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 Motivation 
Transit time distributions (TTDs) describe catchment behavior unlike 

any other function. 

However, time and space variability of the shape (and scale) of TTDs 

is still poorly understood. 

- e.g. causing                                                                               

equifinality                                                                                  

problems when                                                                         

using transfer-                                                                                 

function convo-                                                                             

lution models 

 

How do real-world                                                                        

transit time                          

distributions look like? 

 How do they change over time with hydrologic conditions? 

 How do they change in space with catchment properties? 

 Approach 
Virtual 

experiment:  

 Simple 

catchment 

setup with 

HydroGeo 

Sphere 

 Scenarios 

 Input 
 Tracer application from time 

t=0 to t=1 h 

 Afterwards natural 

precipitation time series 

 One year repeated 32 times 

 Results 
 Transit time distributions can be divided into four parts 

flow path number F: 

 

 

Soil depth 
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 Discussion 
Fitting theoretical distributions (advection-dispersion AD, beta β & 

gamma γ) 

 Transit time distribution parameters 
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 10 m of bedrock with low hydraulic conductivity 

 On top soil layer with higher conductivity 

 AD works best 

for dry θant 

 γ works best for 

wet θant 

 Median is more 

correctly 

predicted than 

the mean 

 θant and KS have bigger 

influence on young TTD 

fractions 

 Psub is affecting the older parts 

more 

 Dsoil influences all parts equally 
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 Shape and scale 

of TTDs vary 

systematically 

with certain 

environmental 

parameters 

 It is possible to 

predict the full 

TTD (shape and 

scale) 

𝐹 =
𝑃𝑠𝑢𝑏,𝑖 − 𝐾𝑟𝑒𝑚

𝐷𝑠𝑜𝑖𝑙 ∗ 𝑛 − 𝜃𝑎𝑛𝑡
 

Dsoil:  1 m              0.5 m 

KS:  0.02 m/day              2 m/day 

θant:  50%              90% 

Psub:  0.3 m/year              1.4 m/year  C
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 α, D shape 

parameters can 

be predicted with 

dimensionless 

𝐾𝑟𝑒𝑚 = 𝑘𝑒𝑓𝑓 ∗ 𝑡𝑒 ∗
𝐴𝑜𝑢𝑡

𝐴𝑖𝑛
 

 n: porosity; ti: mean inter-event duration; keff: effective hydraulic conductivity; te: mean event duration; 

Aout: outflow area; Ain: inflow area 

Dsoil Ks Psub θant 

0.5/ 1.0 m 

Flat/Thick 

 

 0.02/ 2.0 m day-1  

Low/High 

 

50/ 70/ 90% 

Dry/Intermediate/Wet 

 

345/ 690/ 1380 mm a-1 

Small/Medium/Big 

𝑃𝑠𝑢𝑏,𝑖 = 𝑃𝑠𝑢𝑏 ∗
𝑡𝑖

365.25
 

 Mean transit times (mTTs) can be predicted with high accuracy: 

 mTTs have a power-law 

correlation with Psub 

 mTTs correlate linearly 

with Dsoil 

 mTTs correlate 

logarithmically with KS 

𝑚𝑇𝑇 =  2648 ln𝐾𝑆 + 120548 𝐷𝑠𝑜𝑖𝑙

+  −4126 ln𝐾𝑆

− 2260  𝑃𝑠𝑢𝑏
− 0.020 ln 𝐾𝑆+0.061 𝐷𝑠𝑜𝑖𝑙+ −0.012 ln 𝐾𝑆+0.898  

multiple non-linear 

regression 

 Example of abbreviated name: Flat Soil/High Conductivity/Dry Antecedent Moisture Content/Medium 

Subsequent Precipitation Amount = FHDM 


