subsequently be used to define a specific color. The function
returns 1 if the color space demanded is not defined. Permissible values for the arguments
are

const char int color space

"G 0 gray (default)

"RGB" 2 red, green, blue

"HSB" 4 hue, saturation, brightness
"CMYK" 8 cyan, magenta, yellow, black

int gColorSpace()
Return the integer code of the current color space. This comes in handy if a particular color
space must be used in some function without affecting the external setting.

All functions that accept a gray level, i.e., sStroke, sFill, or sContours, also accept color
coordinates. If color is used in conjunction with TEX-typesetting, the corresponding package
must be included in the .tex-file by adding

\usepackage{color}
to the preamble, i.e., before \begin{document}.

Examples (the operators sStroke, sFill, and sContours are introduced below):

C functions invoked action
sColorSpace("G"); sStroke(1l); set stroke to black
sColorSpace ("RGB"); sStroke(1,0,0); set, stroke to red
sColorSpace("RGB"); sFill(NONE,0,0); define empty areas
sColorSpace("HSB"); sContours(ctr,N,c0,cl,c2); | set contour attributes

An alternative to setting the color space with sColorSpace is the use of color vectors, struct
color, which set the space implicitly.

2.4 Pens and their Modes

A pen is used to draw a line or curve, but also to fill the resulting area. A line is drawn if the
pen’s thickness is larger than zero, an area is filled if the fill mode is different from NONE.

void sThickness(double thick)
Set the thickness, in mm, of the square pen. Set thick=0, if you want to draw an object
like a symbol or a polygon without a frame.

Vvoid sDash(const charxdpat)

Vvoid sDash(int ip)
Set the dash pattern of the pen. Examples: [1 0 — full line, no dashes; [2] 0 — two units
on, two units off, begin with full dash; [3 1] 0 — three units on, one units off, begin with
dash. The argument after the brackets indicates how many steps in the cycle the pattern
shall begin. Check the PostScript reference manual for a more complete description.
Instead of specifying the dash pattern explicitly, one of the predefined patterns shown in
Figure 2.2 may be used by giving its number. A negative value for the pattern’s number
leads to a full line, hence sDash(-1) and sDash("[] 0") have the same effect. The patterns
are defined with respect to the pen’s thickness at the time sDash is invoked (Figure 2.3).

void sStroke(double c0)

void sStroke(double c0O,double cl,double c2)

void sStroke(double c0O,double cl,double c2,double c3)

¥ void sStroke(struct color c)
Set the gray value of the pen’s color to cO € [0,1]. The value 0 corresponds to white, the
value 1 to black.
The alternative forms of sStroke are used for multidimensional color spaces. The value
of ci must also be in the interval [0,1]. Currently implemented are the three-dimensional
spaces RGB and HSB and the four-dimensional space CMYK. Notice that while the pen’s
thickness does not affect the appearance of letters and numbers, its color does.

2.6 Movements and Straight Lines 11

—1
J - R T S B
10 R T R 13 VI 15
20 T2t 22 23 24 2y
300 T 32 IREE T 3

Figure 2.2: The predefined dash pattern i is set by sDash(i). The pattern -1 corresponds to
a full line. Any negative value of i will actually lead to a full line.

Figure 2.3: Effect of the pen’s thickness on pattern 22: For the top row, the pen’s thickness
was set before the dash pattern while for the bottom row the dash pattern was set before the
thickness was changed.

» If the color space in which the stroke is defined is different from the currently active color space, the
latter will be changed implicitly and a corresponding warning will be issued. Notice that the intended
color space is only defined for the root operator and is guessed for the other ones.

struct color gStroke()
Return current pen color.

void sFill(double cO)

void sFill(double c0,double ci1,double c2)

void sFill(double c0O,double ci1,double c2,double c3)

V¥ void sFill(struct color c)

V¥ void sFill()
Set the gray level of the filling pattern to c0 € [0, 1], where 0 corresponds to white and 1
to black. Every object that has an internal area, like the symbols 0...4 in Figure 2.6 or a
polygon, will be filled with the filling pattern.
For an empty object, set cO=NONE or use sFill().
Alternative forms of sFill are defined in analogy to sStroke.

struct color gFill()
Return current fill color.

2.5 Movements and Straight Lines

Movements of the pen and drawing of lines may be described in Paper coordinates or in World
coordinates. In each of the following commands, the first argument, CS, is a character (P or W)
that indicates the coordinate system in which the operation has to be performed.

void movea(char CS,struct dvec X)

void movea(char CS,double x,double y)

void movea(char CS,double x,double y,double z)
Move the pen to (X).

void mover(char CS,struct dvec X)

void mover(char CS,double x,double y)

void mover(char CS,double x,double y,double z)
Move the pen by X relative to its current position. In general, the current position of the
pen is undefined unless a movea or dText (see below) has been performed previously.

V¥ void dLine(char CS,struct dvec X0,struct dvec X1)

void dLine(char CS,double x0,double yO,double x1,double y1)

void dLine(char CS,double x0,double yO,double z0O,double x1,double y1,double z1)
Draw a line from X0 to X1. The dimensions of the two vectors must be identical.

12

2 Two-Dimensional Objects

20 —
10 =
Exo -
Figure 2.4: Filled parallelogram drawn by 0 R L B B I
dParallel(’P’,X0,81,S82). 0 20 40
20 =
10 =
Figure 2.5: Function drawn by dPolygon and some data £ .
points drawn by dDataPoint with default settings. The 0 3 H H H ” H
gray dashed lines represent the unclipped graph while ‘ ‘ ‘ ‘

the black lines result from clipping to the rectangle 0 10 20
given by the drawn axes.

2.6 Simple Objects

2.6.1 Parallelogram

void dParallel(char CS,struct dvec X0,struct dvec SO,struct dvec S1)
Draw a parallelogram with corner X0 and sides SO and S1 in coordinate system CS.

2.6.2 Data Point

void sDataPoint (int symbol,double rsymbol,double barlength)
Set the appearance of data points by determining the center symbol (see Figure 2.6 for
possible values) and its radius [mm] and the width barlength [mm)] of the end bar. End
bars are only drawn if the error bar are larger than the central symbol.

V¥ void dDataPoint (char CS,struct dvec X,struct dvec dX)

void dDataPoint (char CS,double x,double dx,double y,double dy)
Draw data point at location X in coordinate system CS together with corresponding error
bars dX which also refer to coordinate system CS. The appearence of the data point may be
set with sDataPoint. In the alternate form, location (x,y) and errors (dx,dy) are given
as components.

2.6.3 Symbol

V¥ void dSymbol(char CS,struct dvec X,double r,int SY)

void dSymbol(char CS,double x,double y,double r,int SY)

void dSymbol(char CS,double x,double y,double z,double r,int SY)
Draw the symbol SY (see Figure 2.6) at location X. It will be contained in a circle of radius r
(in Paper coordinates).

2.6.4 Arrow

void sArrow(double lhead,double wtail,double whead,char root)
Set length lhead of arrow head, and widths of tail wtail and whead, respectively. All
lengths are in units of mm. The parameter root indicates if X0 in dArrow points to the tail
(’T?), center (’°C?), or head (’H’) of the arrow. Lower case letters may also be used for this
argument.

2.7 Text and Numbers

13

‘ . ‘ A V Figure 2.6: Symbol SY, contained in a circle of
1

0 2 3 4 radius r centered at X in coordinate system CS,

is drawn by dSymbol(CS,X,r,SY). The sym-

% >< +)\ Y bols on the lower line are created from the ones

in the upper line by connecting the corners

10 11 12 13 14 with the center.
Ehead Ehead
Xp + X1 Xp + X1
. X0 - = X0 o
=] 3 @

0 &) 2 10 31 4 &
777777777777777 3 - 13
ghead ghead

§) +x3 §) +x3
X0) X0 el
[[

1 2 11 &

777777777777777 -3 ~ 43

Figure 2.7: Available arrows (type) and their specification. The shape of an arrow is set with
sArrow while type, location and orientation are given in dArrow.

void sAArrow(double lhead,double wtail,double whead,char root,int tilt)
Analogous to sArrow but including the parameter tilt that indicates if the annotation
should be oriented horizontally on the drawing paper or tilted parallel to the arrow.

void dArrow(char CS,int type,struct dvec X1)

Vvoid dArrow(char CS,int type,struct dvec XO,struct dvec X1)
Draw arrow type (Figure 2.7) in coordinate system CS starting at X0. The arrow is given by
X1 (Figure 2.8). The argument X0 may be missing if the arrow is to be drawn at the origin.
A more general form of dArrow is described in Section 3.2.

void dAArrow(char CS,int type,struct dvec X1,const char*text)

Vvoid dAArrow(char CS,int type,struct dvec XO,struct dvec X1,const charxtext)
Analogous to dArrow but adding annotation text to the arrow. Location of the annotation
relative to the arrow is according to the current settings of text as set by sText.

2.6.5 Polygon

void dPolygon(char CS,struct dvec*X,int N)

void dPolygon(char CS,double*x,double*y,int N)

void dPolygon(char CS,double*x,double*y,double*z,int N)
Draw a polygon through the ordered set {X[0],...,X[N — 1]} where X[i] is a two- or three-
dimensional vector. For large polygons, the first form may be inefficient since storage is
wasted for the dimension of each point and, if the polygon is two-dimensional, for the third
dimension.

» PSGRAF does not impose any limitation on the size of polygons. However, some PostScript interpreters
have a rather low limit on the number of points that may be contained in a polygon. A polygon that
exceeds the maximum size can neither be printed nor displayed on the screen. Polygons with less than
some 1000 points should not encounter this limitation, however.

2.7 Text and Numbers

void sText (const char*font,double size,char hadjust,char vadjust)
Set text characteristics. font must be the name of a PostScript font (case sensitive) that
is currently available on the system, like "Helvetica" or "Helvetica-Oblique", or it may
be "TeXfonts" if the text shall be typeset latter on by TEX.

14

2 Two-Dimensional Objects

40 —
3 7
30 —
20 — 7/x1
: - : : 10 —
Figure 2.8: Positioning and orientation of an arrow]
produced with dArrow(’P’,0,X0,X1). The green ar- E X0
rows indicate X0 for root equal to ’C’> and *H’, a O RN R R
parameter set by sArrow. 0 20 40

Yo v\&; 5 < :'vajh B
RRCRIY Ectrer
do&”’?\%l t-Top Right- i‘hm,%[
S o 3 Q’%
~
. Y Y B4
Figure 2.9: Text may be ““IQO‘JJE?@K«O _ O%fi“ao &
written at any position o gt imente € € S
(z,y), at any angle ¢, ’ e EB e, ‘@\&p go
and at any adjustment g% ’ ¢ gi %?E&
relative to (x,y) using a
sText, sTextRotation, . g % &
and dText. In this figure, % § o L% o Q%‘@ % &
(x,y) are the nodes of o~ -) kX bt B ZOO{WQN%@
the regular grid outlined. 2 B S
The text indicates the h &F 9"39 P,
adjustment relative to the S ¢ K & 5 %
node. i : g &

The size of the font (in pt; 72pt equal 1 inch or 25.4 mm) is given by size. It is only
effective for PostScript fonts. The size of the TEX fonts are determined when the document
is actually typeset.

The horizontal adjustment of the text with the current point is determined by hadjust,
which must be *L’, °C’, or *R’ for Left, Center, and Right. The vertical adjustment is
determined by vadjust, which must be >T?, °C’, or B’ for Top, Center, and Bottom.
The baseline of the font is given by the pen’s current position and the rotation angle ¢ (see
sTextRotation and Figure 2.9).

void sTeXStyle(const charxtexsty,int layered)
When rendering text with TeXfonts, texsty is prepended to allow special formatting. This
option is needed whenever text is generated automatically by another PSGRAF-command,
e.g., dLegend. Default for texsty is an empty string. For layered different from 0, text
layering is attempted (see fine print for dText. Default is 0, i.e., no layering.

void sTextRotation(double phi)
Set the local rotation for the text. The angle phi of the text’s baseline with the z-axis of
the Paper coordinates is measured in degrees (counterclockwise).

void dText (const char*text)
Draw text at the pen’s current position. Unless movea or mover has been performed as the
last PSGRAF function, the current position of the pen is generally not defined, and dText

2.8 Contour Plots

15

will result in an erroneous PostScript file. However, after writing a text, the current position
is on the baseline at the end of the text.

» Subsequent PSGRAF operators add graphics objects to the drawing that will hide underlying, previously
drawn objects. This is also the case with text that may become hidden beneath some filled area, at
least if PostScript fonts are used. Such a fine interlayering is not possible with TEX-fonts, however.
It is approximated by separating the text into a part that is typeset before the PostScript graphics is
rendered, and may thus become hidden, and into a part that is typeset on top of the entire drawing,
hence is always visible. The separation is done automatically with all text drawn after the last polygon
in the second class.

void sNumber (char format,int prec)

Set format for drawing numbers. format must be ’f’ for floating point format, ’e’ for

exponential format, or ’g’ for mixed format. prec is the number of digits after the decimal

point.

void dNumber(double thenumber)
Draw thenumber at the pen’s current position in analogy to drawing text with dText. Notice
that thenumber must be a double.

» To draw multiple numbers or composites of text and numbers, write everything to a string using sprintf
which is provided in the standard library <stdio.h> and draw this string with dText.

2.8 Contour Plots

Contour plots are used for representing two-dimensional scalar data that are defined on some
grid. Contours may be drawn as lines and/or by shading. Creating a contour plot requires
three steps: (i) definition of the grid, (ii) specification of the contour levels, and (iii) the actual
contouring operation.

2.8.1 Grids

All grids are defined in World coordinates. They are essentially two-dimensional, hence can be
represented on a possibly distorted plane.

» Internally, grids are represented in Paper coordinates. Hence, World coordinates, in 3d also the view, must
be defined prior to generating a grid. Similarly, whenever either World coordinates or the view changes, the
grid has to be generated anew.

Quadrangular Grids

This class consists of regular square grids and of their distortions. Each internal node thus
has exactly four connected neighboring nodes. Grids with a more general topology, e.g., two
squares joining the same boundary line of a rectangle cannot be represented as a quadrangular
grid and must be described by a triangular grid (described below).

void gRGrid(struct dvec X0,struct dvec X1,struct dvec X2,int N1,int N2)

void gRGrid(double x0,double dx,int Nx,double yO, double dy, int Ny)
Define a regular grid by its lower left corner X0 and non-parallel grid vectors X1, X2 with N1
nodes in 1-direction and N2 nodes in 2-direction. In the second form, the origin is (x0, y0)
and the distance between nodes in the z- and y-direction is dx and dy, respectively. The
nodes are numbered starting with 0 for the node at X0 and increasing in 1 (z) direction (see
Figure 2.10).

» The distances between nodes may be negative in which case (x0, y0) is not the lower left corner any
more.
void gSRGrid(struct dvec XO,struct dvec X1,doublex*xl,int N1,
struct dvec X2,double*x2,int N2)

void gSRGrid(double*x,int Nx,double*y,int Ny)
Define an orthogonal semi-regular grid with corner at X0, non-parallel directions X1 and
X2, and values x1 and x2 in 1- and 2-direction, respectively. Notice that x1 and x2 must
start with 0 for the first point to coincide with x0 and that the values must change strictly
monotonically (see Figure 2.10).

void gDRGrid(double*x,doublexy,int Nx,int Ny)

16

2 Two-Dimensional Objects

gRGrid (x0,dx,Nx,y0,dy,Ny) gSRGrid (x,Nx,y,Nx)

60 — 60 —

424344454647 1

4363738 394041 E

40 — 303132333435 40 —

12425262728 29 :

118 19 20 2122 23 E

20 41213 14 15 16 17 20 —

167 s o9 101 E

o123 4 s ;
0 = 0 =
0 20 40 60 0 20 40 60
gDRGrid(x,y,Nx,Ny) gTGrid(x,y,NN,b,e,NL)

60 — 60 —

40 — 40 —

20 — 20 —
0 —prrrrrrrr T 0 —prrrrrrrrr T
0 20 40 60 0 20 40 60

Figure 2.10: Available grids for contouring in PSGRAF are either quadrangular (regular, orthog-
onal semi-regular, deformed regular) or arbitrarily triangular. The numbers of the grid nodes
correspond to the positions of the data in the array supplied to the operator dContours(...).

void gDRGrid(double*x,double*y,double*z,int Nx,int Ny)

Define a deformed regular grid which is topologically identical to a regular grid with Nx
nodes in the z-direction and Ny nodes in the y-direction. The coordinates of the Nx*Ny
nodes are {(x[i],y[i])]¢ =0,...,Nx * Ny — 1}.

The contouring operator is not guaranteed to work properly if the coordinates of different
grid nodes are identical. However, they may be chosen so near to each other, that they are
indistinguishable on any output device (see Figure 2.10 and the corresponding source on
page 40).

» The meaning of Nx and Ny is different from that in gSRGrid, which is reflected in the different ordering of

the arguments for the two functions. In gSRGrid they indicate the size of the arrays x and y. In contrast,
they indicate the structure of the grid in gDRGrid; the size of x and y is identical, namely Nx * Ny.

Triangular Grids
Many real data set consists of values that have been obtained on a completely irregular grid.
Two approaches may be used to represent them: (i) they may be interpolated to a quadrangular
grid, e.g., by linear interpolation or kriging, or (ii) they may plotted directly over the irregular
grid. The functions in this section facilitate the second approach. Notice that this implies linear
interpolation between grid points.
void gTGrid(double*x,double*y,int NN,int*b,int*e,int NL)
Define an arbitrarily connected grid that consists of triangular elements (see Figure 2.10).
The coordinates of the NN grid nodes are given in x and y. The NL grid lines are specified
by the numbers of their beginning nodes b and ending nodes e. They are oriented such that
bli] < e[i].
» The implementation of arbitrary triangular grids is not very efficient and only useful for rather small
grids for which the number of nodes does not exceeding a few hundred.

2.8 Contour Plots

17

» Only minimal checks for the correctness of the grid definition are implemented. It is recommended to
draw the grid with dGrid(1,1) after its definition.
int gTCover()
Construct the triangular elements defined by the grid lines, calculate their centers of gravity
and return the number of elements.

void iTCover(int NT,int**nodes,double*cgx,double*cgy)
Inquire the coverage of the grid. For each of the NT triangular elements, the ids of its
nodes, nodes, and the coordinates of the center of gravity, cgx and cgy, are returned. The
dimension of nodes is NT x 3, that of cgx and cgy is NT. Space for these arrays must be
allocated before iTCover is called.

Auxiliary Functions

void dGrid(int Node_numbers,int Line_numbers)
Draw the current grid with node numbers and line numbers, if the corresponding parameters
are equal 1.

void dGridBoundary(int Node numbers,int Line numbers)
Draw the boundary of the current grid with node numbers and line numbers, if the corre-
sponding parameters are equal 1.

void deleteGrid(void)
Delete the currently existing grid and its boundary. Using this function is optional: it is
invoked implicitly by endPS and whenever a new grid is defined. The latter produces a
warning message.

2.8.2 Setting Contour Levels

void sContours(double*ctr,int N,double*c0)

void sContours(double*ctr,int N,double*cO,double*cl,double*c2)

void sContours(double*ctr,int N,double*c0,double*cl,double*c2,double*c3)

void sContours(doublexctr,int N,struct color*c)
Define N contour lines by their contour values {ctr[0]< ... <ctr[N-11}. If the function
dContours (see below) is called with filled=1, the region where z < ctr[i] is filled with
the gray level cO[i], where the value 0 corresponds to white and 1 to black. The association
between values and gray levels is given in the following table. Notice that the dimension of
c0 is by one larger than that of ctr.

value z | gray level
z < ctr[0] | cO[0]
ctrli-1]1< z < ctr[i] | c0[i]
ctr[N-11< 2 cO[N]

The alternative versions allow to specify the contour lines and fills as color components in
RGB or HSB and CMYK space, respectively, while the last form accepts colors directly.

2.8.3 Contouring

void dContours(double*Z,int filled,int framed)
Draw contour lines for the dataset Z (see Figure 2.11). Before using this function, the grid
(d..Grid) and the contour levels (sContours) must be defined. The contours are filled
with the colors set by sContours if filled # 0 and framed with the current stroke color if
framed # 0. The parameter framed € {—1,0,1} determines the contour lines:
—1 : contour lines are only drawn in the interior of the region

0 : no contour lines are drawn (only sensible with filled= 1)

1 : contour lines are drawn in the interior and on the boundary of the region.
The option framed = —1 is useful for large and complicated data fields that may produce
very long contour lines. As every contour line is internally represented as a polygon of
arbitrary length, large data fields tend to generate unprintable PostScript files, see note on
page 13. To prevent this from happening, the entire region may be cut into smaller pieces

18

2 Two-Dimensional Objects

B . 1.00
E gy
80 73 N 0.75
70 = ‘ @Q
3 s 0.50
60 — K
E 2., 0.25
50 — % ||
3 ‘ Offg =0
40 —= 2
3 — = —0.25
30 —=
E \ = —0.50
S Y
10 é = —0.75
Figure 2.11: Contour lines of a 3 I
Superpositionofperiodicfunctions 0 7HH\HH‘\\H\HH‘HH\HH‘HH\HH‘\H _100

in polar coordinates.

o

20 40 60 80

that are then contoured separately. The precision of the PostScript device warrants that
the boundaries between adjacent regions are not visible.

void dLegend(double x0,double yO,double dx,double dy,int horiz,int nth)

Draw legend for density and contour plots (see Figure 2.11). The lower left corner of the
gray bar is at (x0,y0) and it extends in 2- and y-direction by dx and dy, respectively. All
these parameters refer to Paper coordinates. The orientation of the legend is determined by
horiz € {0,1}. Every |nth| contour level is marked by a line in the gray bar and its value
is written next to it in the current format for numbers (see sNumber). A negative value
nth indicates that the legend is for a density plot (see dDensity below) and that variations
should be continuous.

If text rotation is 0 when dLegend is called, the numbers are adjusted according to internal
default settings. These depend on the orientation of the legend. In particular, the numbers
are written below the color bar for a horizontal legend with dy> 0 and to the left of the color
bar for a vertical legend with dx> 0. For dy< 0 and dx< 0, they are written above and to
the right, respectively. If text rotation is different from 0, the current adjustments—set by
sText—are used. This allows to write the numbers at an angle. If the current adjustment
shall be used with horizontal text, sTextRotation(0.00001) would do the trick.

Auxiliary Functions

void sMinPixel(double pixelsize)
Suppress drawing of polygons in dContours which are smaller than pixelsize (in PC).
The number of suppressed polygons is given as a warning message of dContours. Default:
pixelsize = 0, set by gPaper.
» Setting pixelsize > 0 can drastically reduce the size of complex drawings, e.g., contours of random fields,

without compromising the graphical appearance. The caveat is that upon enlarging, such a picture will
contain less detail than one with pixelsize = 0.

» Be aware that setting pixelsize to a value which is large than the actual resolution of the output device
may lead to inconsistencies along boundaries if the drawing is assembled from separate cuts. They
originate from regions which are cut such that one piece is smaller than pixelsize while the other one
is larger.

int interpolate(double*Z,int*missing)

Recursively interpolate values of Z that are signaled to be missing by missing. In each cycle,
missing values are interpolated by averaging their non-missing nearest neighbors. This is
repeated until there are no more missing values. The function replaces Z and returns the
number of interpolated values. It does not affect missing, however.

This function is not intended to be a sophisticated interpolator: its main use is to facilitate
contouring of incomplete datasets. The areas corresponding to missing data should be
marked with dMissing.

2.9 Bitmaps and TIFF Images

19

Bitmap

Density Plot

0 20 40 0 20 40

Figure 2.12: Drawing a gray scale bitmap by dBitMap(0,0,60,60,15,15,gry), PSGRAF as-
sumes that the rectangle formed by (0,0) and (60,60) in Paper coordinates is to be filled
with pixels whose gray values are given in consecutive order in gry. In contrast, a den-
sity plot is assumed to represent point values, i.e., the point to which the value refers
is the center of the pixel. Plotting the data used for the bitmap as a density plot by
dDensity(’W’,0,0,60,60,15,15,z,1) therefore produces a larger area.

void dMissing(int*missing)
Fill areas corresponding to missing data, signaled by missing, with the current filling pat-
tern. This function must be called after dContours.

2.9 Bitmaps and TIFF Images

In contrast to contour plots, the resolution of bitmaps and TIFF images is inherently limited.
This may not affect the final appearance of a plot, however, particularly for fine-grained complex
graphics. For these, calculation of a density plot, as opposed to a contour plot, leads to
substantially faster performance and much smaller file size.

Bitmaps and TIFF images are currently only available for two-dimensional graphics.

void dBitMap(double x0,double yO,double dpx,double dpy,int Nx,int Ny,
double*gry)
void dBitMap(double x0,double yO,double dpx,double dpy,int Nx,int Ny,
double*c0,double*cl,double*c2)
void dBitMap(double x0,double yO,double dpx,double dpy,int Nx,int Ny,
double*cO,double*cl,double*xc2,double*c3)
Draw bitmap gry with origin (x0,y0) and distant corner (x0+dpx,yO+dpy) in Paper co-
ordinates. For dpx > 0 and dpy > 0, the origin is at lower left and the distant corner is
at upper right. The source of the bitmap contains Nx data points in x-direction and Ny in
y-direction. The gray values of these points are stored in gry with the first value referring
to the lower left corner and successive values proceeding in x-direction. Values must be in
the range [0...1]. They are transformed to 8 bit values for rendering of the image.
The alternative functions are for the color spaces RGB, HSB, and CMYK, respectively,
where ci is the bitmap of the corresponding color-component with each of the elements
again in [0,1].

V¥ void sDensity(doublexval,int N,struct color*c)

void sDensity(double*val,int N,double*cO)

void sDensity(double*val,int N,double*cO,double*cl,double*c2)

void sDensity(double*val,int N,double*cO,double*cl,double*c2,double*c3)
Define the relation between value and color for density plots by the N pairs (val[i], c[i]),
where val are ordered such that {val[0] < ... < val[N — 1]}. Values smaller than val[0]
are assigned the color c[0], those larger than val[N-1] the color c[N-1]. Intermediate
values are interpolated linearly. The last element of ¢, c[N], is not associated with a value

2 Two-Dimensional Objects

Figure 2.13: The TIFF image fn.tiff is drawn
by dTIFF(x0,y0,dpx,dpy,"fn.tiff") with origin
(x0,y0) and sizes dpx and dpy. Choosing any of
the sizes 0 maintains the original proportions of the

image.

but is used to indicate missing data (see dDensity). Notice that the dimension of val is N

while that of ¢ is N+1.

void dDensity(char CS,double x0,double y0,double dx,double dy,int Nx,int Ny,

double*zd,double misval)

Draw density function — as a bitmap — of rectangular data zd with origin (x0, y0) and
distant corner (x0+dx,y0+dy) in coordinate system CS. For dx > 0 and dy > 0 and natural
coordinate system, the origin is at lower left and the distant corner is at upper right. The
data array zd contains Nx*Ny elements which are ordered as

zd [0] —
'zd [Nx-1] —
zd [Nx] —

zd [NxxNy-1] —

(x0,y0)

.(XO +dx/(Nx —1),y0)
(x0,y0 +dy/(Ny — 1))

(x0 4 dx,y0 + dy)

The relation between the values in zd and the resulting color is defined by sDensity which
must be invoked before dDensity. Values zd[i] > misval indicate a missing value at location
i and are mapped to the last color (see sDensity).

void ATIFF (double x0,double y0,double*dpx,double*dpy,const char*fn)
Draw TIFF image from file fn in Paper coordinates with lower left corner (x0,y0) and
upper right corner (x0+dpx,y0+dpy). The original proportions of the image are maintained
if dpx = 0 or dpy = 0. For dpx = 0 image height is dpy, for dpy = 0 image width is dpx
and for dpx = dpx = 0 natural dimensions are chosen with pixel size 1/72.27 in. The actual
values (dpx,dpy) used for the drawing are returned.
» In the current implementation, the resulting picture will be 24 bit RBG, independent of the chosen color

space and TIFF-format.

» dTIFF requires 1libtiff which is available from http://www.libtiff.org. It is not part of PSGRAF and
is, except for the header files necessary for compilation, not included in this distribution.

3
Three-Dimensional Objects

Two major additions allow the representation of three-dimensional objects in PSGRAF: (i) the
z-axis which is defined to point out of the drawing paper and (ii) the arbitrarily positioned and
oriented plane onto which the objects are projected. The z-axis is set in complete analogy to
the z- or y-axis and the respective operators are described in Section 2.2.1.

Paper coordinates and World coordinates are collinear and they are Cartesian also in the three-
dimensional case. A point is thus specified by its coordinates {z,y, z}.

3.1 Projection

Only two-dimensional projections of the three-dimensional world can be shown on the drawing
paper. This plane may be specified either explicitly with SIPlane or implicitly by specifying
the observer’s view with sView (Figure 3.1). Notice that only one of these functions need to be
executed.

» Distinguish carefully between two-dimensional Paper coordinates and a two-dimensional plane embedded
in three-dimensional space at z = 0. While the two are identical in normal space, PSGRAF handles them
quite differently in that the latter is projected to the Image Plane before being rendered. Depending on
the projection, two identical points may thus end up at different locations in the final drawing. If the
embedded plane is intended to be represented in two-dimensional Paper coordinates, its third dimension
must be removed explicitly.

void sView(struct dvec View,struct dvec Right)

void sView(struct dvec XO,struct dvec View,struct dvec Right)

Set the view of the 3d object by defining
X0 the center at which the observer looks (0 in the first form)
View the direction from the observer to X0
Right the direction that points to the right from the observers perspective

» It is usually desirable to have View and Right orthogonal. This is not a requirement, however, and
PSGRAF will just produce a warning that the drawing will be distorted if the vectors are not orthogonal.

» The vectors View and Right need not be normalized. The scaling of the graph is determined by
s.WorldCoord and is not influenced by the magnitudes of view and right.
void SIPlane(struct dvec X1,struct dvec X2)
V¥ void SIPlane(struct dvec X0,struct dvec X1,struct dvec X2)
Set the view of the 3d object by defining a plane onto which the object is projected. This
plane is spanned by the vectors X1 and X2 and it is positioned such that its origin is at X0 (0
in the first form). The vectors X1 and X2 also determine the z- and y-direction, respectively,
in the image plane.
» In analogy to sView, (i) it may be desirable for vectors X1 and X2 to be orthogonal and (ii) their magnitude
does not influence the scaling of the graph.
void pPI(struct dvec Xp,struct dvec*Xi)
struct dvec pPI(struct dvec Xp)
Vvoid pPI(double xp,double yp,double zp,double*xi,double*yi)
Project the vector Xp in Paper coordinates onto Xi in the two-dimensional Image Plane.
With the definitions struct dvec Xp,Xi, the projector may be used either as pPI (Xp,&Xi)
or as Xi=pPI(Xp). As an alternative, the Paper coordinates (xp,yp,zp) may be given
explicitely and the corresponding projection is returned as (xi, yi).

void pPW(struct dvec Xp,struct dvec*Xw)
struct dvec pPW(struct dvec Xp)

21

3 Three-Dimensional Objects

50 ¥
Yy
40 3
N
i 002
30
N
3 z
20 0.01
N

Figure 3.1: Paper coordinates (black)

and World coordinates (magenta) with 20
view direction x; = {—1,—1,—1} and z

direction to the right xo = {1,0,—1}. A 40

view is set with sView or, alternatively,

with SIPlane.

Vvoid pPW(double xp,double yp,double zp,double*xw,double*yw,double*zw)
Project the three-dimensional vector Xp in Paper coordinates into three-dimensional World
coordinates, Xw. For usage comments, see pPI. In the last form, the coordinates are given
explicitely.

void pWP(struct dvec Xw,struct dvec*Xp)

struct dvec pWP(struct dvec Xw)

Vvoid pWP(double xw,double yw,double zw,double*xp,double*yp,double*zp)
Project the three-dimensional vector Xw in World coordinates into three-dimensional Paper
coordinates, Xp. For usage comments, see pPI. In the last form, the coordinates are given
explicitely.

void pWI(struct dvec Xw,struct dvec*Xi)

struct dvec pWI(struct dvec Xw)

void pWI(double xw,double yw,double zw,double*xi,double*yi)
Project vector Xw in World coordinates onto the two-dimensional Image Plane. For usage
comments, see pPI. There exists no root operator here since pWI is implemented by first
projecting to Paper coordinates and from there to the image plane.

3.2 Simple Objects

void dArrow(char CS,int type,struct dvec X1)

void dArrow(char CS,int type,struct dvec XO,struct dvec X1)

V¥ void dArrow(char CS,int type,struct dvec X0,struct dvec X1,struct dvec 0)
Draw arrow type (Figure 2.7) in coordinate system CS starting at X0. The arrow is given
by X1 (Figure 2.8) and is draw in the plane that contains 0, that is 0 and X1 must not be
parallel. The argument X0 may be missing if the arrow is to be drawn at the origin.

void dAArrow(char CS,int type,struct dvec X1,const char*text)
void dAArrow(char CS,int type,struct dvec XO,struct dvec X1,const char*text)
V¥ void dAArrow(char CS,int type,struct dvec XO,struct dvec X1,struct dvec 0,
const char*text)
Analogous to dArrow but adding annotation text to the arrow. Location of the annotation
relative to the arrow is according to the current settings of text as set by sText.

void dParallel(char CS,struct dvec X0,struct dvec SO,struct dvec S1)
void dParallel(char CS,struct dvec X0,struct dvec SO,struct dvec Si,
struct dvec S2)
Draw a parallelogram with corner X0 and edges S0, S1, and S2 in coordinate system CS.

3.3 Contour Blocks

23

y 30
20
\ X1 10
X0
0
/ 0
z
20 20

Figure 3.2: Positioning and orientation of an arrow pro-

T 40 duced with dArrow(’P’,x0,x1,0), where o is parallel
to the y-axis. Projections of the arrow onto the xy- and
the yz-plane are shown in light gray.

Figure 3.3: Parallelogram drawn in Paper coordinates by
dParallel(’P’,X0,81,S2,S3).

3.3 Contour Blocks

Consider a three-dimensional, regularly gridded block that is parallel to the World coordinates
and contains the data f;;z. Contouring such a block, more precisely its faces, consists of three
steps: (i) setting the contour values and fills with sContours as described in Section 2.8.2,
(ii) describing the data block and the sub-block to be contoured by sCBlock, and finally (iii) the
actual contouring with dCBlock which generates the required grids internally and then invokes
dContours.

void sCBlock(double x0,double dx,int Nx,int il,int iu,

double yO0,double dy,int Ny,int jl,int ju,

double z0,double dz,int Nz,int kl,int ku,int outer,struct dvec illum)
Define the data block and set some additional parameters for contouring blocks. The data
block as a whole is defined by its corner {x0,y0,z0}, its grid constants {dx,dy,dz}, and the
number of nodes {Nx,Ny,Nz}. The part of the block that is to be contoured is given by the
lower and upper node in the three directions. Hence, il < ¢ < iu and in analogy for the y-
and z-components.
For outer= 0, the inner faces are contoured otherwise the outer ones. In this context
“outer” means the face that is encountered first when approaching the block from the viewing
direction set by sView. These two modes are convenient for creating cut-outs as illustrated
in Figure 3.4.
The direction of the illumination is set by illum. It is used to dim the color brightness in
proportion to the sine of the illumination angle. If the dimension of the vector illum is
different from 3, the effect of illumination is disabled.

» Contour values and contour fills are set with sContours as in the case of two-dimensional contours.

void dCBlock(double***f,int filled,int framed)
Contour the block f where, in contrast to dContours, the data are contained in a three-
dimensional array. The parameters filled and framed determine the appearance of the
contours.

» The contouring is done using the two-dimensional operator dContours. The required grids are generated
automatically which forces preexisting user-defined grids to be deleted.

24

3 Three-Dimensional Objects

Figure 3.4: Three-dimensional dataset il-
lustrated by first drawing an outer contour
block and then two smaller inner ones. The
object in the back was drawn with diffuse
illumination while the one in front is illumi-
nated by a directed light source overhead.

4
Auxiliary Functions

4.1 Output Options

void sPreview(int preview)
Specify if bitmap preview is to be encapsulated (preview=1) or not (preview=0, default).
Including the preview allows displaying the figure even if PostScript rendering is disabled
or otherwise unavailable.

» The preview is generated by gPreview which uses system calls and thus makes the program system-
dependent. Adapting PSGRAF to another operating system generally demands the modification of
gPreview. An alternative is to invoke it manually, on many Unix systems by

ps2epsi fn.eps fn.epsi
where fn is the name of the PostScript file.

4.2 Arithmetic Operations

void MinMax(double*X,int N,double*xmin,double*xmax)
Find the minimum xmin and the maximum xmax in the array X of dimension N.

4.3 Vector Operations

struct dvec identity(struct dvec x)
Return x.

struct dvec negvec(struct dvec x)
Return —x.

double norm(struct dvec x)
Norm of vector x, i.e., |x]|.

void normalize(struct dvec*x)

struct dvec normalize(struct dvec x)
Normalize vector x, i.e., x/|x|. In the first version the original vector is replaced by the
normalized vector, whereas the second form leaves x untouched.

struct dvec addvec(struct dvec a,struct dvec b)
Add two vectors ¢ = a+ b and return c.

struct dvec subvec(struct dvec a,struct dvec b)
Add two vectors ¢ = a — b and return c.

struct dvec scalmult(double a,struct dvec b)
Multiply scalar with vector ¢ = ab and return c.

doubledotprod(struct dvec a,struct dvec b)
Dot (scalar) product ¢ = a - b.

struct dvec vecprod(struct dvec a,struct dvec b)

void vecprod(struct dvec a,struct dvec b,struct dvec*c)
Vector product ¢ = a x b. Notice that c is a three-dimensional vector, also if a and b are
two-dimensional.

25

26

4 Auxiliary Functions

5
Private Functions

As the title indicates, the functions documented in this chapter are not intended for use in a
normal PSGRAF program. They are, and should only be, used as low-level building blocks in
higher-level PSGRAF functions.
PSGRAF attempts to check as far as possible the arguments of all commands for consistency.
For instance, it checks the coordinate system and the dimension for each operator. While this
is convenient in that typos and context errors are signaled, it is also inefficient because the
same test may be carried out several times at different levels. To prevent this, some low-level
functions are provided that do not perform any checks but presume that this has been done at
the higher level.
In order to emphasize the private nature of the low-level functions they are prototyped in
PSgraf p.h not in PSgraf3.h.
void 12Pa(double x,double y)
Draw a line from the current position of the pen to absolute location (x, y) in two-dimensional
Paper coordinates.
void 12Wa(double x,double y)
Draw a line from the current position of the pen to absolute location (x, y) in two-dimensional
World coordinates.
void m2Pa(double x,double y)
Move to absolute location (x,y) in two-dimensional Paper coordinates.
void m2Wa(double x,double y)
Move to absolute location (x,y) in two-dimensional World coordinates.
void m3Pa(double x,double y,double z)
Move to absolute location (x,y,z) in three-dimensional Paper coordinates.
void m3Wa(double x,double y,double z)
Move to absolute location (x,y,z) in three-dimensional World coordinates.
Vvoid dP2P(double*x,double*y,int N)
Draw polygon (x,y) consisting of N > 2 points in two-dimensional Paper coordinates.
void dP2W(double*x,double*y,int N)
Draw polygon (x,y) consisting of N > 2 points in two-dimensional World coordinates.
void dP3P(double*x,double*y,double*z,int N)
Draw polygon (x,y,z) consisting of N > 2 points in three-dimensional Paper coordinates.
void dP3W(double*x,double*y,double*z,int N)
Draw polygon (x,y,z) consisting of N > 2 points in three-dimensional World coordinates.

27

28

5 Private Functions

Part |l

Cook Book

This part contains examples of increasing complexity with the intention of providing (i) a more
extensive introduction and discussion of PSGRAF-operators and (ii) quick solutions to common
drawing problems. The complete code of the examples is included in the PSGRAF distribution
in directory examples.

Cook Book

Coordinate Systems and Pen Attributes

40 —
3 0.3
30 — 0.2
20 é 0.1 |
E 0 World coordinates
10 —
0 E Paper coordinates
\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\
0 20 40 60

The code examples/coordinates.cpp sets up the drawing paper, draws some axes in Paper
coordinates and in World coordinates, and annotes them. In order to illustrate the overall
structure of a PSGRAF program, the code is reproduced in its entirety in the following.

#include <PSgraf3.h>

PSGRAF functions become available by including the underlaying definitions PSgraf3.h. As
mentioned earlier, refrain from including the private definition of PSGRAF except, maybe, if
you are developing new PSGRAF functions.

int main()
{
gPaper ("fig/coordinates") ;

The first PSGRAF command must be the request for a drawing paper. This also specifies the
file for the PostScript output. Here, output will be written to file coordinates.eps that will
be stored in directory fig. Notice that the extension is added automatically. Obviously, you
must have write-permission for this location.

dXAxis(0,0,65,1); dYAxis(0,0,40,1);

Draw the z-axis at y = 0 mm from £ = 0 mm to x = 65 mm and label it below. Similarly, draw
the y-axis at £ = 0 mm and label it at the left. Notice that axes are always drawn in World
coordinates. Since these have not been defined explicity yet, they are, by default, identical to
Paper coordinates. Hence all units are in mm. Also the pen is in its default state with lines
drawn in solid black with a thickness of 0.1 mm.

movea(’P’,35,1); dText("PaperCoordinates");

Move to location (z,y) = (35, 1) in Paper coordinates and write the string Paper coordinates.
No font has been specified yet, hence the text is written with the default settings: 10 point
Helvetica PostScript font with the bottom-left alignement of the text string with the current
location.

sXWorldCoord(0,5600,20,58); sYWorldCoord(0,0.34,15,40);
sXIntervals(2000,500,0,0); sYIntervals(0.1,0.05,0,1);

Define World coordinates in z-direction by associating x,, = 0 with z,, = 20 mm and z,, = 5600
with z, = 58 mm, where the subscripts w and p indicate World coordinates and Paper coor-
dinates, respectively. Similarly, World coordinates in y-direction are defined. Then, intervals
for ticks on the z-axis are set to 2000 for the O-order, i.e., those that are labeled. First-order
ticks are set 500 intervals and second-order ticks are suppressed. The forth argument specifies
that labeling shall be done with zero decimal digits which also suppresses the decimal point.
Similarly, intervals for the ticks on the y-axis are set and labeling with one decimal is requested.

Coordinate Systems and Pen Attributes

33

sStroke(0.3); sThickness(0.5); dXAxis(0,0,5600,1);

Set the pen’s color, the stroke, to 0.3 and its thickness to 0.5 mm. The stroke refers to the
default color space (G) and thus leads to gray lines with 50% saturation. With this draw the
x-axis at y = 0, from x = 0 to = 5600, and label it below. Notice that (i) the interval over
which the axis is draw may be different from the interval used in defining World coordinates
with sXWorldCoord above and (ii) the pen’s stroke also applies to drawing text.

sColorSpace ("RGB") ;
sStroke(1,0,0); sThickness(0.2); dYAxis(0,0,0.34,1);

Request the RGB color space, a red pen with thickness 0.2 mm, and draw the y-axis.

movea(’W’,1500,0.01); dText("WorldCoordinates");

Move to location (1500,0.01) in World coordinates and write the string World coordinates.

endPS();
return 0;

}

Finally close PSGRAF and exit the main program. Notice that the drawing will be incomplete
if endPS is not invoked. The resulting file actually cannot be opened by a regular PostScript
interpreter.

On a Linux system, this example may be compiled and executed by first changing into the
directory that contains the source coordinates.cpp and then typing

g++ -o _coordinates coordinates.cpp -1PSgraf3
_coordinates

Notice that in order to execute _coordinates the directory that contains coordinates.cpp
must also contain the directory fig to which you have write-permission.
Finally, the resulting file may then be viewed by either typing

gv fig/coordinates.eps

or, on most systems, by simply clicking on it.

34

Cook Book

Data Points and Functions

N
o

—_
o

J

0 10 20

o

The code examples/data-function.cpp illustrates the use of the data structure dvec, plotting
of data points with error bars, plotting of functions, and the use of clipping.

#include <PSgraf3.h>
#include <math.h>

In addition to PSgraf3.h, we also need to include math.h since some mathematical functions
are used be the code. On most systems, it further necessary to invoke the compiler with -1m
to load the mathematics library.

#define N 200

Define the constant N = 200 for the number of points that are going to be used to represent
a function. Notice that PSGRAF cannot really plot a function but rather connects a series
of points with straight lines. For non-pathological functions, this leads to an arbitrarily good
representation.

int main()

{
double x[N],y[N];
struct dvec X[3],dX[3];

Define the arrays x and y of double precision numbers that are going to contain the coordinates
of the series of points. Recall that PSGRAF operates with double precision numbers. Further
define the two arrays X and dX of structures dvec that will contain the coordinates of some data
points and their errors.

for (i=0;i<N;i++) {
x[i]=i*22./(N-1);
y[11=10.+x[i]*sin(0.2*pow(x[1i],2));
}

For points with equal distance in the interval [0, 22] in z-direction calculate points on the graph
of 10 + z sin(0.222).

for (i=0;i<3;i++) {X[i].dim=dX[i].dim=2;}

X[0].x= 1.5; dX[0].x=1.9; X[0].y=10.2; dX[0].y=0.1;
X[1].x=11.5; dX[1].x=0.2; X[1].y=20.8; dX[1].y=4.7;
X[2] .x=18.4; dX[2].x=5.4; X[2].y= 4.3; dX[2].y=5.5;

Set the dimensions of X and dX and assign some values.

sXWorldCoord(0,22,0,45); sYWorldCoord(0,22,0,25);
dXAxis(0,0,22,1); dYAxis(0,0,22,1);
sStroke(0.2); sDash("[2 1] 0");

dPolygon(’W’ ,x,y,N);

Data Points and Functions

35

Set World coordinates, draw the x- and y-axis, and set the pen’s stroke and dash pattern
(explained later). Finally draw the polygon defined by the N points (x,y) in World coordinates.

sThickness(0.15);
for (i=0;i<3;i++) dDataPoint(’W’,X[i],dX[il);
sThickness(0.1);

Set the pen’s thickness to 0.15 mm, draw the three data points X with error bars given by dX,
and reset the pen’s thickness. Notice that error bars are only drawn if the are larger than the
symbol that represents the data point. If you wish to change the appearance of the data points,
invoke sDataPoint.

sClipping(’W’,0,22,0,22);

Set the clipping window to extend, in World coordinates, in both z- and y-direction from 0 to
22. After a clipping window has been invoked, no drawing beyond its boundaries is possible
anymore. This is handy to represent data or functions that contain some spikes which shall
be cut. Notice that a clipping window may be defined either in Paper coordinates or in World
coordinates but that it will be active in both coordinate systems. To stop clipping again, invoke
sClipping().

sStroke(1); sDash("[] 0");
dPolygon(’W’ ,x,y,N);

sThickness(0.15) ;
for (i=0;i<3;i++) dDataPoint(’W’,X[i],dX[i]);

Reset the pen’s stroke to black and the dash pattern to solid line and re-plot the now clipped
data.

36

Cook Book

. 20
Dataflle 0.000000

0.042512

0.110832

0.164950
2 0.201074
0.261304
0.326261
0.364512
0.412732
0.482173
0.529965
1 0.568451
1 0.633707
. 0.693536
1 0.729582
1— 0.784143
0.852298
0.894458
0.937329
0 1 1.005804

1.358652
1.869169
2.000719
1.974227
1.930818
1.817872
1.753496
1.622678
1.565096
1.435020
1.388011
1.266149
1.227134
1.117744
1.082477
0.988516
0.952764
0.876252
0.836560
0.778536

The code examples/data. cpp illustrates reading of data from some data file and plotting them.

#include <PSgraf3.h>
#include <stdio.h>
#include <stdlib.h>

We need to include stdio.h for handling files and stdlib.h to allocate memory dynamically.

double *x,*y,minx,maxx,miny,maxy;
FILE xdat;

Define two pointers, *x and *y, to arrays of type double which will eventually hold the data
and variables for storing their minimum and maximum values. Define a pointer, *dat, to a file

structure.

dat=fopen("data/ran0.dat","r");

if (dat==NULL) {
fprintf (stderr,"cannot open file: abort\n");
exit (EXIT_FAILURE) ;

}

Open file data/ran0.dat for reading and point dat to it. If the file cannot be opened for any
reason, fopen will return NULL. This is used here to ascertain successful opening. Notice that
such assertions may appear a bit clumsy — the program would work without them — they may
save a lot of debugging time and are almost always worth the additional effort.

fscanf (dat,"%i",&N);

Read the first entry of the data file; the number of entries. Notice that there are ways for
reading data without knowing their number in advance. However, these are typically a bit

more difficult to program than what we do here.

x=(double*)malloc (N*sizeof (double));
if (x==NULL) {

fprintf (stderr,"cannot allocate memory for array x with %i elements: abort\n",N);

exit (EXIT_FAILURE) ;
}
y=(doublex)malloc (N*sizeof (double));
if (y==NULL) {

fprintf (stderr,"cannot allocate memory for array y with /i elements: abort\n",N);

exit (EXIT_FAILURE);
}

Allocate memory for storing the data, again ascertaining that the operation was successful.

Datafile

37

for (i=0;i<N;i++) fscanf(dat,"%1f %1f",x+i,y+i);
fclose(dat);

Read the data from the file into the arrays x and y and then close the data file. Compare the
two fscanf commands in this program to learn the differences in reading a single number and
an element of some array.

gPaper ("fig/data");
MinMax (x,N,&minx,&maxx); MinMax(y,N,&miny,&maxy) ;

sXWorldCoord (minx,maxx,0,45); sYWorldCoord(miny,maxy,0,25);
dXAxis(minx,miny,maxx,1); dYAxis(minx,miny,maxy,1);

Get a paper, determine minimum and maximum values of the two arrays, scale World coordi-
nates accordingly, and draw the axes.

for (i=0;i<N;i++) dSymbol(’W’,x[i],y[i],0.5,0);
dPolygon(’W’,x,y,N);

Draw a symbol for each data point and finally connect them with a polygon.

38

Cook Book

Text

<P
: 0‘10«\ o (80

ef “Bottom (TEX)

3 oébb (75*7
((%;9) //\/@\7
Q/ % <<‘-[)
(Sq)(&d %

The code examples/text.cpp draws some text at various angles and with various colors using
both PostScript- and TEX-fonts.

double a,da=360./23;
char cbuf[127],*s="$\\mathrm{erfc}(x):=\\int_0"x\\mathbb{G}(x)\\,dx$";

Define variables for rotation angle, its increment, a character buffer, and some text string to
draw.

sColorSpace("HSB") ;

Set color space HSB (hue, saturation, brightness).

sText ("Helvetica",14,’L’,’B’);

Request PSGRAF to use the PostScript font Helvetica at 14 points and to adjust it such that
the left (*L’) bottom (’B’) of the text string is aligned with the current location of the pen.
Instead of Helvetica, you may use the name of any PostScript font that is available on the
system on which the final drawing is rendered. Notice that the alignment arguments are not
case-sensitive but that the name of the font is.

movea(’P’,0,0);
for (a=da;a<360;a+=da) {

sTextRotation(a); sStroke(0.8+*a/360,1,1); dText("Left-Bottom (PS)");
}

Move the current location to (0,0) and draw the text Left-Bottom rotated by incremental angle
a — in degrees counter-clock-wise — and with incremental hue. Hue may vary between 0 and
1. However, since the end points produce the same color the range is restricted to the interval
[0,0.8].

Text

sTextRotation(0); sStroke(0,1,0); dText("Left-Bottom (PS)");

Reset text rotation to 0 and the stroke to black — any hue and saturation but no brightness —
and draw the string again.

sText ("TeXfonts",14,’L’,’B’);
movea(’P’,80,18);
for (a=da;a<360;a+=da) {
sTextRotation(a); sStroke(0.8+*a/360,1,1); dText("{\\small\\sf Left-Bottom (\\TeX)}");
}
sTextRotation(0); sStroke(0,1,0); dText("{\\Large\\bsf Left-Bottom (\\TeX)}");

Request PSGRAF to use TEX-fonts instead of PostScript fonts. The other text settings remain
unchanged. Whenever TEX-fonts are used, labeling commands are collected into a separate file
that will eventually be processed by TEX’s typesetting engine. This file will be stored with the
same name as the drawing but with extention tex. As a consequence of this two-step procedure,
the PostScript file produced by PSGRAF is incomplete.

A further consequence of using TEX-fonts is that the font size is not determined by the second
argument of sText, but by the font size of the TEX-document at the moment when the graphics
is typeset. This is illustrated in this example: the PostScript font in the drawing is actually
14 point, while the TEX-font is much smaller, namely 10 point. Nevertheless, it is good practice
to specify the correct font size with sText since this information is used by some operators that
do automatic text adjustment, e.g., when labeling the axes.

The main advantage of using TEX-fonts is, besides the aesthetics of a uniform font across the
entire document, the ability to use special characters, e.g., \\TeX in the text string, and in
particular symbols that are private to the document. The latter is for instance the case with
the TEX-macro \bsf that has been defined to produce sans-serif bold text for this manual.
(Notice that to produce the backslash \ in C or C++, a double-backslash must be typed.)

movea(’P’,55,-30);
for (a=da;a<360;a+=da) {
sTextRotation(a); sStroke(0.8+*a/360,1,1); dText(s);
}
sprintf (cbuf,"{\\LARGE%s}",s);
sTextRotation(0); sStroke(0,1,0); dText(cbuf);

Instead of giving the text directly as argument to sText, a string like s may be given or it
may be convenient to first accumulate text, and possible numbers, into some character buffer
like cbuf which then drawn by sText. Finally notice that you may arbitrarily switch between
PostScript and TEX-fonts.

Special TEX-macros are required to for labeling PSGRAF drawings. An example style file that
does this job is included in the PSGRAF distribution as PSTeX/PSgraf .sty and is also shown
in Appendix A.

Cook Book

Grids

60 — 60 —
| 424344454647 :
7 363738394041 E
40 —| 303132333435 40 —
| 181920212223 E
20 - 121314151617 20 —
36— 4011 E
S o S e E
O \\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘ 0 \\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘
0O 20 40 60 0O 20 40 60
60 — 60 —
40 40
20 — 20 —
O :\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘ 0 :\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘
0 20 40 60 0O 20 40 60

The code examples/grids.cpp creates and draws examples of the different grids available in
PSGRAF.

int Nx=25,Ny=20,Np,N1,*b,*e,i,j;

double x[Nx*Ny],y[Nx*Ny],sphi,cphi,dphi=1.5707963/(Nx-1),r,dr=2.5,min,max;
struct dvec orig;

FILE *f;

orig.dim=2; orig.x=0; orig.y=0;

Define the variables to be used, initialize them where appropriate, and define the two-dimensional
vector orig to the origin.

gRGrid(5,10,6,5,7.1429,8);

After getting a paper, initializing World coordinates, and drawing the axes, get a regular grid
with origin (5,5), 6 nodes in z-direction separated by the grid constant 10, and 8 nodes in
y-direction with grid constant 7.1429.

sDash(0); dGrid(1,0); sDash(-1);

Set the pen’s dash pattern, draw the grid including node numbers, and reset the dash pattern
again. The grid is stored in private data structures of PSGRAF.

Drawing the grid is typically a debugging tool to check if the input was correct. In a valid grid,
there are no nodes at exactly the same location and grid lines do not fold. While this is not
a difficulty with regular grid, typos in the arguments of the semi-regular or of the deformed-
regular grid may lead to invalid grids. The situation exacerbates with the completely irregular
triangular grids which are typically all hand-made. If you are working in three-dimensions,
be aware that the projection of the grid must be a valid grid itself. For instance, a perfectly
regular grid, viewed head-on, is not a valid grid for the contouring operator. Since it currently
does not check the validity of the grid, the operator will fail unpredictably.

Grids

41

deleteGrid();

Delete the grid and release the associated private memory. This is only necessary if another
grid is to be generated. If the old grid has not been deleted, this will be done automatically by
any subsequent grid generator and a corresponding warning message will be displayed.

for (i=0;i<6;i++) x[i]=5+p0w(2,i)*50/31.;
for (j=0;j<8;j++) yl[jl=b+pow(2,j)*50/127.;
gSRGrid(x,6,y,8);

dGrid(0,0);

deleteGrid();

After resetting World coordinates and again drawing the axes, create the z- and y-arrays with
the respective coordinates of the nodes, generate the corresponding semi-regular grid, and draw
it without labeling anything. Notice that the arrays contain the coordinates, not the increments
between nodes, and thus must be strictly monotonic for the resulting grid to be valid.

for (i=0;i<Nx;i++) {

sphi=sin(i*dphi); cphi=cos(i*dphi);

for (j=0;j<Ny;j++) {r=0.0001+j*dr; x[i+Nx*jl=r*sphi+5; y[i+Nx*jl=r*cphi+5;}
}
gDRGrid(x,y,Nx,Ny);

Generate the coordinates for a deformed regular grid. In contrast to the semi-regular grid, we
now have to give the coordinates for each grid point not just for straight grid lines. Hence the
length of the arrays x and y are now the same and equal Nx - Ny.

In this example the grid is deformed such that it covers a quarter disk, at least apparently. In
reality, this is of course not possible to achieve with a valid grid since the center of the disk is
a singularity. We circumvent this by replacing the disk by an annulus with a tiny inner radius,
here 0.0001.

f=fopen("TGrid.dat","r");
fscanf (f,"%i %i",&Np,&N1);
for (i=0;i<Np;i++) fscanf(f,"%i %1f %Lf",&j,x+i,y+i);
b=(int*)malloc(Nl*sizeof (int));
e=(int*)malloc(Nl*sizeof (int));
for (i=0;i<Nl;i++) fscanf(f,"%i %i %i",&j,b+i,e+i);
fclose(f);

gTGrid(x,y,Np,b,e,N1);
sText ("Helvetica",9,’C’,’C’); dGrid(1,0);
sText ("Helvetica",4,’C’,’C?); dGrid(0,1);

Finally, the definition of a completely irregular triangular grid is read from file TGrid.dat and
the corresponding grid is generated. Since such a file is typically hand-made, we facilitate
checking the grid by labeling its nodes as well as its lines.

Notice that the operator gTGrid is not particularly efficient — it searches the whole grid for
assembling the neighboring information — and that it should only be used for rather small
grids, probably with less than a few hundred nodes.

42

Cook Book

Contours in Two Dimensions

80 1.00
20 0.75
60 0.50
50 0.25
40 0

30 -0.25
20 -0.50
10-= § -0.75
0 \““""V"“"“N‘““““V‘“““‘N“‘ 1.00

0 20 40 60 80

The code examples/contours.cpp contours a data set defined on a quarter disk by drawing a
few contour lines and filling the area between them with a near-continuous transition of colors.
Finally, it draws the corresponding legend.

#define Nx 80 // #nodes in x-direction
#define Ny 80 // #nodes in x-direction
#define DX 60 // size of drawing [mm]
#define NCTR 65 // #contour levels
int i,j;
double *x,*y,*z, // data set: height z at (x,y)
ctr [NCTR], // values of contour lines

cO[NCTR+1],c1[NCTR+1],c2[NCTR+1], // color components of contour fill
sphi,cphi,dphi=1.5707963/(Nx-1) ,r,dr=1;
struct dvec orig;

Define some constants and variables. Notice that there are NCTR contour lines but NCTR + 1
contour fills.

for (i=0;i<NCTR;i++) {
ctr[i]=(i+1)*2./(NCTR+1)-1.;
c0[i]=0.8%(i+1)/(NCTR+1); cil[il=c2[i]l=1;

}

cO[NCTR]=0.8; c1[NCTR]=c2[NCTR]=1;

After setting the origin orig and allocating memory for the arrays x, y, and z, specify the
contour values and the associated fill color. Notice that a contour fill refers to the area that
represents values smaller than the corresponding contour value, except for the last fill which
refers to the area with larger values. As specified later, the color components refer to the HSB
color space and we are using full saturation and brightness. Hue varies only between 0 and 0.8
to prevent the ambiguity that results from the cyclicity of the hue.

for (i=0;i<Nx;i++) {
sphi=sin(i*dphi); cphi=cos(i*dphi);
for (j=0;j<Ny;j++) {
r=0.0001+j*dr;
x[1+Nx*jl=r*sphi+b; y[i+Nx*j]=r*cphi+5;
z[i+Nx*j]1=0.5%sin(0.2*r) *sin(5*i*dphi) +0.3%sin(0.3%*r)*sin(7*i*dphi)
+0.2*sin(0.5%r) *sin(11*i*dphi)+0.1*sin(0.7*r)*sin(13*ixdphi) ;

Contours in Two Dimensions

43

Create the data set: the grid is the same as the deformed regular grid described on page 40
and the “height” z is created by adding a few periodic components.

sColorSpace ("HSB") ;
sContours(ctr,NCTR,c0,c1,c2);
gDRGrid(x,y,Nx,Ny);
dContours(z,1,0);

After requesting a paper, initializing World coordinates and drawing axes, we set the color space
and the contour values together with the corresponding fills, generate the deformed regular grid,
and finally contour the array z by filling the corresponding areas filled = 1 but not drawing the
contour lines framed = 0. Notice that z is a one-dimensional array that is arranged identically
to x and y. The correct arrangement is obvious in this example but must also be followed when
more regular grids are defined.

dLegend (DX+4,0,-2,DX,0,8) ;

Draw a vertical legend, horiz = 0, for the currently active set of contour values and fills and
label every 8th contour level. The corner of the legend is at (DX +4,0), its width is —2 mm and
its height DX mm. The negative width causes the labeling to move to the right of the color bar
and the corner to be at the lower right.

sColorSpace("G");

for (i=0;i<5;i++) ctr[i]=i*0.2;

sContours(ctr,5,c0); dContours(z,0,1);

for (i=0;i<4;i++) ctr[i]=-0.8+i*0.2;

sDash(1); sContours(ctr,4,c0); dContours(z,0,1); sDash(-1);

Reset the color space to gray, set a few positive contour values, and draw the corresponding
contour lines — filled = 0, framed = 1 — with the current pen (solid black line). Next set a
few negative contour values — notice that the must be ordered with increasing values — set the
dash pattern and again draw the contour lines. This illustrates that contour lines are always
drawn with the current pen.

44

Cook Book

Contours in Three Dimensions

The code examples/contours3.cpp contours a data set defined on an inclined plane and also
projects the contour lines into the xy-plane.

struct dvec X0,X1,X2;

Much the same constants and variables are defined as in the contouring example on page 42
except that a few more vectors are introduced. Their dimension is subsequently set to 3.

sXWorldCoord (0,NX+10,0,DX); sYWorldCoord(O,NY+10,0,DX); sZWorldCoord(O,NX+10,0,DX);
X0.x=0; X0.y=0; X0.z=0;

X1.x=1; X1.y=1; X1.z=1;

X2.x=-1; X2.y=2; X2.z=-1;

sView(X0,X1,X2);

World coordinates are set in three-dimensional space and the view is definied by the origin X0,
the direction X1 from the observer to the origin, and by the direction X2 that points to the
right.

dXAxis(X0,86,1);
dYAxis(X0,86,1);
dZAxis(X0,52,1);

Draw all three axes starting at the origin.

X1.x=1; X1.y=0; X1.z=0;
X2.x=0; X2.y=1; X2.z=0;
gRGrid(X0,X1,X2,NX,NY);

Define a regular grid with corner X0 (still the origin) and grid vectors X1 and X2. Notice that
this grid lies in the xy-plane.

for (i=0;i<5;i++) ctr[i]l=ix0.2;

sContours(ctr,5,c0); dContours(z,0,1);

for (i=0;i<4;i++) ctr[i]=-0.8+i*0.2;

sDash(1); sContours(ctr,4,c0); dContours(z,0,1); sDash(-1);
dGridBoundary(0,0) ;

deleteGrid();

Define and draw contour values in much the same way as for example on page 42, draw the
grid boundary without any labeling, and remove the grid.

Contours in Three Dimensions 45

X0.x=0; X0.y=0; X0.z=6;
X1.x=1; X1.y=0; X1.z=0;
X2.x=0; X2.y=1; X2.z=0.5;
gRGrid(X0,X1,X2,NX,NY) ;
dContours(z,1,0);

After setting the color space to HSB and defining contour values and fills as in the example
above, define a new regular grid and draw the contours. Notice that the previously defined grid
was the xy-projection of the current one.

sColorSpace("G");

for (i=0;i<5;i++) ctr[i]l=ix0.2;

sContours(ctr,5,c0); dContours(z,0,1);

for (i=0;i<4;i++) ctr[i]=-0.8+i*0.2;

sDash(1); sContours(ctr,4,c0); dContours(z,0,1); sDash(-1);
dGridBoundary(0,0) ;

Finally draw some contour lines that correspond to the projections drawn before.

Cook Book

Contouring and Slicing Data Blocks

Code examples/3d-slices.cpp generates a three-dimensional data block and contours its outer
faces. Then, it cuts two sub-blocks and contours their inner faces. Recall that (i) PSGRAF has
no built-in concept of three-dimensional space and (ii) drawing is always done in a covering
mode, hence earlier parts of a figure are covered by later parts. The order of invoking the
dCBlock operator and whether it used for drawing outer or inner faces is thus crucial for the
three-dimensional illusion of the final figure.

X0.dim=X1.dim=X2.dim=3;
f=(double***)malloc (NX*sizeof (double**)) ;
for (i=0;i<NX;i++) {
f[i]=(double**)malloc(NY*sizeof (doublex)) ;
for (j=0;j<NY;j++) £[i] [j]=(doublex*)malloc(NZ*sizeof (double));
}
min=max=0;
for (i=0;i<NX;i++) {
bx=(double) (i-NX/2) /NX;
for (j=0;j<NY;j++) {
by=(double) (j-NY/2)/NX;
for (k=0;k<NZ;k++) {
bz=(double) (k-NZ/2) /NX;
£[i] [j] [k]=cos (100*bx*by) *cos (40*by*bz) *cos (10*bz*bx) ;
if (min>f[i][j][k]) min=f[i][j][k];
if (max<f[i] [j][k]) max=f[i][j][k];
}
}
}

After defining some variables and data structures, the dimensions of the vectors are initialized,
space for the data block f is allocated, and it is filled with some funny function. In passing,
minimal and maximal values are also determined for later scaling (even though in this particular
example, we know that these values are +1). Instead of this part, you would put your own
function here or read in some data.

gPaper("fig/3d-slices");
sXWorldCoord(0,NX,0,DX); sYWorldCoord(O,NY,0,NY*DX/NX); sZWorldCoord(0,NZ,0,NZ*DX/NX) ;
X1.x=-1; X1.y=-1; X1.z=-1;
X2.x= 1; X2.y= 0; X2.z=-1;
sView(X1,X2);

Contouring and Slicing Data Blocks

47

sColorSpace ("HSB") ;

for (i=0;i<NCTR;i++) {
ctr[i]=min+(i+1) * (max-min)/(NCTR+1);
cO[i]=MAXHUE#*i/(NCTR-1); c1[il=1; c2[i]=1;

}

cO[NCTR]=MAXHUE; c1[NCTR]=1; c2[NCTR]=0.8; // "low-light" outlyers
sContours(ctr,NCTR,c0,c1,c2);

illum.dim=0;

Next, the drawing paper is initialized and World coordinates are set such that they have the
same scale, independent of the size of the block. The view is then set such that we are looking
along the space diagonal of a cube, X1 = (—1,—1,—1), with the y-axis pointing vertically up,
X2 =(1,0,-1).

The color space is set to HSB and equidistant contour values and fills are calculated using
the previously obtained extremal values of the data block. MAXHUE has been set to 0.7 in the
constants section to prevent cyclical colors. Notice that regions with very large values are
particularly marked by reducing the brightness of the corresponding fill. Obviously, any part
of the data set can be highlighted in this and similar ways.

Finally, we set the dimension of the illumination vector i11um to 0 such that a diffuse light source
is used for the first object. Notice that a dimension different from 3 suppresses illumination
and i1lum need not be assigned any values for its coordinates.

sCBlock(0,1,NX,0,NX-1,
0,1,NY,0,NY-1,
0,1,NZ,0,NZ-1,1,illum);
)

B

dCBlock(f,1,0

The block to be contoured and the desired clipping is then defined by sCBlock. The first line
of arguments, 0,1,NX,0,NX-1, refers to the z-direction and first indicates that the origin, in
World coordinates, is at 0, the distance between node is 1, and that there are NX nodes for the
entire block. The next two arguments indicate beginning and end, as node numbers, of the
sub-block that is to be contoured. Here, with 0,NX-1, the z-extent of the sub-block equals that
of the entire block. In the following two lines, these five parameters are also given for the y-
and for z-direction. Finally, the last two arguments of sCBlock specify that the outer faces of
the sub-block have to be contoured and give the illumination vector.

The sub-block is contoured by dCBlock. The parameters 1,0 indicate that the contours are to
be filled but not framed.

sCBlock(0,1,NX, (int) (0.2%NX) ,NX-1,

0,1,NY, (int) (0.5*NY) ,NY-1,

0,1,NZ, (int) (0.3%NZ) ,NZ-1,0,illum);
dCBlock(f,1,0);

sCBlock(0,1,NX, (int) (0.5%NX) ,NX-1,
0,1,NY,0, (int) (0.5%NY),
0,1,NZ, (int) (0.5%NZ) ,NZ-1,0,illum);
dCBlock(f,1,0);

In the next steps, we cut out two corner blocks by specifying the desired sub-blocks and then
contouring their inner faces. This completes the first object.

sXWorldCoord (0,NX,DX,2%DX); sYWorldCoord(O,NY,0,NY*DX/NX) ;
sZWorldCoord (0,NZ,-NZ*DX/NX,0) ;

illum.dim=3; illum.x=-0.3; illum.y=-1; illum.z=-0.6;

To draw the second object, we keep the view but change World coordinates, and set the illumi-
nation vector i1lum such that the directed light source is above the object slightly oblique such
that all face get some light. The block contouring is then repeated identically to the above.

48

Cook Book

Part Il

Appendix

A
The BTEX style file PSgraf.sty

The information to render the graphics created by PSGRAF is contained in the file fn. eps, where
fn is the name assigned to the drawing paper by gPaper. If TEX fonts have been selected, the
information needed by TEX to typeset them is in the file fn.tex.

To incorporate the graphics created by PSGRAF into a TEX file, the macro \epsffile (written
by Tomas Rokicki of Radical Eye Software and provided in epsf.sty) or a similar tool may
be employed. If TEX fonts have been used, the style file PSgraf.sty, which uses the macro
\epsffile, provides the link between I4TEX and the graphics. The central macro is \dTeXText
which guides the TEX-engine to typeset the lettering of the PostScript graphics.

% PSgraf.sty: LaTeX style file for incorporating PSgraf files into TeX-documents

% Requires epsf.sty (by Tomas Rokicki of Radical Eye Software) or a similar tool for
% incorporating pure PostScript into TeX.

% HISTORY:

% v3.0.0 031227kr
% created 950307kr

9 —

% PSfigure: draw a centered figure above the figure text

% 1: figure reference

% 2: name (extensions .eps and .tex are appended automatically, do not supply them)
% 3: text for figure caption

% 4: text for list of figures

% 5: position on page (hptb)

% 6: input file(s) T : PostScript graphics & TeX text (fn.eps & fn.tex) [default]

% E : Encapsulated PostScript (fn.eps)

; 7: single (s) or double (d) column

\input epsf
%

\newcount\PSf1lQg

\newdimen\PS@11x\PS@1l1lx= 10000bp \newdimen\PS@11ly\PS@lly= 10000bp

\newdimen\PS@Qurx\PS@urx=-10000bp \newdimen\PS@ury\PSQury=-10000bp

\newdimen\PS@x \newdimen\xoff \newdimen\PS@y \newdimen\yoff

\newdimen\PS@w \newdimen\PS@h \newdimen\PS@Ax \newdimen\PS@Ay

>newbox\PS@box

% dlTeXText 1,2 : position (x,y)
% 3 : text

% 4 : rotation angle

% 5,6,7,8 : cx, cy, cos, sin
Y layer

\def\dTeXText#1#2#3#4#5#6#7#8{\d1TeXText{#1 - {#2}{#3}{#4} {#5}{#6{#7}{#8}{2}}
\def\d1TeXText#1#2#3#4#5#6#7#8%#9{),
\PS@x=#1bp\PSCy=#2bp},
\setbox\PS@box=\hbox{#3}\PS@w=#5\wd\PS@box\PS@h=#6\ht \PS@box’
\PS@Ax=-#7\PS@w\advance\PS@Ax by#8\PSeh’,
\PS@Ay=-#8\PS@w\advance\PS@Ay by-#7\PS@h},
\PS@w=\wd\PS@box\PS@h=\ht\PS@boxY
\ifnum\PSf1@g=07% calculate bounding box
\advance\PS@x by\xoff\advance\PS@x by\PS@AxY,
\advance\PSQ@y by\yoff\advance\PS@y by\PS@Ay?
\ifnum#4<917
\advance\PS@x by-#8\PS@h\ifdim\PS@11lx>\PS@x\PS@11lx=\PS@x\fi\advance\PSOx by#8\PS@hJ
\advance\PS@x by #7\PS@w\ifdim\PSQurx<\PS@x\PSQ@urx=\PS@x\fiY,
\ifdim\PS@11y>\PS@y\PS@11y=\PSQy\fi%
\ \adyance\PS@y by#8\PS@w\advance\PSQy by#7\PS@h\ifdim\PS@ury<\PS@y\PSQury=\PS@y\fi%
else’,
\ifnum#4<181Y%
\ifdim\PS@urx<\PS@x\PS@urx=\PS@x\fiY
\advance\PS@x by#7\PSQw
\advance\PS@x by-#8\PS@h\ifdim\PS@11x>\PS@x\PS@11x=\PS@x\fi%
\advance\PS@y by#7\PS@h\ifdim\PS@11ly>\PSQy\PS@1lly=\PS@y\fi},
\advance\PSQy by-#7\PS@h
\advance\PSQ@y by#8\PS@w\ifdim\PSQury<\PS@y\PSQury=\PSey\fiY

o1

A The BTEX style file PSgraf .sty

\elsel
\ifnum#4<271%
\advance\PS@x by-#8\PS@h\ifdim\PSQurx<\PS@x\PS@urx=\PS@x\fi%
\advance\PS@x by#8\PSCh
\advance\PS@x by#7\PS@w\ifdim\PS@11x>\PS@x\PSQ@11x=\PS@x\fi},
\ifdim\PS@ury<\PS@y\PSQury=\PS@y\fi%
\advance\PSQy by#8\PS@w
\advance\PS@y by#7\PSeh\ifdim\PS@11ly>\PSQy\PS@lly=\PSCy\fi%
\else,
\ifdim\PS@11x>\PS@x\PS@11x=\PS@x\fiY
\advance\PS@x by#7\PS@w
\advance\PS@x by-#8\PS@h\ifdim\PSQurx<\PS@x\PS@urx=\PS@x\fi%
\advance\PSQy by#7\PS@h\ifdim\PSQury<\PSQy\PSCury=\PSQy\fi}
\advance\PSQy by-#7\PSCh
\ \7dvance\PS@y by#8\PS@w\ifdim\PSE11y>\PSey\PSe1lly=\PSey\fi%
il
\fi%
\£fi%
\else’, draw text of layer \PSfl@g
\ifnum\PSf1l0g=#9%
\advance\PS@x by\xoff\advance\PS@x by\PS@AxJ
\advance\PSQ@y by\yoff\advance\PSQ@y by\PS@Ay’,
\kern\PS@x\raise\PS@y\hbox toOmm{%
{\setbox0=\hbox toOpt{#3\hssl}/,
\special{ps:gsave}
\special{ps:currentpoint currentpoint translate #4 neg
rotate neg exch neg exch translatel},
\box07%
, \special{ps:grestore}}

Fkern-\Psex
\£fi%
\fi}
\long\def\PSfigure#1#2#3#4#5#6#7{},
hif#7s>begin{figure}[#5]\else\begin{figure*}[#5]\fi
if#6E%
\ \hb7x to\textwidth{\hfill\epsffile{#2.eps}\hfill}},
elsel,
\PSf1@g=0\input{#2.tex}%
tadvanie\PS@urx by-\PS@llx\advance\PSQury by-\PS@llyY
hfilly
\raise-\PS@lly\vbox to\PS@ury{\vfill},
\hbox to\PS@urx{%
\kern-\PS@llx\hbox toOpt{\PSfl@g=1\input{#2.tex}\hss}/
\hbox toOpt{\epsffile{#2.eps}\hssl}%
}V\PSfl©g=2\input{#2.tex}\hss%
Yh
\£fi%
\hfill\hskipOpt%
\if#3\empty\else\caption [#4]{\label{f#1}#3}\fi},
\if#7s\end{figure}\else\end{figurex}\fiy

The usage of this style file is illustrated by the following excerpts from the source of this manual.
First, the PSgraf.sty file is included, together with some additional definitions contained in
man.sty, by specifying it as optional argument to \documentstyle.

\documentstyle [man,PSgraf]{report}

Each of the figures is then included by invoking \PSfigure at the appropriate place, e.g., for
Figure 2.1 on page 8 the source is

h

\PSfigure{f1}{coordinates}

{{\sf PS\small GRAF} knows two different coordinate systems: (i) Paper coordinates, which
are used to navigate on the drawing paper in much the same way as you would do it using a
ruler, and (ii) World coordinates, which facilitate the drawing of data in their natural
coordinate system.}

{3

{tb}

{T}

{s}

h

In the text, the figure is referenced as Figure \ref{f1} and the files created by PSGRAF are
coordinates.eps and coordinates.tex.

B
The Header Files

The functions and data structures of PSGRAF are divided into a public and a private part. The
corresponding definitions are contained in the header files PSgraf3.h (public) and PSgraf_p.h
(private). A typical program includes only PSgraf3.h, i.e., all the internal structures are
hidden. This adds considerable security to programming as the internal symbolic names used
by PSGRAF are protected.

The header PSgraf_p.h must be included, however, if PSGRAF is not used as a library and
some parts are incorporated into the source code. Even in this case, direct operation on the
internal structures that go beyond reading are strongly discouraged, since they may compromise
the consistency of data which are used by other PSGRAF functions.

B.1 PSgraf3.h

/* -
VERSION 3.0.1, COPYRIGHT 1991,1992,1995,1997,2000,2003 K. ROTH

PSgraf IS LICENSED FREE OF CHARGE. THEREFORE THIS FILE, AND ALL THE ACCOMPANYING FILES
WHICH IN THEIR ENTIRETY CONSTITUTE PSgraf, ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, WHETHER EXPRESSED OR IMPLIED. YOU ARE RESPONSIBLE FOR ASCERTAINING THE FITNESS OF
PSgraf FOR ANY SPECIFIC USE, AND CONSEQUENTLY YOU ASSUME ALL THE RESPONSIBILITIES AND
COST THAT MAY ARISE FROM USING IT.

*/
/%
PSgraf3.h: header file for PSgraf
history:
debug dSymbol, added pPW (3.0.1) 040623kr
simple 3d objects added; introduce struct dvec; C++ (3.0.0) 031115kr
encapsulated bitmap preview (2.4.1) 011226kr
arbitrary triangular grids (2.4.0a) 001216kr
added bitmaps and TIFF 971121kr
delete magnification and sPaperCoord 950330kr
make all coordinates positive (compatibility with other 0S) 950330kr
variable argument lists for gray/color 920819kr
color added (2.0) 920523kr
created based on SciGraf for the Macintosh (1.0) 910608kr
modifications:
*/

/* -—- begin include watcher */
#ifndef PSgrafVersion

/% — -—— definitions */
#define PSgrafVersion 301
#define NONE -1

struct dvec { /* vector in space */
int dim; /* dimension */
double x,y,z; /* coordinates */
struct color { /* color */
int CS; /* color space (G=0, RGB=2, HSB=4, CMYK=8) */
double c0,cl1,c2,c3; /* coordinates */
/* vector operations (vectorops.cpp) */

struct dvec identity(struct dvec x);
struct dvec negvec(struct dvec x);
double norm(struct dvec x);
void normalize(struct dvec*x);
struct dvec normalize(struct dvec x);

93

o4

B The Header Files

struct dvec addvec(struct dvec a,struct dvec b);

struct dvec subvec(struct dvec a,struct dvec b);

struct dvec scalmult(double a,struct dvec b);

double dotprod(struct dvec a,struct dvec b);

void vecprod(struct dvec a,struct dvec b,struct dvecxc);

struct dvec vecprod(struct dvec a,struct dvec b);

/* -—- projectors (projectors.cpp) */
struct dvec pPI(struct dvec Xp);

void pPI(struct dvec Xp,struct dvec*Xi);

void pPI(double xp,double yp,double zp,doublexxi,doublexyi);

struct dvec pPW(struct dvec Xp);

void pPW(struct dvec Xp,struct dvec *Xw);

void pPW(double xp,double yp,doublexxw,double*yw);

void pPW(double xp,double yp,double zp,doublexxw,double*yw,double*zw) ;
struct dvec pWI(struct dvec Xw);

void pWI(struct dvec Xw,struct dvec*Xi);

void pWI(double xw,double yw,double zw,double*xi,doublexyi);

struct dvec pWP(struct dvec Xw);

void pWP(struct dvec Xw,struct dvec*Xp);

void pWP(double xw,double yw,doublexxp,double*yp);

void pWP(double xw,double yw,double zw,doublex*xp,double*yp,double*zp) ;
/* -—= ---- functions */

void dArrow(char CS,int type,struct dvec X1);

void dArrow(char CS,int type,struct dvec X0,struct dvec X1);

void dArrow(char CS,int type,struct dvec X0,struct dvec X1,struct dvec 0);

void dAArrow(char CS,int type,struct dvec X1,const char*text);

void dAArrow(char CS,int type,struct dvec XO,struct dvec X1,const charxtext);

void dAArrow(char CS,int type,struct dvec XO,struct dvec X1,struct dvec 0,const char*text);

void dBitMap(double x0,double y0,double dpx,double dpy,int Nx,int Ny,
doublexgry) ;

void dBitMap(double x0,double yO,double dpx,double dpy,int Nx,int Ny,
double*c0,double*cl,double*c2);

void dBitMap(double x0,double yO,double dpx,double dpy,int Nx,int Ny,
double*c0O,double*cl,double*c2,double*c3) ;

void dCBlock(doublex*xf,int filled,int framed);

void dContours(double*Z,int filled,int framed);

void dDataPoint(char CS,struct dvec X,struct dvec dX);

void dDataPoint(char CS,double x,double dx,double y,double dy);

void dDensity(char CS,double x0,double y0,double dx,double dy,int Nx,int Ny,

double*zd,double misval);

void deleteGrid(void);

void dGrid(int Node_numbers,int Line_numbers);

void dGridBoundary(int Node_numbers,int Line_numbers);

void dLegend(double x0,double yO,double dx,double dy,int horiz,int nth);
void dLine(char CS,struct dvec x0,struct dvec x1);

void dLine(char CS,double x0,double yO,double x1,double y1);

void dLine(char CS,double x0,double y0,double z0,double x1,double yl,double zl);
void dMissing(int*missing);

void dNumber (double thenumber);

void dParallel(char CS,struct dvec x0,struct dvec sO,struct dvec s1);
void dParallel(char CS,struct dvec x0,struct dvec sO,struct dvec si,struct dvec s2);
void dPolygon(char CS,struct dvec*x,int N);

void dPolygon(char CS,double*x,double*y,int N);

void dPolygon(char CS,doublexx,double*y,double*z,int N);

void dSymbol(char CS,struct dvec x,double R,int SY);

void dSymbol(char CS,double x,double y,double R,int SY);

void dSymbol(char CS,double x,double y,double z,double R,int SY);

void dText(const char*text);

void dTIFF(double x0,double yO,double*dpx,double*dpy,const char*fn);
void dXAxis(struct dvec X0,double x1,int below);

void dXAxis(double x0,double yO,double x1,int below);

void dXAxis(double x0,double yO,double z0,double x1,int below);

void dYAxis(struct dvec X0,double yl1,int atleft);

void dYAxis(double x0,double yO,double yl,int atleft);

void dYAxis(double x0,double yO,double z0,double yi1,int atleft);

void dZAxis(struct dvec X0,double z1,int below);

void dZAxis(double x0,double yO,double zl,int below);

void dZAxis(double x0,double yO,double z0,double zl,int below);

void endPS(void);

int gColorSpace();

void gContours(double*ctr,int*N,struct colorxc);

void gDRGrid(doublexx,double*y,int Nx,int Ny);

void gDRGrid(double*x,double*y,double*z,int Nx,int Ny);

struct color gFill();

void gRGrid(struct dvec x0,struct dvec x1,struct dvec x2,int N1i,int N2);
void gRGrid(double x0,double dx,int Nx,double yO,double dy,int Ny);

void gSRGrid(struct dvec x0,struct dvec x1,int N1,struct dvec x2,int N2);
void gSRGrid(doublexx,int Nx,doublexy,int Ny);

struct color gStroke();

void gTGrid(double*x,double*y,int NN,int*b,int*e,int NL);

void gPaper (char*name) ;

void gPreview(void);

int gTCover();

int interpolate(double Z[],int missing[]);

void iTCover(int NT,int*#*nodes,double*cgx,double*cgy) ;

void MinMax(double*X,int N,double*xmin,double*xmax) ;

void movea(char CS,struct dvec x);

void movea(char CS,double x,double y);

void movea(char CS,double x,double y,double z);

B.2 PSgraf_p.h

95

void mover(char CS,struct dvec x);
void mover(char CS,double x,double y);
void mover(char CS,double x,double y,double z);
void PSerror(const char*where,const char*what);
void PSwarning(const char*where,const charxwhat);
void sArrow(double lhead,double wtail,double whead,char root);
void sCBlock(double x0,double dx,int Nx,int il,int iu,
double yO0,double dy,int Ny,int jl,int ju,

double z0,double dz,int Nz,int kl,int ku,int outer,struct dvec illum);
void sClipping(char CS,double xmin,double xmax,double ymin,double ymax);

void sClipping();

int sColorSpace(int cspace);

int sColorSpace(const char*cspace);

void sContours(double*ctr,int N,struct color*c);
void sContours(double*ctr,int N,double*cO);

void sContours(double*ctr,int N,double*cO,double*cl,double*c2);

void sContours(double*ctr,int N,double*cO,double*cl,double*c2,double*c3);

void sDash(int ip);

void sDash(const charx*dpat);

void sDataPoint(int symbol,double rsymbol,double barlength);
void sDensity(double*val,int N,struct colorxc);

void sDensity(double*val,int N,doublex*cO);

void sDensity(double*val,int N,double*cO,double*cl,double*c2);

void sDensity(double*val,int N,double*cO,double*cl,double*c2,double*c3);

void sFill();

void sFill(struct color c);

void sFill(double cO0);

void sFill(double cO,double cl,double c2);

void sFill(double cO,double c1,double c2,double c3);
void sIPlane(struct dvec x1,struct dvec x2);

void sIPlane(struct dvec x0,struct dvec x1,struct dvec x2);
void sMinPixel(double pixelsize);

void sNumber(char format,int prec);

void sStroke(struct color c);

void sStroke(double cO);

void sStroke(double cO,double cl,double c2);

void sStroke(double cO,double cl1,double c2,double c3);
void sTeXStyle(const charxtexsty,int layered);

void sText(const char*font,double size,char hadjust,char vadjust);

void sTextRotation(double theta);

void sThickness(double thick);

void sView(struct dvec view,struct dvec right);

void sView(struct dvec x0,struct dvec view,struct dvec right);

void sXIntervals(double interval0O,double intervall,double interval2,int precision);

void sXTicks(double tickO,double tickl,double tick2);

void sXWorldCoord(double wleft,double wright,double pleft,double pright);
void sYIntervals(double intervalO,double intervall,double interval2,int precision);

void sYTicks(double tickO,double tickl,double tick2);

void sYWorldCoord(double wlow,double whigh,double plow,double phigh);
void sZIntervals(double intervalO,double intervall,double interval2,int precision);

void sZTicks(double tickO,double tickl,double tick2);

void sZWorldCoord(double wlow,double whigh,double plow,double phigh);

void sZWorldCoord() ;

/% -
#endif

B.2 PSgraf p.h

end include watcher */

/% -
PSgraf_p.h: private part of header file for PSgraf.
history:
simple 3d objects added; introduce struct dvec; C++ (3.0.0) 031115kr
encapsulated bitmap preview (2.4.1) 011226kr
arbitrary triangular grids (2.4.0a) 001216kr
added bitmaps and TIFF 971121kr
delete magnification and sPaperCoord 950330kr
make all coordinates positive (compatibility with other 0S) 950330kr
variable argument lists for gray/color 920819kr
color added (2.0) 920523kr
created based on SciGraf for the Macintosh (1.0) 910608kr/
— *

#ifdef COM_SYM_DEF
#define EXTERN

#else

#define EXTERN extern
#endif

/% —
#include <ctype.h>

#include <string.h>

#include <stdarg.h>

#include <limits.h>

#include <float.h>

#include <math.h>

--- definitions */

o6

B The Header Files

#include <stdlib.h>
#include <stdio.h>
#include "PSgraf3.h"
#include "tiffio.h"
#include "tiff.h"

#define PSgraflibVersion 301

#define PT_to_MM 2.83465 /* scaling [point] --> [mm] */
#define X_stretch 0.56 /* used to estimate the extent of a string... */
#define Y_stretch 0.73 /* ...in x- and y-direction from curFSize */
#define CHUNK 4096 /* elements allocated per request for more memory */
#define Deg_to_Rad 0.017453293 /* pi/180 */
#define PS_PIX_SIZE 0.25 /* pixel size (used in dLegend for density plots) */
/* -—= variables */
[k=———= filenames, filestatus, number of drawings *
EXTERN int PSinitialized; /* flag for initialization of PSgraf */
EXTERN char *paper_name; /* name of current paper */
EXTERN long BoundingBox; /* position of bounding box in PostScript file */
EXTERN long PaperShift; /* position of shifting vector for positive coord. */
EXTERN long TeXoff; /* position of xoff & yoff in TeX file */
EXTERN int PSdrwN; /* # drawings */
EXTERN int EPSencaps; /* 0: no preview; 1: add preview (using system call) */
[*=—==== coordinate systems, current position, bounding box *
EXTERN double Pa,Pb,Pc,Pd; /* scaling-rotation matrix for paper coordinates */
EXTERN double Px,Py; /* translation vector for paper coordinates */
EXTERN double Wlx,Wly,Wlz, /* left end of window in world coordinates */
P1x,Ply,Plz, /* left end of window in paper coordinates */
PWx,PWy,PWz; /* scaling factors [Pr-P1]/[Wr-Wl] */
EXTERN double cpx,cpy; /* current position (Paper coordinates [mm]) */
EXTERN double Bx1l,Byll,Bxur,Byur;/* lower left and upper right corner of bounding box */
EXTERN int z_set; /* third dimension active */
[*————= R"3 --> R"2 projection -— *
EXTERN double R32x0,R32y0,R32z0, /* origin of image plane in normal space */
R32x1,R32y1,R32z1, /* x vector of image plane in normal space */
R32x2,R32y2,R322z2; /* y vector of image plane in normal space */
EXTERN struct dvec R32_view; /* unit vector pointing from observer to origin */
[*—=—== pen & color *
EXTERN double Pthick; /* pen thickness [Paper] */
EXTERN int ColorSpace; /* G=0, RGB=2, HSB=4, CMYK=8 */
EXTERN double S_cO0,F_cO, /* color component O for stroke and fill */
/* (F_cO=NONE --> no filling) */
S_cl,F_c1, /* color component 1 for stroke and fill */
S_c2,F_c2, /* color component 2 for stroke and fill */
S_c3,F_c3; /* color component 3 for stroke and fill */
/* (0 if not used) x/
[*————= axes - */
EXTERN double xintervall[3], /* intervals for i-th order ticks (i=0,..,2) */
yinterval[3],zinterval[3]; /* " */
EXTERN double xTiMalLe[3], /* length of i-th order ticks */
yTiMaLe[3],zTiMaLe[3]; /* K */
EXTERN int xprecision, /* precision for lettering the axes */
yprecision,zprecision; /* " */
EXTERN int xauto,yauto,zauto; /* autom. determination of intervals and precision */
[*=—=—= clipping -—= */
EXTERN int clip_on; /* clipping on */
EXTERN double clip_x1,clip_xh, /* clipping bounds in x-direction (PC) */
clip_yl,clip_yh; /* clipping bounds in y-direction (PC) */
/¥ === arrows -—= */
EXTERN double arr_lhead, /* length of head */
arr_wtail,arr_whead; /* width of tail and head */
EXTERN char arr_root; /* root of arrow (T,C,H) */
EXTERN int arr_tilt; /* true if annotation is to be tilted */
[*===—= data point */
EXTERN int dp_sym; /* symbol for data point */
EXTERN double dp_rsym; /* radius of symbol */
EXTERN double dp_bar; /* bar length for errors */
[k=== fonts & format for numbers -—= *
EXTERN int TeXfonts; /* use TeXfonts: 0: no, 1: yes, 2: no, but file open */
EXTERN char TeXstyle[127]; /* TeX commands to include with every text */
EXTERN int lay_text,lay_fill; /* counters for text and fill layers (for TeX only) */
EXTERN char curFont[63]; /* name of current font */
EXTERN double curFSize; /* current font size [points] */
EXTERN char hadj,vadj; /* horiz.&vert. adjust.: hadj=[L,C,R], vadj=[T,C,B] */
EXTERN double TextRotation; /* angle relative to PaperCoordinates */
EXTERN char nformat; /* format for writing numbers */
EXTERN int precision; /* precision for writing numbers */
[*—==== file pointer *
EXTERN FILE *PSout; /* PostScript output */
EXTERN FILE *TeXout; /* TeX output */

B.2 PSgraf_p.h

o7

/=== grid for contouring -—= */
struct line {
int id; /* line number */
double bx,by,ex,ey; /* coordinates of beginning (bx,by) and end (ex,ey) */
int boundary; /* 1: belongs to boundary */
int n[2]; /* id of beginning (n[0]) and end (n[1]) node */
struct line *1[6]; /* pointers to neighboring lines
(only 4 used for triangular grid) */
double xCP,yCP; /* coord. of crossing point on this line (if any) x/
) int state; /* 0: no CP; 1: unused CP; -1: CP already used */
struct bline {
struct line *1; /* pointer to grid line */
struct bline *path[2]; /* next (path[0]), prev. (path[1]) line on boundary */
N int state[2]; /* 0: node[i] not yet used for contourline */
EXTERN int GT_; /* grid type 0: topologically regular quadrangular
1: arbitrary triangular */
EXTERN struct line *L_; /* pointer to set of grid lines */
EXTERN int NL_; /* # lines in grid */
EXTERN struct bline *B_; /* pointer to beginning of boundary */
EXTERN int NB_; /* # lines on boundary */
EXTERN int N_gn; /* # grid nodes */
[*————= contour lines & density plot - *
EXTERN int N_Ctr; /* # contours || color transfer points */
EXTERN double *C_ctr; /* pointer to contour values */
EXTERN struct color *C_col; /* pointers to colors */
EXTERN struct line *first_on_p; /* first line on polygon */
struct polygon {
double *x,*y; /* pointers to arrays with x- and y-coord. of path */

int *boundary; /* pointer to boundary array (1: belongs to boundary)
*boundary==NULL if this feature is not used */
int N; /* # points in x and y */
double bx1ll,byll,bxur,byur; /* bounding box of polygon (in WC) x/
int ictr; /* index of polygon’s contour level */
int color; /* polygon’s color (index to C_col, -1 --> white) */
) struct line *testL; /* test line to determine if polygon is a hole */
EXTERN struct polygon *P_; /* set of all contour lines (polygons) x/
EXTERN int NP_; /* # contour lines (polygons) */
EXTERN double Min_Pix; /* minimal pixel size (don’t draw smaller poly) */
EXTERN int below_Pix; /* #polygons below Min_Pix */
/=== element coverage of arbitrary trianangular grid --------—----—----———-—-——————- */
struct Telement {
int id; /* element number */
int n[3]; /* node numbers */
double cgl2]; /* coordinates of center of gravity */
int 1[3]; /* line numbers */
EXTERN struct Telement *T_; /* set of all triangles */
EXTERN int NT_; /* # triangular elements */
[k=== contoured block *
EXTERN int CB_Nx,CB_il,CB_iu, /* #nodes, lower&upper bound of block in x-direction */
CB_Ny,CB_j1,CB_ju, /* #nodes, lower&upper bound of block in y-direction */
CB_Nz,CB_k1,CB_ku; /* #nodes, lower&upper bound of block in z-direction */
EXTERN double CB_x0,CB_dx, /* origin and grid constant in x-direction */
CB_y0,CB_dy, /* origin and grid constant in y-direction */
CB_z0,CB_dz; /* origin and grid constant in z-direction */
EXTERN int CB_outer; /* contour outer skin of block */

EXTERN struct dvec CB_illum; /* direction of illumination (dim=0 -> no shading) */

/* -—-
void dP2P(double *x,double *y,int N);

void dP2W(double #*x,double *y,int N);

void dP3P(double *x,double *y,double *z,int N);
void dP3W(double *x,double *y,double *z,int N);
void linea(char CS,struct dvec x);

void liner(char CS,struct dvec x);

void liner(char CS,double x,double y);

void 12Pa(double x,double y);

void 12Wa(double x,double y);

void m2Pa(double x,double y);

void m2Wa(double x,double y);

void m3Pa(double x,double y,double z);

void m3Wa(double x,double y,double z);

void updateBB(double x,double y);

private functions */

#undef COM_SYM_DEF

o8

B The Header Files

C
Private Implementation Notes

The following implementation notes are intended for those who desire to deal with the intestines
of PSGRAF and should be skipped by all others.

For those still reading on: these notes are a rather arbitrary and unstructured selection that
may be expanded if need arises.

C.1 Layered Text with TeXfonts

The separation of PostScript and TEX prevents the fine interlayering of text and filled regions
which partly hide the text. The crude solution implemented with PSGRAF3 is to track text
and filled polygons. Text is then separated into a bottom layer, which will be typeset by the
TEX-engine before rendering the PostScript and may thus become partially or fully hidden, and
into a top layer which will be typeset afterwards. To this end, the two counters lay_text and
lay_f£ill are introduced. They are initialized by gPaper and incremented alternating by dText,
provided that TeXfonts are used, and by dP2P, provided that the polygon is filled. Notice that
this suffices since all text and numbers are eventually produced dText and all polygons by dP2P.
Drawing text with TeXfonts, the text layer is output to file TeXout immediately preceeding
\dTeXText. Upon closing of the drawing by gPaper or endPS, TeXout is reprocessed to incor-
porated the layer information into the command \d1TeXText.

By default, text layering is turned off, lay_text= —1, and must be turned on by sTeXstyle.
For compatibility with drawings produced with earlier versions of PSGRAF, two slightly macros
— \dTeXText for older text and \d1TeXText for the new layered text — have been implemented
in the example style file PSgraf.sty.

99

60

C Private Implementation Notes

D
Bugs and Fixes

In some very rare cases, dContours fails and produces an error message or a single gray level is
missing. The reason for this bug is not clear yet. As a temporary remedy, disturb the contour
values by a tiny little bit, e.g., by multiplying them with 1.00001. Such a change has typically
no graphical consequence.

61

62

D Bugs and Fixes

References

Adobe Systems Incorporated, 1991, PostScript Language Reference Manual. Second edition,
Addison-Wesley, Reading, Massachusetts.

Kernighan, B.W. and D.M. Ritchie, 1988, The C Programming Language. Second edition,
Prentice Hall, Englewood Cliffs, New Jersey.

Knuth, D.E., 1988, The TgXbook. Addison-Wesley, Reading, Massachusetts.

Lamport, L., 1986, ETEX: A Document Preparation System. Addison-Wesley, Reading, Massa-
chusetts.

Radical Eye Software, 1990, NeXTEX: An Implementation of TEX for the NeXT Computer.
Box 2081, Stanford, California.

63

64

References

Index

Symbols L

» fine print, 4 12Pa, 27

¥ root operator, 4 12Wa, 27

A M

addvec, 25 m2Pa, 27
m2Wa, 27

C m3Pa, 27

color, 3, 10 m3Wa, 27
MinMax, 25

D movea, 11

dAArrow, 13, 22 mover, 11

dArrow, 13, 22

dBitMap, 19 N

dCBlock, 23 negvec, 25

dContours, 17 norm, 25

dDataPoint, 12 normalize, 25

dDensity, 20

deleteGrid, 17 P

dGrid, 17 Paper Coordinates, 2

dGridBoundary, 17 pPI, 21

dLegend, 18 pPW, 8, 22

dLine, 11 pwI, 22

dMissing, 19 pwWP, 8, 22

dNumber, 15

dotprod, 25 R

dP2P, 27 root operator, 4

dP2w, 27

dP3p, 27 S

dpP3w, 27 sAArrow, 13

dParallel, 12, 22 sArrow, 12

dPolygon, 13 scalmult, 25

dSymbol, 12 sCBlock, 23

dText, 14 sClipping, 9

dTIFF, 20 sColorSpace, 10

dvec, 3 sContours, 17

dXAxis, 8 sDash, 10

dYAxis, 9 sDataPoint, 12

dZAxis, 9 sDensity, 19
sFill, 11

E SIPlane, 21

endPS, 7 sMinPixel, 18
sNumber, 15

G sPreview, 25

gColorSpace, 10 sStroke, 10

gDRGrid, 16 sTeXStyle, 14

gFill, 11 sText, 13

gPaper, 7 sTextRotation, 14

gRGrid, 15 sThickness, 10

gSRGrid, 15 struct color, 3, 10

gStroke, 11 struct dvec, 3

gTCover, 17 subvec, 25

gTGrid, 16 sView, 21
sXIntervals, 9

| sXTicks, 9

identity, 25 sXWorldCoord, 8

Image Plane, 2 sYIntervals, 9

interpolate, 18 sYTicks, 9

iTCover, 17 sYWorldCoord, 8

65

66

Index

sZIntervals, 9
sZTicks, 9
sZWorldCoord, 8

Vv
vecprod, 25

vector, 3

w
World Coordinates, 2

