Influence of varying hydraulic conditions on hyporheic exchange and reactions in an in-stream gravel bar

Nico Trauth, Christian Schmidt, Uli Maier, and Jan H. Fleckenstein
Helmholtz Centre for Environmental Research - UFZ, Department of Hydrogeology, Leipzig, Germany

1 Introduction
In the hyporheic zone (HZ) important biogeochemical reactions of stream and groundwater solutes occur with crucial impact on nutrient cycling in fluvial systems. Solutes that infiltrate into the HZ are transported advectively by hyporheic exchange flow (HEF) and show residence times (RT) that are controlled by stream hydraulics, streamed morphology and permeability, and ambient groundwater flow.

In this study, we investigate how stream discharge and ambient groundwater flow control HEF, RT, solute transport and reactions in the HZ of a natural in-stream gravel bar (ISGB). We use three-dimensional Computational Fluid Dynamics (CFD) simulations coupled to a reactive transport groundwater model.

2 Field site
Natural in-stream gravel bar
- In-stream gravel bar (ISGB) at the Selke river in central Germany
- Extent: 20 m x 7 m (low discharge)
- GPS-Survey of morphology
- Slug tests, freeze coring for K
- Stage / discharge measurements
- Head, EC, O₂ time series in the streamed sediments

3 CFD simulations
CFD code: OpenFOAM
- Discharge: 0.18 to 5.0 m³/s
- Validation to rating curve
Low discharge Q<0.18 m³/s
High discharge Q>3.83 m³/s

Hydraulic head distribution
Coupled to groundwater model

4 Reactive transport model - MIN3P
Subsurface flow
- Steady state simulations
- Variation of groundwater heads imply neutral, losing, gaining conditions: Δh=-0.4 to +0.4 m

Solute transport and reactions
- Aerobic respiration (AR)
 CH₄ + O₂ → CO₂ + H₂O
- Denitrification (DN)
 5CH₃O + 4NO₃ + 4H⁺ → 5CO₂ + 2N₂ + 7H₂O

Upstream head boundary
Influx of groundwater solutes:
 O₂ = 2 mg/l
 NO₃ = 100 mg/l
 DOC = 0 mg/l

Hydraulic head distribution from CFD model

5 Spatial patterns of flow and reactions
Hyporheic exchange flux of ISGB
- Stream water infiltrates at small channel forming a hyporheic flow cell (HFC)

Neutral conditions (Δh = 0)
- Large in- and exfiltration areas and HFC extent
- Reactive zones restricted to HFC

Gaining conditions (Δh > 0)
- Upwelling groundwater exfiltrates at the streamed
- Small reactive zones, restricted to the HFC extent

Losing conditions (Δh < 0)
- Stream water infiltrates at the streamed feeding the groundwater
- Large reactive zones exist, also beyond the HFC extent

6 Influence of stream discharge and ambient groundwater flow
Hyporheic exchange flux and RT
- Losing and gaining conditions significantly reduce HEF and RT
- Variation with stream discharge: Effect of predominance of lateral or longitudinal head gradients (\(\nabla\text{Lat.} / \nabla\text{Long.}\)) across the ISGB and the resulting flow-through area.
- Different hydraulic system for completely inundated ISGB

Solute transport and consumption
- Solute influx corresponds to HEF
- Losing and gaining conditions reduce RT and extent of HFC / reactive zones
- Reduced O₂ and NO₃ consumption
- NO₃ consumption increases with discharge: The higher the discharge, the larger is the HFC and the "reactive fringe" of DN
- Solute consumption correlates with MRT

Contact: Nico Trauth
Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
nico.trauth@ufz.de | +49 341 235 1983