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specification of cell size and grid orientation, discretiza-
tion will generally cause a loss of information. Occurrences 
at grid cell boundaries, for instance, must be allocated to a 
specific grid cell (ignoring proximity to the neighbour cell) 
(Shekhar et al. 2002). This is one reason for analysing spatial 
neighbourhoods and incorporating spatial dependence into 
accuracy assessment.

There are also ecological reasons for integrating spatial 
context. Given a species range, searching for new off-range 
occurrences, one would look probably more frequently and 
expect more likely to find a new occurrence close to its range 
margin than further away from its range margin. One of the 
reasons is that many expanding species have more frequently 
range advances close to its range margin than those rare long-
distance dispersals resulting in occurrences far away (Nathan 
and Muller-Landau 2000, Nathan et al. 2002). Another is 
dispersal limitation, resulting in new occurrences close to 
known occurrences even under suitable environmental con-
ditions further away (Svenning et al. 2006). Hence models 
exist to account for sampling bias, giving location further 
away from currently know occurrences a lower likelihood of 
being occupied (Bierman et  al. 2010, Manceur and Kühn 
2014).
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Background

Accuracy measures such as Cohen’s kappa coefficient (or 
Kappa for short) are coefficients useful to assess predic-
tion errors in presence/absence models (such as species 
distribution models). In a spatial context, however, the 
traditional non-spatial measures are not appropriate and 
can thus be misleading in species distribution modelling 
(Fielding 2002). The reason is that a false prediction has 
simply the quality of being false regardless of its distance to 
an appropriate actual value and thus true prediction. One 
can argue, though, that a false prediction of presence in close 
proximity to a true (observed) presence is better than a false 
presence far away from an observed presence (Fielding and 
Bell 1997, Fielding 2002).

This is particularly the case when sampling at nearby 
locations leads to sample values that are not statistically 
independent from each other. If so, then it is to be expected 
that predictions have the same nature. This phenomenon of 
statistical dependence caused by spatial dependence should be 
considered as relevant. This applies particularly to sampling 
on raster maps, where original data maps are sectioned into 
grids (Hagen-Zanker 2009). Due to a relatively arbitrary 
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Classical accuracy measures do not take into consider-
ation the spatial context of any mispredictions. They neglect 
the degree of similarity of adjacent data. In reality, however, 
maps of both actual and predicted values have some degree 
of spatial autocorrelation (Hagen-Zanker 2009). In the pres-
ence of spatial autocorrelation of model residuals, the use 
of methods accounting for this is recommended (Carl and 
Kühn 2007, 2010, Dormann et al. 2007). These approaches 
account for problems in parameter estimation and realized 
degrees of freedom resulting in non-autocorrelated residu-
als. Hence they make sure that no fundamental assumptions 
of hypotheses testing and statistical approaches are violated. 
They do not yield, though, uncorrelated predictions. Hence 
the results of such models, when using traditional, non-
spatial measure of accuracy, can potentially also suffer from 
the problems outlined above. Therefore, the use of spatial 
metrics of accuracy is even necessary when using methods to 
account for autocorrelation in model calibration.

For illustration purposes, the maps in Fig. 1 show details 
of the results of two grid-based models. Although the predic-
tion in Fig. 1b is located in closer proximity to actuals than 
the prediction in Fig. 1a, classical performance measures 
assign both predictions to the class of false positive errors. In 

other words, classical measures suffer from the problem that 
accuracy is not a function of spatial arrangement. Instead, 
all falsely predicted positive errors rank equally as well as all 
falsely predicted negative errors, independent of the distance 
to actual (observed) values.

Here, we present and describe the new software package 
‘spind’, which introduces several spatial accuracy measures 
that are a) sensitive to the spatial arrangement of predictions 
and b) comparable to classical measures.

a) As alternative measures for the evaluation of grid-based 
models, they will take into account that a false prediction 
may not be completely wrong if it is in a certain spatial prox-
imity to the correct result. The degree of dependency can be 
measured and analysed by correlograms, i.e. computations 
of spatial autocorrelation of both predicted and actual val-
ues. Moreover, a new classification and weighting scheme for 
predictions is needed.

b) We are not interested in developing totally new 
spatial measures. Such spatial measures already exist, as for 
instance, the average distance to nearest prediction (ADNP) 
and the Spatial Accuracy Measure (SAM) (Shekhar et  al. 
2002). They have the disadvantage that their results can-
not be compared to those of non-spatial measures. Instead, 
the aim of our study is to generalize classical measures. 
To enable efficient comparisons, we modify and improve  
well-known measures (i.e. Kappa, as well as sensitivity, 
specificity, true skill statistic and other ones) to spatially 
corrected versions.

Methods

Spatially corrected method

The performance of a presence/absence model is often 
summarized in a confusion matrix (Table 1). This is a 2  2 
contingency table that cross-classifies observed occurrences 
(i.e. actual presence/actual absence) and predicted ones 
according to two classes (i.e. predicted presence/predicted 
absence). Several classical measures are based on a calcula-
tion and evaluation of this confusion matrix. The threshold 
dividing into classes of predicted presences and absences has 
frequently the value threshold  0.5, but any other thresh-
old value within the interval from 0 to 1 could be chosen, 
e.g. based on prevalence or maximizing traditional accuracy 
measures such as Kappa or true skill statistic. When setting 
the threshold to 0.5, then the probability of presences is the 
same as the probability of absences.

Figure 1. Example showing a prediction of presence as a result of 
two different models in relation to the same actual values, i.e. 
observed presences. Cells with/without diamond ♦ indicate pres-
ence/absence of actual values and cells with/without circlemultiply 
⊗ refer to presence/absence of predicted values. (a) Locations in  
the first model, (b) locations in the second model. In spatial sense, 
the prediction in (b) might be more accurate than the prediction  
in (a).

Table 1. Confusion matrix as a 2  2 contingency table. Threshold is 
the threshold used to transform predicted probability of occurrence 
of species distribution models into 1’s and 0’s, for instance, for 
presence/absence maps.

Actual (presence)
1

Actual (absence)
0

Total

Predicted (presence) 
1 – threshold

True positive n11 False positive n12 n1.

Predicted (absence) 
threshold – 0

False negative n21 True negative n22 n2.

Total n.1 n.2 n
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Fielding and Bell (1997) used two simple approaches of 
weighting in a spatial framework. These are methods that 
weight false positive errors n12 by a function of their dis-
tance/proximity to actual positive locations and thus pro-
vide adjusted false positive errors. In this way, the roughly 
weighted proximity relationships reflect autocorrelation for 
locations in a two-dimensional gridded dataset. As a result the 
ratio of adjusted errors to actual errors is recommended for 
assessment. The magnitude of weights (and thus the strength 
of autocorrelation), however, was chosen relatively arbitrarily. 
To circumvent this problem, one can propose new map simi-
larity measures without any weights. One of such measures is 
the average distance to nearest prediction (ADNP) (Shekhar 
et al. 2002). This value (i.e. arithmetic mean of distances), 
however, is not related to a confusion matrix and its cor-
responding evaluation measures. Conversely, one can try 
to incorporate a spatial weights matrix reflecting the real 
proximity relationships into the confusion matrix. Shekhar 
et al. (2002) developed the spatial accuracy measure (SAM) 
based on such a generalized confusion matrix. Because a 
direct combination of different distance measures within one 
confusion matrix is problematic, the spatial weights matrix 
is incorporated into all elements of the confusion matrix. 
But as a consequence of this, all totals change in compari-
son to the classical confusion matrix and thus renormaliza-
tion limiting their comparability to the classical confusion 
matrix is necessary. Hagen-Zanker (2009) introduced an 
improved Kappa statistic with particular focus on neighbour 
cells. This extension of the weighted Kappa takes the effect 
of spatial autocorrelation into consideration, however, with-
out directly quantifying spatial autocorrelation. Instead, the 
approach tries to estimate its effects by counting adjacent 
neighbour cells and distinguishing between different degrees 
of belonging.

To overcome all these problems, we 1) implement prox-
imity as the same amount of spatial autocorrelation in both 
actual and predicted values and 2) summarize the results in a 
weighted 4  4 contingency table.

1) For spatial data, the amount of spatial autocorrelation 
can be calculated by means of the Moran’s I (Lichstein et al. 
2002). This formula measures the strength of two-dimen-
sional autocorrelation based on the assumption that it is 
isotropic (i.e. independent of direction). Autocorrelation is 
computed as a function of ‘lag distance’, therefore, one has 
to introduce lag distance intervals for the spatial structure 
under consideration. For a square grid underlying all maps 
used here, the first distance class can be defined to comprise 
lags between 0 and 1 and thus be assigned to nearest neigh-
bours, i.e. to the (generally) four adjacent grid cells located 
at distance unit 1 (in relation to coordinates of cell centres) 

in the cardinal directions. Autocorrelation at lag distance 1 is 
generally higher than that at greater distances because close 
observations are more likely to be similar to one another than 
those far away from each other. Therefore, the autocorrela-
tion value ac(1) is most important. It is noteworthy that the 
spatial autocorrelation ac(1) of predicted values (i.e. predic-
tions before dividing into groups by a threshold) is generally 
higher than that of actual values. The reason is that predic-
tions are continuous values varying between the extremes 0 
and 1, whereas actual values simply consist of 0’s and 1’s. 
This autocorrelation deficit of actuals can be considered as 
a measure to what extent actual values can be adjusted to 
reflect a spatial context. Therefore, we generate ‘adjusted 
actuals’ having the same amount of autocorrelation as pre-
dictions. These adjusted actual values are softened compared 
to the original ones and, accordingly, appear widened in 
spatial mapping. Therefore, a prediction at a single location 
can be registered to be in the proximity (i.e. widened area) 
of an actual value. It is to remark, that, computationally, it 
is difficult to increase the autocorrelation of actuals in one 
step to a certain level. Here, we use a step-by-step procedure 
incorporating autocorrelation until it is balanced with the 
autocorrelation of predictions.

2) For evaluation, one has to summarize the results for 
predicted and adjusted actual values in a generalized confu-
sion matrix (Table 2). In order to ensure that the additional 
information captured in adjusted actual values is not com-
pletely lost again, it is necessary to make the contingency table 
‘finer’. If we cross-classify the distributions of the variables in 
a 4  4 contingency table then we are able to distinguish 
different kinds of misclassification. Therefore, the predicted 
values have to be classified into 4 classes separated at the 
following 3 levels: 1) upper split: us  (1  threshold)/2, 2) 
threshold: th  threshold, and 3) lower split: ls  threshold/2. 
Since the total of elements remains constant, a comparison 
to the results of a 2  2 contingency table is possible. Three 
cells nij in the upper right corner (for: j i− ≥ 2:  n13, n14, n24, 
displayed in dark-grey) contain false positive errors, whereas 
three cells in the bottom left corner (for: i j− ≥ 2:  n31, n41, 
n42, displayed in dark-grey) contain false negative errors. This 
refined weighting pattern can simply be written in matrix 
notation, i.e. by means of the weighting matrix W

W =



















1 1
1 1

0 0
1 0

0 1
0 0

1 1
1 1

Having specified the values of this refined cross-classification, 
we can calculate measures such as weighted Kappa, sensitivity, 

Table 2. Generalized confusion matrix as a 4  4 contingency table. As in Table 1, dark grey cells are considered as false while light grey ones 
as true. Please note that n32 and n23 would be classified as false in the classical approach but as true here due to the close match. us: upper 
split, ls: lower split, th: threshold used.

Adjusted actual 1–0.75 Adjusted actual 0.75–0.5 Adjusted actual 0.5–0.25 Adjusted actual 0.25–0 Total

Predicted 1 – us n11 n12 n13 n14 n1.

Predicted us – th n21 n22 n23 n24 n2.

Predicted th – ls n31 n32 n33 n34 n3.

Predicted ls – 0 n41 n42 n43 n44 n4.

Total n.1 n.2 n.3 n.4 n
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The R package depends on the package ‘lattice’, which 
produces Trellis graphics for R, as well as ‘splancs’ with 
function areapl, which calculates an area of a polygon 
(Rowlingson and Diggle 1993, Bivand and Gebhardt 
2000). Spind contains four functions. Function th.dep 
calculates threshold-dependent metrics (kappa and con-
fusion matrix), i.e. it depends on a cutoff value used for 
splitting predictions, whereas function th.indep calculates 
threshold-independent metrics (ROC, AUC, and (max)
TSS). Both functions are based on a 2D analysis taking the 
grid structure of datasets into account (for a regular grid-
ded dataset, grid cells are assumed to be square). Therefore, 
another two functions are used internally. Function 
adjusted.actuals provides adjusted actual values reflecting 
spatial autocorrelation balanced to predictions. Function 
acfft calculates spatial autocorrelation. Moreover, an exam-
ple data set (Fig. 2) is given to demonstrate how one can 
use the functions.

Illustration and validation

Application to simulated data
Just in order to visualize the effect of step (1) in our analy-
sis, we firstly present an example of simulated data based 
on a small grid. The model predictions (Fig. 2a) as well 
as the actual values (Fig. 2b) are displayed within their 
spatial context, i.e. the 10  10 grid. When we calculate 
spatial autocorrelation of predicted and actual values and 
increase the autocorrelation in actuals (Fig. 3), we produce 
adjusted actuals (Fig. 2c). Figure 2c shows that grid cells 
in the immediate proximity of the original agglomeration 
presented in Fig. 2b have now increased values, whereas a 
few actual presences are slightly reduced. In our example  
(Fig. 2b, in the bottom right hand corner), a hook-shaped 
group of adjoined actuals is to be found just as displayed in 
Fig. 1b. The prediction for the cell surrounded by this hook 
has the value 0.52. If we use, for instance, a threshold of 0.5, 
such a value is classified as false positive error in classical 
theory. For spatially corrected measures, however, we com-
pute an adjusted actual value of 0.35 at this position. In the 
4  4 contingency table (Table 2), therefore, this prediction 
is assigned to element n23 and thus is no longer considered 
an error.

and specificity for evaluation of prediction accuracy. The 
weighted Kappa 𝜅 is defined as

κ =
−

−
p p

p
o e

e1

where p w p p w p po ij ij eji ij i jji
= =∑∑ ∑∑and . .  with 

p n nij ij= /  (Fleiss and Cohen 1973, Fleiss 1981, Sachs  
and Hedderich 2006). Accordingly, the formulas for the 
weighted sensitivity and weighted specificity can be given by

sensitivity w n nik ikki ikki
= ( )∑∑ ∑∑ for k   1,2

and

specificity w n n lil illi illi
= ( ) =∑∑ ∑∑ for 3 4,

By computing sensitivity and specificity as functions of 
threshold, other measures such as receiver operating charac-
teristic (ROC), the area under the ROC curve (AUC), and 
maximum true skill statistic (TSS) can be calculated as usual 
(Hanley and McNeil 1982, Franklin 2009).

In summary, our new method for evaluation of prediction 
accuracy consists of the following steps: 1) incorporate 
additional autocorrelation into binary observation data 
until spatial autocorrelation in predictions and actuals is 
balanced, 2) cross-classify predictions and adjusted actu-
als in a 4  4 contingency table, 3) use a refined weighting 
pattern for errors, and 4) calculate weighted Kappa, sensi-
tivity, specificity and subsequently ROC, AUC, TSS to get 
spatially corrected indices.

Package overview

All statistical analyses were performed using the R x64 soft-
ware ver. 3.1.2 (R Core Team). We provide all tools for 
calculating spatially corrected indices in our newly created 
package ‘spind’. It is open-source software (published under 
the GPL public license, ver. 2), and is available as both a 
package spind_1.0.zip (windows version) and a source 
package spind.1.0-1.tar.gz. Both R packages, together with 
documentation, are available on GitHub (< https://github.
com/carl55/spind >).

Figure 2. Example map of simulated data. (a) Predicted values, (b) actual values, and (c) adjusted actual values within their spatial context 
of a 10  10 grid.
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the Bundesanstalt für Geowissenschaften und Rohstoffe 
(1993). As explained above, the spatial method modifies 
actuals until autocorrelation of actuals and predictions is 
balanced. In our example, the value of spatial autocorrela-
tion of the actuals is 0.63 at lag distance 1, whereas this 
value for predictions is 0.87. Due to this difference, the 
method has to produce adjusted actual values of nearly the 
same magnitude of autocorrelation, i.e. ac(1) ≈ 0.87 . These 
adjusted actuals softened compared to the original ones are 
given in Fig. 4c.

Statistics
Lastly, several steps are undertaken to verify our spatial 
indices, in detail. At first we generate data of the kind given 
in Fig. 2a. For this purpose, values for two predictors and 
errors are randomly generated and provided with a certain 
degree of spatial autocorrelation. They are linearly combined 
using specified parameters (intercept and two slopes). This 
linear combination is scaled and transformed into outcomes 
ranging from 0 to 1. For normally distributed variables, the 
mean value of outcomes is 0.5 on average. Hence the preva-
lence of the simulated species is set to 0.5. If we subsequently 
split the values in 0’s and 1’s using a threshold value 0.5, then, 
of course, these ex-post created ‘actuals’ match perfectly with 
the ‘predictions’ generated prior to this. The values for classi-
cal Kappa, AUC, and TSS are 1 in this case of perfect match. 
This should also be valid for spatial indices. Additionally, in 
order to check the effect of a certain mismatch, we modify 
the map of actuals by shifting all columns to the left adjacent 
position (except for the leftmost column, which is shifted 
to the rightmost position). One can expect that such a dis-
placement or pattern of ‘shifted match’ will result in lower 
fitting accuracy and thus lower values for Kappa, AUC, 
and TSS. The values depend on the index used for evalua-
tion and, in addition, the degree of spatial autocorrelation. 
This is because the degree of adjacent similarity is relevant. 
If values in neighbourhoods are similar, then shifting may 
be less problematic than if values are randomly distributed 
and independent. To compare classical measures with our 
spatially corrected ones (i.e. spatial indices), we generate 
30  30 maps as described above for both perfect and shifted 
match at 10 different levels of autocorrelation. Using 100 

Application to real macroecological data
Secondly, we compute these spatially corrected indices for 
a real macroecological dataset. Therefore, we selected data 
for presence/absence of the plant species Dianthus carthu-
sianorum across Germany. This is an example already used 
in a previous paper (Carl and Kühn 2008). The distribution 
of actual values of D. carthusianorum is given in Fig. 4b. 
To produce predicted values (Fig. 4a), we related environ-
mental variables (which need not be the most appropriate 
ones) to these actual values and performed a logistic regres-
sion. Information on species distribution is available from 
FLORKART (< www.floraweb.de >) which contains species 
location in a grid of 2995 grid cells. The cells of this lattice 
are 10′ longitude  6′ latitude, i.e. about 11  11 km2, and 
therefore almost square cells. Moreover, we extracted cli-
mate variables (temperature, precipitation) provided by the 
‘Deutscher Wetterdienst, Dept Klima und Umwelt’’, eleva-
tion data from the ARCDeutschland500 dataset provided 
by ESRI, land use data from Corine Land Cover (1990) 
raster data, and geology digitized from data provided by 

Figure 3. Example correlograms of simulated data. Spatial autocor-
relation of predicted, actual, and adjusted actual values.

Figure 4. Example of real macroecological data, i.e. the distribution of Dianthus carthusianorum in Germany. (a) Predicted values, (b) actual 
values, and (c) adjusted actual values.
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One might still ask whether spatial autocorrelation of pre-
dicted values is appropriate to estimate the autocorrelation 
deficit of actuals and thus to define their neighbourhoods. 
More specifically, the question arises whether the predictions 
are appropriate as a basis for adjusting the observations. We 
can respond with a counter question: how can one get bet-
ter estimates for actual values than model predictions? Note 
that we do not use the predictors themselves such as envi-
ronmental variables. Instead, outcomes predicted by statisti-
cal models such as species distribution models are used here. 
As a consequence, predictors that are not significant will 
usually have no impact, or only a minor impact, on predic-
tions. To gain deeper insight into the adjustment of actuals 
and to discuss the risks of our method, we present a further 
example of simulated data. For this purpose, values for two 
non-autocorrelated predictors and for a non-autocorrelated 
error are randomly generated. They are linearly combined 
using specified parameters (intercept and two slopes). This 
linear combination is scaled and transformed into outcomes 
ranging from 0 to 1. Subsequently, we split the values in 0’s 
and 1’s as above. To produce (non-autocorrelated) predicted 
values, we relate the two predictors to these actual values and 
perform a logistic regression. Having non-autocorrelated 
data, we find the same values for both classical and spatial 
indices. If we instead regress these actuals on predictors 
affected by a certain degree of autocorrelation, then the fit-
ting accuracy decreases. Note that, in this case, autocorrela-
tion acts as a disturbing factor. The classical indices are the 
correct ones, and the spatial indices, which falsely impose 
autocorrelation, result in higher values. Therefore, this exam-
ple investigates to what extent our method adjusts the obser-
vations wrongly towards an incorrect pattern. Mean values 
and error bars for Kappa, AUC, and TSS are given for 100 
randomly generated datasets (Fig. 5b). As can be seen from 
Figure 5b, the differences in fitting accuracy are less than the 
standard deviations of classical indices and thus not signifi-
cant.

Discussion

Our results show that especially under medium to high levels 
of spatial autocorrelation of predicted data spatial measures of 
accuracy yielded different results compared to classical mea-
sures. We therefore advocate the use of the proposed metrics.

There were several assumptions we made: 1) we cor-
rected the actuals by adding autocorrelation to the same 
degree as that of the predicted values in order to change 
binary data to continuous data and to be able to define a 
neighbourhood. For technical reasons, it is impossible to 
do it the other way round. Still, this frequently results in 
lower values than 1 (being absolutely present). 2) While we 
used quartiles to classify adjusted actuals, we used varying 
thresholds and, dependent on them, upper and lower splits 
to classify predicted values. The flexibility for predictions is 
needed, because it is not always useful to use a threshold of 
0.5 (Liu et  al. 2005, Hanberry and He 2013). Using the 
same flexibility for actuals, though, turned out not to be use-
ful when developing the method. 3) It is in the logic of the 
spatial index method to regard cells with close by values (n23 
and n32 in the generalized confusion matrix) as true, rather 

randomly generated datasets in each case, we run all settings 
100 times to produce 100 solutions for the indices in each 
case.

Results

Application to real macroecological data

To demonstrate the impact of our method in a real-world 
example, the results for classical and spatially corrected 
measures for presence/absence data of the plant species 
Dianthus carthusianorum are given in Table 3. One can 
clearly see that the numbers of both false positive errors and 
false negative errors are less for spatial indices compared 
to those of classical ones. As a consequence, the values for 
Kappa (threshold  0.5), AUC, and TSS increase when 
incorporating spatial corrections.

Statistics

Using 100 randomly generated datasets to compare classical 
and spatial indices, we find that the values for both classical 
and spatial indices reach their maximum of approximately 1 
if we use data of perfect match. In case of shifted match, all 
indices are functions of autocorrelation. Starting at autocor-
relation level 0, all indices increase as a function of autocor-
relation. As expected and methodologically intended, spatial 
indices are, on average, equal or higher than classical ones. 
Higher values occur at medium and high autocorrelation lev-
els due to the increasing degree of adjacent similarity being 
taken into consideration by spatial indices. We can see that 
especially when having strong autocorrelation, spatial indi-
ces tend to result in higher values and classical indices would 
indicate a poorer fit. Mean values and error bars for Kappa, 
AUC, and TSS are given in Fig. 5a. For testing the null 
hypothesis that the value for classical Kappa is equal to the 
mean value of spatial Kappa values, we use a 95% confidence 
interval. It is obtained by κ σ κ κ σ κ   − ⋅ ( ) + ⋅ ( )( )1 96 1 96. , . , 

where κ is the mean value of classical Kappa and σ κ( )  is 

its standard deviation (Kanga et  al. 2013). We found that 
for an autocorrelation value of 0.7, the null hypothesis is 
rejected and the difference for Kappa values is thus statisti-
cally significant. Accordingly, hypothesis tests can be used to 
evaluate differences between classical and spatial AUC values 
and between classical and spatial TSS values. In both cases, 
we found statistically significant differences at autocorrela-
tion values of 0.6, 0.7, and 0.8.

Table 3. Predictions for plant species Dianthus carthusianorum 
across Germany. Results for classical measures and spatially cor-
rected measures (i.e. spatial index).

Classical index Spatial index

False positive errors 397 331
False negative errors 462 406
Kappa 0.42 0.46
AUC 0.80 0.85
TSS 0.48 0.57
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Bell (1997) weight the false positives errors by a distance 
function to actual positive locations. The advantage of our 
approach is that the degree of spatial weighting is estimated 
as autocorrelation deficit rather than set arbitrarily. Further, 
in our approach the marginal sums of the confusion matrix 
remain the same compared to non-spatial metrics and we 
also consider the distance of false negatives to actual nega-
tives. The methods of Shekhar et al. (2002) introduced com-
pletely different metrics which cannot be compared to the 
classical metrics, by design. It is our utmost aim to retain 
comparability between spatial and non-spatial metric but 
minimize arbitrary decisions.

The results of our simulations (Fig. 5) suggest that the 
proposed spatial measures of model accuracy only increase 
accuracy and do not decrease accuracy. This, however, is not 
inevitable. Because known presences get down-weighted and 
known absences get up-weighted by adjusting the actuals, in 
principle fit could (slightly) decrease, but will probably very 
rarely happen. So on average model accuracy increases when 
using spatial metrics. One could then argue that this is not 

than false. But this decision is arbitrary. Not doing so would 
result in the classical measures of accuracy. 4) The general-
ized confusion matrix could in principle also have more ele-
ments than 4  4 cells. It turned out, however, that this gets 
computationally difficult, especially with varying thresholds. 
Further, defining ‘true’ and ‘false’ would get very arbitrary. 
Still, due to defining the spatial neighbourhood, the 4  4 
cell confusion table might result in a higher susceptibility to 
very high or very low prevalences. This means that at small 
prevalences the number ‘present’ adjusted actuals (n32) might 
increase and at very high prevalences the number ‘absent’ 
adjusted actuals (n23) might increase at disproportionate 
rate compared to prevalence (as an effect of an unfavour-
able edge/area ratio). In such cases, though, with just very 
few observed presences or observed absences, robust models 
are inherently difficult to fit. Hence it is warned against the 
parameterisation of data deficient models, anyhow (Coudun 
and Gégout 2006, Franklin 2009, p. 63).

As briefly outlined in the methods section, there are mea-
sures available that consider spatial proximity. Fielding and 

Figure 5. Statistic for comparing classical measures to spatially corrected ones (i.e. spatial indices). The indices Kappa, AUC, and TSS are 
given as a function of autocorrelation (a) for both perfect and shifted match and (b) for disturbed fit. Spatial autocorrelation is measured 
as Moran’s I. The strength of autocorrelation is indicated by ac(1), i.e. the value of autocorrelation related to nearest neighbours. The error 
bars indicate the interval delimited by mean value  standard deviation.
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response curves with Gaussian logistic regression is sensitive to 
sampling intensity and curve characteristics. – Ecol. Model. 
199: 164–175.
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correlation in the analysis of species distributional data: a 
review. – Ecography 30: 609–628.

Fielding, A. H. 2002. What are the appropriate characteristics of 
an accuracy measure? – In: Scott, J. M. et al. (eds), Predicting 
species occurrences. Issues of accuracy and scale. Island Press, 
pp. 271–280.

Fielding, A. H. and Bell, J. F. 1997. A review of methods for the 
assessment of prediction errors in conservation presence/
absence models. – Environ. Conserv. 24: 38–49.

Fleiss, J. L. 1981. Statistical methods for rates and proportions.  
– Wiley.

Fleiss, J. L. and Cohen, J. 1973. The equivalence of weighted kappa 
and the intraclass correlation coefficient as measures of reliabil-
ity. – Educ. Psychol. Measur. 33: 613–619.

Franklin, J. 2009. Mapping species distributions. Spatial inference 
and prediction. – Cambridge Univ. Press.

Hagen-Zanker, A. 2009. An improved Fuzzy Kappa statistic that 
accounts for spatial autocorrelation. – Int. J. Geogr. Inform. 
Sci. 23: 61–73.

Hanberry, B. B. and He, H. S. 2013. Prevalence, statistical 
thresholds, and accuracy assessment for species distribution 
models. – Web Ecol. 13: 13–19.

Hanley, J. A. and McNeil, B. J. 1982. The meaning and use of the 
area under a receiver operating characteristics curve. – Radiology 
143: 29–36.

Kanga, C. et  al. 2013. Kappa statistic for the clustered dichoto-
mous responses from physicians and patients. – Stat. Med. 32: 
3700–3719.

Lichstein, J. W. et al. 2002. Spatial autocorrelation and autoregres-
sive models in ecology. – Ecol. Monogr. 72: 445–463.

Liu, C. et  al. 2005. Selecting thresholds of occurrence in the 
prediction of species distributions. – Ecography 28: 385–393.

Manceur, A. M. and Kühn, I. 2014. Inferring model-based 
probability of occurrence from preferentially sampled data with 
uncertain absences using expert knowledge. – Methods Ecol. 
Evol. 5: 739–750.

Nathan, R. and Muller-Landau, H. C. 2000. Spatial patterns of 
seed dispersal, their determinants and consequences for 
recruitment. – Trends Ecol. Evol. 15: 278–285.

Nathan, R. et al. 2002. Mechanisms of long-distance dispersal of 
seeds by wind. – Nature 418: 409–413.

Rowlingson, B. and Diggle, P. 1993. Splancs: spatial point pattern 
analysis code in S-Plus. – Comput. Geosci. 19: 627–655.

Sachs, L. and Hedderich, J. 2006. Angewandte Statistik, 
Methodensammlung mit R. – Springer.

Shekhar, S. et  al. 2002. Spatial contextual classification and 
prediction models for mining geospatial data. – IEEE Trans. 
Multimedia 4: 174–188.

Svenning, J.-C. et  al. 2006. Range filling in European trees. – J. 
Biogeogr. 33: 2018–2021.

helpful and does not warrant using the new approach. Using 
our metrics will help to formalize spatial uncertainty and 
may even account (partially) for unobserved, though pres-
ent, actuals, i.e. occurrences that indeed are there but were 
not yet observed. To some degree observer bias (Manceur 
and Kühn 2014) can thus be minimized when assessing 
accuracy. Further, our approach increases the comparabil-
ity of results between autocorrelated and non-autocorrelated 
data. And lastly we argue that the use of spatial measures of 
accuracy is better, since we think it is the correct measure, 
compared to the use of non-spatial measures, in case of auto-
correlated data.

Having non-autocorrelated data, our simulations suggest 
that there is no difference between the spatial and the clas-
sical measures of accuracy. So one could use them but it is 
not necessary. In non-autocorrelated situations, therefore, 
spatial arrangements of predictions and actuals become irrel-
evant. In the presence of autocorrelated data, however, one is 
advised to already use spatial metrics of accuracy.

One issue that still remains unsolved is to properly mea-
sure accuracy when having presence-only data. Since both, 
classical and spatial metrics, need presence as well as true 
absence data, they are inappropriate when using presence-
only data. The results heavily depend on the choice of the 
algorithm used to select pseudo-absences (Barbet-Massin 
et al. 2012). This is a fruitful and rewarding topic for future 
research.

We conclude that these spatial accuracy measures are use-
ful, especially in case of medium or high degree of similarity 
of adjacent data. They are primarily intended as goodness-of-
fit measures for the evaluation of species distribution models 
based on high resolution maps.

To cite Spind or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 0’:
Carl, G. and Kühn, I. 2016. Spind: a package for computing spa-

tially corrected accuracy measures. – Ecography 40: 675–682 
(ver. 0).
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