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Zusammenfassung

Motivation

Dürren sind nach Hochwasserereignissen die schwersten Naturkatastrophen welt-
weit. Zwischen 1950 und 2014 waren 2.2 Millarden Menschen von Dürreereignis-
sen betroffen. In Europa sind Dürren die kostenintensivsten Naturereignisse. Eine
durchschnittliche Schadenssumme von 621 Mio. EUR pro Ereignis macht diese Na-
turkatastrophen zu einer ernstzunehmenden Gefahr. Das letzte, große Dürreereig-
nis in Europa trat 2003 auf. Allein in Deutschland gab es im Zusammenhang mit
diesem Ereignis 7000 Todesfälle und einen wirtschaftlichen Schaden von 1,5 Mil-
larden EUR infolge von Ernteausfällen. Diese agro-ökonomischen Auswirkungen
begründen die Bedeutung eines operationellen Monitorsystems für landwirtschaft-
liche Dürren. Solch ein System bietet die Möglichkeit negativen Auswirkungen von
Bodendürreereignissen entgegenzuwirken.

Das Monitoring landwirtschaftlicher Dürren kann nicht auf der Basis von beob-
achteten Daten realisiert werden, da großräumige Messungen von Bodenfeuchte
sowohl technisch als auch wirtschaftlich nicht umsetzbar sind. Mittels hydrologi-
scher Modellierung kann Bodenfeuchte jedoch auch weiträumiger, z.B. auf natio-
naler Ebene, ermittelt werden. Hydrologische Modelle berücksichtigen meteoro-
logische Beobachtungsdaten, um Abschätzungen der Größen des hydrologischen
Kreislaufs, wie z.B. der Bodenfeuchte, geben zu können. Jedoch unterliegen diese
Abschätzungen verschiedenen Unsicherheiten. Diese entstehen aus Unsicherheiten
in den Modelleingangsdaten, der Modellstruktur, den Anfangsbedingungen und
den Modellparametern. Die Parameterunsicherheit in hydrologischen Modellen ist
einer der Untersuchungsgegenstände dieser Arbeit.

Die Zielstellung dieser Studie ist es, ein operationelles Monitoringsystem für land-
wirtschaftliche Dürren in Deutschland zu entwickeln. Um ein solches System in den
operationellen Einsatz zu bringen, sind folgende Herausforderungen zu bewältigen:
Erstens, die Berechnung eines räumlich kontinuierlichen Bodenfeuchtedatensat-
zes für Deutschland mittels hydrologischer Modellierung unter Einbeziehung der
Unsicherheiten, welche durch die Abschätzung von Modellparametern entstehen.
Zweitens, die Bestimmung der Unsicherheiten von Dürrecharakteristika (z.B. In-
tensität, Dauer) bei der Identifizierung historischer Dürreereignisse. Diese geben
Auskunft über die Unsicherheiten eines Dürremonitoringsystems. Drittens, die Er-
forschung eines Ansatzes um Parameterunsicherheiten mittels satellitengestützter
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Landoberflächentemperatur zu reduzieren. Und viertens, die Entwicklung und Im-
plementierung eines Dürreinformationssystems, welches in fast-Echtzeit Karten des
Bodenfeuchtezustands in Deutschland liefert. Die Gliederung dieser Studie orien-
tiert sich an diesen vier Teilaufgaben.

Methodik

Die nachfolgend dargestellten Untersuchungen wurden mit Hilfe des mesoskaligen
Hydologischen Modells mHM durchgeführt. mHM ist ein prozess-basiertes hydro-
logisches Modell, dass Gitterzellen als hydrologische Einheiten betrachtet (räum-
lich explizites Modell). Es grenzt sich vor allem durch den Multiscale Parameter
Regionalization-Ansatz von anderen hydrologischen Modellen ab. Dieser Parame-
trisierungsansatz stellt die Berücksichtigung von kleinskaligen Variabiltäten sicher.
Dadurch ist es möglich mit mHM hydrologische Flüsse und Zustandsvariablen
sowohl auf unterschiedlichen Skalen als auch in unterschiedlichen Einzugsgebie-
ten ohne erneute Kalibrierung verlässlich zu simulieren. Das Modell wird durch
Niederschlags- und Temperaturdaten angetrieben. Diese Daten werden als Sta-
tionsdaten vom Deutschen Wetterdienst bereitgestellt und mittels external drift
kriging auf ein hochaufgelöstes 4×4 km2 Gitter interpoliert.

Das Untersuchungsgebiet ist die Bundesrepublik Deutschland. Diese wird in hy-
drologische Untersuchungsgebiete - die großen innerdeutschen Flußeinzugsgebiete
Mulde, Ems, Neckar, Saale, Main, Weser und Donau - unterteilt. mHM wird in
diesen Flussgebieten kalibriert. Die Validierung erfolgt in 222 zusätzlichen, deut-
schen Einzugsgebieten, welche bei der Kalibrierung nicht berücksichtigt wurden.
Ein Teil dieser Einzugsgebiete liegt innerhalb der großen sieben Flussgebiete. Wei-
terhin wird die simulierte Evapotranspiration anhand der Daten von sieben Eddy-
Kovarianz-Stationen validiert.

Das hydrologische Modell mHM wurde für die zuvor genanten Einzugsgebiete auf-
gesetzt. Die räumliche Auflösung entsprach der Auflösung der meteorologischen
Eingangsdaten (4×4 km2). Die Simulationsperiode belief sich auf einen Zeitraum
von 1950-2010. Um die Vergleichbarkeit mit den Eddy-Kovarianz-Messungen si-
cherstellen zu können, musste das Modell auf eine räumlichen Auflösung von
100×100 m2 gebracht werden. Diese Auflösung entspricht dem footprint der Eddy-
Kovarianzmessungen. Die Übertragbarkeit des Modells ist durch seine Skalenun-
abhängigkeit gewährleistet.

Die erste im Rahmen dieser Arbeit durchgeführte Studie befasst sich mit der Be-
rechnung räumlich kontinuierlicher hydrologischer Flüsse und Zustandsvariablen
mittels mHM (Kapitel 2). Dieser in sich konsistente Datensatz besteht aus tägli-
chen Daten von Evapotranspiration, Bodenfeuchte, Grundwasserneubildung und
pro-Gitterzelle-generiertem Abfluss in Deutschland über einen Zeitraum von 1950
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bis 2010.

Um räumliche konsistente Felder der zuvor genannten Variablen zu erhalten, wur-
de ein zweistufiges Parameterschätzverfahren entwickelt. In einem ersten Schritt
wird mHM in jedem der sieben großen deutschen Flusseinzugsgebieten kalibriert.
Im zweiten Schritt werden die einzugsgebietsspezifischen Parameter in die an-
deren sechs Einzugsgebiete übertragen. In einer Validierungsperiode wird deren
Vorhersagegüte bezüglich des Durchflusses bestimmt. Nur Parametersätze die ei-
ne Nash-Sutcliffe Effizienz größer 0,65 aufweisen, werden für die darauffolgenden
Ensemble-Simulationen auf dem gesamten Bundesgebiet herangezogen. Dieses Kri-
terium wird von 100 Parametersätzen erfüllt.

Die Unsicherheiten dieser Ensemble-Simulationen werden auf zwei verschiedenen
Ebenen betrachtet. Auf der Einzugsgebietsebene werden die Unsicherheiten der
Durchflusssimulationen analysiert. Auf Ebene der Gitterzellen werden die Unsi-
cherheiten von Evapotranspiration, Bodenfeuchte, Grundwasserneubildung und
pro-Gitterzelle-generiertem Abfluss hinsichtlich ihrer räumlichen und zeitlichen
Verteilung analysiert.

Die zweite hier vorgelegte Studie beschäftigt sich mit der Identifikation von Dürre-
ereignissen (Kapitel 3). Diese basiert auf den zuvor modellierten Bodenfeuchteda-
ten. Bodendürrebedingungen werden mittels eines neu entwickelten Bodenfeucht-
eindexes identifiziert. Dieser stellt das Perzentil der Bodenfeuchte im betrachte-
ten Monat und der betrachteten Gitterzelle dar. Er wird durch das Anpassen
einer nicht-parametrischen, Kernel-basierten, kumulativen Verteilungsfunktion an
den historischen Bodenfeuchtedatensatz (1951-2010) berechnet. Dürrebedingun-
gen werden angenommen, sobald der Bodenfeuchteindex einen Grenzwert von 0,2
unterschreitet.

Um Benchmark-Ereignisse zu identifizieren werden Dürrebedingungen sowohl räum-
lich als auch zeitlich mit Hilfe eines Clusteralgorithmus konsolidiert. Diese Bench-
mark-Ereignisse werden bezüglich ihrer Ausdehnung, Dauer, Schwere, Intensität
und Magnitude klassifiziert. Die Identifizierung der Benchmark-Ereignisse und de-
ren Charakteristika werden bezüglich ihrer Unsicherheiten, stammend aus dem
Ensemble-Bodenfeuchtedatensatz, analysiert.

Die nachfolgende Studie untersucht Möglichkeiten zur Reduktion der Parame-
terunsicherheiten (Kapitel 4). Es wird die Hypothese aufgestellt, dass die Mo-
dellparameter besser eingeschränkt werden können, wenn mHM mit satelliten-
basierter Landoberflächentemperatur und Durchfluss gemeinsam kalibriert wird.
Dabei stellt die Kalibrierung mittels Durchfluss die korrekte Aufteilung des Nie-
derschlagswassers auf die einzelnen Komponenten der Wasserbilanz für das gesam-
te Einzugsgebiet sicher. Diese Methodik hat jedoch keine Aussagekraft über die
räumliche Verteilung der hydrologischen Flüsse und Zustandvariablen innerhalb
des Einzugsgebiets. Daher soll die Berücksichtigung räumlich verteilter Landober-
flächentemperatur bei der Kalibrierung die räumliche Repräsentanz des Modells
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verbessern.

Um mHM mit Landoberflächentemperatur kalibrieren zu können, wird ein ei-
genständiges Modul zur Berechnung der Landoberflächentemperatur entwickelt
und an mHM gekoppelt. Dieses Modul kann an verschiedene Umweltsystemmo-
delle gekoppelt werden. Weiterhin wurde ein Kriterium zur Erkennung räumlicher
Muster entwickelt, um explizit die räumliche Struktur der Landoberflächentem-
peraturen bei der Kalibrierung zu berücksichtigen. Dieses Kriterium wurde so
gewählt, dass es nicht sensitiv bezüglich eines Biases ist.

In einer zweiten Hypothese wird postuliert, dass die Kalibrierung von mHM mit
Landoberflächentemperaturen zu einem gewissen Maße zur Simulation von Durch-
fluss eingesetzt werden kann. Die Parameter, welche durch einen solchen Ansatz
geschätzt wurden, werden zur Verifizierung dieser Hypothese in den 222 kleineren
Einzugsgebieten validiert.

Schlussendlich wurde ein operationelles System zum Monitoring von landwirt-
schaftlichen Dürren in Deutschland entwickelt (Kapitel 5). Dieses System basiert
im Wesentlichen auf vier Arbeitsschritten: (1) der täglichen Aktualisierung der me-
teorologischen Datenbasis mit Messdaten des Deutschen Wetterdienstes einschließ-
lich Konsistenzprüfung und Ausreißertest, (2) der Simulation der Bodenfeuchte
mittels mHM, (3) der Berechnung des Bodenfeuchtindexes und (4) der Klassifizie-
rung des Bodenfeuchteindex in fünf Dürreklassen die von “ungewöhnlich trocken”
bis “außergewöhnliche Dürre” reichen.

Ergebnisse und Diskussion

Bevor die 100 Ensemble-Paramtersätze auf nationaler Ebene eingesetzt werden
konnten, wurden sie bezüglich ihrer Vorhersagegüte für Durchfluss untersucht. In
den 222 Validierungseinzugsgebieten konnte eine ausreichende Qualität der Durch-
flusssimulationen beobachtet werden. Die mittlere Nash-Sutcliffe Effizienz (NSE)
ist 0,68 für diese Einzugsgebiete. Dieses Ergebnis zeigt, dass mittels der Ensemble
Parametersätze hinreichend genaue Durchflusssimulationen durchgeführt werden
konnten, ohne das Modell im jeweiligen Einzugsgebiet kalibrieren zu müssen. An
den Eddy-Kovarianz-Stationen bildete das Modell die Magnitude, die Dynamik
und die Varianz der Evapotranspirationsmessungen gut ab. Die größten Differen-
zen zwischen mHM und den Messungen traten im Frühling auf. Die Implemen-
tierung eines dynamischen Vegetationswachstumsmodells in mHM könnte diese
Abweichungen vermutlich reduzieren. Zusammenfassend ist zu sagen, dass sich
die Ensemble-Parametersätze für die Simulation auf nationaler Ebene als geeignet
erwiesen.

Die modellierten Felder für Evapotranspiration, Bodenfeuchte, Grundwasserneu-
bildung und pro-Gitterzelle-generiertem Abfluss spiegelten hauptsächlich das räum-
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liche Muster des Niederschlags wieder. Der Trockenheits-Index (Budyko’s dryness
index) dominiert die räumliche Verteilung der Unsicherheiten in Bodenfeuchte,
Grundwasserneubildung und generiertem Abfluss. Große Unsicherheiten in der
Evapotranspiration korrelierten zusätzlich mit hohen Porositätswerten des Bodens.
Unter den vier betrachteten Variablen zeigte die Evapotranspiration die geringste
Unsicherheit in Bezug auf die Größenordnung. Weiterhin unterlag die Unsicherheit
kaum Schwankungen im Laufe des Jahres. Die Unsicherheit der Grundwasserneu-
bildung zeigte die größte Magnitude und eine ausgeprägte Dynamik innerhalb
eines Jahres. Bei der Bodenfeuchte variierte sowohl die Magnitude als auch die
unterjährige Dynamik der Unsicherheit in Abhängigkeit der geografischen Lage
innerhalb Deutschlands.

Die Analyse von Dürreereignissen in den vergangenen 60 Jahren in Deutschland ba-
siert auf diesem Bodenfeuchtedatensatz. Als die drei schwersten Dürren bezüglich
ihrer Magnitude wurden die Ereignisse 1962-65, 1971-74 und 1975-78 identifiziert.
Interessanterweise rangiert die Dürre 2003-2005 nur auf Platz 7, obwohl dieses
Ereignis schwerwiegende Schäden in Europa nach sich zog. Dies ist damit zu be-
gründen, dass das Dürreereignis von einer Hitzewelle intensiviert wurde, welche
eine Rekordmarke der Temperaturen der vergangenen 500 Jahre darstellte.

Die Unsicherheiten in den Bodenfeuchtesimulation wirken sich auf die Bestim-
mung von Dürrecharakteristika aus. Daher entstehen signifikante Unsicherheiten
bei der Klassifikation von Dürreereignissen. Für das Dürreereignis 1971-74, wel-
ches als das längste und schwerste Ereignis seit 1951 bestimmt wurde, konnte die-
se Einordnung nur in 67% der Ensemble-Simulationen nachgewiesen werden. Der
Ensemble-Mittelwert der räumlichen Ausdehnung dieser Dürre beträgt 43% der
Fläche Deutschlands. Die Ensemble-Standardabweichung der Ausdehnung beträgt
hingegen 5%, was in etwa der Fläche Sachsens entspricht. Diese Ergebnisse zeigen,
dass eine Betrachtung einzelner Modellsimulationen zu fehlerhaften Abschätzun-
gen bei der Identifikation und Charakterisierung von Dürreereignissen führen kann.

Unter Zuhilfenahme zusätzlicher Daten bei der Modellkalibrierung sollen Param-
terunsicherheiten reduziert werden. Neben Durchfluss wurde das hydrologische
Modell mHM zusätzlich mit satellitengestützter Landoberflächentemperatur ka-
libriert. Diese Methodik bewirkte eine bessere Eingrenzung der Spannweite der
kalibrierten Parameter, d.h. der Parameterunsicherheit, im Vergleich zu einer klas-
sischen Kalibrierung, welche sich nur auf Durchflussdaten stützt. Insbesondere
Unsicherheiten der Parameter, die mit der Evapotranspiration zusammenhängen,
konnten erheblich reduziert werden. Gleichzeitig verschlechterte sich jedoch die
Güte der Durchflusssimulationen in den sechs großen Einzugsgebieten (ohne Do-
nau) um circa 6%. Demgegenüber verbesserte sich die Schätzung der Evapotranspi-
ration an Eddy-Kovarianz-Stationen um 5%. Aufgrund dieser Kompromisslösung
und vor allem der reduzierten Parameterunsicherheiten wird diese Methode als
vorteilhaft gegenüber einer klassischen Kalibrierung mit Durchflusszeitreihen an-
gesehen.

XIII



Ein zweites Experiment dieser Studie zielte auf die Bewertung der Landober-
flächentemperatur hinsichtlich ihres Nutzens zur Simulation von Durchfluss. Dafür
wurde das Modell alleinig mit der Landoberflächentemperatur kalibriert. Der mitt-
lere Median der Nash-Sutcliffe Effizienz ist 0,51 in den sechs großen deutschen
Einzugsgebieten (ohne Donau). Dieser Median basiert auf 20 unabhängigen Ka-
librerungsläufen in den jeweiligen Einzugsgebieten. In den 222 Validierungsein-
zugsgebieten konnte ein mittlerer NSE von 0.4 erreicht werden. Diese Ergebnisse
lassen die Schlussfolgerung zu, dass mittels Landoberflächentemperatur eine ge-
wisse Modellgüte in der Durchflusssimulation erreicht werden kann. Die größte
Diskrepanz zwischen Simulation und Messung zeigte sich bei Niedrigwasserbedin-
gungen. Dies kann damit begründet werden, dass die Landoberflächentemperatur
oberflächennahe Bedingungen gut abbildet, jedoch ungenügenden Informationsge-
halt für unterirdische hydrologische Prozesse besitzt.

Die zuvor dargestellten Erkenntnisse bezüglich landwirtschaftlicher Dürren münde-
ten in der Implementierung des deutschen Dürremonitors (GDM). Dieser stellt der
Öffentlichkeit hochaufgelöste Informationen über Dürren mittels leicht verständ-
licher Karten in fast-Echtzeit mit einer Verzögerung von 4 Tagen zur Verfügung
(www.ufz.de/duerremonitor). Mit Hilfe des deutschen Dürremonitors konnte be-
reits ein Dürreereignis im Jahr 2015 beobachtet und analysiert werden. Während
dieses Ereignisses etablierte sich der GDM als Informationsplattform durch zahl-
reiche Veröffentlichungen in regionalen und nationalen Zeitungen sowie bei Fern-
sehanstalten. Auch Landesbehörden begannen die Informationen des deutschen
Dürremonitors zu nutzen (z.B. Sächsisches Landesamt für Umwelt, Landwirt-
schaft, und Geologie; Bayerische Landesanstalt für Landwirtschaft). Die Karten
des Dürremonitors sind frei verfügbar und können von der Webseite herunterge-
laden werden. Im Bedarfsfall werden zusätzliche Informationen, z.B. der Boden-
feuchteindex, auf Anfrage kostenfrei bereitgestellt.

Der deutsche Dürremonitor ermöglichte die Entwicklung des Dürreereignisses 2015
in fast-Echtzeit zu verfolgen. Hotspots wie Berlin, Nordbayern und Ostsachsen
wurden vom GDM abgebildet. In Nordbayern und Ostsachsen wurde wegen an-
haltender Trockenheit im Boden die Waldbrandbeobachtung intensiviert. In Berlin
begannen bereits im August die Stadtbäume ihr Laub einzufärben. Im gesamtdeut-
schen Maßstab kam es zu Ernteeinbußen von 22% beim Körnermais, verglichen mit
den durchschnittlichen Hektarerträgen der vorangegangenen 6 Jahre (2009-2014).
Fast 75% der Fläche Deutschlands waren im Juli zumindest von moderaten Dürre-
bedingungen betroffen. Diese Ereignis rangiert bezüglich seiner Magnitude unter
den 10 schwersten Dürren im Zeitraum 1951-2015.
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Schlussfolgerungen

Diese Studie zeigt die notwendigen Schritte zur operationellen Beobachtung von
landwirtschaftlichen Dürren in Deutschland. Zunächst wurden räumlich kontinu-
ierliche und hochaufgelöste Bodenfeuchtedaten für Deutschland modelliert. Diese
basierten auf deutschlandweit validen Parametersätzen. Neben Bodenfeuchte wur-
den Evapotranspiration, Grundwasserneubildung und per-Gitterzelle-generierter
Abfluss hinsichtlich ihrer parameterbedingten Unsicherheiten untersucht. Die Un-
sicherheiten in Bodenfeuchtesimulationen zeigten signifikante Auswirkungen auf
die Identifikation und Charakterisierung von Dürreereignissen in Deutschland. Im
Folgenden wurde eine Methodik zur Reduzierung dieser Unsicherheiten erforscht.

Die hier dargelegten Arbeitsschritte führten zum ersten, frei verfügbaren, nationa-
len Monitorsystem für landwirtschaftliche Dürren. Dieses System ermöglicht die
unverzügliche Einordnung der Schwere von Dürreereignissen durch den Vergleich
mit historischen Dürren. Der deutsche Dürremonitor ist ein wichtiges Element
für die Kommunikation von Dürreinformationen in die Öffentlichkeit und an Lan-
desbehörden. Diese Informationen sind die Grundlage, um mögliche Schäden auf-
grund von Bodendürren abzuwenden, wie z.B. durch Intensivierung von Wald-
brandbeobachtungen. Unsicherheiten beim Dürremonitoring wurden im deutschen
Dürremonitor zum jetzigen Zeitpunkt nicht berücksichtigt. Die Kommunikation
solcher Unsicherheiten sowie die Auswirkung von Bodenwasserdefiziten auf land-
wirtschaftliche Erträge bedürfen weiterer Forschung. Diese soll in Kooperation mit
sozialwissenschaftlichen Forschern und unter Einbeziehung der Stakeholder in den
nächsten Jahren vorangetrieben werden.
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Abstract

Motivation

Droughts are worldwide the second most severe natural disaster beside floods.
They affected 2.2 billion people between 1950 and 2014. In Europe, droughts
are the costliest natural disasters with average expenses of 621 million EUR per
event. The last severe drought event took place in 2003. It covered extensive
areas of Europe, affected many sectors of the society, and caused 7,000 fatalities.
Further, it induced an agro-economic loss of 1,5 billion EUR in Germany alone.
Such economical losses emphasize the need of an operational system for monitoring
agricultural droughts in order to mitigate their negative consequences.

Observation-based monitoring of agricultural droughts, which are characterized
by soil moisture deficits, is technically and economically not feasible on regional
to national scales. Hydrologic modeling is the prime alternative to estimate soil
moisture availability on large spatial domains. Such models are driven by me-
teorological observations and predict hydrological fluxes and states, such as soil
moisture or evapotranspiration. Predictions of hydrologic models underlie several
sources of uncertainties. These uncertainties arise from input data, model struc-
ture, initial conditions, and model parameters. The implications of parametric
uncertainty to hydrologic predictions are analyzed herein.

The main objective of this work is to develop a monitoring system for agricultural
droughts in Germany. The development of such a system includes several chal-
lenges. First, a spatially continuous dataset of soil moisture for entire Germany is
derived from modeling. The parametric uncertainty of such hydrologic predictions
is taken into account. Second, the propagation of parametric uncertainty of soil
moisture to the identification of drought characteristics is estimated in order to
evaluate the uncertainty inherent to such a monitoring system. Third, an approach
to reduce the parametric uncertainty by using satellite retrieved land surface tem-
perature data is investigated. And forth, an operational system providing drought
information in near-real time is developed and implemented. The outline of this
study is organized following these objectives.
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Methods

All computational experiments presented herein are conducted with the mesoscale
Hydrologic Model mHM. mHM is a process-based hydrological model, which treats
grid cells as hydrological units (distributed model). A key feature of mHM is the
Multiscale Parameter Regionalization. This parameterization approach explicitly
takes subgrid variabilities into account. It ensures mHM’s transferability across
locations and scales. The model is forced with observations of precipitation and
temperature data, which were provided by the German Meteorological Service.
These observations are interpolated to a high spatial resolution of 4 × 4 km2 using
external drift kriging.

The study domain is the territory of Germany. This domain is subdivided into
the seven major inner German river basins: Mulde, Ems, Neckar, Saale, Main,
Weser, and Danube. mHM is calibrated within these catchments and validated in
additional 222 river basins throughout Germany to assess the validity and trans-
ferability of parameter sets. Some of these 222 catchments are subcatchments of
the seven major river basins. Evapotranspiration estimates of mHM are evaluated
at seven eddy covariance stations.

mHM is set up for these regions using a high spatial resolution that is identical
to the meteorological input (4×4 km2). The temporal resolution of the model is
hours, whereas the input and outputs are on daily basis. The overall simulation
time period is 1950 to 2010. This period is shortened for the subbasins accord-
ing to available river runoff observations. One of mHM’s key features, the scale
independency, is used to estimate evapotranspiration at scale of eddy covariance
stations with a spatial resolution of 100×100 m2. This resolution is comparable to
the footprint of eddy covariance observations.

A first study aims on the estimation of a consistent dataset of hydrologic fluxes
and states using mHM. This dataset is contains evapotranspiration, soil moisture,
groundwater recharge and per-model-cell-generated runoff (Chapter 2). It is freely
available for the public from 1950-2010 on a daily basis.

A two-step parameter estimation procedure was developed to derive continuous
fields of the above-mentioned variables. In a first step, the hydrologic model mHM
is calibrated within the seven distinct river catchments. In a second step, the
catchment specific parameter sets are interchanged between the seven catchments
to assess their performance in a validation period. Only parameter sets exceeding
a Nash-Sutcliffe Efficiency of 0.65 in all seven catchments are retained. As a
result 100 parameter sets are used for the prediction of a nationwide ensemble of
hydrological fluxes and states.

The uncertainty of the ensemble simulation is assessed at two levels. On the catch-
ment level, the uncertainty of model performance is evaluated regarding river runoff
simulations. On the grid level, the uncertainty of evapotranspiration, soil moisture,
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groundwater recharge and per-grid-cell-generated runoff is analyzed regarding its
spatio-temporal distribution.

A second study focuses on the identification of drought characteristics (Chapter 3)
based on the ensemble soil moisture of the previously generated dataset. Drought
conditions are identified by a recently developed and implemented Soil Moisture
Index (SMI). The SMI is defined as the percentile of soil moisture for a particular
month and grid cell. It is estimated by fitting a non-parametric, kernel-based,
cumulative distribution function to the historic soil moisture data. Soil moisture
droughts are identified when the SMI is below a threshold of 0.2.

Benchmark drought events in Germany are identified by applying a cluster algo-
rithm. This algorithm consolidates drought conditions in space and time. The
drought events are analyzed regarding their spatial extent, duration, severity, in-
tensity, and magnitude. The identification of benchmark events as well as their
drought characteristics are reviewed regarding their uncertainties, which originate
from the ensemble soil moisture estimation.

A consecutive study aims on the reduction of parametric uncertainty in mHM
(Chapter 4). It is hypothesized that model parameters are better constrained if
mHM is calibrated simultaneously with satellite derived land surface temperature
and river runoff. The calibration with runoff ensures the right partitioning of
water balance components at the catchment scale, but is insufficient to estimate
the spatial distribution of water fluxes and states within the catchment. Thus,
incorporating spatial distributed land surface temperature may increase the spatial
representativeness of the model.

A diagnostic land surface temperature module is developed and coupled to mHM
in order to calibrate mHM with land surface temperature. This module can be
coupled to any environmental model. Further, a bias insensitive, non-parametric
pattern matching criterion was developed to exclusively account for the spatial
patterns of land surface temperature.

Beside that, it is hypothesized that parameters which are inferred by calibrating
mHM with land surface temperature alone, have a certain predictive skill regarding
river runoff. This skill is assed by validating the parameters in the seven major
and 222 minor river basins within Germany.

Finally, I developed an operational system for agricultural drought monitoring
in Germany (Chapter 5). This system consists of four steps: (1) a daily update
of observed meteorological data from the German Meteorological Service, with
consistency checks and interpolation; (2) an estimation of current soil moisture
conditions using mHM; (3) the calculation of the Soil Moisture Index; and (4)
the classification of the Soil Moisture Index into five drought classes ranging from
“abnormally dry” to “exceptional drought”.
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Results and Discussion

The 100 ensemble parameter sets were evaluated regarding their capability to re-
produce observed discharge before applying them to the national domain. They
led to reasonable discharge estimations when validating them within the 222 catch-
ments. The Nash-Sutcliffe Efficiency (NSE) was 0.68 for the median of daily dis-
charge simulations within these catchments. This result confirms that the ensem-
ble parameters are capable of sufficiently reproducing river runoff without being
calibrated on a particular location. The validation with evapotranspiration obser-
vations at the eddy covariance towers revealed that the dynamics, the magnitude
and the variance of the observations were captured by the model. The largest
error between observations and model simulations is observed in spring which may
be caused by the absence of a dynamic vegetation representation within mHM. It
is concluded that the ensemble parameter sets are appropriate for the nationwide
simulation.

The modeled fields of evapotranspiration, soil moisture, groundwater recharge and
per-grid-cell-generated runoff mainly reflect the pattern of precipitation. I found
that uncertainty of soil moisture, groundwater recharge and generated runoff are
governed by the pattern of the Budyko’s dryness index. The spatial distribution
of high uncertainties in evapotranspiration is, however, closely related to the areas
of high soil porosity. The evapotranspiration is the least uncertain variable out
of the four in terms of magnitude. Its uncertainty stays almost constant over
the course of a year. The highest uncertainty can be observed in groundwater
recharge, which follows a distinct inter-annual dynamic. The magnitude of soil
moisture uncertainties varies between different regions in Germany and times of
the year.

The nationwide analysis of agricultural droughts is conducted based on this soil
moisture dataset. The three most severe agricultural droughts according to its
magnitude are the events 1962-65, 1971-74, and 1975-78. Interestingly, the event
2003-2005 which caused extensive negative consequences in Germany ranks only
at seventh position. This event was accompanied by a severe heat wave, which
exceeded the temperature records of the last 500 years and intensified the negative
impacts of the drought event 2003 significantly.

The parametric uncertainty of the ensemble soil moisture propagates to drought
characteristics. This leads to significant classification errors for drought events.
The event 1971-74, for example, is estimated to be the longest and most severe
drought event since 1951. Whereas, it was estimated to be the most severe event
in only 67% of the ensemble simulations. The ensemble mean drought area of this
event is 43% of Germany. The ensemble standard deviation is 5% for this event,
which is almost as large as the area of Saxony. These results show that single
parameter sets may lead to inconclusive results regarding drought identification
and characteristics.
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In a consecutive study, the reduction of the parametric uncertainty is anticipated.
For that purpose, mHM is calibrated with satellite retrieved land surface temper-
ature and river runoff. The resulting parameter ranges (parameter uncertainty)
are reduced compared to those obtained by a classical calibration with streamflow
alone. Especially, the uncertainty of parameters connected to the evapotranspi-
ration is significantly reduced. Meanwhile, the error in discharge simulation of
the six catchments (Danube is excluded) increased by 6% using this approach.
Contrarily, the error of estimating evapotranspiration at seven eddy flux towers
decreased by 5%. Despite this tradeoff, this approach is beneficial compared to the
classical calibration with discharge, since the parametric uncertainty decreases.

In a second experiment, the hydrologic model mHM was calibrated with land
surface temperature to investigate its predictive skill regarding river runoff. Within
the major six German river basins (Danube is excluded), the average Nash-Sutcliffe
Efficiency (NSE) is 0.51 for the median performance of 20 independent calibration
runs in each catchment. The average median NSE is 0.4 if these parameter sets are
transferred to the 222 validation locations. These results lead to the conclusion
that land surface temperature has s certain predictive skill regarding river runoff.
The largest deviations of observed and simulated runoff are at low flow conditions.
This behavior is caused by the fact that land surface temperature characterizes the
near surface and thus is a bad estimator for subsurface processes such as baseflow.

The gained knowledge on agricultural droughts led to the implementation of the
German Drought Monitor (GDM). The GDM delivers high resolution, easy to
understand drought information for the public in near-real time with a latency
of 4 days since 2014 (www.ufz.de/droughtmonitor). A recent drought event
in 2015 has already been observed and analyzed based on data of the GDM.
The German Drought Monitor was recognized as a tool for public information by
several print media ranging from local to national coverage and television, during
this event. Furthermore, several federal state authorities started to use the GDM
as an information platform for planning purposes (e.g., Saxon State Agency for
Environment, Agriculture and Geology; Bavarian Agency for Agriculture). The
drought maps as well as the underlying information, e.g., the Soil Moisture Index,
are freely available for the public upon download or request.

The German Drought Monitor gave the unique opportunity to observe the devel-
opment of the 2015 drought event in near real-time. Drought hot spots like Berlin,
Northern Bavaria and Eastern Saxony were estimated by the GDM. Fire watch
activities were strengthened in summer 2015 because of exceptional dry soils in
Northern Bavaria and Eastern Saxony. Trees already started to shed their leaves
in Berlin in mid August. Finally, this drought led to a decrease of corn yield by
22% compared to the preceding 6 years (2009-2014). In July almost 75% of the
territory of Germany was at least under moderate drought conditions. The 2015
event ranks under the 10 largest drought events between 1950-2015 regarding its
magnitude in Germany.
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Conclusion

This study shows the steps towards the development of an operational drought
monitoring system for agricultural droughts in Germany. Continuous, spatially
highly resolved fields of soil moisture are determined for Germany due to the de-
termination of nationwide valid parameter sets. Soil moisture, evapotranspiration,
groundwater recharge and per-model-cell generated runoff, are analyzed regarding
their parametric uncertainty and how this uncertainty propagates to the identifica-
tion and benchmark of drought events. An approach to decrease such parametric
uncertainties is introduced.

The herein presented work led to the first public available, national monitoring
system for agricultural droughts. This system enables the immediate evaluation of
drought events in the light of historic events due to the benchmarking of drought
events. This system is greatly valuable for regional authorities and the public. It
is an essential tool to mitigate potential impacts of soil moisture drought such as
forest fires, e.g., by fire watch activities. The uncertainty in drought monitoring
has not been considered in the recent version of the German Drought Monitor, yet.
The communication of such uncertainties as well as the impact of soil water deficits
on agricultural yields are focus of current research and have to be investigated in
collaboration with social scientist under consideration of stakeholders’ needs.
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Chapter 1

Introduction and Scope of the Study

1.1 Background

Water is a chemical compound that is fundamental to all forms of life on Earth.
It constitutes 60% of animal and 90% of plant biomass (Shuttleworth, 2012). It
shapes the Earth in many aspects: for example, water forms landscapes due to
erosion or weathering and is partly responsible for the Earth’s surface temperature,
since water vapor is the most important greenhouse gas. In consequence, investi-
gating the spatial and temporal distribution of water resources is of big interest
for humanity.

Figure 1.1: Volumetric view on the Earth’s water resources. The big sphere repre-
sents the volume of available water on, in, and above Earth (fresh and
salt water) compared to the Earths volume. The middle-size sphere
on its right side depicts the available liquid fresh water resources on
Earth including groundwater, lakes, swamps, and rivers. The small-
est sphere, located below the former, shows the volume of surface
fresh water (lakes and rivers) compared to the Earth’s volume (source:
http://water.usgs.gov/edu/earthhowmuch.html).
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Chapter 1. Introduction and Scope of the Study

Compared to the total volume of the Earth, all available water resources are small
as shown in Figure 1.1. The 96.5% of the available water on Earth is allocated to
oceans as non-potable salt water (Table 1.1). The remaining water could poten-
tially be used as drinking water. The majority of it is stored as ice or snow in
glaciers and ice caps. Only less than 1% of the Earth’s water remains accessible
as liquid freshwater. It constitutes a volume of approximately 10.6 106 km3 and is
stored in rivers, lakes and the subsurface water, i.e., soil moisture and groundwater.

Table 1.1: Main water reservoirs of the earth characterized by volume and turnover
times (Shiklomanov, 1993; Shuttleworth, 2012).

Volume Percentage Approximate
(106 km2) of total residence time

Ocean ∼1340 ∼96.5 1 000-10 000 years
Glaciers, ice, and permafrost ∼27 ∼1.8 10-1 000 years
Groundwater ∼23 ∼1.7 15 days - 10 000 years
Atmosphere ∼0.013 ∼0.001 ∼10 days
Lakes, swamps, marshes ∼0.187 ∼0.014 ∼10 days
Rivers ∼0.002 ∼0.0002 ∼15 days
Soil moisture ∼0.017 ∼0.001 ∼50 days

Although the volume of freshwater is marginal compared to total Earths water
resources, it is the major resource of drinking water and plant available water.
Potable water would exhaust anytime soon, if it is not constantly renewed by the
hydrologic cycle as shown in Figure 1.2 (Shuttleworth, 2012). Water evaporates
from land and the ocean, drains as precipitation, and accumulates in rivers, lakes
and subsurface reservoirs on land. Finally, it flows back to the ocean where it
evaporates again. As Table 1.1 shows, surface water and atmospheric water vapor
have fast turnover rates, whereas groundwater is replaced very slowly. Soil mois-
ture, the main source of plant available water, is in between these temporal scales
with an approximated turnover rate of 50 days.

Anomalies of water fluxes and states within the hydrologic cycle, either cause
an excess or scarcity of water, i.e., floods and droughts. Precise knowledge on
the spatio-temporal distribution of water within this cycle is essential in order to
monitor and predict such hydrologic extremes.

Unfortunately, the states and fluxes of this cycle, e.g., soil moisture and evapotran-
spiration, are unknown at many places of the world since they are not observed.
The vast majority of measured variables are meteorological observations, i.e., pre-
cipitation and climate variables. Less than 10−10% of the area of Germany is
covered by rain gauge area despite the fact that Germany has the highest sta-
tion density worldwide. Besides meteorological observations, river runoff if often
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Chapter 1. Introduction and Scope of the Study

tives of black box models are artificial neural network models (e.g., Tokar and
Johnson, 1999; Dawson and Wilby, 2001; Tongal and Berndtsson, 2016) or autore-
gressive moving average models (Box et al., 2008).

White box models are based on the main physical laws which are governing the
hydrologic phenomena: the equations of mass, momentum and energy (Abbott and
Refsgaard, 1996). The model domain is spatially and temporally discrete. Usually
this discretization is based on finite elements or finite volumes. They are usually
applied to gain process understanding. Disadvantages of these models are their
high computational costs, their demand on a tremendous amount of data, their
scale-dependency, and their overparameterization (Todini, 2007b; Beven, 2008,
2012). This makes it difficult to use them for operational purposes. For these
reasons, physically based models are not yet as popular as process-based models in
the hydrologic community. Examples for white box models are HYDRUS (Šimnek
et al., 2008), ParFlow (Kollet and Maxwell, 2006) and MODFLOW (McDonald
and Harbaugh, 1984).

The fundamental principle of process-based hydrologic (grey box) models is the
fulfillment of the water balance, i.e. the conservation of mass. They are driven
by meteorological forcings and output hydrologic responses of the catchment, e.g.,
river runoff or evapotranspiration (Beven, 2012). Usually a cascade of reservoirs
characterizes these models. The reservoirs represent different states of the hy-
drologic cycle such as interception, snow accumulation, soil water retention, and
groundwater storage. They are connected by hydrologic fluxes such as snow melt-
ing, evapotranspiration, percolation and runoff generation. Process-based mod-
els are widely used in catchment hydrologic studies because of their reasonable
computational costs and low data demand. Well known process-based models are
HBV (Bergrström, 1976), Variable Infiltration Capacity (VIC) model (Liang et al.,
1994), LISFLODD (De Roo et al., 2000), SAC-SMA (Burnash et al., 1973), and
mHM (Kumar et al., 2013b; Samaniego et al., 2010) among others.

In hydrologic models, catchments are treated differently regarding their spatial
representation. Three different kinds of model approaches exist: lumped, semi-
distributed, and distributed hydrologic models. Lumped models treat the entire
catchment as one homogenous unit in which the hydrologic inputs, processes and
outputs are averaged in space. Semi-distributed models subdivide the model do-
main into functional units. Distributed models work on defined, geometrical grids.
The advantage of distributed models is a high spatial resolution of the estimated
hydrologic fluxes and states compared to the two other approaches (Beven, 1992;
Carpenter and Georgakakos, 2006; Kumar, 2010). This study is based on a spa-
tially distributed model: the process-based hydrologic model mHM.
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1.3. Uncertainty in Hydrologic Modeling

1.3 Uncertainty in Hydrologic Modeling

All of the aforementioned models underlie uncertainties in their hydrologic predic-
tions. These uncertainties are attributed to four different sources: initial condi-
tions, model structure, input data, and model parameters (Wagener and Gupta,
2005; Liu and Gupta, 2007; Beven, 2008).

Running a hydrologic model simulation without knowledge of the initial conditions,
e.g., state of the soil moisture, will lead to biased model simulations. Hydrologic
models need a certain amount of simulation time to adapt to the conditions within
the catchment at the start of the simulation period if the initial conditions are
unknown. A decent amount of observational data should be reserved for model
spin-up to avoid initialization errors. Climatological values of the model states can
be used for initialization, to minimize this spin-up time.

The model structural uncertainty depends on the decision for a particular model
or modeling concept. This choice is usually based on subjective criteria, e.g.,
the modeler’s preference for a particular model (Wagener et al., 2003). Different
models will produce different results at the same location because of the model
design. Hydrologic models differ in the mathematical description of processes,
the parameterization of these processes, and in the hydrologic processes that are
considered within the model (Beven, 2012). A multi-model setup for the area under
investigation can expose model structural uncertainties in hydrologic predictions.

The third source of uncertainty arises from the input data. Usually, hydrologic
models are driven by spatially distributed fields of meteorological variables. Be-
sides the measurement errors, the interpolation approach is another source of er-
rors. Predictions of the future behavior of hydrologic systems depend on forecasts
of global or regional climate models (Beven, 2008). These climate models underlie
predictive uncertainties themselves which are propagated to the hydrologic model
(e.g., Thober et al., 2015).

The fourth source of uncertainty is connected to the model parameters. All of
the aforementioned models are mathematical abstractions of nature and usually
depend on parameters which allow the model to adapt to local conditions of the
watershed or grid cell (Kuczera and Mroczkowski, 1998). These parameters do
not necessarily represent physical entities due to model conceptualization and a
lack of observations of hydrologic processes on the relevant scale, e.g., mesoscale
(Beven, 2012). Further, every hydrologic model, regardless of its spatial explic-
itness (lumped or distributed), is to some degree the approximation of a het-
erogeneous world (Wagener and Gupta, 2005). Consequently, the parameters of
hydrologic models can be seen as effective parameters that are usually determined
by calibration. A calibration is the backward estimation of the model parame-
ters aiming to reproduce an observed response of the hydrologic system, e.g., river
runoff at the catchment outlet.
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Two different approaches of estimating model parameters can be differentiated:
the manual calibration and the automatic calibration (Gupta et al., 1999). The
manual calibration needs to be conducted by an experienced hydrologist whose
judgment of the model skill may be subjective. Automatic calibration routines,
such as the Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1992) or
the Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker,
2007), are searching for the best fit between the model and observations based
on an objective criterion or objective function. The objective function quantifies
the error of the model with respect to a particular observation. Typical error
metrics in hydrologic modeling are the root mean square error or the Nash-Sutcliffe
efficiency criterion (Nash and Sutcliffe, 1970). The parametric uncertainty is the
inability to adequately locate a “best” parameter set (Wagener and Gupta, 2005).
Calibration can lead to multiple or equifinal parameter sets, which perform equally
satisfactorily compared to observations (Beven and Freer, 2001).

Within this study, the effect of parameter uncertainties that arise from running in-
dependent calibration runs for the hydrologic model mHM is analyzed. The herein
used automatic calibration algorithm is the DDS algorithm, which is broadly ap-
plied in hydrology. This algorithm converges faster to good calibration results
compared to, e.g., the SCE algorithm (Tolson and Shoemaker, 2007). It termi-
nates after a fixed number of iterations rather than after a convergence criterion.
The uncertainties of different hydrologic fluxes and states are analyzed regarding
their spatio-temporal distribution, and are reviewed regarding their implications
on soil moisture drought analyzes in Germany. An approach is presented to re-
duce parameter uncertainties by calibrating the model against additional data,
i.e., satellite retrieved land surface temperature.

1.4 Droughts

Droughts are natural phenomena that are caused by precipitation amounts below
the expected or normal (Wilhite, 2005). They can occur in all climatic zones irre-
spectively of the typical amount of rainfall in a region (Wilhite and Glantz, 1985).
They are creeping events, which can easily last several years and reach national
to continental spatial coverage (Andreadis et al., 2005; Sheffield and Wood, 2011;
Sheffield et al., 2014).

Droughts are the second most severe natural disaster beside floods. They af-
fected worldwide 2.2 billion people between 1950-2014 (Guha-Sapir et al., 2015).
Its consequences reach from economic losses, mass migrations, and famines to
casualties, among others (Hodell et al., 1995; Field, 2000; Wilhite et al., 2007).
For example, in Germany the 2003 heat wave and drought event caused 7,000
fatalities (European Commission, 2007). On the European level death toll was
estimated to exceed 70,000 (Robine et al., 2008). This severe drought event im-
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pacted many socio-economic fields such as agriculture, forestry or inland navi-
gation. The agro-economic loss in Germany was estimated to 1.5 billion EUR
(COPA-COGECA, 2003). In entire Europe the agricultural sector had to cope
with losses of 15 billion EUR.

According to the fifth assessment report of the International Panel on Climate
Change (IPCC) ”there will be a marked increase in extremes in Europe, in par-
ticular, in heat waves, droughts, and heavy precipitation events” (IPCC, 2012).
The European Commission reported that the frequency of droughts has already
increased and will further increase (EEA, 2012a). Additionally, Trenberth et al.
(2014) discuss that anthropogenic factors of climate change will speed up the es-
tablishment of droughts and increase drought intensities. This makes droughts an
important field of research in Central Europe.

Figure 1.3: The four different types of drought and their sequence of occurrence.
(source: National Drought Mitigation Center, University of Nebraska-
Lincoln, USA)

Since droughts have an impact on many parts of society, there is no generally
accepted definition of droughts (Wilhite, 2005). Different disciplines, e.g., water
resources management or agriculture, focus on different variables of the hydrologic
cycle, e.g., river runoff or soil moisture, respectively. This led to the classifi-
cation of droughts into four types: meteorological, agricultural, hydrologic, and
socio-economic drought as shown in Figure 1.3 (Wilhite and Glantz, 1985; WMO,
2006). The meteorological drought is usually defined as a deficiency of precipita-
tion amount in a defined period of time. The hydrologic drought is characterized
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by exceptional low surface and subsurface water availability, such as reduced river
runoff and low groundwater levels. A low availability of soil moisture, which is the
major water resource for plants in most regions of the world, is termed agricul-
tural drought. All of the aforementioned drought types can lead to a shortfall in
water supply leading to monetary losses, which characterizes the socio-economic
impacts.

A drought monitoring system which delivers timely information about onset, ex-
tent and intensity, could help to reduce drought related fatalities and economic
losses (Wilhite, 1993). Within this study, such a system is developed for Ger-
many. It focuses on the analysis of soil moisture droughts, because of their high
agro-economic relevance for Germany (e.g., Schindler et al., 2007; Döring et al.,
2011).

1.5 Research Objectives

The main objective of this study is the development of an operational drought
monitoring system for agricultural droughts in Germany. Therefore, spatially con-
tinuous fields of soil moisture are derived with a hydrologic model, i.e., mHM.
Hydrologic models are uncertain in hydrologic predictions due to uncertainties in
the parameter estimation process, amongst others. These uncertainties need to
be considered if predicting drought characteristics, such as drought severity or du-
ration. Further, the ability of spatially distributed fields of satellite derived land
surface temperature is explored to reduce parameter uncertainties. Finally, the
operational framework of the German Drought Monitor is presented.

Hydrologic modeling is usually conducted at the catchment scale. Catchment bor-
ders have to be crossed when conducting predictions on the national domain. In
consequence, the parameters of the hydrologic model need to be sufficient and sta-
ble for application in distinct catchments. Additionally to the equifinality problem,
transferring calibrated model parameters to remote locations will lead to uncer-
tainties in the model simulation. A framework to determine such parameters is
presented in Chapter 2 in order to address the following research objectives:

• Derive highly resolved and spatially consistent estimations of hydrologic
states and fluxes, i.e., evapotranspiration, soil moisture, groundwater recharge,
per grid cell generated runoff, for Germany between 1950 and 2010.

• Analyze the spatio-temporal distribution of parametric uncertainties of these
variables.

A retrospective drought analysis from 1950 to 2010 is anticipated based on the
soil moisture fields of these estimations. An algorithm for the estimation of a
Soil Moisture Index (SMI) is developed and implemented for performing drought
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analyzes. Based on the SMI, the following research objectives are addressed in
Chapter 3:

• Reconstruction of agricultural drought conditions and identification of bench-
mark events.

• Investigate the effect of parametric uncertainty on drought characteristics,
such as duration, spatial extent, severity, and magnitude.

Chapter 4 will deal with the reduction of parametric uncertainties observed in the
above-mentioned studies. Using satellite derived land surface temperature and a
newly developed and implemented land surface temperature module for mHM, the
following research objectives will be addressed:

• Reduction of parameter estimation uncertainties by calibrating a hydrologic
model with spatial patterns of satellite derived land surface temperature.

• Assessment of the predictive skill of satellite land surface temperature re-
garding river runoff.

Finally, the operationalization of a drought monitoring system for Germany is
presented in Chapter 5. The research question addressed is:

• How to deliver timely information about agricultural droughts to the decision
makers and the public to potentially mitigate negative impacts?

The last chapter summarizes and discusses the major findings of this work and
provides an outlook for further improvements of the drought monitoring frame-
work.
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Chapter 2

A High-Resolution Dataset of Water
Fluxes and States for Germany

Accounting for Parametric
Uncertainty

This chapter is largely based on the manuscript:

Zink, M., Kumar, R., Cuntz, M., and Samaniego, L. (2016): A High-Resolution
Dataset of Water Fluxes and States for Germany Accounting for Parametric Uncer-
tainty, Hydrology and Earth Systen Sciences Discussions, doi:10.5194/hess-2016-
443, in review.
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2.1. Abstract

2.1 Abstract

Long term, high-resolution data of hydrologic fluxes and states are needed for
many hydrological applications. Since long-term, large-scale observations of such
variables are not feasible, hydrologic or land surface models are applied to derive
them. This study aims to analyze and provide a high-resolution dataset of land
surface variables over Germany, accounting for uncertainties caused by the estima-
tion of equifinal model parameters. Furthermore, the spatiotemporal distribution
of uncertainties in various hydrological variables as well as the propagation of un-
certainties through different model compartments is investigated. The mesoscale
hydrological model (mHM) is employed to create an ensemble (100 members) of
daily fields of evapotranspiration, groundwater recharge, generated discharge and
soil moisture at a spatial resolution of 4 km in the period 1950-2010. The model
is evaluated with observed runoff in 222 catchments, which have not been used for
calibrating the model. In these catchments the mean and the standard deviation
of the ensemble median NSE for daily discharge are 0.68 and 0.09, respectively.
The modeled evapotranspiration, which is evaluated with observations at eddy co-
variance stations, exhibits a five times larger error in spring during the onset of the
vegetation period compared to the other seasons. Our analysis indicates the low-
est uncertainty for evapotranspiration, while the largest uncertainty is observed for
groundwater recharge. The uncertainty of the hydrologic variables varies through-
out the course of a year with exception of evapotranspiration, which stays almost
constant. The uncertainties in soil moisture and recharge are recognized to propa-
gate to the modeled discharge. Our study emphasizes the role of accounting for the
uncertainty due to equifinal parameter sets when reconstructing high-resolution,
model-based datasets.

2.2 Introduction

Consistent, long-term data of meteorological and hydrological variables at high
spatial resolution are needed for applications like i) impact assessment studies
such as drought, flood or climate change analyzes (Sheffield and Wood, 2007;
Samaniego et al., 2013; Huang et al., 2010), ii) studies that need spatially and
temporally continuous observation based data, e.g., for temporal disaggregation
(Thober et al., 2014) or downscaling of climate model data (Wood et al., 2004),
Ensemble Streamflow Prediction (Day, 1985), or reverse Ensemble Streamflow Pre-
diction (Wood and Lettenmaier, 2008).

Continuous observations of hydrologic fluxes and states are economically and lo-
gistically not feasible on regional to national scales (Vereecken et al., 2008). Soil
moisture observations, for example, are scarcely conducted. Additionally, these
measurements are usually only representative for a small control volume of a few
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cm3. Evapotranspiration measurements at eddy covariance stations have a foot-
print of ten to hundreds of meters, but are available at only 827 stations worldwide
(http://fluxnet.ornl.gov, April 2016).

Alternatives are remote sensing or reanalysis data. These data are broadly avail-
able, but do not consider the conservation of mass, i.e., the closure of the water
balance. Apart from that reanalysis data have spatial resolutions of at most 1/4◦

(Dee et al., 2016). Continuous remote sensing products are not available due to
their addiction to cloud free conditions (Mu et al., 2007; Liu et al., 2012). How-
ever, hydrologic models driven by observational data are the prime alternative to
derive consistent water fluxes and states on large spatial domains.

Observational driven datasets are estimate by Maurer et al. (2002); Zhu and Let-
tenmaier (2007); Livneh et al. (2013); Zhang et al. (2014) on the national scale.
These data are based on the Variable Infiltration Capacity (VIC) model (Liang
et al., 1994) having at most a spatial resolution of 1/16◦ and cover the United
States, Mexico and China. Studies, like Nijssen et al. (2001); Fan and van den
Dool (2004); Berg et al. (2005); Sheffield et al. (2006), are focusing on the global
domain and thus already cover Germany. But the spatial resolution of these data
is at most 1/2◦ and most of these studies are focusing on meteorological forcings
rather than on hydrologic variables. The Hydrological Atlas of Germany (HAD)
(Federal Ministry for the Environment Nature Conservation Building and Nuclear
Safety, 2003) provides long-term averages of many water fluxes and states as maps.
The underlying data for some of these maps are freely available. The maps of the
HAD have been derived independently from each other and are thus not necessarily
consistent between each other.

The resolution of the above mentioned model-derived datasets are coarse accord-
ing to Wood et al. (2011), who stated that a need exist to have higher spatially
resolved data and models for purposes like flood and drought forecasting. More-
over, Bierkens et al. (2014) states that water resources or river basin managers will
favor highly resolved data, i.e., 1-5 km.

Further, land surface hydrologic models are subject to different sources of uncer-
tainties, i.e., input, model structural and parametric uncertainty. These uncer-
tainties are often not considered when deriving hydrologic or hydro-meteorological
datasets (e.g., Huang et al., 2010; Livneh et al., 2013; Zhang et al., 2014). In conse-
quence, predictive uncertainties are often not addressed but may have substantial
implications on subsequent studies as shown by Samaniego et al. (2013).

Another challenge is to derive continuous fields of hydrologic variables on large
spatial domains. Since hydrologic models are commonly applied on the catchment
scale the parameters are often calibrated to perform good in this particular catch-
ment. The aim of this study is to derive a national dataset for Germany, which
is exceeding the domain of a single catchment. To estimate continuous data for
Germany, this paper is based on compromise parameter sets. These are derived by
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transferring parameters among seven catchments, which cover a large part of the
study domain. Subsequently, the results are screened for satisfactory performances
in all of those catchments.

Additionally, we address the issue of predictive uncertainties by considering an en-
semble of equifinal parameter sets (Beven, 1993). This uncertainty is understood
as the uncertainty in hydrologic fluxes and states emerging from multiple param-
eter sets which perform equally satisfactory if evaluated with discharge. For this
particular study, the input uncertainty is very little compared to the parameter
uncertainty, because of the high quality and density of meteorological observations.
The application of multiple models or modeling concepts is out of the scope of this
study.

Summarizing, the objective of this study is to derive a continuous and consistent
dataset of hydrologic fluxes and states between 1950 and 2010 in Germany with a
high temporal and spatial resolution. This model derived dataset consists of evap-
otranspiration, soil moisture, groundwater recharge and per-grid-cell-generated
runoff. Additionally, we provide the forcing dataset of the model including precip-
itation, temperature, and potential evapotranspiration. To our knowledge such a
consistent dataset is not freely available up to now for Germany. We address the
need for highly resolved data by conducting simulations at the spatial resolution
of 4×4 km2 (1/25◦). Spatial continuity is ensured due to the estimation of 100
independent parameter sets which are valid on the entire domain of Germany.

We evaluate the 100 parameter sets in 222 catchments, which have not been used
for parameter inference. Additionally to streamflow, the ensemble simulations are
evaluated with evapotranspiration and soil moisture observations at seven eddy
covariance stations. Therefore, model simulations are obtained on a resolution
of 100×100 m2, which is comparable to the footprint of the evapotranspiration
measurements.

An additional objective, is the investigation of the 100 ensemble simulations re-
garding their temporal and spatial distribution of parametric uncertainties. More-
over, the propagation of uncertainties through different compartments of the hy-
drologic model is scrutinized.

2.3 Study Domain and Datasets

The study is conducted on the territory of Germany, which covers an area of
about 357,000 km2 (Figure 2.1). The region, located in Central Europe, is mainly
characterized by a humid climate, but nonetheless has a north to south and east
to west climatic gradient. The topography varies from low-altitude, flat areas in
the north (North German Plain) over mid-altitude mountains in Central Germany
(Central Uplands) to the high altitude Alpine Foothills and the Alps in the south.
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Whereas the northwestern part of Germany is still under maritime influence, the
eastern part has a more continental climate, characterized by colder winters and
less precipitation.

Figure 2.1: Study area showing the seven catchments used for estimation of com-
mon parameter sets for Germany. The points E1-E7 denote eddy co-
variance stations which are used for the evaluation of evapotranspira-
tion and soil moisture.

The assessment of water fluxes and states is restricted to the national borders
of Germany, since meteorological data and land surface characteristics have been
available on this domain. Thus, only catchments fully covered by German terri-
tory are used to derive parameters for the hydrologic model. These seven, major
catchments are depicted in Figure 2.1. These basins represent the topographic
and hydro-climatic gradient within Germany (see Table 2.1). They are ranging
in size from 6,000 km2 to 48,000 km2 and are characterized by mean elevations
ranging from 60 m.a.s.l. (Ems catchment) to 560 m.a.s.l. (Danube catchment).
All catchments have a comparable degree of urbanization ranging between 6% to
10%. A remarkable low amount of forest is observed in the Ems catchment, where
agriculture and pasture are the dominating land use.

Due to different climatic regimes the average discharge of the seven catchments
ranges from 161 mm a−1 to 469 mm a−1. The low-lying Ems reaches a remarkable
high discharge due to maritime influence, whereas the Saale river is characterized
by the lowest discharge. The runoff coefficient of the Saale differs significantly from
the other catchments, which originates from the high degree of anthropogenic influ-
ence within this basin. Three out of the ten biggest dams in Germany are located
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Table 2.1: Catchment properties and water balance characteristics of the seven ma-
jor German river basins. The geographical location of the catchments
is depicted in Figure 2.1.

catchment elevation land cover water balance dryness runoff
area [km2] [m] [%] [mm a−1] index [-] coeff. [-]

avg std min max forest urban mixed P Q Ea Ep/P Q/P
Mulde 6 200 386 201 75 1 212 26 10 64 798 344 454 0.88 0.43
Ems 8 400 60 36 10 383 13 8 79 802 312 490 0.89 0.39
Neckar 12 700 445 153 124 1 015 35 10 55 914 356 558 0.85 0.39
Main 23 700 356 113 93 1 044 39 6 55 793 247 546 0.97 0.31
Saale 24 800 287 162 56 1 139 23 8 69 645 161 484 1.13 0.25
Weser 37 700 223 165 8 1 116 34 7 59 781 276 505 0.91 0.35
Danube 47 500 558 170 302 2 329 32 6 62 948 469 479 0.80 0.49

there (Bleiloch - 215 Mio. m3, the Hohenwarte -182 Mio. m3 and the Rappbode
reservoir - 109 Mio. m3). Furthermore, open pit mining has a big influence on the
water budget of this catchment.

2.3.1 Land Surface Properties

The land surface characteristics required by the hydrologic model include a 50 m
digital elevation model (DEM) acquired from the Federal Agency for Cartogra-
phy and Geodesy (Federal Agency for Cartography and Geodesy (BKG), 2010), a
digitized soil map at a scale of 1:1,000,000 (Federal Institute for Geosciences and
Natural Resources (BGR), 1998), and a hydrogeological vector map at a scale of
1:200,000 (Federal Institute for Geosciences and Natural Resources (BGR), 2009).
The soil map contains information on soil textural properties such as sand and clay
contents of different soil horizons. The soils are classified to 72 soil types which
have an average depth of 1.8 m. The hydrogeological map comprises 32 classes
and gives information about saturated hydraulic conductivities and karstic areas.
Based on the DEM additional information like slope, aspect, flow direction and
flow accumulation are inferred. Land cover information are derived from CORINE
land cover scenes of the years 1990, 2000, and 2006 (European Environmental
Agency (EEA), 2009). The period prior 1990 is assumed to be static and is rep-
resented by the scene of 1990. All data sets are remapped to a common spatial
resolution of 100×100 m.

The location and shape of the catchments (Figure 2.1) is derived with an au-
tomated delineation, which is based on gauging station information and terrain
information (flow accumulation, flow direction). Discharge data are provided by
the European Water Archive (EWA) (2011) and the Global Runoff Data Centre
(GRDC) (2011). The results of the delineation are approved by comparing with
the CCM River and Catchment Database (European Commission - Joint Research
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center (JRC), 2007; Vogt et al., 2007). Additionally to the seven major catchments
(as described above), the model is set-up in 222 additional, smaller catchments to
cross-validate the model performance.

2.3.2 Meteorological Forcings

The hydrologic model is forced with daily fields of precipitation, average temper-
ature and potential evapotranspiration. They are derived from local observations
operated by the national weather service (Deutscher Wetterdienst (DWD), 2015).
The station network comprises in average 3800 rain gauges and 570 climate sta-
tions per year (period: 1950-2010), which have an average minimum distance of 6
km and 14 km between neighboring stations, respectively.

These local observations are interpolated on a regular grid of 4×4 km2 using ex-
ternal drift Kriging. The terrain elevation (DEM) is used as external drift and
the Kriging weights are based on a theoretical variogram. This variogram is es-
timated for entire Germany by fitting to a empirical variogram. To avoid dis-
continuities in the interpolated meteorological forcings and consecutively in the
hydrologic simulation, an estimation of multiple variograms for different climatic
zones or distinct morphological regions has been rejected. The spatial resolution
of 4×4 km2 is seen as appropriate considering the aforementioned station network
density. Subsequently, daily fields of potential evapotranspiration were estimated
with the Hargreaves-Samani method (Hargreaves and Samani, 1985) using inter-
polated temperatures (average, minimum, and maximum temperature).

The interpolation of the precipitation is evaluated with gridded precipitation data
(REGNIE) provided by the German Meteorological Service (Deutscher Wetter-
dienst (DWD) (2013); Rauthe et al. (2013)). The REGNIE data are based on
the same observations and have a spatial resolution of 1 km. They are derived by
applying a multiple linear regression approach, which takes daily atmospheric con-
ditions and terrain properties, such as elevation, slope, and aspect, into account
(Rauthe et al., 2013). After remapping the REGNIE data to the aforementioned
4×4 km2 grid by bi-linear interpolation a satisfactory correspondence between the
interpolation and the REGNIE precipitation data is found. The spatially averaged
bias of the daily fields is 0 with a standard deviation of 0.11 mm d−1 within the
period 1950-2010.
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2.4 Methodology

2.4.1 The mesoscale Hydrologic Model mHM

The hydrologic model mHM (www.ufz.de/mhm) is a distributed hydrologic model
that accounts for the following main processes: snow accumulation and melt, evap-
otranspiration, canopy interception, soil water infiltration and storage, percola-
tion, and runoff generation (Figure 2.2). This processes are conceptualized as
water fluxes between internal model states similar to existing models like HBV
(Bergrström, 1976) or VIC (Liang et al., 1994). Snow accumulation and melt
processes are based on the improved degree-day method which accounts for an
increased snow melt during intense precipitation events (Hundecha and Bárdossy,
2004). A three layer discretization is used to account for processes representing
the root-zone soil moisture dynamics. The upper two layers are ending in 0.05 m,
0.25 m and a the lowest layer is spatially variable in depth depending on the soil
map. On average it is 1.8 m deep in Germany. The evapotranspiration from soil
layers is estimated as a fraction of the potential evapotranspiration depending on
the soil moisture stress and the fraction of vegetation roots present in each layer.
The runoff generation in mHM is formalized as sum of the components direct
runoff, slow and fast interflow, and baseflow. The runoff generated at every grid
cell is routed to the outlet using the Muskingum routing algorithm. For a detailed
model description, interested readers may refer to Samaniego et al. (2010) and
Kumar et al. (2013b). To date the model has been successfully applied to vari-
ous river basins across Germany, Europe, and the USA (Samaniego et al., 2013;
Rakovec et al., 2016; Kumar et al., 2013a).

Figure 2.2: Schematic view on the distributed, mesoscale Hydrologic Model mHM
(www.ufz.de/mhm).
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A feature which is unique for mHM is its technique for estimating effective model
parameters called Multiscale Parameter Regionalization (MPR, Samaniego et al.
(2010); Kumar et al. (2013b)). Its basic concept is to estimate parameters (e.g.,
the porosity) based on terrain properties (e.g., sand and clay content) and trans-
fer functions (e.g., pedotransfer functions). These transfer functions depend on
transfer parameters (e.g., factors of the pedotransfer functions) which are time-
invariant and location independent and are purpose to calibration (described in
section 2.4.2). This parameter estimation is performed on the high-resolution of
the land surface property input, e.g., 100×100 m2, and subsequently this param-
eters are upscaled to the resolution of the hydrologic simulations, e.g., 4×4 km2.
Thus mHM explicitly accounts for the sub-grid variability of land surface proper-
ties, such as terrain or soil information.

2.4.2 Derivation of Representative Parameter Sets

One of the goals of this study is to derive consistent model parameters for per-
forming nation-wide simulations of water fluxes and states. A two step parameter
selection procedure was used for this purpose. In a first step we estimated multiple
parameter sets via calibration in each of the seven inner German river basins (Fig-
ure 2.1) independently. In a next step, we transfer these calibrated parameter sets
to the remaining basins and finally only those parameter sets are retained, which
exhibit a sufficient model performance criteria, i.e., a Nash-Sutcliffe Efficiency
(NSE ) ≥ 0.65, in all seven basins during the evaluation period (1965-1999). This
parameter selection procedure ensures that the resulting ensemble parameter sets
do not exhibit spatial discontinuities at catchment boundaries.

The calibration is performed using the dynamically dimensioned search (DDS) al-
gorithm (Tolson and Shoemaker (2007)). The objective function for calibration
consists of an equally weighted power law function for the NSE (Nash and Sut-
cliffe, 1970) of the discharge and the logarithm of the discharge to consider high
and low flows within the objective function. A compromise programming tech-
nique (Duckstein, 1984) using a power law with an exponent p = 6 is used, to
estimate the multi-objective function (Φ). This technique ensures equal improve-
ment of the different measures φi during a multi-objective calibration. The overall
objective function Φ is given as
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where wi is the weight (w1 = w2 = 0.5) for a particular measure φi, Q̂t and Qt

denote the modeled and observed discharge at a time step t, respectively. Q is the
mean of observed discharge over all time steps T .

A period of 5 years from 2000 to 2004 is chosen for model calibration. This time
period reflects various hydrologic conditions ranging from a high impact flood
event in Central Europe in August 2002 to a significant drought event in 2003. The
remaining 35 years of available data (1965-1999) are used for model evaluation. All
simulations are conducted with a 5 year spin up period to abrogate the influence
of initial conditions.

Hundred independent calibration runs are performed for each of the seven catch-
ments (Figure 2.1). Using 2000 model iterations per calibration run led to a large
number of model evaluations per catchment (200,000). Finally, 100 parameters
sets out of 700 are retained to derive nation-wide ensemble simulations of water
fluxes and states at daily resolution.

2.4.3 Validation Data

Besides discharge in the seven major German river basins, the model performance
is evaluated against discharge in 222 additional catchments and complementary
data sets including evapotranspiration, soil moisture and groundwater recharge.
The cross validation of ensemble parameter sets in catchments which have not
been used for parameter inference should prove the ability of the model to satis-
factorily estimate discharge in various regions of Germany with differing hydrologic
characteristics.

The catchments for cross validation are distributed all over Germany and range
in sizes from 100 km2 to 8,500 km2. A subset of these catchments contains sub-
catchments of seven major basins. The simulation time period is adopted to the
available discharge observations but is at least 10 years. The mean simulation
time period of all 222 catchments is 42 years. The discharge estimation in these
catchments is evaluated using the ensemble median NSE and its uncertainty is
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characterized by the range between the 5th and 95th percentile of NSEs of the
ensemble simulation.

Evapotranspiration observations are available at seven eddy covariance towers lo-
cated in Germany (Figure 2.1; www.europe-fluxdata.eu). These towers are de-
signed to observe carbon fluxes as well as all fluxes of the energy balance, i.e.,
latent heat (or evapotranspiration Ea), sensible heat H, ground heat flux G and
net radiation Rn. However, the observed fluxes have discrepancies in the fulfillment
of the energy balance (Rn = Ea+H+G) called energy balance closure gap (Foken,
2008). The source of the energy balance closure gap is still subject of research. It
is closed by applying mathematical corrections to the latent heat and sensible heat
flux to satisfy the energy balance equation. Here we apply a correction method
preserving the fraction of latent and sensible heat. The corrected evapotranspira-
tion values at the eddy sites are compared with the corresponding model estimates
based on the root mean squared error (RMSE), the Pearson correlation coefficient
(r) and the bias.

Additionally, soil moisture observations, undertaken at eddy covariance stations,
are used to evaluate modeled soil moisture. Soil moisture is measured using TDR or
FDR sensors, which have a control volume of a few cm3. This is much smaller than
the model resolution of 100×100 m2. A direct comparison between observed and
simulated soil moisture may therefore be misleading, due to differences in spatial
representativeness and sampling depth. Here we aim to analyze the temporal
dynamics of soil moisture by normalizing the respective soil moisture time series
(Koster et al., 2009). The anomalies are calculated as

z =
SM(t)− µ

σ
(2.4)

where µ is the mean and σ is the standard deviation of the entire soil moisture
time series SM at daily resolution. It is not possible to use deseasonalized values
(normalization with monthly values) because the time periods of the available
observations were to short (≈ 6years).

The mHM simulation for comparing the observations at the location of the eddy
Covariance stations is conducted with deactivated lateral processes on a single grid
cell. The model resolution (100×100 m2) is adopted to the size of footprint of the
energy flux measurements which is typically several 10 to 100 meters. Rather than
downscaling the model results, the hydrologic processes are modeled at the reso-
lution of the observations. The transferability of mHM across scales is presented
in Kumar et al. (2013b).

We evaluated the model performance against long term estimates of annual recharge
over Germany (1961-1990). Due to the lack of observations, the estimated recharge
from the Hydrologic Atlas of Germany (Federal Ministry for the Environment Na-
ture Conservation Building and Nuclear Safety, 2003) is taken here as a reference.
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This recharge estimate is obtained using a multiple regression model accounting for
terrain properties (e.g., land cover), locally observed baseflow indices and depths of
the groundwater table among other variables (Neumann and Wycisk, 2003). The
gridded recharge estimate is available at a 1×1 km2 spatial resolution, which is
remapped to a 4×4 km2 resolution using bi-linear interpolation to be comparable
to the ensemble median modeled estimates.

2.4.4 Uncertainty of Ensemble Model Simulations

The uncertainty of the modeled evapotranspiration, groundwater recharge, per-
grid-cell-generated runoff and soil moisture is assessed by two different criteria.
First, the spatially distributed uncertainties are presented as maps showing the
coefficient of variation cv which is defined as

cv =
σ

µ
(2.5)

in which µ is the mean and σ the standard deviation of the ensemble simulations.
A large cv describes a large variance in the modeled flux or state normalized with
its mean. The mean µ and standard deviation σ are derived from the 100 ensem-
ble realizations of the hydrologic model mHM on every grid cell. The variances
within the ensemble simulation are caused by predictive uncertainties. These un-
certainties stem from the parametric uncertainty itself and from the transfer of
parameters to locations which have not been used for model calibration. In the
following the variances of the ensemble simulations are denoted as uncertainty.

Second, for assessing the temporal variation of the uncertainty throughout a year
the range and the normalized range of the respective flux or state are considered.
The range is defined as the difference between the 95th (p95) and 5th (p5) percentile
of the ensemble simulation, whereas the normalized range is defined as

r =
p95 − p5

p50

. (2.6)

where p50(x) denotes the median value of the ensemble simulation (50th percentile).
The choice of the percentiles 5 and 95 was taken to exclude potential outliers from
the analysis.
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2.5 Results and Discussion

The model simulations are evaluated against multiple variables available at differ-
ent spatial and temporal resolutions. These include daily and monthly time-series
of streamflow measured at the catchment outlets, soil moisture and evapotran-
spiration at several eddy covariance sites, and a long term, annual recharge map.
mHM simulations are carried out at a hourly time scale on two spatial resolutions,
i.e., 100×100 m2 at the eddy covariance stations and 4×4 km2 at the catchment
level and for the nation-wide ensemble simulation. Finally, a analysis of the model
runs for the nation-wide water fluxes and states including per-grid-cell-generated
runoff (QG), evapotranspiration (Ea), groundwater recharge (R) and soil moisture
(SM) is presented. The focus here is to provide a comprehensive overview on re-
gional scale water fluxes and states over Germany and to analyze the uncertainty
in modeled variables due to an ensemble of model parameters. The uncertain-
ties are investigated with respect to its temporal and spatial distribution and its
triggering sources. Finally, the propagation of uncertainties through the different
model states and fluxes is analyzed.

2.5.1 Discharge Evaluation in Major German River Basins

The discharge simulations of the hydrologic model mHM are evaluated based on
the NSE of daily and monthly discharge values for a validation (1965-1999) and
a calibration (2000-2004) period. The daily discharge of the major German catch-
ments is sufficiently estimated revealing mean NSEs of 0.89 and 0.84 using on-site
calibrated parameters in the calibration and the validation period, respectively
(Figure 2.3). Note that the ensemble parameter sets are common to all basins
(grey boxes in Figure 2.3). They are chosen as compromise parameter sets, which
should perform well in all of the seven basins (see section 2.4.2). The median model
performance of the ensemble parameters is dropping by approximately 6% com-
pared to on-site estimated parameters. This performance loss can be attributed to
changes in basin climatic and land-surface conditions including terrain, soil, and
vegetation properties. The ranges of NSEs, which correspond to the 100 on-site
and ensemble parameter sets, are comparable across the investigated basins which
indicates that the application of the ensemble parameter sets did not significantly
increase the uncertainty of estimated discharge.

The model performance is lower during the validation period in comparison to
the calibration period (Figure 2.3). Such deterioration of model performance,
common to other hydrologic model applications too, is caused by differences in
hydro-meteorological regimes between the calibration and validation period and
constraining (over-fitting) of the parameters to compensate for errors in model
structure. The model exhibited improved performance for monthly streamflow
simulations with an average median NSE of 0.97 and 0.92 for on-site calibrated
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Figure 2.3: Model performance expressed as Nash Sutcliffe Efficiency (NSE) at
daily (upper row) and monthly (lower row) resolution for the calibra-
tion period 2000-2004 (left hand side) and validation period 1965-1999
(right hand side). The white box plots show the results of the on-site
calibration, whereas the gray box plots are simulations using the 100
ensemble parameter sets for Germany. Note that the y-axis starts at
NSE=0.5

parameter sets during the calibration and validation period, respectively. The cor-
responding NSEs with the transferred parameter sets were 0.94 and 0.87, respec-
tively. The spread of NSEs for the monthly streamflow is considerably narrower
compared to the daily flows (Figure 2.3). Unsurprisingly, the high variabilities of
daily streamflow are smoothed when averaged over a longer (monthly) time scale
leading to an overall better correspondence between observed and simulated flows.

Heavy human interactions lead to lower model performances for the Saale river
basin, especially on daily timescale. The highly regulated discharge in the head-
waters of the Saale river (see section 2.3) is difficult to capture and thus leads to
lower performances, since mHM has no reservoir operation included. The main
discharge mechanisms of Saale are considered as adequately captured, since the
median NSEs are exceeding 0.85 at monthly and 0.7 on the daily resolution for
the ensemble parameter sets (Figure 2.3).

Interestingly, this catchment shows equal or higher performances for the ensemble
parameter sets compared to the on-site parameter sets in the evaluation period. A
similar behavior can be observed for the Weser catchment. We conclude that dis-
charge simulations in some catchments improve by gaining knowledge from remote
locations.

25



2. Water Fluxes and States Dataset Accounting for Parametric Uncertainty

Figure 2.4: Observed and modeled monthly discharge for the seven catchments,
which were used for parameter inference. The figure shows one decade
(1990-1999) of the evaluation period. The solid dark gray line depicts
the median model results and the light gray band depicts the range
between the 5th and 95th percentile of the 100 ensemble simulations.

The filtering of transferred parameters for determining the ensemble parameters
introduced a notable degree of uncertainty in some of the catchments, e.g., the
Danube. This stems from the fact that different catchments are sensitive to differ-
ent parameters. For example, the Ems, located in the maritime influenced north,
are not as sensitive to snow parameters as the alpine influenced Danube. In conse-
quence, parameters which originate from the Ems deteriorate ensemble predictions
in the Danube. A simultaneous calibration of multiple, distinct catchments would
be beneficial for deriving hydrological fluxes and states on national or continental
scales.

The Mulde basin has a tendency to underestimate peak flows (Figure 2.4). This
could be attributed to our precipitation product. The headwaters of the Mulde
basin are located in the Ore mountains at the border between Germany and the
Czech Republic (Figure 2.1). Besides a sparse network of rain gauges in these
mountainous area, a lack of information on meteorological variables from the neigh-
boring country (i.e., the Czech Republic) lead to an underestimation of precipita-
tion by the interpolation, especially for orographic driven events. In other basins,
the model is able to capture both high and low flows adequately well (Figure 2.4).

26



2.5. Results and Discussion

The results presented in this section show that the method for determining ensem-
ble parameter sets (section 2.4.2) lead to satisfactorily estimations of discharge in
the catchments used for parameter inference. However, the model performances
shown within this section compare well to those of other studies, like Huang et al.
(2010). A further investigation of the applicability of the ensemble parameter sets
on additional, smaller catchments is shown in the next section.

2.5.2 Discharge Evaluation at Non-calibrated Basins

Following Klemeš (1986), the model performance is evaluated across 222 catch-
ments diverging in size and geographical location. The streamflow data of these
proxy locations have not been used during the model calibration. This cross-
validation test focuses on evaluating the model performance against discharge
simulations along a diverse range of climatic and land-surface conditions. The
evaluations shown in Figure 2.5, indicate a satisfactorily agreement between simu-
lations and observations. The daily discharge simulations (Figure 2.5, panels A, B)
reveal a median NSE value of at least 0.5 across the investigated basins based on
the ensemble parameter sets. The overall average NSE value is 0.68. Expectedly,
the model exhibits a better skill in capturing monthly discharge dynamics, with
the ensemble median NSE averaged across all basins of approximately 0.81 (Fig-
ure 2.5, panels D, E). Furthermore, the ensemble median NSE exceeded a value
of 0.75 in more than 20% of the basins for the daily flows and 80% for the monthly
flows. The spatial variability of the median NSE across the investigated basins is
low with a standard deviation of around 0.09 for both daily and monthly flows.

Different climatic regimes can be expressed in terms of the dryness index Ep/P
of a basin (Budyko, 1974). The model performances of the 222 catchments are
plotted in panel A and D of Figure 2.5 using this index. It separates the catch-
ments into energy (Ep/P < 1) and water limited conditions (Ep/P > 1). Various
studies investigated the relationship between dryness and evaporative index Ea/P
(Schreiber, 1904; Ol’dekop, 1911; Budyko, 1974; Gerrits et al., 2009). The simu-
lated evapotranspiration Ea is used for deriving the Budyko plot to identify poten-
tial errors in the water balance closure (Figure 2.5 panels A, D). All catchments
under investigation lie perfectly within the uncertainty ranges of the reported the-
oretical curves. In conclusion the water balances of those basins are well closed
with a mean closure error of 1% for the median simulation. The performances are
comparable for catchments in different climatic regimes. However, a tendency to
better perform in large catchments is observed.

The uncertainty for the individual basins caused by the ensemble parameter sets
is expressed as the range between the 95th and 5th percentile of NSEs (Figure 2.5,
panels C, F). Substantial performance differences occur in 70% (45%) of the basins
exceeding a range of 0.1 for the daily (monthly) flow simulations. A geographical
dependency of the uncertainty can not be found as no spatial clustering is observed.
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Whereas, daily flows show almost no relation between median NSEs and the
uncertainty range, i.e., worse performing catchments reveal high uncertainties,
monthly NSEs are less uncertain if their NSE is high.

The evaluation of the ensemble parameter sets presented in this section support the
hypothesis that the ensemble parameter sets are valid on the national scale. In the
following, evapotranspiration, soil moisture and groundwater recharge estimates
are evaluated.

Figure 2.5: Budyko plot and performance maps for ensemble parameter sets at 222
catchments spread over Germany. The upper row depicts evaluations
based on daily values (panels A, B, C), whereas the lower row depicts
monthly discharge evaluation (panels D, E, F). In the first column
the catchments are presented as Budyko plots (panels A, D) which
are color-coded based on the ensemble median NSE for daily (panel
A) and monthly (panel D) discharge values. The gray band envelops
different estimations of the Budyko curve (Schreiber, 1904; Ol’dekop,
1911; Budyko, 1974). The center column depicts the location of the
222 catchments shown in the Bydyko plots using the same color-code
(panels B, E). The right column shows the range of the 5th and 95th

ensemble percentiles for the NSE on daily (panel C) and monthly
(panel F) basis. Panels A, B, D, E share the left color bar and panels
C and F share the right color bar. The simulation period is adopted
according to the available discharge observations, but is at least 10
years (average=42 years).
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2.5.3 Evapotranspiration and Soil Moisture Evaluation at Eddy
Covariance Stations

The ensemble model simulations are further evaluated with evapotranspiration (Ea)
and soil moisture (SM) observed at seven eddy covariance stations (Figure 2.1) to
assess the model ability to represent other fluxes and states next to streamflow.
The ensemble median of the daily sum of evapotranspiration is plotted against
the corresponding observations in Figure 2.6 and the resulting error statistics are
summarized in Table 2.2.
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Figure 2.6: Observed (Ea,obs) versus ensemble median modeled evapotranspiration
(Ea,mod) at seven eddy covariance stations (Figure 2.1).

The results of the scatter plot shown in Figure 2.6 indicate no systematic over
or under estimation of the observed evapotranspiration. The highest deviation in
terms of RMSE is observed during summer, when the highest fluxes occur, and the
lowest during winter in which the contribution of Ea is lowest among all seasons.
The average bias estimated across all stations during spring is 0.34 mm d−1, while
it is 0.08 mm d−1, 0.04 mm d−1 and 0.04 mm d−1 for winter, summer and autumn,
respectively. The slight overestimation of modeled Ea during spring is likely to
be caused due to a lack of a dynamic vegetation growth module in mHM. Thus,
the onset of the vegetation period may not be captured adequately by the model.
With respect to the vegetation class, the stations E1 and E6 covered by crops have
the largest errors with RMSEs of Ea of 19.4 mm mon−1 and 15.4 mm mon−1 for
monthly evapotranspiration, respectively (Table 2.2). This errors arise because of
the high impact of human interactions on croplands, e.g., due to seeding, harvesting
or irrigation, compared to other vegetation classes. Additionally, the land cover
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class cropland is not explicitly represented within the model, rather it is generalized
within a mixed land cover class, representing all land cover types different from
urban and forest.

In general, errors of local evapotranspiration estimates can be attributed to the
Hargreaves-Samani approach for estimating the potential evapotranspiration. This
approach may be inappropriate for local weather conditions. Since this method
approximates the net radiation based on the minimum and maximum daily temper-
atures, local phenomena like short term cloudiness are not accounted. Especially
in summer this effect is high, which causes the lowest correlations between obser-
vations and simulations during this period. Be aware of the observational error
caused by the energy balance closure gap which is in average 33% for the herein
considered stations if reviewing the errors of modeled evapotranspiration.

Table 2.2: Evaluation of evapotranspiration Ea and soil moisture SM at seven
eddy stations. The evaluation is based on daily and monthly values for
the available observation period. The location of the eddy flux stations
is depicted in Figure 2.1.

ID Station name Period Land Cover
monthly Ea daily Ea daily SM

[mm mon−1] [-] [mm d−1] [-] [-]
RMSE BIAS r RMSE BIAS r r

E1 Gebesee 2003-2008 cropland 19.14 0.61 0.85 1.01 0.02 0.67 0.62
E2 Hainich 2000-2007 DBF* 11.72 6.99 0.95 0.62 0.23 0.87 0.68
E3 Mehrstedt 2003-2006 grassland 12.44 5.78 0.94 0.74 0.18 0.79 0.80
E4 Wetzstein 2004-2008 ENF** 9.86 1.58 0.96 0.73 0.05 0.84 0.80
E5 Grillenburg 2004-2008 grassland 13.93 -4.19 0.94 0.89 -0.14 0.8 0.93
E6 Klingenberg 2004-2008 cropland 15.39 9.38 0.93 0.86 0.31 0.77 0.53
E7 Tharandt 1997-2008 ENF** 13.39 7.71 0.96 0.72 0.26 0.83 0.82

* deciduous broadleaf forest, ** evergreen needleleaf forest

In terms of temporal dynamics the model is able to capture the observed evapo-
transpiration quite well across the different eddy covariance sites as exemplarily
shown in Figure 2.7 in the upper panel. The model is able to adequately repre-
sent the observed monthly dynamics with an average correlation of approximately
0.93 (Table 2.2). The correlation between the observed and the simulated daily
evapotranspiration is at least 0.77, with exception of the cropland site E1.

The lower panel of Figure 2.7 shows the performance of mHM for representing
the daily soil moisture anomalies which are generally in good correspondence with
observations. The temporal dynamics of observed soil moisture anomalies during
the wetting and drying phases are well captured by the model. The resulting
correlation shown in Table 2.2 at different eddy stations ranges between 0.53 and
0.93. The lowest values are observed at cropland sites, which is due to the above
mentioned human interaction and land cover class representativeness. Still some
peaks are not captured satisfactorily by the model, which could be reasoned in the
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Figure 2.7: Exemplary time series of observed and modeled monthly evapotran-
spiration and daily soil moisture anomalies at four eddy covariance
stations. The solid dark gray line depicts the median model results
and the light gray band depicts the range between the 5th and 95th

percentile of the 100 ensemble simulations.

non-representativeness of 100×100 m2 grid cells of the model for TDR/FDR soil
moisture measurements. Thus the simulated soil moisture is smoother compared
to the observation, since it represents the effective soil moisture of the entire grid
cell.

2.5.4 Evaluation of Groundwater Recharge

Finally, the ensemble simulations are evaluated with the long-term annual ground-
water recharge from the Hydrologic Atlas of Germany (HAD) (Federal Ministry
for the Environment Nature Conservation Building and Nuclear Safety, 2003).
mHM’s long term recharge estimate implicitly represents the baseflow component
of the total runoff, based on the assumption that the underground catchment is
closed and there are no external losses (e.g., irrigation or pumping). Consequently,
this analysis serves as a proxy for assessing the model skill for partitioning the to-
tal runoff into interflow and baseflow. The comparison of the spatial pattern of
the recharge shows good accordance between the two maps with a correlation

31



2. Water Fluxes and States Dataset Accounting for Parametric Uncertainty

coefficient of approximately 0.8 (Figure 2.8). The spatial pattern of the recharge
follows the known climatology of Germany with high recharge rates being observed
in areas with high precipitation amounts (e.g., secondary mountains or Alps).

Figure 2.8: Comparison of mean annual groundwater recharge (R) modeled with
A) mHM and from B) the Hydrologic Atlas of Germany (Federal Min-
istry for the Environment Nature Conservation Building and Nuclear
Safety, 2003; Neumann and Wycisk, 2003). Panel C shows the differ-
ence (A-B) between both data sets. Units are [mm a−1] for all panels.

There are some significant differences between the modeled and the HAD ground-
water recharge particularly at cells characterized by urbanization (i.e., Munich,
Hamburg, Berlin, and the metropolises of Ruhrgebiet in the north-west). The
model tends to underestimate the HAD recharges with differences as high as
around 200 mm a−1. Notably, the herein used version of mHM treats urban areas
as almost impermeable which is unrealistic. This issue has been resolved in recent
mHM versions (5.0 and higher). In general the HAD estimate of recharge is in
average 31 mm a−1 higher compared to the ensemble mean simulation. This mis-
match arises from the differences in potential evapotranspiration (Ep), which were
used for both estimates. The Ep estimates used for the HAD (Federal Ministry
for the Environment Nature Conservation Building and Nuclear Safety, 2003) are
lower than those used for mHM simulations and result in higher water amounts
remaining in the underground. Besides these mismatches, overall the spatial pat-
tern of the modeled recharge compares well with the HAD estimates (Figure 2.8),
which to some degree provides a first-order confidence regarding the representation
of the runoff separation scheme used by mHM.
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2.5.5 Spatial Patterns of Ensemble Means and Uncertainties

The ensemble means and coefficients of variation of evapotranspiration (Ea) and
per-grid-cell-generated runoff (QG) as well as the climatology of the meteorological
forcing and some land surface properties are presented in Figure 2.9. The high
precipitation amounts above 1000 mm a−1 in panel A correspond to mountainous
areas in Germany. The driest region is located in the northeastern part of Germany.
This is on the one hand due to its distance to the sea (continental climate) and
on the other hand due to the secondary mountains in the western and central part
of Germany. This mountains, especially the Harz mountains (center of Germany),
capture most of the precipitation events brought from the west. The low amounts
of precipitation in the east lead to lower amounts of evapotranspiration (Figure 2.9,
panel B) and generated runoff (Figure 2.9, panel C) in this region compared to
the rest of Germany. Thus the northeastern part of Germany is characterized
by high dryness indexes of 1.2 and above. The uppermost dryness indexes up
to 1.4 are located in the lee of the Harz mountains. The average dryness index
in Germany is 0.98. Another region characterized by high dryness indexes is the
Upper Rhine Graben which is known to have a locally warmer climate compared to
its neighboring regions. Mountainous regions are characterized by stronger energy
limitation due to high precipitation amounts, which result in dryness indexes lower
0.65.

The uncertainty, i.e., the coefficient of variation (see section 2.4.4), in the simula-
tion of evapotranspiration (Figure 2.9, panel F) and generated runoff (Figure 2.9,
panel G) is varying in space and is highest in the regions of high dryness. Especially
the northeastern part of Germany is prone to large uncertainties in evapotranspi-
ration and runoff generation estimates compared to other locations. The spatial
patterns in evapotranspiration are not exclusively caused by the high degree of wa-
ter limitation, they are also connected to soil properties (Figure 2.9, panel E and
F). In regions with dominating high sand contents in soils, which are characterized
by high porosities, high uncertainties in Ea can be observed. Especially, the spatial
patterns of high uncertainties in Ea in the northwestern and northeastern part of
Germany are corresponding to the regions of high porosity (Figure 2.9, panel E).
In contrast the spatial structures of uncertainties of per-grid-cell-generated runoff
(QG) in the northeastern part of Germany and the Upper Rhine Graben are cor-
responding to high values in the dryness index in those regions.

In conclusion the spatial distribution of uncertainty in evapotranspiration in the
north of Germany is partially caused by the parameterization of the soil whereas
the main pattern is governed by the dryness index. Since in the regions of high
dryness the water amount entering the soil is significantly lower than in other
regions of Germany, the model is highly sensitive to the partitioning of the water
between the model internal reservoirs, i.e., surface, soil water and ground water
reservoir. Thus slight changes of parameters effect the partitioning of water in the
subsurface and lead to changes in the modeled fluxes and states.
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Figure 2.9: Water balance variables, their coefficients of variation as well as land
surface characteristics for Germany. A) Mean annual precipitation P ,
B) ensemble mean annual evapotranspiration Ea, C) and per-grid-cell-
generated runoff QG, D) dryness index Ep/P , E) sum of porosities (sat-
urated soil water content) of all model layers, F) coefficient of variation
from the ensemble of annual evapotranspiration and G) discharge, H)
dominating land cover class on 4×4 km2 grid. The mean values and
coefficients of variation are based on the period 1950-2010.

The patterns appearing in the evapotranspiration and generated runoff at the
location of big cities (orange areas in panel H of Figure 2.9) are caused by the
above mentioned inappropriate representation of urban areas within mHM lower
version 5.0.
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2.5.6 Spatio-temporal Distribution of Uncertainties

This section focuses on the spatio-temporal differences of uncertainties caused by
the 100 equifinal ensemble parameter sets. The temporal variation is analyzed
based on monthly, climatological values. Figure 2.10 shows the normalized ranges
of the respective variables (see section 2.4.4), evapotranspiration (Ea), soil mois-
ture (SM), groundwater recharge (R) and generated runoff (QG). The plots re-
fer to different environmental zones in Germany (Federal Environmental Agency,
2005), which are depicted in the upper left corner of Figure 2.10.

Figure 2.10: Normalized ranges of ensemble monthly climatology of hydrologic
variables for different environmental zones within Germany. The lo-
cations of 11 environmental zones are depicted on the map on the
upper right. The normalized ranges are determined as the differences
of the 5th and 95th percentiles divided by the median (50th percentile)
of the ensemble. The hydrologic variables presented are evapotranspi-
ration Ea, soil moisture SM , per-grid-cell-generated runoff QG, and
groundwater recharge R.
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The uncertainty of evapotranspiration is almost constant throughout the year and
is lowest among the four hydrologic variables. The recharge is highly uncertain and
highly variable compared to the other variables. Its minimum is usually in the end
of spring when the groundwater reservoirs are starting to deplete. The uncertainty
of per-grid-cell-generated runoff and soil moisture estimates show similar dynamics.
It is reaching its maximum in the end of summer, when the water in below ground
reservoirs (ground water, soil water) is lowest and thus the steadiest behaving
discharge components baseflow and slow interflow are lowest. So, the uncertainties
are dominated by the response to precipitation events. The amplitude of soil
moisture uncertainty is lower than the uncertainty of generated runoff because
soil moisture has a high persistence, whereas runoff generation quickly reacts to
precipitation events.

Additionally, to the different magnitude and variability over time, regional varia-
tions in dynamics of uncertainty can be observed. The most contrasting region is
zone 11 (the Alps). In this region the uncertainties in recharge are highest (average
normalized range 0.88) compared to the other environmental zones. Furthermore,
the uncertainty of per-grid-cell-generated runoff has a pronounced peak in spring
(zone 8 behaves similar). This peak is caused by water from snow melting, which
is largest during spring in these regions.

2.5.7 Propagation of Uncertainty Through Model Internal
Components

The interplay between the climatology of the hydrologic variables and its uncer-
tainty is presented in Figure 2.11. In this figure only those environmental zones
(depicted Figure 2.10) revealing the most significant differences as well as a north
to south gradient are chosen. In Figure 2.11 zone 2 represents the area of high
dryness index in the northeast, zone 4 the central part of Germany including sec-
ondary mountains, zone 10 the Alpine Foothills and zone 11 the Alps.

The uncertainty of evapotranspiration among these locations is comparable in
its dynamics and uncertainty. The magnitude of uncertainty and its variability
are changing from north to south and thus from low to high altitudes for soil
moisture. This is caused by decreasing soil porosity and increasing amount of
precipitation. Soils with high sand contents can be found in the northern part
of Germany (ground moraine). This soils are highly permeable and hence have a
lower water holding capacity, which leads to a more distinct dynamic. The highest
uncertainties occur when the soils are driest (end of summer). For recharge the
opposite behavior can be observed. If the recharge amount is high its uncertainty
is high, too. The shape of the per-grid-cell-generated runoff is quite similar to the
recharge flux, but its normalized uncertainty ranges are much lower.

For example in zone 4, is the uncertainty of QG quite stable at the beginning

36



2.5. Results and Discussion

Figure 2.11: Superposition of parameter uncertainty through different model fluxes
and states based on monthly, climatological values of Ea - evapotrans-
piration, SM - soil moisture, R - groundwater recharge, and QG - per-
grid-cell-generated runoff. The uncertainty ranges and the median
refer to the left ordinate, whereas the normalized uncertainty range
refers to the right ordinate (blue). The geographical location of region
2, 4, 10, and 11 are depicted in Figure 2.10.

of the year. Soil moisture uncertainties show a similar behavior at that time of
the year. QG uncertainty gets a little depleted in month 5, which is occurring in
recharge, too. Afterward, it starts increasing until September as in soil moisture
and recharge, but with a slope which is a compromise of both. Until the end of the
year uncertainty of per-grid-cell-generated runoff is decreasing again comparable to
the uncertainty in soil moisture, whereas it is increasing for groundwater recharge.
This behavior shows that the uncertainty in generated runoff is triggered by differ-
ent variables throughout the year. In summer when major discharge contributions
come from the baseflow, the uncertainty of the groundwater component gets more
important. In autumn and winter, when fast interflows, and thus the precipitation
driven model components, have major contributions to QG, the uncertainty of the
near surface water becomes more important.

It is noticed that the highest uncertainty in recharge corresponds to the lowest
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uncertainty in soil moisture (zone 11). The reason for this behavior are the pa-
rameters controlling the snow accumulation and melting within mHM. Since the
soils are almost close to saturation over the course of a year in this zone, water
drains quickly to layers underneath the root zone. In this layer the interflow and
groundwater recharge is determined within mHM. Since the ensemble parameters
have been derived in different regions of Germany, snow parameters from regions
where snow doesn’t have a big impact on the water balance are involved. But
snow processes have a major influence on the water balance in the Alps. To derive
more appropriate parameter sets a calibration considering multiple catchments is
necessary. Currently we are developing such a framework.

2.6 Summary and Conclusion

In this study we present the derivation and evaluation of a high-resolution (4×4 km2)
dataset of hydrologic and hydro-meteorological fluxes and states for Germany cov-
ering the period 1950-2010, which is made freely available. The dataset incorpo-
rates 100 spatially consistent ensemble simulations, which are analyzed regarding
their uncertainty caused by the parameter estimation. The parameter sets of the
ensemble simulations are determined by a two step parameter selection method.
The model is calibrated in seven catchments and the parameters sets are filtered
based on cross-validation results in all of the basins. Thus, the uncertainty is
composed of the uncertainty in parameter estimation and the uncertainty stem-
ming from transferring these parameters in to remote locations. The ensemble
simulations are evaluated with streamflow observations, recharge data, evapotran-
spiration and soil moisture observations.

The evaluation regarding discharge at 222 additional catchments revealed a me-
dian NSE of 0.68. Thus the 100 ensemble parameter sets are considered to be
representative for Germany. The evaluation with evapotranspiration from eddy
covariance stations showed deficiencies in mHM. Especially in spring, deviations
of modeled and observed Ea indicate room for improving the representation of veg-
etation dynamics within mHM. The sites covered by cropland showed the largest
deviations from evapotranspiration observations, since croplands are highly human
influenced (seeding, harvest, or eventually irrigation), which makes it difficult to
model their dynamics at the local scale. Additionally, cropland is generalized in
mixed land cover class in mHM. Soil moisture estimations at the same locations
have been in good agreement with the observed dynamics.

The second part of the study is focusing on the uncertainty of the simulated hydro-
logic fluxes and states due to uncertainties in parameter estimation. It is shown
that uncertainty is varying in time, location and magnitude between hydrologic
variables. The uncertainty was lowest for evapotranspiration, among all variables,
and highest for recharge. Its spatial distribution was similar to the spatial distri-
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bution of the dryness index. But, for example uncertainty of evapotranspiration
estimates were additionally caused by soil properties. In general, the highest un-
certainties occur in the northeastern part of Germany, which is characterized by
low precipitation amounts and high soil porosities. The temporal variation of
uncertainties is almost constant for evapotranspiration, medium for per-grid-cell-
generated runoff and high for groundwater recharge and soil moisture depending
on geographical location.

Based on this results we suggest to incorporate additional data, e.g., soil mois-
ture or satellite observations, to the calibration procedure to better constrain the
model internal states. The results of this study emphasizes the importance of the
consideration of uncertainties in parameter estimation for historical analyzes, now-
and forecasting in hydrology.

2.7 Data Availability and Data Format

The dataset consists of daily values of precipitation, average temperature, potential
evapotranspiration, evapotranspiration, soil moisture, groundwater recharge and
discharge. Whereas the latter four are provided as ensemble of 100 simulations.
The data format is the Net Common Data Format (NetCDF version 3). Addi-
tionally, the ensemble means and standard deviations are provided. The dataset
is freely accessible under http://www.ufz.de/index.php?en=41160.
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Chapter 3

Implications of Parameter
Uncertainty on Soil Moisture
Drought Analysis in Germany

This chapter is identical to the publication:

Samaniego, L., Kumar, R., and Zink, M. (2013): Implications of Parameter Un-
certainty on Soil Moisture Drought Analysis in Germany. Journal of Hydrome-
teorology, 14(1):47-68. doi:10.1175/JHM-D-12-075.1. c© American Meteorological
Society. Used with permission.
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3.1. Abstract

3.1 Abstract

Simulated soil moisture is increasingly used to characterize agricultural droughts
but its parametric uncertainty, which essentially affects all hydrological fluxes and
state variables, is rarely considered for identifying major drought events. In this
study, a high-resolution, 200-member ensemble of land surface hydrology simu-
lations obtained with the mesoscale Hydrologic Model is used to investigate the
effects of the parametric uncertainty on drought statistics such as duration, exten-
sion, and severity. Simulated daily soil moisture fields over Germany at the spatial
resolution of 4×4 km2 from 1950 to 2010 are used to derive a hydrologically con-
sistent soil moisture index (SMI) representing the monthly soil water quantile at
every grid cell. This index allows a quantification of major drought events in
Germany. Results of this study indicated that the large parametric uncertainty
inherent to the model, did not allow discriminating major drought events without a
significant classification error. The parametric uncertainty of simulated soil mois-
ture exhibited a strong spatio-temporal variability, which significantly affects all
derived drought statistics. Drought statistics of events occurring in summer with
at most six months duration were found to be more uncertain than those occurring
in winter. Based on the ensemble drought statistics, the event from 1971 to 1974
appeared to have 67% probability of being the longest and most severe drought
event since 1950. Results of this study emphasize the importance of accounting
for the parametric uncertainty for identifying benchmark drought events as well as
the fact that using a single model simulation would very likely lead to inconclusive
results.

3.2 Introduction

Drought is a recurrent and extensive climatic phenomenon characterized by below-
average water availability whose duration might last for several years. It is con-
sidered as one of the most costly natural disasters because it often induces huge
socio-economic losses (Wilhite et al., 2000) as well as environmental degradation.
During the summer of 2003, for instance, several parts of Europe endured the
highest temperatures of the last 500 years (Luterbacher et al., 2004; Fink et al.,
2004) and one of the most extensive and severe drought in records. In Germany
alone, the estimated loss in the agricultural sector was 1.5 billion Euros (COPA-
COGECA, 2003). In extreme cases, prolonged drought spells might lead to un-
precedented environmental disasters often associated with the decline of human
societies (Hodell et al., 1995; Haug et al., 2003) or the trigger for mass migrations
and famine (Field, 2000). Droughts occur indifferently in high and low rainfall
areas and in virtually all climatic zones (Dracup, 1991; Mishra and Singh, 2010),
although the most severe human consequences happen in arid regions.
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3. Soil Moisture Drought Analysis in Germany

Currently, hydro-meteorologic mechanisms originating droughts are relatively well
understood. In general, droughts are driven by extreme macroclimatic variability
originated by atmospheric interactions and feedback between the atmosphere, the
oceans, and the land surface (e.g. Nicholson, 2000; McCabe and Palecki, 2006).
This variability is, in turn, related to the solar activity as well as atmospheric
composition, and strongly affected by anthropogenic activities (Sheffield et al.,
2009).

Our ability to make reliable drought predictions, however, is not satisfactory (Wil-
hite et al., 2000) although there is vast scientific literature on this topic. One of
the main reasons is related to the insufficient knowledge regarding the processes
controlling drought development and persistence, as well as, its spatio-temporal
variability (Sheffield et al., 2009). Another reason stems from the fact that there is
no clear definition of this phenomenon (Wilhite and Glantz, 1985) since it depends
upon the variable that is used for its quantification.

Droughts have been mainly classified into three types: (1) meteorological drought,
usually defined as an extreme anomaly of precipitation; (2) hydrological drought,
which is related to a deficit in the supply of surface and subsurface water, and
(3) agricultural drought, being a combination of meteorological and hydrologi-
cal droughts leading to deficits in root zone soil moisture available to vegetation
(Wilhite and Glantz, 1985). Since precipitation and discharge data are widely
available, a plethora of drought indices have been proposed in the scientific lit-
erature to quantify meteorological and hydrological droughts, for instance: the
Palmer Drought Severity Index (Palmer, 1965), the Standard Precipitation Index
(McKee et al., 1993), the Regional Deficiency Index (Stahl and Demuth, 1999),
among others.

It is widely accepted, however, that these empirical indices are not adequate to
represent extreme water stress conditions that would lead to a significant reduction
of biomass and crop yield (Keyantash and Dracup, 2002; Mishra and Singh, 2010).
In Germany, for example, Döring et al. (2011) have shown that empirical drought
indices based only on available data such as precipitation, temperature do not
constitute adequate measures to describe agricultural drought stress because they
do not explicitly account for the available water stored in the root zone, which is
ultimately the plant’s life supporting substance.

Direct soil moisture observations, on the other hand, are not available at regional
level because measuring this variable at large scales is not logistically and econom-
ically feasible (Vereecken et al., 2008). This implies that hydrologic or land surface
models would have to be employed for the estimation of the soil water content.
Soil moisture, in contrast to precipitation or discharge, constitutes a good index
for quantifying agricultural drought because it controls the proportion of the rain-
fall that percolates, runs off or evaporates from the earth surface (i.e. root zone).
Concisely, it integrates precipitation and evapotranspiration as well as the delays
introduced by interception, snow accumulation, and melting over periods of days
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to weeks. In other words, soil moisture in the root zone is a governing factor sus-
taining vegetative growth and thus it is a direct indicator of agricultural drought
(Keyantash and Dracup, 2002). Land surface models such as VIC-3L (Liang et al.,
1996) and SIM (Soubeyroux et al., 2008), for example, have been used recently
to assess agricultural drought characteristics in the USA and France, respectively
(Sheffield et al., 2004; Andreadis et al., 2005; Vidal et al., 2010). There are, how-
ever, several key issues that should be considered, if simulated soil moisture is
chosen for quantifying agricultural droughts.

Modeling soil moisture dynamics at large-scales (e.g. grid cells greater than 500 m)
is difficult and uncertain as was demonstrated by the PILPS project (Chen et al.,
1997). In this project, 23 land surface models (LSMs) exhibited significant dif-
ferences between modeled and measured soil moisture (among other variables)
although all models were based on fundamental principles of mass and energy con-
servation and forced with identical atmospheric conditions. This experiment also
indicated the existing interplay between this state variable and other fluxes such
as latent heat as well as the substantial parameter uncertainty that is related with
these physical processes. At larger scales, the sub-grid variability of the variables
involved and the nonlinearity of the processes make the modeling of soil moisture
even more complicated because parametrization schemes might become scale de-
pendent (Nykanen and Foufoula-Georgiou, 2001). It should be noted that effective
model parameters (e.g. saturated soil water content or porosity) at large scales
can only be estimated but not measured. This, in turn, constitutes a new source
of uncertainty that should be taken into account when modeling soil moisture dy-
namics. Consequently, a drought monitoring and early warning system based on
a soil moisture index, which does not fully take into account the predictive uncer-
tainty of the simulation model, might be inadequate for real applications and/or
for impact assessment.

Most of the soil moisture drought studies (Andreadis and Lettenmaier, 2006; Vi-
dal et al., 2010; Shukla et al., 2011) found in the literature have not addressed the
epistemic uncertainty related to parametrization, model structure, and input data.
More recently, Wang et al. (2011) argued that state variables, such as soil moisture,
are strongly dependent on the parametrization of the LSMs and the quality of the
meteorological forcing data. Similar results have been found by Mo et al. (2012),
who concluded that the primary source of uncertainty between two drought moni-
toring systems operated in the USA is originated from precipitation data, and in a
minor degree from air temperature, shortwave and longwave radiation, and wind
speed. As a result, substantial discrepancies with in-situ measurements have been
found (Entin et al., 2000), which are mainly attributed to the variability of topog-
raphy, soil, vegetation, and root structure, but could also stem from uncertainty
sources mentioned above. Specifically, finding a robust parametrization scheme
for a LSM or a hydrological model, which is able to produce reliable estimates
of water fluxes at high spatial resolution over large domains, is one of the grand
challenges of contemporary hydrology (Beven and Cloke, 2012).
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It has been noted, however, that multi-model ensembles are able to describe the
anomalies and seasonal variability of soil moisture. Wang et al. (2009, 2011) suc-
cessfully applied this technique to reproduce agricultural drought characteristics
in the continental United States and China. In both studies, six LSMs were used
to generate soil moisture fields for a period of almost 100 years in the USA and 56
years in China. However, in those studies, only a single simulation for each LSM
was used.

In this study, we argue that a unique parameter set for a given LSM is inadequate
to estimate water fluxes and related state variables at high spatio-temporal reso-
lutions, considering that both inputs and model parameters over large modeling
domains are subject to considerable uncertainties due to the reasons mentioned
above (see also Rosero et al., 2011). Thus, we hypothesize that any drought charac-
teristic (e.g. severity, duration) based on simulated soil moisture is prone to large
variability due to parametric uncertainty, which, if it is not taken into account,
will lead to incorrect estimates of drought characteristics.

The main objectives of this study and the rationale behind them is summarized
below. 1) To obtain a consistent ensemble of daily soil moisture fields for Germany
since 1950 at a spatial resolution of 4×4 km. Such reconstruction is fundamen-
tal to characterize historical drought events and their related characteristics. To
the best of our knowledge, this is the first study to perform nationwide agricul-
tural drought reconstruction for Germany. Long-term soil moisture simulations
are also fundamental for initializing hydrologic or regional climate models and the
basis to fulfill the remaining objectives. 2) To develop a reliable soil moisture
drought index (SMI) for Germany at a high spatial resolution. Such SMI is key
for implementing a monitoring system and adaptation strategies at regional scale.
Available global soil moisture analyses have a spatial resolution 0.5◦ or larger,
which is too coarse for a regional drought analysis. 3) To identify benchmark agri-
cultural drought events occurring in summer and winter in Germany during the
last 60 years and the uncertainty of their main statistical characteristics. These
exceptional events are necessary to identify potential climate change effects on the
hydrological cycle. The uncertainty associated with drought characteristics such
as coverage area, duration, and severity, will be quantified by means of a Monte
Carlo method. Ensemble model simulations would allow us to assess the reliability
of the predictions which, in turn, will lead to minimize the number of false positive
drought events (i.e. cases in which the SMI indicates that a given event is below
a certain threshold for a given characteristic when in fact it is not). Additionally,
the effect of the ensemble size on the false positive rate will be investigated. 4) To
identify regions in Germany prone to strong drought persistence as well as areas
exhibiting significant trends in monthly soil moisture fields. These insights would
provide hints for mitigation and adaptation measures at regional scale.
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3.3 Soil Moisture Data

Soil water availability in the root zone is a direct indicator of agricultural drought
because it constitutes a governing factor of the state of vegetative growth through
the availability of water for transpiration (Keyantash and Dracup, 2002). Measur-
ing soil moisture content over the entire domain of Germany at a spatial resolution
of 4 × 4 km, for example, is logistically and economically infeasible (Vereecken
et al., 2008). LSMs or hydrologic models are therefore often employed to estimate
this key variable over large spatial domains and longer periods (Andreadis and
Lettenmaier, 2006; Sheffield and Wood, 2007; Wang et al., 2009; Mishra et al.,
2010; Wang et al., 2011).

In this study, the mesoscale Hydrologic Model, mHM (Samaniego et al., 2010)
was used to generate a large ensemble of daily soil moisture fields for the period
from 1950 to 2010. A three layer soil scheme was used to model the soil moisture
dynamics over the entire root zone depth (i.e. approximately up to 2 m below
ground). The depth of the first two layers was fixed to 5 cm and 25 cm, whereas
the depth of the last one was variable according to soil characteristics provided by
the soil texture map. The spatial resolution of each grid was 4 × 4 km (level-1).
A short description of mHM and the generation of ensemble soil moisture fields
are given below.

3.3.1 The mesoscale Hydrologic Model mHM

The mesoscale Hydrologic Model is a process-based water balance model (Samaniego
et al., 2010) that has been developed over the last five years at the Helmholtz Cen-
tre for Environmental Research - UFZ. This spatially explicit model does not differ
significantly from existing large scale hydrologic models (e.g. the HBV and the
VIC-3L model) on how dominant hydrologic processes at the meso- and macro-
scales are conceptualized, but on how the effective parameters of the model are
quantified at a selected modeling scale and on how the sub-grid variability of
physiographic characteristics provided at level-0 is taken into account for the esti-
mation of these effective parameters. These two fundamental differences constitute
the core of the multiscale parameter regionalization technique (Samaniego et al.,
2010) that is embedded into mHM. Extensive numerical experiments have shown
that this technique is capable of coping with the large spatio-temporal variability
of the input data and as a result, mHM is able to produce quite good perfor-
mance at multiple spatial resolutions and locations other than those used during
calibration (i.e. proxy basin and flux-matching tests).

Currently, mHM has been evaluated in more than one hundred basins in Ger-
many ranging from 4 km2 to 47 000 km2 (Samaniego et al., 2010; Kumar et al.,
2010, 2013b). This model is driven by disaggregated fields of daily forcings such
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as precipitation, temperature, and potential evapotranspiration. It accounts for
the following hydrological processes: canopy interception, snow accumulation and
melting, evapotranspiration, infiltration, soil moisture dynamics in three layers,
surface runoff, subsurface storage, discharge generation, percolation, baseflow, and
flood routing within the river reaches. Readers may refer to Samaniego et al. (2010)
for a detailed model description as well as its parametrization.

The morphological and physiographic data required for setting up mHM include
a digital elevation model (50 × 50 m) acquired from the Federal Agency for
Cartography and Geodesy, a vector soil map containing information on soil textural
properties such as sand and clay contents of different soil horizons, and a vector
map of hydro-geologic formations containing properties such as saturated hydraulic
conductivity. Both vector maps at a scale of 1:1 000 000 were obtained from
the Federal Institute for Geosciences and Natural Resources of Germany. Three
Corine land cover seamless vector data (http://www.eea.europa.eu) for the years
1990, 2000, and 2006 were employed to account for the changes in states of land
cover over the simulation time period (1950-2010). Land cover states, prior to the
year 1990, were inferred from the Corine 1990 map. Monthly variability of the leaf
area index was estimated for each land cover class with MODIS scenes from 2001
to 2009. These data are freely available from https://lpdaac.usgs.gov/get data.
For a detailed description on data processing and setting up mHM in several
river basins, interested readers may refer to Samaniego et al. (2010); Kumar et al.
(2010). Previous data sets were re-sampled on a common spatial resolution of
100 × 100 m denoted as level-0. This level of information provides the sub-grid
variability of all morphological and physiographic variables required to run the
model at any coarser resolution denoted as level-1 (e.g. 4 km). The time series
of discharge data across several gauging stations were acquired from the EURO-
FRIEND program (http://ne-friend.bafg.de) and the Global Runoff Data Centre
(http://www.bafg.de).

Gridded fields of daily average precipitation as well as maximum, minimum, and
average air temperatures at 4×4 km spatial resolution (level-2) were estimated
from their respective point measurement data from about 5600 rain gauges and
1120 meteorological stations, which are operated by the German Meteorological
Service (DWD). Two interpolation techniques were used to derive the daily fields
of precipitation, which are detailed in section 3.3.2. Gridded estimates for temper-
ature fields were obtained with external drift kriging, wherein the terrain elevation
was used as a drift variable. The daily fields of potential evapotranspiration were
estimated with the Hargreaves and Samani method (Hargreaves and Samani, 1985)
and were subsequently corrected to account for the spatial variability of the terrain
aspect.

48



3.3. Soil Moisture Data

3.3.2 Ensemble Description and Experimental Design

Two major sources of parametric uncertainty were identified through sensitivity
analysis. The most important one is related with the variability of the global cal-
ibration parameters of mHM (i.e. space and time independent), and the second
one is related with the parameters required for the rainfall interpolation method.
Consequently, the uncertainty tree was divided into two main branches, each one
driven by two independent interpolation methods but both based on the same
rainfall measurements. These two branches were denoted as DWD1 and DWD2.
Other meteorological variables such as daily, minimum, and maximum tempera-
ture required in both branches were kept the same. This assumption was taken
considering 1) that precipitation interpolation is one the most important source
of error in the input data (Mo et al., 2012), and 2) that the areal coverage of
snow-dominated areas in Germany is geographically limited.

The DWD1 branch was created with external drift kriging using terrain elevation
as a drift and a combined variogram that comprised a nugget and an exponential
part. The resolution of this product was 4 × 4 km, with daily time steps from
1950 to 2010. The best fit parameters (i.e. nugget, range, and sill) were found
through a cross-validation procedure.

The DWD2 branch was obtained by re-sampling the original daily REGNIE prod-
uct (Deutscher Wetterdienst (DWD), 2013) available at 1 × 1 km into a regular
grid similar to that of the DWD1 data set. The k-nearest’s neighbor technique and
a standard geo-referencing algorithm were employed for this purpose. The DWD1
data was used to complete this set with daily fields from 1950 to 1959 since the
REGNIE data set is only available from 1960 to 2010. The REGNIE data is based
on multiple linear regression having elevation, geographic location, and aspect as
predictors.

Within each branch, the propagation of the parameter uncertainty into the soil
moisture simulations was evaluated by an ensemble of one hundred best parameter
sets of mHM. The following procedure was implemented for their selection. First,
in every major river basin depicted in Figure 3.1, the dynamically dimensioned
search algorithm (Tolson and Shoemaker, 2007) was employed to find good sets of
global parameters which exhibit an acceptable model efficiency [e.g. Nash-Sutclife-
Efficiency of at least 0.75] during the evaluation period (for details refer to Kumar
et al., 2010, 2013b). In the next step, all parameter sets found for a given basin
were transferred to the remaining ones. Finally, only those sets exhibiting a model
efficiency greater than or equal to 0.65 at recipient locations were retained as
members of the best global parameter sets. This implies that these super sets of
global parameters are able to reproduce water fluxes in all major river basins in
Germany with an efficiency of at least 0.65. It may be noted that a single set of
VIC-3L model parameters for a large domain in the midwestern United States was
used in a study by Mishra et al. (2010) for assessing historical drought events. In
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Figure 3.1: Map of Germany indicating the main river basins used for this study.
Selected locations for uncertainty analysis of the soil moisture clima-
tology are depicted with a dot.

contrast to that, in this study the ensemble of 200 model realizations was used for
the subsequent analysis of historical drought events in Germany including both
uncertainty branches.

In general, mHM requires at least five years of spin-up time to equilibrate. To min-
imize the influence of initial conditions, all state variables (e.g. water content at a
given soil layer) in each ensemble member were initialized with their climatologi-
cal averages corresponding to the precise time of year at the initialization (Rodell
et al., 2005). The climatological average was estimated as the long term mean of
a given state variable within a seven-day window around the first of January. The
DWD1 precipitation estimate was employed to estimate the long term mean. This
procedure allowed to reduce the spin-up time to one year without inducing large
bias due to inappropriate initial conditions. Thus, model simulations during the
starting year 1950 were discarded from the following analysis.
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3.4 The Soil Moisture Index

The absolute values of the soil moisture states estimated with mHM do not allow
a direct comparison of derived drought indices across the study domain because
anomalies in absolute terms reflect climatological and morphological characteristics
(Andreadis et al., 2005), rather than strong deviations from the respective normal
conditions, which is the main characteristic that defines a drought event. Instead of
absolute values, agricultural droughts can be quantified as “deficit of soil moisture
relative to its seasonal climatology at a location” (Sheffield et al., 2004). The main
idea behind this definition is to develop an index that varies between 0 and 1,
which indicates drier to wetter conditions, respectively. The apparent selection for
such an index is the conditional cumulative distribution function of the soil water
content in the root zone at a given location i and time of the year m. This kind of
normalization is inspired by the Standardized Precipitation Index (McKee et al.,
1993). The procedure to estimate a Soil Moisture Index (SMI) based on mHM soil
moisture simulations is described next.

3.4.1 Aggregation and Normalization

Daily mHM soil moisture from three soil layers was averaged for every grid cell
to obtain monthly states. These monthly values were, in turn, normalized with
respect to the corresponding total root zone saturated water content (i.e. porosity
times the total depth of the soil layers) to estimate the monthly soil moisture
fraction (x) of the total soil column, namely:

x =

∑
l x

l∑
l x

l
S

(3.1)

where, xl is the monthly soil moisture at root zone layer l [mm], xlS is porosity or
the saturated water content of root zone layer l [mm]. In the present study l = 3.
In this case, the indexes i and m are omitted to ease the notation.

3.4.2 Estimation of the Soil Moisture Index

The monthly soil moisture fraction (Eq. 3.1) may exhibit heavily skewed, non-
gaussian distributions (Koster et al., 2009) whose shape varies depending on cli-
mate and soil characteristics. The distribution of this random variable can also
be multi-modal (Vidal et al., 2010), which is an indication of preferential states
of seasonal soil moisture (Rodriguez-Iturbe et al., 1991; Laio et al., 2002). Con-
sequently, describing this random variable with unimodal theoretical distribution
[e.g. the beta distribution (Sheffield et al., 2004)] is not appropriate. Instead of
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making assumptions regarding the theoretical distribution of this variable, which
would induce an additional source of uncertainty, a non parametric technique was
adopted to estimate the probability density function of the monthly soil moisture
fraction at every cell within the domain, denoted hereafter as f̂(x). The estimation
procedure is as follows.

Given a set of data from one of the ensemble members x1, x2, . . . , xn that corre-
sponds to the monthly soil moisture fractions of a given cell within the domain
during month m (e.g. January), the kernel density estimate at a given value x can
be obtained by

f̂(x) =
1

nh

n∑
k=1

K

(
x− xk
h

)
(3.2)

where K(x) is the smoothing kernel, n the sampling size, and h the bandwidth.
The sampling size in this case is equal to 60. There are various possibilities to
select K(x) (Wilks, 2011), however the Gaussian kernel is appealing in this case
because of its unlimited support. The optimal selection of the bandwidth ĥ can be
obtained by minimizing the unbiased cross-validation criterium (Scott and Sain,
2005) given by

min
ĥ

[∫
f̂(x|h)2dx− 2

n

n∑
k=1

f̂−k(x|h)

]
(3.3)

where, f̂−k(x|h) is the leave-one-out density estimate at x when observation xk
is not taken into account. This optimization was performed with a generalized
reduced gradient algorithm. Once the optimal bandwidth is found, the best fit of
the empirical distribution function can be estimated f̂ .

Finally, the mHM soil moisture index for a given cell and month, which denotes
the quantile at the soil moisture fraction value x, can be obtained by numerically
integrating the expression

SMI =

∫ x

0

f̂(u)du (3.4)

3.4.3 Identification of Drought Events

Droughts are regional phenomena covering large contiguous areas over long pe-
riods. Understanding the spatial-temporal patterns and their relationships with
other variables is therefore a fundamental step for drought prediction. Previous
drought studies carried out in Germany, however, have been focused on statistical
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analysis of readily available point observations such as river discharge or precipi-
tation data (Demuth and Heinrich, 1997; Stahl and Demuth, 1999; Franke et al.,
2004; Schindler et al., 2007; Schindler and Mayer, 2007), and in general, they are
limited to a regional scale rather than to the national scale. To the best of our
knowledge, studies investigating the spatial-temporal drought variability over the
whole German territory are not available in the scientific literature.

The retrospective reconstruction of soil moisture analysis in Germany provides a
unique data set to estimate fundamental characteristics (e.g. severity and areal
extent) of the major agricultural droughts occurred in Germany since 1950 at a
high spatial resolution. Drought events were identified in this continuous spatio-
temporal data set with the method proposed by Andreadis et al. (2005).

First of all, regions under drought stress were identified with the threshold method
(Dracup et al., 1980). This implies that cells fulfilling SMIt < τ were selected as
potential regions under drought at the monthly time step t. The selection of the
truncation level τ is fundamental for this method. A common value adopted in
the literature is τ = 0.2 (Andreadis et al., 2005; Vidal et al., 2010). This threshold
indicates that a given cell is enduring a soil water deficit occurring less than 20%
of the time.

In the second step, drought clusters at every monthly time step have to be consol-
idated in space. This means that all clusters whose area is less than a minimum
threshold area will be excluded from further analysis. This step is necessary to
eliminate small isolated areas that are suffering a drought but are too small to be
considered as a regional event. In this study the minimum cluster area was set to
640 km2 (i.e. 40 cells).

The final step of the drought event identification consists consolidating indepen-
dent spatial clusters over successive time steps into a regional, multi-temporal
cluster. This kind of clustering is necessary because the spatial variability of a
drought event is vast, composed of many branches that can either merge together
or split over time. The only condition to join clusters over time is that the over-
lapping area should be larger than 6400 km2 (i.e. 400 cells). Overlapping areas
less than this threshold area was considered as independent drought events.

Both threshold areas (i.e. the minimum cluster area and the overlapping area)
were determined though sensitivity analysis but primarily based on rules of thumb
often followed in the literature (e.g. Andreadis et al., 2005; Vidal et al., 2010).
The main criteria for the selection of these parameters was the stability of drought
characteristics described in the following section. It should be noted that the
selection of smaller areas, enduring drought conditions, leads to the proliferation of
smaller clusters that are not contiguous over time and hence can not be considered
as part of a regional phenomenon.
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3.4.4 Quantification of Drought Characteristics

Drought characteristics such as mean duration, mean areal extent, total magni-
tude, intensity, and severity-area-duration curves were quantified for every drought
event and every ensemble member. The mean duration (D) of a spatio-temporal
drought event is defined as the average of the drought duration of every cell within
a drought event. This statistic is given in months. The mean areal extent (A) is
defined as the average of a region under drought from the onset until the end of
the drought event, expressed as percentage of the total German surface area. The
total magnitude (M) is defined as the spatio-temporal integral of the SMI below
the threshold value τ (i.e. the deficit) over those areas which are affected by the
drought event, or explicitly

M =

t1∑
t=t0

∫
At

(
τ − SMIi(t)

)
+

(3.5)

where, t0 and t1 denote the onset and the ending months of a given drought event.
At is the area under drought at a given time step t, expressed as the percentage of
total German surface area. i denotes a given location within the domain At, and
(·)+ the positive part function. Thus, M is expressed in months times percentage
of total German surface area.

Above described three statistics are useful to rank drought events based on the
overall impact but they do not allow to estimate the impact of the drought after
some months from the onset. This could be better quantified with the drought
intensity (Id) at a given duration d from the onset of the event. This statistic can
be estimated as

Id =
1

d

t0+d∑
t=t0+1

∫
At

(
τ − SMIi(t)

)
+

(3.6)

This statistic would also allow to estimate the impact of various events during
summer and winter, by discriminating the time step t0 + d to a corresponding
season.

Another commonly used method to benchmark drought events is based on the
severity-area-duration curves (SAD) proposed by Andreadis et al. (2005). The
severity (Sd) for every cell for a given duration d in months can be estimated as

Sd = 1− 1

d

∑
t∈d

SMIt (3.7)

The SAD curves for durations of 3, 6, 9, and 12 months for a given ensemble
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realization were constructed as follows. Firstly, the grid cells were ranked accord-
ing their severity. The procedure starts with those cells having the maximum
severity. Then, the severities of the adjacent cells were summed up progressively
until a threshold area is reached. Afterwards, the average severity is estimated
for those selected cells. The cumulative area and the average severity constitute
the abscissas and ordinates of the SAD curves for a given duration. In this study,
regular area intervals equivalent to the area of 20 grid cells were selected (i.e. every
320 km2). This procedure is repeated until the whole area of a given drought event
is covered.

The monthly evolution of these statistics was estimated for every member of the
ensemble. Based on the ensemble simulations, the uncertainty of the four selected
statistics was analyzed.

3.5 Results and Discussion

3.5.1 mHM Evaluation

The performance of mHM was evaluated against observations of daily streamflow,
latent heat and soil moisture measured at various eddy covariance (EC) stations
acquired from www.fluxdata.org, as well as, with soil moisture observations ob-
tained with a cosmic ray neutron probe (Rivera Villarreyes et al., 2011). Seven
large river basins in Germany were selected to cross-validate mHM performance
with respect to observed daily streamflow. In this proxy basin test, global cali-
bration parameters of mHM obtained at every river basin were transferred to the
remaining test basins. For instance, from Neckar to Danube, Main, Ems, Saale,
Mulde, and Weser basins (Figure 3.1). The procedure to find the best hundred
global parameter sets is described in section 3.3.2.

High efficiency in this kind of test is a good indication of model performance in
ungauged locations. The ensemble mean Nash-Sutcliffe Efficiency (NSE) obtained
with mHM using the best hundred global parameter sets at proxy basins during the
validation period from 1965 to 1999 varied from 0.50 to 0.88, which is quite accept-
able considering that these basins have significantly different hydrologic regimes.
Model evaluation on those basins with at-site calibrated parameter sets during the
same period exhibited on average a NSE value ranging from 0.74 to 0.93. During
the calibration period (2000-2004), the NSE varied from 0.84 to 0.96. These tests
indicated that mHM can be used for hydrological predictions within Germany.

The coefficient of determination between the simulated latent heat fluxes against
observations across several eddy covariance (EC) stations varied between 0.50 and
0.74 during the period 2000-2002. The model domain in this case was reduced to
a cell size of 100×100 m. Considering the various factors that influence the EC
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measurements and the fact that mHM is driven by disaggregated hourly values of
precipitation and temperature as well as known scaling issues with EC measure-
ments, these results can be regarded as satisfactory. The soil moisture anomalies
estimated with mHM were able to explain up to 75% of the variance of their ob-
served anomalies at various EC stations during the same period. Soil moisture
estimates were obtained with standard TDR probes. The model at the EC sites
was forced with observed hourly precipitation and hourly temperature instead of
the interpolated data as used for running the model over the whole domain.

The cosmic ray neutron probe, on the other hand, is a promising alternative be-
cause it allows an estimate of the soil water content over a control volume with a
diameter of approximately 600 m and a depth of 0.3 m, which in this case, corre-
sponds to the tillage depth setup in mHM. The coefficient of determination (r2)
between the mHM soil moisture anomaly and the cosmic ray neutron probe, re-
ported by Rivera Villarreyes et al. (2011), was 0.57 for the period from August to
September of 2011. Correspondingly, the r2 between the simulated and the mean of
soil moisture anomalies measured with 16 frequency domain reflectometry probes
located within the same control volume was 0.79.

3.5.2 Retrospective Reconstruction of Soil Moisture Fields

The basis for the analysis of agricultural drought analysis in Germany was the re-
construction of daily soil moisture fields since 1950. 200 realizations of these fields
were estimated for the whole of Germany at an hourly basis based on the premise
that a single simulation is not sufficient for such analysis because of parameter un-
certainty. For the subsequent analysis, simulated hourly fields were aggregated to
daily and monthly time steps. Monthly soil moisture values were then normalized
as indicated in Eq. 3.1 to ease comparison across locations. The ensemble long-
term mean for each month (Figure 3.2) is the most evident statistic to evaluate
these results and to verify whether the annual variability of soil moisture corre-
sponds to the known climatology of major geographic regions in Germany. The
variability of the spatial patterns shown in Figure 3.2 indicate almost saturated
conditions the whole year round in mountainous areas such as the Black Forest,
the Harz mountains, and the Bavarian Alpine Foreland. Quasi-permanent dryer
conditions have been observed on the North German Plain. The variability of the
long term mean of the soil moisture fraction x with respect to its standard devia-
tion indicates a clear seasonality describing wetter and less variable conditions in
winter opposed to less wet but highly variable conditions in summer (Figure 3.3).

Results indicated that not only the ensemble monthly climatology of the soil mois-
ture fraction x, depicted in Figure 3.2, but also other statistics such as the 10th
and 90th percentiles of x (P10, P90) exhibits seasonality and strong dependency to
geographic location. The annual variability of these two percentiles for selected
cells within Germany is depicted in Figure 3.4. The geographic location of the
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Figure 3.2: Ensemble monthly mean soil moisture fraction over Germany for the
period 1950 to 2010.

selected cells is shown in Figure 3.1. The variability and the value of both per-
centiles indicate marked hydro-climatic regimes in Germany, for instance, humid
regions with moderate seasonality on the North Sea (cells 1 and 2), very humid
regions with very little seasonality in the alpine regions (cells 18-20), very humid
regions with marked seasonality on the Black Forest (cells 13 and 17), moderately
dry regions with marked seasonality in the North German Plain (cells 7 and 8),
and regions with large seasonality in the pre-alpine regions (cells 14 and 15). In
general, the standard deviation of the 90th percentile of x is less than that of the
10th percentile based on the 200-member ensemble. This corroborates the findings
of Schaake (2004); Meng and Quiring (2008) which point out that the parametric
uncertainty in drier regions (cells 7, 8, 11, 15) is much higher than in humid re-
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Figure 3.3: Seasonality of the long-term soil moisture fraction x in the Rhine basin.
Each point denotes the mean and the standard deviation of x at a given
grid cell within this basin.

gions (cells 17-20). The standard deviation of both percentiles exhibits not only
seasonal variability, clearly depicted in cell no. 15 shown in Figure 3.4, but also
strong geographic dependency. This indicates that there is a complex interplay
between climatic conditions and parametrization of the soil moisture processes.
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Figure 3.4: Parameter uncertainty of percentiles P10 and P90 of x at selected cells
in Germany. The ensemble mean of these statistics is shown with a
continuous line whereas their standard deviation is depicted in solid
color. The location of the grid cells are shown in Figure 3.1. The
position of the panels approximately resembles the geographic location
of these grid cells.
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3.5.3 Comparison with Other Indices

The same method proposed in section 3.4 to estimate the SMI can be used to
estimate drought indices based on precipitation and surface runoff generated at
each cell before routing (Shukla et al., 2011). The results of these three drought
indices are shown in Figure 3.5 for one of the ensemble realizations obtained with
DWD1. The three upper panels of this figure indicate how different the spatial
distribution of the drought index might become depending on the variable used
to describe a drought event. Among the three variables, the drought index based
on precipitation exhibits the largest spatio-temporal variability due to the lack of
memory of the precipitation process, which is one of the main reasons for consid-
ering it not appropriate for describing water stress in vegetation (Döring et al.,
2011). The drought index based on surface runoff is correlated to the SMI but still
quite weak due to fast runoff generation processes. The SMI, as compared with
the other two indices, exhibits the largest persistence.

(a) (b) (c)

(d)

Figure 3.5: Drought indices estimated with precipitation (a), runoff (b) and soil
moisture (c) at 1960-08. Panel (d) depicts the time series of the av-
eraged values over Germany from 1959 to 1969. The solid grey area
indicates the drought occurrence.
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3.5.4 Sensitivity of the Parameter Uncertainty Related to
Precipitation Interpolation

Among the two sources of parametric uncertainty investigated in this study, the
first one was related to the interpolation methods used to regionalize rainfall point
data. For this purpose, two methods were employed to estimate the gridded fields
of precipitation data, as denoted by DWD1 and DWD2 (see section 3.3.2 for
details). Since both methods use the same input data, any possible variation in soil
moisture simulations —ceteris paribus— could be attributed to the kriging weights
and the variogram parametrization used in DWD1, or the linear weights of the
multi-linear regression method employed in DWD2. In this respect, two question
were pursued in this study. (1) How important is this source of uncertainty for
the estimation of soil moisture? And, (2) how is this uncertainty distributed over
space?

To answer these questions, the Pearson correlation coefficient (r) of the monthly
soil moisture fractions at every grid cell obtained with both precipitation products
(i.e. DWD1 and DWD2) were estimated separately for all 100 global parameter
sets. From these r values, the ensemble mean (r̂) and the coefficient of variation
of r were calculated for every cell within the domain. These statistics are depicted
in panels (a) and (b) of Figure 3.6, respectively.

(a) (b)

Figure 3.6: Ensemble mean of the Pearson correlation coefficient (a) and mean
coefficient of variation (b) between monthly soil moisture fraction es-
timated with rainfall products DWD1 and DWD2 but same model
parameters.

In general, most of the grid cells within Germany exhibit a r̂ value greater than
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0.98, which indicates a high degree of agreement between any pair of simulations
driven by DWD1 and DWD2 forcings but having the same global model parame-
ters. There are very few places where this statistic is less than 0.98, but in every
case greater than 0.95. This finding along with the very low coefficient of variation
indicated a quite low sensitivity of the monthly soil moisture fraction to the pre-
cipitation interpolation parameters. The lower values of r̂ were obtained mainly in
cells located in and around mountainous regions such as the Harz, the Alps, and
the Swabian Jura (Figure 3.6).

3.5.5 Overall Parameter Uncertainty of the Soil Moisture Index

The two major sources of parametric uncertainty described above induced con-
siderable variability into the SMI as shown in Figure 3.7, which depicts the areal
average of the SMI over major German river basins, denoted hereafter as 〈SMI〉.
It can be noticed from this figure that the overall parameter uncertainty of 〈SMI〉
is neither constant in space nor over time. The 〈SMI〉 obtained with each ensemble
member exhibited a large variability within the interquartile range of SMI but a
relatively small one at its extreme quartiles (Figure 3.7). This behavior is closely
related with the high variability of the standard deviation of the soil moisture frac-
tion around the middle ranges of its mean value (e.g. between 0.6-0.8 as depicted
in Figure 3.3).

Figure 3.7: Parameter uncertainty of SMI averaged over six major basins in Ger-
many from 1971-01-01 to 1991-12-31. The light grey depicts the vari-
ability of the ensemble 〈SMI〉 and the black line represents the ensemble
mean 〈SMI〉.

For further analysis, the temporal variability of 〈SMI〉 within the ensemble simu-
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lations is estimated by its range R(t) = 〈SMI(t)〉max − 〈SMI(t)〉min, at every point
in time t. R(t) denotes the ensemble uncertainty of the soil moisture index over
a given domain at time t. The long-term average of R(t) is approximately 0.124
with a standard deviation of 0.014. The correlation coefficient estimated between
the range of time series R(t) for every pair of major basins, depicted in Figure 3.1,
varied from 0.25 to 0.88. This implied that the uncertainty of the SMI is not only
the result of independent errors arising from model parametrization, but also the
result of systematic interdependencies between soil moisture and climatic variables

(a) (b)

Figure 3.8: Panel (a): 12-month moving average of 〈SMI〉 over Germany and major
river basins including uncertainty during the period from 1951-01-01 to
2010-12-31. Panel (b): Area under drought. The light grey line depicts
the variability of the ensemble 〈SMI〉 and the black line represents the
ensemble mean 〈SMI〉.
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such as precipitation (P ) and potential evapotranspiration (Ep). Based on these
results, it was determined that the standard deviation of R(t) tends to decrease as
the ratio Ep/P increases. Moreover, given the data provided for each major basin
(Figure 3.7), the null hypothesis that the time series of the ensemble uncertainty
R(t) constitutes white noise can be safely rejected provided that the p-value of the
Fisher’s Kappa statistic was less than 0.001.

The 12-month moving average of 〈SMI〉 depicted in panel (a) of Figure 3.8 over the
reconstruction period (1951-2010) showed a considerable reduction in uncertainty
compared with the monthly values of 〈SMI〉, but still not small enough to be con-
sidered negligible. The 12-month moving average of the percentage of area under
drought (with respect to the surface area of Germany) exhibited a considerable
uncertainty at the peaks of the events (panel (b) of Figure 3.8). This result, how-
ever, allows preliminary identification of major drought events covering at least
50% of the German territory, namely those in the periods 1953-1954, 1959-1960,
1964-1965, 1972-1973, 1976-1977, 1992-1993, 2003-2004.

(a) (b)

Figure 3.9: Panel (a): Probability of being at a drought severity class D0,...,D4
for May 1976. Panel (b): Most likely drought severity class based on
the ensemble simulations. Classification according to the US Drought
Monitor (http://droughtmonitor.unl.edu).

The parametric uncertainty of the SMI also has a strong influence on drought
severity classes commonly used for monitoring purposes. Panel (a) of Figure 3.9
depicts the probability of finding a cell, at a given point in time, under one
of the five drought severity classes used by the United States Drought Monitor
(http://droughtmonitor.unl.edu). These classes denote abnormal (DO), moderate
(D1), severe (D2), extreme (D3), and exceptional (D4) dry conditions, which cor-
respond to: 0.2 < SMI ≤ 0.3, 0.1 < SMI ≤ 0.2, 0.05 < SMI ≤ 0.1, 0.02 < SMI ≤
0.05, and SMI ≤ 0.02, respectively. This figure shows also that there are areas, in
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which, no unique drought class can be assigned due to parametric uncertainty. A
possibility to assign a unique class to a cell is to choose a class with the largest
probability, as shown in the panel (b) of Figure 3.9 for May 1976.

3.5.6 Identification of Major Drought Events based on Mean
Duration, Mean Areal Extent and Total Magnitude

Major drought events were found in this study using the technique described in
section 3.4.3. These benchmark events are required for the future analysis of
possible consequences of climate change on agricultural droughts. The drought
clustering algorithm was applied to every ensemble realization to find the spatio-
temporal evolution of all drought events during the reconstruction period from
1951-2010. For every event, drought characteristics such as mean duration (D),
total magnitude (M), and mean areal extent (A), among others, were evaluated
using the procedure illustrated in section 3.4.4. The ensemble average of these
characteristics, i.e. D̂, M̂ , and Â are depicted in Figure 3.10. The corresponding
uncertainty of these characteristics is presented in Table 3.1.

Figure 3.10: Area under drought, duration, and magnitude of the eight largest
events in Germany since 1950 based on the ensemble 〈SMI〉.

The eight largest drought events identified during the last 60 years in Germany
are the following periods: 1962-1965, 1971-1974, 1975-1978, 1959-1960, 1953-1954,
1991-1993, 2003-2005, and 1995-1997. It is worth noting that the event from 2003-
2005, appears in this overall ranking in the 7th position. Vidal et al. (2010) also
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noticed this fact and concluded that 2003 hardly appears as a benchmark event in
France. This is a rather controversial conclusion because in this year the highest
temperatures during the last 500 years were recorded (Luterbacher et al., 2004).
In Germany alone, great losses in the agricultural sector (COPA-COGECA, 2003)
were reported. A likely explanation for this paradox is provided in section 3.5.7.

Table 3.1: Uncertainty of characteristics of major drought events in Germany since
1950. Uncertainty of the characteristics and mean± standard deviation.

Period Duration Area Magnitude
[month] [%] [% area × month × 103 ]

1953-1954 8.0 ± 0.2 70.8 ± 3.0 24.6 ± 1.0
1959-1960 12.0 ± 0.2 59.2 ± 2.3 36.3 ± 0.7
1962-1965 14.5 ± 0.9 41.5 ± 1.5 36.8 ± 2.0
1971-1974 14.8 ± 4.6 43.1 ± 5.0 36.7 ± 12.9
1975-1978 12.4 ± 0.8 43.5 ± 4.9 36.5 ± 1.9
1988-1991 5.9 ± 0.2 22.7 ± 2.0 11.1 ± 1.1
1991-1993 9.3 ± 1.5 29.3 ± 4.2 20.7 ± 3.6
1995-1997 8.5 ± 2.3 24.7 ± 6.7 11.8 ± 3.2
2003-2005 7.6 ± 0.5 32.1 ± 4.5 17.1 ± 1.6
2005-2007 5.6 ± 1.0 24.7 ± 3.4 11.5 ± 2.2

The three drought characteristics D, M , and A depicted in Figure 3.10, are highly
correlated with each other. The Pearson correlation coefficient between D and
M , is the highest, and equal to 0.97, whereas those between (D and A) and
(M and A) are 0.80 and 0.87, respectively. This indicates that this triplet has
low dimensionality. In fact, the first eigenvector of the correlation matrix of this
triplet alone explains 92% of the total variance.

Using the k-means cluster analysis, three main groups of drought events were
distinguished, 1) events with a large areal extent and duration, i.e. events 1962-
1965, 1971-1974, 1975-1978, and 1959-1960; 2) events with the largest areal extent
and moderate duration, i.e. 1953-1954; and 3) events with moderate areal extent
and duration, i.e. 1991-1993, 2003-2005, and 1995-1997. Based on the ensemble
SMI mean (SMI), the event from 1971-1974 exhibited the longest duration, and
the event from 1953-1954 covered the largest area. The events from 1962-1965 and
1971-1974 reached the two largest magnitudes.

The absolute ranking of these extreme drought events is rather difficult due to the
parameter uncertainty as illustrated in Table 3.2. This table presents an estimate
of the probability to order every event into the eight top ranks using a linear,
equal-weighted, normalized indicator composed of D and A, as an example. The
results presented in this table indicate that the maximum probability of finding
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Table 3.2: Probability of finding a drought event in any of the top eight ranks.
Here, only the eight largest events in Germany since 1950 were selected.
The sum of the likelihood is not necessarily one due to the truncation
of the table up to only the eighth rank. Values in bold represent the
largest likelihood based on the ensemble simulations.

Event Ranking likelihood
1 2 3 4 5 6 7 8

1953-1954 0.04 0.31 0.56 0.09
1959-1960 0.34 0.51 0.15
1962-1965 0.43 0.48 0.08 0.01
1971-1974 0.67 0.03 0.19 0.10 0.01
1975-1978 0.02 0.06 0.36 0.56
1991-1993 0.59 0.09 0.08
1995-1997 0.07 0.53 0.29
2003-2005 0.03 0.10 0.23 0.59

an event in one of the top ranks is not greater than 0.67. The ranking of a given
event spans at least over three categories. Low ranking events tend to have a much
larger ranking spread than the top ones, though.

The size of the ensemble also played a very important role to estimate the proba-
bility of finding an event in a given rank (1−α), where α denotes the false positive
rate. Figure 3.11, for example, shows the probability of not identifying the event
from 1971-1974 as the largest since 1951. This figure clearly shows that the vari-
ance of the false positive rate is strongly dependent on the ensemble size. These
results were obtaining by bootstrapping the 200 ensemble simulations without re-
placement and limiting the number of realizations to 1000 for a given sample size.
This figure showed also that the first two moments of α tend to stabilize with
ensemble sizes larger than 50. Consequently, it is safe to conclude that small en-
semble sizes would lead to misleading results. An ensemble with 200 members, as
realized in this study would lead to safer results. These Monte Carlo realizations
clearly highlighted the role of parametric uncertainty in identifying the benchmark
drought events which should be handled carefully.

The spatial distribution of severity (Sd) based on SMI at the peak of the eight
largest drought events is shown in Figure 3.12. It can be observed from this figure
that each event has its own peculiarities with respect to the spatial distribution
of the affected areas. The drought event during December 1954 has the largest
areal coverage, with 93.5% of the German territory under water stress, whereas the
event during April 1996 had the lowest coverage with 46.5%. The latter drought
event at its peak was particularly concentrated on the north-west part of Germany.
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The event of 1976, with its peak in August, had spread over whole Germany with
an exception of the Alpine Foreland. The latter areas endured the highest severity
during August 2003.

Figure 3.11: Sensitivity of the false positive rate (α) to ensemble size. In this
example, α denotes the probability of rejecting the null hypothesis
that the event from 1971-1974 ranks 1st among all drought events
from 1950 to 2010. The size of the bootstrapping realizations was
1000.

Figure 3.12: Severity at the peak of the eight largest drought events from 1951-01-
01 to 2010-12-31 based on the ensemble mean SMI.
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3.5.7 Uncertainty of Large Events Occurring in Summer and
Winter

As mentioned before, the ranking of drought events based on ensemble character-
istics (D, M , and A) does not allow the identification of their impact at a given
point in time from their onset, nor to differentiate them according to their level
of incidence in a particular season. The drought intensity proposed in Eq. 3.6 en-
ables estimating the transient evolution of a drought event from its onset, and by
so doing, it allows quantifying how fast a drought event covered a given area and
by what magnitude. Panel (a) in Figure 3.13 shows the results of plotting drought
intensity versus duration from the onset (d) of a given event for the ten largest
events since 1950. Panel (b) in the same figure depicts the results obtained by
ranking the drought intensities of all events at various durations from their onsets
(e.g. 3, 6, ... months). The classification of an event into summer or winter was
estimated with the procedure illustrated in section 3.4.3 (Eq. 3.6). The ensemble
SMI mean (i.e. SMI) was used instead of individual realizations for both analyses
because the former is an unbiased estimate of the SMI, and thus leads to a robust
estimate of the evolution of the drought intensity.

(a) (b)

Figure 3.13: Panel (a): Drought intensity evolution for the 10 largest drought
events since 1950. Panel (b): Major drought events for a given du-
ration and season of occurrence. The numbers denote the follow-
ing events: 1: 1953-1954, 2: 1959-1960, 3: 1962-1965, 4: 1971-1974,
5: 1975-1978, 6: 1988-1991, 7: 1991-1993, 8: 1995-1997, 9: 2003-2005,
10: 2005-2007.

Based on the results described above and shown in Figure 3.13, it was found that
at 3 month duration, summer events have much larger drought intensity than the
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corresponding ones in winter. At 6 and 9 months duration, the opposite happens.
The events with more than a 9 month duration mostly reach their higher intensities
during summer as compared to winter ones. However, droughts having a duration
of 30 months or more are more intense during winter months. The event 1953-1954
not only exhibits the largest intensities at 6 and 9 month durations during winter
months (Nov-Apr), but also the largest intensity in summer at 12 months duration.
The event 2003-2005 is, according to these results, the summer event with the
largest intensity at 6 months duration. Among the 10 largest drought events
in Germany during last 60 years, the 1953-1954 event had the largest intensity
peaking within a relatively short period of time (less than 12 months). This event,
however, lasted for only one and a half years. Four drought events, namely, 1962-
1965, 1971-1974, 1975-1978, and 1991-1993, spanned over the period of more than
30 months (i.e. two and a half years). According to this analysis, the decade
of 1970 could be regarded as the most severe drought period in Germany. The
drought events 1962-1965 and 1971-1974 clearly exhibited more than one peak
over their whole life span. The analysis also indicated that most of the historical
drought events in Germany have their peaks during 6 to 12 months of duration.

The empirical bivariate density function between the average drought area (A)
and the total magnitude (M) was constructed to analyze the uncertainty in overall
drought characteristics (D, M , and A) based on the ensemble realizations. The
large number of model runs also allowed to assess the uncertainty in time evolution
of these characteristics. The four most intense drought events with 6 months and
at least 30 months duration after its onset were selected to illustrate this procedure,
namely: the events 1953-1954 and 2003-2005 for shorter duration, and the events
1975-1978 and 1962-1965 for longer duration, respectively (Figure 3.14). It is worth
noting that the events 1953-1954 and 2003-2005 are classified as winter and summer
events, respectively, at 6 months duration (Figure 3.13 (b)). Likewise, the events
1975-1978 and 1962-1965 peaked in winter and summer, respectively. Droughts
that are peaking within a relatively short time (up to 6 months) from their onset are
quite relevant because they have large repercussion on socio-economic activities.

Based on the ensemble results, the density function for each event was estimated
independently with a bivariate Gaussian kernel smother algorithm. The estima-
tion of the bandwidths in both directions was carried out in a similar way as
presented in section 3.4.2. The results of this analysis are depicted in the top pan-
els (a) to (d) of Figure 3.14, which clearly supports the research hypothesis that
the parametric uncertainty of soil moisture has a strong implication for drought
characterization. Most events exhibit multimodal behavior which is the combined
result of the uncertainty of the model parametrization and drought identification
(e.g. clustering, threshold).

Events having shorter durations and peaking in winter (1953-1954) appear to be
more certain than those peaking in summer (2003-2005) as can be noted by the
larger spread of the respective distribution (Figure 3.14 (a) and (b)). Consequently,
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(a) (b) (c) (d)

Figure 3.14: Top: Bivariate density functions between drought area and total
drought magnitude of four major events. Panels (a) and (b) depict
the most intense drought events with 6 months duration after its onset
in winter and summer, respectively. Panels (c) and (d) correspond to
the most intense drought events having a drought duration of at least
30 months, in winter and summer, respectively. Bottom: Predictive
uncertainty and evolution of the area under drought for the selected
events.

the probability density values for the summer event are lower than those of the
winter event. However, at longer durations no conclusive comparison could be
drawn from this analysis because longer events experience various seasons over
many years. The time evolution of the area under drought A(t) for each events, as
depicted in bottom panels of Figure 3.14, also supports the assertion that a single
model realization would lead, very likely to a high rate of false alarms for drought
monitoring.

3.5.8 Uncertainty of the Severity-Area-Duration Curves

SAD curves obtained with the ensemble SMI mean (SMI) for the eight largest
drought events in Germany at duration 3, 6, 9, and 12 months are depicted in panel
(a-d) of Figure 3.15. From this analysis, the event from 1975-1978 appears to be the
most severe and extensive event at durations ranging from 3 to 9 months. Based
on this measure, the 2003-2005 event, however, hardly appears as a benchmark
event at longer durations and area coverage. The event from 1953-1954 is quite
severe at 3 and 6 months, but not at longer durations. The apparent contradiction
of these results, can be clarified with the individual evolution graphs presented in
Figure 3.13.

SAD curves have often been used to rank drought events (Andreadis et al., 2005;
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(a) (c) (e)

(b) (d)

Figure 3.15: Panels (a) to (d): Ensemble averaged Severity-Area-Duration (SAD)
curves of eight major drought events for 3, 6, 9, and 12 months du-
ration since 1950 over Germany. Panel (e) depicts the predictive
uncertainty of the SAD curves obtained for the event 2003-2005. In
this panel, lines in red denote the ensemble mean.

Sheffield et al., 2009). Due to parametric uncertainty, however, they exhibit large
variability as shown in panel (e) of Figure 3.15. This, again, corroborate our
hypothesis that a single model run would lead to unsatisfactory conclusions and
event ranking. These results indicate that the SAD variability increases as the
area under drought and duration increase. The variability of the SAD curve with
a 12-month duration is almost twice as much as that for 3 months. The variability
of SAD curves for summer events is higher than that estimated for winter at any
duration.

3.5.9 Drought Persistence and Trends of the Soil Moisture
Index

Characterizing areas prone to remain under severe drought conditions when they
are already suffering one constitute a relevant piece of information for water
resources planning. The level of persistence of the severe drought events can
be quantified with a two-state Markov chain with two states: SMI ≤ 0.2 and
0.2 < SMI ≤ 1. The persistence of severe drought can be estimated for each en-
semble member as the probability π00 = Pr (SMI(t+ 1) ≤ 0.2 | SMI(t) ≤ 0.2) , ∀t.
The ensemble mean of π00 is depicted in panel (a) of Figure 3.16 for the whole of
Germany. This figure indicates that most of the Northeast German Plain compris-
ing the area of the Elbe, Saale, and Mulde river basins, as well as large extensions
along the Main and Rhine rivers, exhibit drought persistence greater than 0.8.
The Northwest German Plain, comprising the Ems and Weser river basins, tend
to have lower drought persistence than the eastern part of Germany, with an av-
erage value of π00 less than 0.7. The Alpine Foreland located within the Danube
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basin and areas in and around the Black Forest, on the contrary, exhibit the largest
variability in drought persistence within Germany ranging from less than 0.4 to
0.8. It is worth nothing that those areas exhibiting large drought persistence have
been also classified as areas with medium to high agricultural suitability according
to a recent study conducted by UBA-PIK (www.pik.de). These regions comprise
large plains within the Saale river basin around the cities of Halle and Magdeburg,
and flood plains of the Rhine river on the western side of the Black Forest.

(a) (b) (c)

Figure 3.16: Persistence map of the SMI (a), and regions with positive (b) and
negative(c) SMI trends (5% significance). Panels (b) and (c) depict
the percentage of ensemble members indicating a significant trend.

Mann-Kendall tests on monthly SMI indicate that there are large extensions of
the German territory showing positive trends (i.e. getting wetter) during winter
months but negative trends in summer months, at 5% significance level. The
largest areas exhibiting significant trends were detected in March and August as
depicted in Figure 3.16, panels (b) and (c), respectively. It is worth noting that
positive SMI trends tend to occur in areas with low persistence and negative trends
in areas with high persistence. These trends are, in turn, related, with observed
trends in temperature and precipitation. Further details on this aspect are beyond
the scope of this paper.

3.6 Summary and Conclusions

In this study we have presented a method to derive a soil moisture index based on
a process based hydrological model. This model uses a multiscale parametrization
method that goes beyond standard calibration approaches. Great emphasis has
been put on testing this model in all major river basins in Germany, especially
with respect to the transferability of global parameters across locations and scales.
Ongoing tests with Fluxnet and cosmic ray neutron probe data have also been
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presented. Using this model a consistent ensemble of high resolution daily soil
moisture fields for Germany since 1950 at a spatial resolution of 4×4 km were
obtained.

Based on this soil moisture reconstruction, a soil moisture index (SMI) represent-
ing the corresponding monthly quantile was estimated with the kernel density
approach. The derived SMI exhibits high correspondence with total grain yield of
Germany and allows to identify major drought events in Germany, that have also
been identified using other techniques (e.g. tree rings) and reported in the litera-
ture (Büntgen et al., 2010). This approach has advantages over standard empirical
approaches or those obtained from satellite derived products, which are too coarse
to account for soil moisture at high spatio-temporal resolutions and quite uncer-
tain because the algorithms used to infer soil moisture do not take into account
the water balance of large river basins. Consequently, the proposed technique has
a large potential to be used as a monitoring tool in the future. More research is,
however, needed to evaluate the SMI against times series of annual crop yield at
regional scale. Further research is also required to identify potential driving mech-
anisms, the feedback effects, and the spatio-temporal correlations of soil moisture
with other hydrological state variables such a snow depth, and climatic variables.

The effects of other sources of uncertainty stemming from model structure and
quality of meteorological data on the soil moisture index should be further investi-
gated. Potential benefits of using ensembles of multi-model, multi-parameter soil
moisture simulations should be also carried out. Both issues, however are out of
the scope of this study.

Based on the results of this study, the following conclusions were drawn. 1) The
main source of parametric uncertainty of the soil moisture index is related with
global model parameters. This uncertainty is seasonally and regionally varying.
This corroborates, findings of other researchers who have advocated for multi-
model ensembles to account for model uncertainty. In summary, one single model
run is not enough for estimating benchmark events. 2) The uncertainty of overall
statistics used for estimating drought events are highly sensitive to this kind of
uncertainty. This sensitivity is the result of non-linear relations and branching
effects caused by the clustering method. 3) Events peaking during summer with
at most 6 months duration tend to exhibit a much large uncertainty than those
peaking during winter. 4) The SMI is not a stationary variable. Many regions in
Germany exhibited significant trends during the study period. Potential triggering
mechanisms and drivers behind these trends might be the observed changes of
precipitation and temperature, as well as, other feedback mechanisms. A detailed
trend attribution, however, is out of the scope of this study. 5) The identification
of benchmark drought events should be based on combined criteria such as SAD
or intensity duration curves. Robust estimates can only be made with an ensemble
SMI due to the uncertainty mentioned before.
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Chapter 4

Calibration of a Hydrological Model
using Patterns of Satellite Derived

Land Surface Temperature

This chapter is largely based on an unpublished manuscript, which will be sub-
mitted to an ISI listed Journal:

Zink, M., Mai, J., Cuntz, M., and Samaniego, L.: Calibration of a Hydrological
Model using Patterns of Satellite Derived Land Surface Temperature

75





4.1. Abstract

4.1 Abstract

Hydrologic models are usually calibrated with observed river discharge at the
catchment outlet. Discharge is only observed at a few points worldwide and fur-
ther represent an integral response of the entire catchment. This approach does
not consider the spatio-temporal variability of hydrologic fluxes and state vari-
ables, like evapotranspiration. Satellite data in contrast include these variabilities,
are broadly available, and hence may help to better constrain model parameters.
Within this study we assess the predictive skill of satellite derived land surface
temperature (Ts) regarding river runoff (Q). We further investigate the effect on
the parametric uncertainty if the model is jointly calibrated with Q and Ts. A
diagnostic land surface temperature module was developed and implemented be-
cause the herein used hydrologic model mHM was not capable for estimating Ts.
To focus the parameter optimization on spatial patterns of Ts we developed a
bias insensitive pattern matching criterion. The proposed method was extensively
tested in six distinct German river basins and cross validated in 222 additional
catchments. The average Nash Sutcliffe Efficiency (NSE) is 0.51 and 0.4 for the
six and 222 catchments, respectively, if the model is calibrated only with Ts. We
conclude that land surface temperature has a predictive skill regarding discharge,
which could be meaningful for calibrating a hydrologic model in ungauged loca-
tions. The combined calibration with Q and Ts reduced the root mean squared
error in predicted evapotranspiration by 5% compared to flux tower observations
but reduced the skill, i.e., NSE, of river runoff predictions by 6% on average for
the six basins. Our results show that patterns of Ts do better constrain model
parameters when considered in a calibration next to Q, but also that Ts alone has
a predictive skill regarding river discharge.

4.2 Introduction

Hydrologic models are usually calibrated against runoff at the catchment outlet
and thus only consider an integral signal of the entire catchment. This procedure
ensures the fulfillment of the mass balance but has no control on the spatial dis-
tribution of hydrologic fluxes and states, like evapotranspiration or soil moisture,
within the catchment. However, hydrologic applications like drought and flood
monitoring or forecasting rely on spatially representative simulations of evapo-
transpiration and soil moisture. A calibration with river flow leads to sufficient
estimations in discharge, but other fluxes such as evapotranspiration, are lacking
accuracy (Rakovec et al., 2016; Zink et al.). To overcome these deficiencies the
calibration of a hydrologic model with spatially distributed satellite observations
is investigated within this study.

Spatially distributed ground observations of land surface fluxes and states do not
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yet exist on the regional scale or larger. Thus, satellite data remain the only re-
source for spatially explicit observations of the earth surface. From the perspective
of a hydrologic modeler satellite soil moisture or evapotranspiration observations
are preferable for constraining hydrologic models because these variables are al-
ready model inherent. These data, however, have several disadvantages. First, the
estimation of satellite soil moisture and evapotranspiration is based on modeling
approaches (e.g., Bastiaanssen et al., 1998; Mu et al., 2007; Wagner et al., 2007),
which convert the satellite signal to hydrologic variables. These models are sensi-
tive to the parameterization of the soil and vegetation. Thus, constraining soil and
vegetation parameters of hydrologic models is dependent on the modeling scheme
and parameterization of these products. Second, these satellite retrievals still un-
derlie big uncertainties and inaccuracies (Sheffield and Wood, 2011). And third,
the spatio-temporal resolution of satellite soil moisture and evapotranspiration is
coarse (≥ 25 km, ≥ 1 mon) compared to the resolution of 4 km and 1 d of the
hydrologic model used herein.

An alternative source of data is land surface temperature, which is based on satel-
lite based thermal-infrared (TIR) observations. TIR is directly interlinked with Ts
through the radiative temperature equation (Li et al., 2013). This equation is only
dependent on corrections for atmospheric and emissivity effects (Li et al., 2013),
but not on soil or vegetation characterizations. In particular, the temperature
and water vapor profile of the atmosphere, the cloud cover and the land surface
emissivity have to be known to estimate Ts. Therefore, we consider Ts as a more
certain source of satellite information compared to soil moisture or evapotranspi-
ration retrievals.

This study is based on land surface temperature (Ts) which is defined as the tem-
perature of the interface between the Earth’s surface and its atmosphere (Niclòs
et al., 2011). We will use it herein to improve the spatial representativeness of
evapotranspiration. Ts is directly connected to evapotranspiration via the energy
balance. Additionally, Lakshmi (2000), for example, showed a close relationship of
soil moisture and land surface temperature. By calibrating a land surface model he
improved soil moisture estimations. Thus, land surface temperature is a promis-
ing variable for improving the spatial representation of evapotranspiration or soil
moisture in hydrologic models.

McCabe et al. (2005) observed a change in the spatial distribution of evapotran-
spiration when calibrating a land surface model with land surface temperature Ts.
Boni et al. (2001) and Reichle et al. (2010) assimilated land surface temperature
using a variational assimilation scheme and Ensemble Kalman Filtering, respec-
tively. Both studies employed land surface models which are already implicitly
solving the energy balance and thus already depend on Ts. Boni et al. (2001) con-
cluded that surface control on evaporation is feasible whereas Reichle et al. (2010)
did not observe any effect on surface energy fluxes.

A calibration of a hydrologic model with land surface temperature is proposed by

78



4.2. Introduction

Crow et al. (2003). They found that consideration of spatially averaged evapotran-
spiration, next to discharge, improves monthly evapotranspiration predictions up
to 20%. Similar efforts are done by Corbari et al. (2010, 2015), and Silvestro et al.
(2013, 2014). All of them found improvements in evapotranspiration estimates if
land surface temperature was considered when calibrating their models.

All of these studies have in common that they only considered selected model
parameters in the calibration process and fixed the remaining parameters with
prior knowledge (transfer from remote locations or expert knowledge). The models
in use did already explicitly solve the energy balance and thus inherently depend
on land surface temperature. Additionally, these studies did not explicitly focus on
the spatial distribution of Ts. They either calibrated the model using catchment
averaged Ts (Silvestro et al., 2013, 2014) or compared observations and simulations
using standard error measures like bias or root mean squared error (Corbari et al.,
2010, 2015). Contrarily, Reichle et al. (2010); Stisen et al. (2011), and Koch et al.
(2015) suggested to use bias insensitive measures which only consider the spatial
patterns of land surface temperature. This is due to the fact that Ts is known to
be biased compared to ground observations (Trigo et al., 2008; Reichle et al., 2010;
Niclòs et al., 2011; Li et al., 2013).

The herein used mesoscale Hydrologic Model (mHM) was not capable of estimating
land surface temperature. We developed a diagnostic land surface temperature
model which can be coupled to any hydrologic model. Further, we developed a bias
insensitive, non parametric pattern matching criterion for calibration purposes.
The mHM model, augmented by the diagnostic Ts module, is calibrated using this
pattern matching criterion, first using land surface temperature only, and second
with discharge (Q) and Ts simultaneously.

First, with the calibration with Ts alone we want to verify, if land surface temper-
ature has a predictive skill regarding discharge. Therefore, we calibrate the hy-
drologic model mHM in six distinct German river basins and evaluate the model
performance regarding discharge. The estimated parameter sets are transferred
to 222 catchments, which have not been used during model calibration, to further
investigate the predictive skill of the estimated parameter sets regarding discharge.

Second, we hypothesize that the parametric uncertainty of the hydrologic model
mHM will decrease when Q and Ts are calibrated simultaneously. Especially for
parameters connected to surface processes, as e.g., evapotranspiration, will be
constrained better. The parametric uncertainty is assessed by conducting 20 in-
dependent model calibrations and comparing the resulting parameter ranges with
the initial ranges for each parameter.

Third, we postulate that simultaneous calibration of mHM with Q and Ts would
impact the spatial distribution of evapotranspiration and improve evapotranspira-
tion estimations when compared to eddy flux measurements.
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4.3 Study Domain and Data

4.3.1 Meteorological Data

The forcings needed for the hydrologic model are provided by the German Mete-
orological Service (DWD). The approximately 5000 precipitation and 2000 tem-
perature stations covering Germany were interpolated using external drift kriging
(Ahmed and De Marsily, 1987). A digital elevation model was used as external
drift. The potential evapotranspiration is estimated based on the Hargreaves-
Samani equation (Hargreaves and Samani, 1985) using the interpolated fields of
minimum, maximum and average daily air temperature. The precipitation, aver-
age temperature and potential evapotranspiration are the main forcings for solving
the water balance within the hydrologic model mHM. The spatial resolution is
4×4 km2 since we consider this as the lowest resolution supported by the station
input data.

The hydrologic model mHM augmented by a land surface temperature module
requires additional data for calibration. In the first place observed land surface
temperature is needed, but additionally the net radiation is required to estimate
land surface temperature within the new module. Unfortunately, land surface
temperature and radiation observations are not available or to sparse as there
are only 57 radiation measurement stations within Germany. Thus, additional
data sources have been reviewed. Eligible data sources are required to be of a
similar spatial resolution as the above mentioned meteorological forcings, and to
have at least a daily temporal resolution to cope with data gaps, which, e.g.,
arise from cloudiness. Since reanalysis data are typically coarser than 0.25◦, their
spatial resolutions are not appropriate. Another source of data are satellite re-
trievals. Whereas, the spatial resolution (e.g., 1 km) of polar orbiting satellites,
like TERRA, is high and equidistant, its temporal resolutions are coarse (one to
two overpasses per day). Geostationary satellites (e.g., Meteosat), however, have
a high temporal (≥15 minutes) but lower spatial resolution which decreases with
increasing distance from the satellite. For Germany, data of Meteosat Second Gen-
eration (MSG) have an average spatial resolution of 3.5×6.5 km2 and a temporal
resolution of 15 or 30 minutes depending on the data product.

Thus, we decided to use data from MSG which have been processed by the Land
Surface Analysis - Satellite Application Facility (LSA-SAF). LSA-SAF provides
ready to use interpretations for land surface temperature and radiation components
from MSG data. Net radiation can not be inferred from satellite observations
directly. Therefore, the net radiation is estimated based on downwelling short-
and longwave radiation, land surface temperature, emissivity, and albedo products
from LSA-SAF (see section 4.4.2, Equations 4.5a-4.5c).

The shortwave incoming radiation data of LSA-SAF have been evaluated using
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data of 32 available station observations in 2009 provided by the German Me-
teorological Service (Deutscher Wetterdienst (DWD), 2011). With an average
Pearson correlation coefficient of 0.93 (standard deviation=0.04) and a relative
bias of 5% (standard deviation=2%) the satellite shortwave radiation compares
well to ground observations. The satellite retrieved land surface temperature is
validated at two eddy covariance stations, i.e., stations E2 and E4 (Figure 4.1),
where radiometric temperature is measured (Kutsch et al., 2008; Rebmann et al.,
2010). This comparison revealed a bias of the satellite retrieval of about 2.7 K.
This compares well to literature which reports a bias of 2 K to 3 K for satellite
retrieved land surface temperature (Trigo et al., 2008; Reichle et al., 2010; Niclòs
et al., 2011; Li et al., 2013).

4.3.2 Study Domain and Land Surface Properties

The broader scope of the study domain is the territory of Germany. Intense analy-
ses will be presented for the six inner German river basins presented in Figure 4.1.
These are the largest inner German catchments and differ in size, hydrologic be-
havior and climatic conditions. They range from a flat, agricultural dominated,
maritime influenced catchment in Northern Germany (i.e., Ems) to a snow influ-
enced, more continental catchment with distinct slopes in the South (i.e., Neckar).
A detailed description of the catchments can be found in Zink et al..

Figure 4.1: The main catchments used for parameter inference and numerical ex-
periments. The six major inner German river basins span over a cli-
mate gradient ranging from maritime influence in the Ems to conti-
nental climate in Main and Neckar. The points E1 to E7 depict the
location of eddy flux tower observations, which have been used for
evaluating the simulated evapotranspiration.
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The land surface is characterized by a digital elevation model provided by the
Federal Agency for Cartography and Geodesy (BKG) (2010), a soil and hydrogeo-
logical map offered by the Federal Institute for Geosciences and Natural Resources
(BGR) (1998, 2009), and land cover information from the European Environmen-
tal Agency (EEA) (2009). This data are discretized to a spatial resolution of
100×100 m2. The Global Runoff Data Centre (GRDC) (2011) and the European
Water Archive (EWA) (2011) provided the discharge data.

4.4 Methodology

4.4.1 The mesoscale Hydrologic Model mHM

The computational experiments of this study were conducted employing the meso-
scale Hydrologic Model mHM (Samaniego et al., 2010; Kumar et al., 2013b). It is
a process-based and spatially distributed model which was developed for the esti-
mation of hydrologic fluxes and state variables on the land surface. These states
and fluxes are derived by closing the water balance on every grid cell. Within a
grid cell the governing processes are conceptualized as discrete reservoir models for
the different compartments of the hydrologic cycle, e.g., interception, snow accu-
mulation, soil moisture, and evapotranspiration among others. The estimation of
hydrologic fluxes and states is highly dependent on the quality of the evapotran-
spiration estimate, since it is the second most important flux in the water balance
besides precipitation.

The evapotranspiration within mHM is estimated by scaling the available water
within the interception, surface water, and soil water reservoir sequentially with a
potential evapotranspiration (PET). Thus, PET is reduced consecutively by evapo-
transpiration from the beforehand mentioned reservoirs, respectively. Therein,
interception and surface water retention are minor sources of evaporative water,
whereas the water of the soil reservoir is the main source. Within the soil the
amount of evaporative water is determined by scaling the remainder of PET with
the available water within the different soil layers and a root fraction parameter se-
quentially from the top to the bottom layer. The root fraction parameter varies for
the three land cover classes within the model (urban, mixed, and forest). Because
the evapotranspiration estimation is highly dependent on the conceptualization of
the soil water processes within land surface models, their representation within
mHM will be described in the following.

The number and depth of the soil layers needed by the model are defined externally
whereas the depth of the deepest soil layer is derived by mHM from the soil map
and thus varies between different grid cells. For this study, three soil layers have
been used. The first layer ends in 5 cm, the second in 25 cm below the surface
and the third is the soil map dependent layer.
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Besides soil textural properties (bulk density, sand, and clay content) the soil wa-
ter content depends on the organic matter of the soil layers. The organic matter
is derived using the formulation of Rawls (1983). The evapotranspiration of the
single soil layers is subsequently estimated as a function of (a) potential evapotran-
spiration, (b) soil water content, (c) soil hydraulic properties (permanent wilting
point, field capacity, saturated soil moisture content) and (d) the fraction of roots.
This functional relationship contains several model parameters.

These parameters are derived by employing the Multiscale Parameter Regionaliza-
tion (MPR) technique (Samaniego et al., 2010; Kumar et al., 2013b). In general,
this parameter estimation approach is based on transfer functions which are de-
pendent on transfer function parameters. This transfer function parameters are
also called super- or global parameters (Pokhrel et al., 2008). They are space-
and time-invariant and are the parameters which are adjusted during a calibration
process.

In MPR the transfer functions (e.g., the pedotransfer functions for the estimation
of soil parameters) are connected to the morphological input (e.g., soil textu-
ral properties) and thus lead to model parameters (e.g., porosity or soil hydraulic
conductivity). In the example the global parameters are the coefficients of the pedo-
transfer functions. The model parameter estimation is performed on the resolution
of the morphological input (e.g., 100×100 m2). They have to be upscaled to de-
termine the model parameters on the hydrologic model resolution (e.g., 4×4 km2).
The applied upscaling rules are different for the various model parameters (e.g.,
the geometric mean for the porosity and soil hydraulic conductivity).

Compared to other parameter estimation approaches, like hydrologic response
units (Flügel, 1995), the advantages of MPR are (1) the ability to choose flexible
model resolutions without the necessity to rescale the input, (2) the transferability
of the global parameters across locations (Samaniego et al., 2013; Rakovec et al.,
2016; Zink et al.), and (3) the transferability across scales (Kumar et al., 2013b,a)
without recalibrating the model.

4.4.2 Development of a Land Surface Temperature Module

A goal of this study is to incorporate spatially distributed information into the
hydrologic model mHM to improve the spatial representativeness of the hydrologic
fluxes and states. Herein, we will focus on the evapotranspiration since it has a
high impact on the water balance. Therefore, we considered satellite derived land
surface temperature fields within mHM. The spatio-temporal distribution of land
surface temperature is used to constrain mHM in addition to discharge.

Since the purpose of mHM is to solve the water balance equation, land surface
temperature is not required to be estimated yet. By closing the water balance,
evapotranspiration (E) is estimated. The energy balance is used to simulate land
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surface temperature, since the evapotranspiration is the common variable of the
energy and the water balance.

The following section will introduce a parsimonious module for estimating land
surface temperature based on modeled evapotranspiration. This module is called
land surface temperature module in the following. It can be coupled to any hy-
drologic model and will be adjoined with mHM.

On the one hand the evapotranspiration E [mm d−1] is determined by closing the
water balance

E = P −Q−∆S (4.1)

with mHM. Where P is precipitation [mm d−1], Q is river runoff [mm d−1], and
∆S [mm d−1] is the change in the storages, e.g., soil moisture. On the other hand
the energy balance is defined as

Rn = LE +H +G+ S (4.2)

in which Rn denotes the net radiation [W m−2], LE is the latent heat flux [W m−2],
H is the sensible heat flux [W m−2], G is the soil heat flux [W m−2] and S are the
storage terms [W m−2], e.g., photosynthetic or biomass heat storage. The latent
heat flux LE is determined by converting the mass flux of evapotranspiration E
estimated by mHM (Equation 4.1) to an energy flux. This conversion is calculated
by

LE = %LE. (4.3)

In which the L is the latent heat of vaporization [kJ kg−1] and % is the density of
water (% = 1000 kg m−3). The latent heat of vaporization L is approximated by
L = 2501− 2.37Ta using the air temperature Ta in [◦C] (Dyck and Peschke, 1995).

The estimation of land surface temperature is performed using the temporal res-
olution of one day, because this is the temporal resolution of the meteorological
input. For daily time steps it is assumed that the soil heat flux G and the storage
terms S are negligible (Haverd et al., 2007). Therefore Equation 4.2 simplifies to

H = Rn − LE. (4.4)

Because mHM is not estimating energy fluxes, the net radiation Rn has to be
provided as an input to be able to estimate the sensible heat flux H. Since spatially
comprehensive measurements of the net radiation are not available, an alternative
source of data is required. One possible source are radiation products obtained
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from satellite data. A straight satellite product for net radiation is not available.
Therefore, it is determined by the single components of the radiation budget, which
are derived from satellite measurements, as

Rn = Q
(in)
S −Q(out)

S +Q
(in)
L −Q(out)

L (4.5a)

Q
(out)
S = αQ

(in)
S (4.5b)

Q
(out)
L = εT̂s

4
(4.5c)

whereQ
(in)
S andQ

(out)
S are the incoming and outgoing short-wave radiation [W m−2],

respectively, and Q
(in)
L and Q

(out)
L are the incoming and outgoing long-wave ra-

diation [W m−2], respectively. The outgoing short-wave Q
(out)
S radiation is es-

timated using Equation 4.5b, in which α is the albedo of the land surface [−].

The outgoing long-wave radiation Q
(out)
L is approximated as emission of a gray

body which can be calculated following the Stefan-Boltzmann law (Equation 4.5c).
Therein, ε is the emissivity [−] and σ is the Stefan-Boltzmann constant (σ =
5.67 · 10−8 W m−2 K−4).

Thus, the estimation of the sensible heat flux H [W m−2] (Equation 4.4) modifies
to

H = (1− α)Q
(in)
S +Q

(in)
L − εσT̂ 4

s − LE. (4.6)

Further, the thermodynamical formulation of the sensible heat H is known by

H = %acp
T̂ s − Ta
ra

(4.7)

where Ta is the air temperature [K], T̂ s the model derived land surface temper-
ature [K], ra is the aerodynamic resistance [s m−1], %a the density of air (%a =
1.29 kg m−3) and cp the specific heat capacity of air which has been assumed to
be constant (cp = 1004 J kg−1 K). Combining Equation 4.6 and 4.7 leads to a

polynomial of forth degree in T̂ s

(1− α)Q
(in)
S +Q

(in)
L − LE +

%acp
ra

Ta −
%acp
ra

T̂ s − εσT̂ s

4
= 0. (4.8)

To sum up, T̂s is the modeled variable of interest, Q
(in)
S , Q

(in)
L , α, and ε are satellite

retrieved variables, %a , σ, and cp are constants, Ta is measured air temperature
which is an input for mHM, LE is derived by closing the water balance with
mHM (Equations 4.1 and 4.3), and ra is the aerodynamic resistance which is still
unknown, but will be explained in the following.
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By solving Equation 4.8 four roots are obtained. The root which falls in the interval
[0 K, 500 K] is the feasible result for T̂ s. During all experiments it was found that
only one of the four roots does fulfill this requirement.

Still there is one unknown variable, i.e., the aerodynamic resistance ra in [s m−1],
which is calculated using the equation of Allen et al. (1998):

ra =
ln
(

zm−d
z0m

)
ln
(

zh−d
z0h

)
k2uz

(4.9)

where zh is the height of the humidity measurement [m], d is the zero plane dis-
placement height [m], z0m is the roughness length for momentum transfer [m],
z0h is the roughness length for heat transfer [m], k is the von Karman constant
(k = 0.41), and uz is the wind speed [m s−1] at the wind speed measurement
height zm in [m]. It is assumed that the measurement heights of wind speed and
humidity are equal z = zm=zh.

The approximations of the three variables d = 2
3
hc, z0m = 0.123hc, and z0h = 0.1z0m

are taken from Allen et al. (1998). The constants of d, z0m and z0h have been im-
plemented as global parameters p48, p49, and p50 in the land surface temperature
module, respectively. These parameters need to be calibrated whereas their ranges
are chosen to be between ±10% of the values reported by Allen et al. (1998). Thus
Equation 4.9 becomes

ra =
ln
(

z−p48hc

p49hc

)
ln
(

z−p48hc

p49p50hc

)
k2uz

. (4.10)

This shows that besides the given height z and the measured windspeed uz, ra is
dependent on the estimation of the parameters p48, p49, and p50 and the canopy
height hc.

Since no spatially comprehensive information about the canopy height hc is avail-
able, the Multiscale Parameter Regionalization (MPR) technique has been em-
ployed to estimate hc based on the land cover information. To account for the
annual development of hc the monthly evolution of the leaf area index (LAI) is
taken into consideration. The functional relationship between canopy height and
the LAI, i.e., for the mixed land cover class, is assumed to be

hc,mix(i) = p47
LAI(i)

max
i
LAI(i)

, i = 1, . . . , 12 . (4.11)

in which hc,mix is the canopy height of the mixed land cover class [m], LAI(i) is the
leaf area index [m m−2] for month i [−] and p47 is the calibration parameter [m] for
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the estimation of the canopy height hc for the mixed land cover class (mix). The
mixed land cover class is a generalized class consisting of grasslands, agricultural
areas and pastures.

Both other land cover classes (urban (ur) and forest (for)) are assumed to be
constant in canopy height over the course of a year and do not depend on LAI

hc,for = p45 and hc,ur = p46 . (4.12)

The estimation of the canopy height is conducted on the input resolution, i.e.,
100×100 m2. For the upscaling to the model resolution, i.e., 4×4 km2, various up-
scaling operators have been tested and the arithmetic mean has proven to perform
best.

To sum up, we have shown the development of a land surface temperature module
which can be coupled to any environmental model. Satellite derived radiation
components (Q

(in)
S and Q

(in)
L ), air temperature (Ta), wind speed (uz), and modeled

evapotranspiration (E) are used as input for the land surface temperature module.

The necessary steps for estimating land surface temperature (T̂ s, Equation 4.8) are

1. The estimation of E as residual of the water balance (Equation 4.1) and

2. The calculation of T̂ s (Equation 4.8) based on the aerodynamic resistance
(Equation 4.10).

To approximate the aerodynamic resistance ra (Equation 4.10) the three global pa-
rameters p48 to p50 connected to the displacement height and the roughness lengths
as well as the three global parameters p45 to p47 connected to the canopy height
(Equation 4.11 and Equation 4.12) are necessary. An additional parameter p51 was
introduced into Equation 4.8 to account for the bias, which has been observed in
the satellite retrieved Ts. Finally, this parameter could be neglected because a bias
insensitive error measure was designed for calibrating mHM with Ts.

These seven global parameters are estimated by an automated calibration of the
model mHM. The difference between satellite derived T s and simulated land sur-
face temperature T̂ s is minimized during model calibration. The calibration pro-
cedure will be explained in the following.

4.4.3 Optimization of the Coupled mHM-Land Surface
Temperature Model

For the calibration of mHM against the satellite retrieved land surface temper-
ature the aforementioned Ts module is coupled to mHM. Thus, seven additional
parameters are added to mHM and are included in the automated optimization of
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the global parameters. For simplicity, the coupled mHM-land surface temperature
model is denoted as mHM in the following. Furthermore, all parameters, including
the global parameters of mHM (44 parameters) and the Ts module (7 parameters)
are herein referred as mHM parameters. Hence, the coupled model has 51 global
parameters.

The coupled model will be calibrated against land surface temperature or discharge
or a combination of both. The performance regarding the two model outputs, i.e.,
discharge and land surface temperature, is estimated using a weighted objective
function. In general the objective function Φ is estimated by

Φ =

(
n∑

i=1

wp
i (φi)

p

) 1
p

(4.13)

where wi is the weight (
∑n

i=1 wi = 1) of the distance measure φi of n objectives.
Different distance measures φi are considered, because discharge Q is only depen-
dent on time, whereas Ts is a spatio-temporal variable. Following Duckstein (1984)
the exponent p equal to 6 is included to the objective function to assure numerical
stability and assure for a compromise solution. The different error measures φ for
discharge and land surface temperature are described in the following.

Error Measure for Discharge Q The distance measure which is applied to the
discharge estimations is the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe,
1970). To get satisfying estimations of highflows as well as of lowflows, the NSE is
determined for daily discharge (Equation 4.14) and the logarithm of daily discharge
(Equation 4.15), respectively.

φ1 = NSE(Q) = 1−
∑T

t=1(Q̂t −Qt)
2∑T

t=1(Qt −Q)2
(4.14)

φ2 = NSE(lnQ) = 1−
∑T

t=1(ln Q̂t − lnQt)
2∑T

t=1(lnQt − lnQ)2
(4.15)

where Q̂t is the modeled and Qt is the observed discharge [m3 s−1] at time step t
[d] and Q is the mean discharge of all time steps T of the observation.

For the optimization against discharge alone φ1 and φ2 are considered in the objec-
tive function. The weights are chosen to be equal for both criteria (w1 = w2 = 0.5).

Error Measure for Land Surface Temperature Ts To assess the model perfor-
mance regarding the simulations of Ts an error measure for quantifying the differ-
ences between modeled and satellite retrieved Ts has to be found. The satellite
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retrievals of Ts have an inherent bias of approximately 2 K to 3 K on the temporal
resolution of one day compared to ground measurements (see section 4.3).

A bias correction of the satellite retrieved Ts was intended to be avoided, because
an additional model accounting for the bias would have to be included into the
coupled model. Such a bias model would need to be parameterized. To keep the
number of parameters as low as possible the implementation of a bias correction
model was avoided.

Hence, the application of common error measures like the mean squared error or
any error measure which is sensitive to a bias are not considered. It is assumed
that the patterns delivered by the satellite measurements are trustworthy. Thus,
an objective comparing the patterns of the satellite retrieved and estimated land
surface temperature qualitatively is targeted.

In hydrology common criteria used to determine pattern similarity are usually in-
corporating measures accounting for quantitative differences like the mean squared
error (Hagen-Zanker, 2006; Wealands et al., 2005; Cloke and Pappenberger, 2008)
and thus are inapplicable. A bias resistant, local and non-parametric measure
denoted as pattern similarity (P ) is developed. Mathematically, the pattern simi-
larity criterion can be expressed as

φ3 =
1

NT

T∑
t=1

N∑
i,j∈Ω

Pij(t) (4.16a)

Pij(t) =
1

2 · 8
8∑

k=1

[
sgn

(
T̂

(k)
s,ij(t)− T̂s,ij(t)

)
sgn

(
T

(k)
s,ij(t)− Ts,ij(t)

)
+ 1
]

(4.16b)

where i and j are the elements of the spatial domain Ω, which in total consists of
N cells, T is the number of time steps, Pij(t) is the pattern similarity criteria at

cell (i, j) at a particular time step t, T
(k)
s,ij is the land surface temperature of the

kth neighbor of the center cell (i, j), and Ts,ij is the land surface temperature of
the center cell itself. The Pattern Similarity criterion is normalized with 8, the
number of neighbors of the center cell (i, j). The notation without hat (Ts) is
used for the satellite derived land surface temperature, while the model simulated
temperature is denoted with a hat (T̂s). The sgn operation determines the sign of
the argument a as

sgn(a) =

{
1 if a > 0

−1 if a ≤ 0
. (4.17)

An example for the pattern similarity criterion is depicted in Fig. 4.2.
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Figure 4.2: Schematic description of the pattern similarity criterion according to
Equation 4.16b. In the upper left row an example Pattern A with the
center pixel having the value 10 is illustrated (e.g., satellite retrieved
Ts). Next to it, on its right, the sign of the comparison between the
center pixel with its neighboring pixels is shown. If the respective
neighboring pixel is larger than the center pixel (green arrow) the value
1 is assigned to this pixel (e.g., 5 pixels in Pattern A), otherwise (red
arrow) the value -1 is assigned to them (e.g., 3 pixels in Pattern A).

This analysis is repeated for a pattern B (e.g., simulation of T̂s), as
depicted in the lower row. The results of both comparisons are multi-
plied and increased by 1. Thus, the dissimilar pixels between pattern A
and pattern B become 0, while similar become 2. The elements of the
resulting matrix are summed up and divided by twice of the number
of neighbors (e.g., 8). For the given example, the pattern similarity
criterion is 0.75, meaning that three quarter of the neighbors showed
the same relation to its center value.

The criterion is based on a 3×3 pixel search raster. Its center cell is subtracted from
the eight neighboring cells. The difference becomes negative and the sgn = −1,
if the value of the center cell is greater than the neighbor. In the opposite case
the sign becomes positive (sgn = 1). This procedure is applied to both fields
under comparison, i.e., the satellite retrieved Ts and the modeled land surface
temperature T̂s. The two resulting 3×3 signum matrices are multiplied with each
other. The resulting matrix has a negative entry (-1) where the elements of both
factors had different signs and a positive entry (+1) where the factors had the
same sign.

Thus, a negative entry appears when the modeled grid cell shows a different ten-
dency compared to the measured land surface temperature. The entry is positive,
when the grid cell tendencies are in correspondence. In order to avoid the results
to be canceled out when summed up, the eight single results are increased by one.

90



4.4. Methodology

Hence, for full correspondence the sum of the elements of the search raster yields
16 while it is zero for full disagreement. Finally, the sum is scaled between zero and
one. Hence, a Pij(t) of 1 means full agreement of patterns, i.e., no dissimilarity.

The scaling assures comparability to other error measures like the Nash Sutcliffe
Efficiency or the correlation coefficient. The pattern similarity of 0 does not only
correspond to full dissimilarity, but means that the two patterns are inverse to
each other. A Pij(t) of 0.5 marks randomly diverging patterns.

The 3×3 local search window is applied to every cell (i, j) within the domain Ω and
all time steps t of the patterns under comparison. The overall pattern similarity
is then calculated as the mean of the single values (see Equation (4.16a)).

Numerical tests showed that a combination of the pattern similarity criteria with
another bias resistant criteria, i.e., the Pearson correlation coefficient, result in the
best model performances regarding discharge and land surface temperature. Thus,
a forth error measure is considered in the objective function

φ4 = ρ =
Cov(Ts, T̂s)

σTsσT̂s

(4.18)

where ρ denotes the Pearson correlation coefficient, Cov(Ts, T̂s) the covariance be-

tween the spatio-temporal fields of Ts and T̂s, and σTs and σT̂s
denotes the standard

deviation of the satellite retrieved Ts and modeled land surface temperature T̂s,
respectively.

The criteria for pattern similarity φ3 and φ4 are equally weighted (w3 = w4 =
0.5) in the objective function if applied for calibration against the land surface
temperature (only φ3 and φ4 are considered in the objective function).

The calibration with respect to a combination of land surface temperature and
discharge data are conducted using all four error measures φ1, φ2, φ3, and φ4 as
objective. The weights are defined as w1 = w2 = 1

3
and w3 = w4 = 1

6
. The higher

weighting of discharge error measures is chosen to ensure the partitioning of water
to the different fluxes and states of the hydrologic cycle. In comparison with other
weighting schemes this setup has proven to perform best.

To avoid the dominance of any objective φi (i = 1, ..4) the objectives are normal-
ized by their potential ranges:

φi =
φi − φmin

i

φmax
i − φmin

i

(4.19)

where min and max denote the upper and the lower bound of the particular
objective i, respectively. φmin

i and φmax
i are determined based on 55 000 simulations

in two of the catchments under investigation, i.e., Ems and Neckar, using random
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parameters. To ensure sampling over the entire parameter domain a stratified
sampling strategy was applied to generate 55 000 parameter sets (Morris, 1991).

4.4.4 Experimental Design

In order to address three different hypothesis several numerical experiments were
conducted, which will be explained within this section. In common to all of the
experiments are the six catchments under investigation depicted in Figure 4.1. To
address the issue of parameter estimation uncertainty, all experiments are designed
as ensemble simulations based on 20 independent parameter optimization runs.
The standard calibration of hydrologic models with river discharge will serve as
a reference or baseline scenario. All model calibrations are conducted with the
Dynamically Dimensioned Search Algorithm (Tolson and Shoemaker, 2007).

To verify if land surface temperature Ts has a predictive skill regarding discharge
we calibrate the hydrologic model mHM using Ts alone. The results are evaluated
by comparison of estimated and observed discharge. The determined parameter
sets are transferred to 222 ungauged locations to assess their validity and stability.

A second experiment aims to assess the impact of a combined calibration of dis-
charge Q and land surface temperature Ts. It is expected that this approach has a
high impact on the modeled evapotranspiration, since the land surface temperature
characterizes the near surface atmospheric conditions and is directly connected to
ET via Equation 4.8. Thus the conditioning of mHM with patterns of Ts should
have an effect on the modeled evapotranspiration. We hypothesize that calibrating
the hydrologic model mHM using land surface temperature and discharge will lead
to a better constrain of parameters. By applying the aforementioned framework
the model performance regarding discharge should not deteriorate significantly.
The degree of parameter constraints are determined by analyzing 20 independent
model calibrations. The resulting parameter estimation uncertainty is assessed by
dividing the spread of the ensemble parameters with its initial ranges. To avoid in-
fluential effects of outliers, the spread of ensemble parameters is determined using
the difference between 95th and 5th percentile.

Ri
r = 1− ri95 − ri5

rimax − rimin

, i = 1, . . . , n (4.20)

where r5 and r95 are the 5th and 95th percentile of the ensemble of a optimized
parameter i, rmin and rmax denote the minimum and maximum initial range for
optimization of this parameter i out of n model parameters. Thus, Ri

r expresses
the reduction of parameter ranges after model calibration if compared to the ini-
tial ranges. If the parameter range reduction Rr equals 1, the parameter range
converges to a single value in all 20 independent runs. If Rr = 0 the optimized
parameter spreads over the entire initial range.
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Additionally to the parameter ranges, the effect on evapotranspiration E is stud-
ied. We hypothesize that the spatial variability of the resulting evapotranspiration
fields will reduce by using patterns of land surface temperature complementary to
discharge for parameter inference. On the one hand, this hypothesis stems from
the knowledge that the land surface temperature is mainly governed by air tem-
perature, which has high spatial covariances. On the other hand, we expect that
constraining model parameters with an integral discharge signal could lead to
spatial inconsistencies, but nevertheless fulfills the catchment water balance. In
consequence, the magnitude of E will be comparable, whereas the spatial variabil-
ity will not. The spatial variability of modeled E is estimated using the signal to
noise ratio, which is defined as

SNRE(t) =
µE(t)

σE(t)
(4.21)

where µ denotes the mean and σ the standard deviation of an evapotranspiration
field E at a particular time step t. An evaluation with observed fields of evapo-
transpiration would be desirable, but spatially distributed measurements of evap-
otranspiration do not exist. An alternative could be evapotranspiration products
which were derived from satellites. But first, they still underlie large uncertainties
and second, either their spatial (e.g., 1◦) or temporal (e.g., months) resolution is
too coarse compared to the high resolution simulation of 4×4 km2 and 1 day of
this study.

Next to the spatial variability of E, we will present an evaluation of the evapo-
transpiration estimates at eddy flux towers (see Figure 4.1). To be comparable to
the footprint of the flux observation, which is several 10 m to several 100 m, the
spatial resolution of the model is reduced to 100×100 m2 and the modeling period
is extended to the period of the evapotranspiration observations. The flux tower
observations have been corrected to fulfill the energy balance. This methodology
is analogous to that described in Zink et al..

The calibration period is limited to the year 2009 due to availability of discharge
and land surface temperature observations. All simulations have a model spin
up period of 5 years. The majority of analyzes focus on the year 2009, but the
predictive skill of discharge is assessed by comparing with all runoff observations
available in the 222 catchments. The separation of the time series into calibration
and validation period is unnecessary, because this study focuses on the benefit of
using Ts for parameter inference compared to classical Q calibration.
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4.5 Results and Discussion

4.5.1 The Predictive Skill of Land Surface Temperature
Regarding River Runoff

In this section we will present results obtained by calibrating the hydrologic model
mHM with patterns of land surface temperature as described in section 4.4.3 in
order to assess the predictive skill of land surface temperature regarding river
runoff.

An ensemble of 20 parameters, calibrated in each catchment, is used for a for-
ward run to predict discharge. Figure 4.3 shows exemplarily the observed and
simulated discharge time series of the two basins Ems and Main out of the six
basins under investigation (Figure 4.1). For comparison, Figure 4.3 also shows
discharge predictions obtained by classical calibration with river runoff (top row).
As can be seen, the performance decreases if mHM is calibrated with Ts (bottom
row). Especially low flow periods are usually overestimated (July to September).
This overestimation results from insufficient estimated slow interflow and baseflow.
These hydrologic processes are insufficiently modeled because Ts is non informative
regarding them. This means parameters which are connected to slow interflow and
baseflow are insensitive to a calibration with land surface temperature. Similar
studies, using Ts for model calibration, limit the number of calibrated parameters
to those connected to soil water storage and evapotranspiration (Crow et al., 2003;
Gutmann and Small, 2010; Silvestro et al., 2013, 2014; Corbari and Mancini, 2014;
Corbari et al., 2015). In these studies all other parameters are determined by prior
knowledge, e.g., transfer from remote locations or expert knowledge.

The uncertainty arising from the parameter estimation process is depicted as grey
bands in Figure 4.3. The runoff uncertainty increases for the Ts calibration com-
pared to the classical calibration with discharge. In case of the Ems river basin the
highflows of the flood event in spring 2009 are within the uncertainty bands for
the Ts calibration, which was not the case for the Q calibration. On the contrary,
some of the parameter sets from Ts calibration performed very poor in estimat-
ing flood events, e.g., in spring in the Main catchment (Figure 4.3 panel D). The
high uncertainty in river runoff simulations is reasoned in the weak estimation
of routing parameters when the model is calibrated with land surface tempera-
ture (see section 4.5.2). This approach shows stronger pronounced flood peaks as
compared to Q calibration. This indicates that the direct runoff and fast inter-
flow component are enabled more rapidly. The uncertainty ranges are, however,
acceptable if considering runoff itself was not involved in model calibration. The
median discharge estimated from Ts calibrations, shows unexpected good mapping
of the observed discharge, revealing NSEs off 0.8 and 0.54 for the Ems and Main
catchment, respectively.
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Figure 4.3: Simulated daily discharge when calibrating the hydrologic model mHM
with discharge Q (panels A and B) and with land surface temperature
Ts (panels C and D) for the catchments Ems (panels A and C) and
Main (panels B and D). The grey bands depict the uncertainty of 20
ensemble model simulations assessed by the range of the 5th and 95th

percentile of the estimated discharge. The dark grey line is the median
of the ensemble discharge simulation. Its performance is given in the
top right corner of each panel.

The median NSE of the 20 model calibrations with Ts varies between 0.36 and
0.66 within the six catchments and is in average 0.51 (Figure 4.4 panel A). Note
that this is the median of NSEs obtained from the 20 calibrated parameter sets,
compared to the NSE obtained from the median discharge time series reported
above. Considering that discharge was not used for model parameter inference
this is a satisfactorily result and shows that Ts has some predictive skill regarding
river discharge. But, the variations of the performance criteria are substantially
high with an average standard deviation of 0.22. These uncertainties even increase
(standard deviation=0.26) if the model parameters are transferred to remote loca-
tions (Figure 4.4 panel B). One reason is the five times higher number of ensemble
simulations using 100 parameter sets, consisting of 20 parameter sets from each
of the other five catchments. Another reason is that some transferred parame-
ters will not be well adjusted for transfer to another location because different
hydrologic process are important in distinct catchments. The Neckar catchment,
for example, has a significant groundwater contribution to the runoff process due
to the karstic nature of the subsurface. Such processes will play a minor role in,
e.g., the Ems basin, which is mainly located on a ground moraine. Hence, some
subsurface parameters are not well constrained in the Ems basin and will lead to
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an insufficient representation of karstic processes in the Neckar catchment. Still,
the median NSEs are comparable to the on-site calibrations (Figure 4.4 panel A)
which confirms the transferability and stability of the inferred parameters.

Figure 4.4: A) shows the performance of the model regarding discharge if the model
is calibrated with land surface temperature (Ts). For each of the six
catchments 20 independent calibration runs lead to the variability of
the Nash-Sutcliffe performance criteria. B) depicts the model perfor-
mance when calibrating mHM with either Q or Ts and transferring the
parameters to the other catchments. Thus, the variability arises from
100 parameter sets, which are derived from the five different donor
basins.

The comparison of transferred parameters obtained by Q calibration with those
acquired by Ts calibration show an average deterioration of the median of 39%.
This behavior was expected because a cross validation of land surface temperature
inferred model parameters with river discharge can not outperform the calibration
employing Q. However, for most of the catchments the upper edges of the box-plots
at least reach the median model performance of the Q calibration.

The 120 optimized parameter sets (20 from each catchment) are transferred to 222
additional catchments to assess their ability to reproduce discharge observations
(Figure 4.5). This cross validation experiment will assess the predictive power of
Ts optimized model parameters because this catchments were not involved in the
parameter inference process (Klemeš, 1986). For these catchments the average
median model performance is 0.4. Whereas 91% of all catchments show positive
median NSEs for daily discharge. These results further confirm that Ts has a
predictive skill regarding discharge. But the performances may not be sufficient for
reliable water balance predictions on a daily basis. For scenarios where no discharge
data are at hand, the proposed procedure may help to get a first indication of the
catchment’s water balance.

Using satellite derived land surface temperature for calibrating hydrologic models
fits to efforts to predict river runoff in ungauged basins (Sivapalan et al., 2003;
Hrachowitz et al., 2013). The broadly available Ts can give first indications of
a catchments water balance. Especially the results of the six study catchments

96



4.5. Results and Discussion

Figure 4.5: Meidan performance of ensemble discharge predictions in 222 catch-
ments spread over Germany. These catchments have not been used for
parameter inference. The 20 parameter sets of the six donor basins
presented in Figure 4.1 are used for determining these results. The 120
parameter sets from the donor basins are based on calibrations only
using land surface temperature.

(Figure 4.3) show that Ts has a moderate predictive skill for river discharge.

Corbari and Mancini (2014) found similar results for the calibration of a dis-
tributed Energy-Water Balance model. In their study the calibration with Ts did
not outperform the discharge estimation with the standard parameterization of
Energy-Water Balance model. Silvestro et al. (2014) also found that a land sur-
face temperature calibration lead to performance losses if compared to streamflow
calibrations. The deterioration shown within these studies is lower than the above
mentioned. This can, however, be attributed to the used calibration procedure.
Corbari and Mancini (2014) and Silvestro et al. (2014) restricted the number of
parameters to be calibrated only to those connected to soil moisture and evapotran-
spiration. The remaining parameters have been estimated from prior knowledge
with the assumption that they are insensitive to Ts. To restrict the calibration to
a subset parameters, is a good idea in general but implies a risk. The parameters
which remain for calibration may be insensitive or have low sensitivities with re-
gard to Ts if compared to these excluded from calibration (see, e.g., Cuntz et al.,
2015). A proper sensitivity analysis or parameter screening should be performed
before excluding parameters from calibration. Therefore, within this study all pa-
rameters have been purpose to optimization, which may also include parameters
which are insensitive regarding Ts, but get important for discharge prediction.
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4.5.2 Calibration of mHM with River Runoff and Land Surface
Temperature

The impact of simultaneously calibrating mHM with land surface temperature and
river discharge is investigated within this section. Therefore, we analyze the effect
on the identifiability of model parameters, the spatial variability of evapotranspi-
ration, the estimation of river runoff, and the estimation of evapotranspiration at
eddy flux towers.

Identifiability of Model Parameters: Parameter Range Reduction

The parameter range reduction for the calibration of the model with a) discharge,
b) discharge and land surface temperature, and c) land surface temperature are de-
termined according to Equation 4.20. One hypothesis of this study is that adding
a diagnostic land surface temperature model to an exiting hydrologic model helps
to better constrain the model parameters. As indicated in section 4.4.3 only the
patterns of Ts were involved in model calibration of mHM through the pattern
similarity criterion (Equation 4.16). The spread of the ensemble parameters nor-
malized with its initial ranges is shown in Figure 4.6. Dark red colors characterize
well constrained model parameters, whereas light yellow colors identify parame-
ters which are almost randomly drawn from their initial ranges. This figure gives
some indications of the identifiability, and hence the sensitivity of the parameters
regarding the various variables used for calibration (Q, Ts, or both). The inter-
pretation of the sensitivity is analogous to the parameter range reduction: If the
parameter range is reduced the particular parameter is sensitive with respect to
the individual variable.

The most obvious difference between the three optimization strategies can be ob-
served in the group of the soil moisture evapotranspiration parameters (p19 to p24).
These parameters primarily govern the water extraction from the soil due to evap-
otranspiration. They are constrained best if calibrated with Ts (Figure 4.6 bottom
panel). The ranges also narrow significantly when mutually calibrated with Q and
Ts (Figure 4.6 center panel). Two out of the three evapotranspiration parameters
(parameters 25 and 26) show a similar behavior. These results confirm that using
patterns of satellite derived land surface temperature for parameter optimization
helps to better constrain model parameters, especially those which are connected
to evapotranspiration.

The results shown in Figure 4.6 also indicate that using Ts only for parameter
optimization may not be sufficient because some parameters are not well con-
strained. The snow threshold temperature (parameter 2), for example, is not as
good constrained if Q is not considered in model calibration. The snow threshold
temperature parameter defines the aggregate state of the precipitation. If the air
temperature is below this threshold, precipitation is treated as snow, otherwise it
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Figure 4.6: The parameter range reduction if mHM is calibrated against discharge
(upper row), discharge and land surface temperature (middle row), or
land surface temperature (lower row). The parameter range reduction
is assessed by scaling the range of a particular parameter resulting
from 20 independent calibration runs with the initial parameter range
(see Equation 4.20). A low value (light yellow) indicates a small range
reduction, whereas a high value (dark red) indicates a well constrained
parameter. The parameters are grouped according to their appearance
in different model processes. Abbreviations: I - interception, D - direct
runoff.

is considered as rain. Ts is a bad estimator for the snow threshold temperature
because this parameter only gets important in winter. During the cold season sea-
son evapotranspiration is low and in consequence the impact of Ts on the modeled
water fluxes is low too.

The last routing parameter, i.e., parameter 44, is almost insensitive to Ts (Fig-
ure 4.6 bottom panel). Further, the interflow parameters (parameters 31-34) show
a lower range reduction to parameter optimizations including Q observations.
These insensitivities explain the mismatches in low flows observed in Figure 4.3.
Moreover, the strongly pronounced peaks in Figure 4.6 are reasoned in the lousy
estimation of the threshold for activating/deactivating the fast inflow process (pa-
rameter 29 in Figure 4.6).
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The high parameter range reduction of the parameters 45-50 confirms the proper
implementation and parameterization of the diagnostic land surface temperature
module. This is an important aspect, since increasing the number of model param-
eters due to the implementation of a new process should not lead to a distraction
of the optimization algorithm caused by insensitive parameters.

Parameter 51, which also belongs to the newly introduced Ts parameters, char-
acterizes a bias correction parameter for Ts. This parameter was implemented
during the investigation of different objective functions, in which we also tested
bias sensitive error measures, e.g., NSE or SSE. The fact that this parameter is not
well constrained underpins that the pattern similarity criterion is bias insensitive.

These results confirm the hypothesis that the consideration of spatially distributed,
satellite retrieved land surface temperature fields improve the identifiability of
parameters of the hydrologic model mHM.

Spatial Patterns of Evapotranspiration

The results of the calibration with discharge and land surface temperature are
compared to those which were obtained by classical calibration with discharge.
Hence, this section will analyze the impacts of additionally constraining mHM
with Ts on the spatial distribution of evapotranspiration.

Figure 4.7 shows the evapotranspiration of summer 2009 in the catchment Main.
Whereas panel A displays the result of an optimization with discharge, panel B
shows the result of the calibration with discharge and land surface temperature.
It can be seen that the pattern of the evapotranspiration of calibration using
discharge shows a higher spatial variability compared that using Q and Ts. Next
to its reduced spatial variability, E is on average higher if the model was calibrated
with Q and Ts. The average evapotranspiration for Q and Q and TS calibration
are 246 mm season−1 and 262 mm season−1 in summer, respectively. Nonetheless,
the discharge performance for the Main catchment does not decrease (results will
be presented later in section 4.5.2). The locations with evapotranspiration values
less than 210 mm season−1 are urban areas.

The visual comparison in Figure 4.7 supports the hypothesis that the spatial field
of evapotranspiration has a higher spatial variability if the model is optimized with
discharge only. The spatial variability of the evapotranspiration decreases if land
surface temperature, which carries some information about the spatial distribution,
is included in the calibration process. McCabe et al. (2005) also found that Ts had
an effect on spatial variability of evapotranspiration, but did not quantify it.

In this study we quantify the impact on the spatial fields of evapotranspiration
by the signal to noise ratio (SNR, see Equation 4.21). For the two example catch-
ments, Ems and Main, the smoothed signal to noise ratio over the course of the
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Figure 4.7: Comparison of the simulated evapotranspiration if the model is cali-
brated with A) discharge or B) discharge and land surface temperature
simultaneously. The plot shows the sum of evapotranspiration in sum-
mer 2009 (June, July, August) for the Main catchment (see Figure 4.1).

year 2009 is shown in Figure 4.8. The SNR is higher for the calibration with river
runoff and land surface temperature. This means the fields of E are smoother
and do not have as much spatial variability as these obtained by calibration with
discharge. This smoothing is not only caused by Ts, but to a significant extent by
the air temperature, which is a very sensitive variable in Equation 4.8. Air tem-
perature has very high spatial covariance, i.e., low spatial variability, compared
to, e.g., precipitation, which propagates to the evapotranspiration in the proposed
framework.

A significant impacts of the calibration procedure on simulated evapotranspiration
can only be observed between April and September (Figure 4.8). During winter
evapotranspiration is very low and thus uncertain model parameters do not have a
significant effect on neither the magnitude nor the spatial variability of E. Anyway,
the uncertainty of the modeled E is low during this period.

Figure 4.9 panel A presents the average signal to noise ratios of the year 2009 for
the six catchments. To compare the impact of the Q − Ts calibration on both
E and river runoff Q, Figure 4.9 panel B presents the NSE of river runoff. As
panel A shows the SNR is higher for all of the Q − Ts calibrations. Further, the
uncertainty bands are smaller compared to the Q calibration for all basins with
exception of the Mulde. Figures 4.8 and 4.9 conform that the spatial variability
of evapotranspiration is reduced, if land surface temperature is considered during
model calibration.
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Figure 4.8: Kernel smoothed signal to noise ratio (SNR, Equation 4.21) of evap-
otranspiration fields for the catchments A) Ems and B) Main. Low
values characterize noisy fields, whereas high values describe spatially
smooth patterns. The uncertainty bands depict the difference between
the 5th and 95th percentile of the signal to noise ratio of the 20 on-site
calibrated parameter sets.

Figure 4.9: Comparison of optimization strategies using Q only or Q and Ts
regarding A) the average spatial variability of evapotranspiration
and B) Nash-Sutcliffe performance criterion (NSE) of daily discharge
(panel B). Panel A is estimated by averaging the daily signal to noise
ratio of 2009 (e.g., Figure 4.8). Panel B shows the estimated discharge
of 2009 using the above mentioned calibration objectives. The uncer-
tainty stems from 20 independent parameter estimations.
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River Runoff

Finding a comprise solution for optimizing the hydrologic model with Q and Ts
should not deteriorate the discharge simulation significantly. Figure 4.9 panel B
shows that for four out of six catchments this condition is fulfilled. For the Neckar
and Weser catchment the discharge deteriorates significantly by more than 5% for
the simultaneous calibration. One reason for that could be the weighting scheme
between the two objectives Q and Ts. For some catchments it may be necessary
to increase the weighting of the objective function considering discharge, i.e., φ1

and φ2 in Equation 4.13. Crow et al. (2003) studied the effect of weighting Q
and Ts differently and found that the model performance differs based on the
chosen weighting scheme. The herein proposed weighting was determined during
a lot of test for the Ems and Neckar catchment and showed good results for these
test cases. Generally, the weighting of different objectives can be argued in one
way or another. Ideally a Pareto optimization would give a closer insight to the
offset between both objectives. However, the decision which objective should be
preferred stays a subjective choice. With exception of the Mulde, in none of the
catchments the NSE could be improved by assimilating Ts (Figure 4.9 panel B).
On average the median runoff performance deteriorates by 6% if Ts is considered
in the calibration. A range of -11% to 14% performance difference was found by
Corbari and Mancini (2014) if the model is calibrated by Ts and Q simultaneously.
Thus, our findings are comparable to this study.

Evapotranspiration at Eddy Flux Towers

Figure 4.10 compares the performances for simulated evapotranspiration of the
classical discharge calibration with the combined Q− Ts calibration. The Pearson
correlation coefficient between observations and simulation is increasing if mHM
is calibrated with both Q and Ts, as Figure 4.10 panel A shows. The medians
of the correlation and the RMSE improve 5% and 8%, respectively. The major
improvements are achieved in summer when the evapotranspiration is highest, for
example, the median correlation coefficient in summer improves from 0.36 to 0.67
at station E3.

Another important effect is the reduction of uncertainty of the evapotranspira-
tion simulations (Figure 4.10). At some stations the uncertainty bands are hardly
visible for the Q − Ts calibration. This behavior can be directly attributed to
the parameter range reduction (see section 4.5.2). The uncertainty of the E esti-
mates has to decrease because the parameter estimation uncertainty of parameters
related to evapotranspiration decreased (parameters 19 to 27 in Figure 4.6). Com-
paring the improvement in E estimation and the deterioration in Q simulation it is
difficult to draw a conclusion. We consider a combined calibration with Q and Ts
as beneficial based on the tradeoff of performances of the two major water balance
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variables E and Q and, moreover, the improved parameter identifiability.

Figure 4.10: Evaluation of evapotranspiration (E) estimates at 7 eddy flux tow-
ers (Figure 4.1). A) shows the Pearson correlation coefficient and B)
shows the root mean squared error (RMSE) between flux tower ob-
servations and model simulations using 20 parameter sets inferred by
either calibration with discharge (blue) or discharge and land surface
temperature (orange). The flux tower observation periods range from
3 to 10 years and are on average 6 years. Note that high Pearson
correlation coefficients are beneficial, while the opposite is true for
the RMSE.

4.6 Summary and Conclusions

This study focused on the development and implementation of a diagnostic land
surface temperature module for hydrologic models. The Ts module is meant to
account for spatial patterns of satellite observations within the model calibration
process. Therefore, the herein applied hydrologic model mHM has been calibrated
using three different strategies. First, as a reference mHM was classically calibrated
with observed streamflow. Second, a calibration with land surface temperature
aimed to assess the predictive power of this method regarding streamflow. And
third, a combined calibration withQ and Ts was intended to better constrain model
parameters, i.e., reduce the ranges of the ensemble parameter sets. All experiments
have been conducted by consideration of parameter estimation uncertainty which
was realized by 20 independent parameter optimization runs.

The results of the study confirm that only by accounting for spatial variability
of land surface temperature in the parameter inference process results in moder-
ate model performances. This is a step forward towards predictions in ungauged
basins. Land surface temperature data are broadly and freely available over the
entire globe and thus represent a valuable source of information for hydrologic
modeling.

A second finding of this study is that calibrating the hydrologic model mHM with
Q and Ts lead to better constrained model parameters, even if the implementa-
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tion of the diagnostic land surface temperature model requires additional model
parameters. Especially parameters connected to evapotranspiration were better
constrained if compared to discharge only calibrations. This confirms that the
classical calibration of hydrologic model should be reviewed. The calibration with
river runoff concentrates on the integral signal at the basin outlet without consid-
ering the spatial representativeness of the model.

The herein presented methodology is a step forward to consider such spatially
distributed observations, even if they are inherently biased. The developed pattern
similarity criterion is a first attempt to assess the spatial structure of spatially
distributed observations.

But also limitations of this methodology could be observed. Counterintuitively,
the model performance with regard to runoff decreased despite the fact that model
parameters have been better constrained. At the same time the model performance
regarding evapotranspiration increases at the seven eddy flux measurement sites.

Parameters connected to interflow and routing could not be sufficiently constrained
if only Ts was considered in the calibration process. Further research has to be done
to explore other sources of satellite data, which may overcome this discrepancy.
GRACE data, for example, seem to be a promising alternative to assess subsurface
model parameters.

Some research has further to be dedicated for investigating new measures to in-
corporate either spatial or temporal information of satellite data. Cloke and Pap-
penberger (2008) and Koch et al. (2015) did already some efforts in this direction,
but the literature about bias-insensitive pattern matching criteria in hydrology is
still rare.

Another approach to make better use of satellite information could be a two step
calibration approach. In a first step a sensitivity analysis has to identify the model
parameters which are sensitive to the respective model variable, e.g., discharge
or land surface temperature. Based on that knowledge the hydrologic model is
calibrated first with land surface temperature and second with discharge by only
considering the sensitive parameters for the respective variable.
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Chapter 5

The German Drought Monitor

This chapter is largely based on the publication:

Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and Marx,
A. (2016): The German Drought Monitor. Environmental Research Letters, 11(7):
074002, doi:10.1088/1748-9326/11/7/074002.
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5.1. Abstract

5.1 Abstract

The 2003 drought event in Europe had major implications on many societal sectors,
including energy production, health, forestry and agriculture. The reduced avail-
ability of water accompanied by high temperatures led to substantial economic
losses on the order of 1.5 Billion Euros, only in agriculture. Furthermore, soil
droughts have considerable impacts on ecosystems, forest fires and water manage-
ment. Monitoring soil water availability in near real-time and at high-resolution,
i.e., 4×4 km2, enables water managers to mitigate the impact of these extreme
events. The German Drought Monitor was established in 2014 as an online plat-
form. It uses an operational modeling system that consists of four steps: (1) a daily
update of observed meteorological data by the German Weather Service, with con-
sistency checks and interpolation; (2) an estimation of current soil moisture using
the mesoscale Hydrological Model (mHM); (3) calculation of a quantile-based Soil
Moisture Index (SMI) based on a 60 year data record; and (4) classification of the
SMI into five drought classes ranging from abnormally dry to exceptional drought.
Finally, an easy to understand map is produced and published on a daily basis
on www.ufz.de/droughtmonitor. Analysis of the ongoing 2015 drought event,
which garnered broad media attention, shows that 75% of the German territory
underwent drought conditions in July 2015. Regions such as Northern Bavaria and
Eastern Saxony, however, have been particularly prone to drought conditions since
autumn 2014. Comparisons with historical droughts show that the 2015 event is
amongst the ten largest drought events observed in Germany since 1954 in terms
of its spatial extent, magnitude and duration.

5.2 Introduction

Drought is a natural phenomenon that results from deficiencies in precipitation
compared to the expected or normal (Wilhite, 2005). It may translate to wa-
ter scarcity, a discrepancy between the actual demand and the corresponding
availability of water for environmental and societal needs. Compared to other
natural disasters, droughts have the largest spatial extent and longest duration
(Sheffield and Wood, 2011). These creeping events easily persist over several years
and can reach national to continental spatial coverage (Sheffield and Wood, 2011;
Samaniego et al., 2013). According to the EM-DAT database (Guha-Sapir et al.,
2015), droughts affected 2.2 billion people worldwide between 1950 and 2014, thus
making droughts the second most important natural disaster after floods (3.6 bil-
lion people affected). In Europe, for example, the costs per event during this period
are estimated to be 621 Mio. EUR, the costliest amongst all natural disasters that
occurred in this region (Guha-Sapir et al., 2015). Droughts have impacts on many
societal sectors, including forestry, water resources management, energy genera-
tion, and health. Their impacts can be divided into direct and indirect impacts
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(Wilhite et al., 2007). Examples of direct impacts are reduced crop yield and for-
est productivity, increased forest fire hazard, reduced water levels, and increased
mortality rates for livestock, wildlife and fish. They can usually be quantified,
though the assessment of indirect impacts is often challenging. An example of
indirect drought impact is variable food prices due to market effects in the agri-
cultural sector. As a result, it is difficult to estimate the total costs and losses at
the regional and national levels. Furthermore, the indirect losses of droughts often
exceed those of the direct ones (Wilhite et al., 2007).

From an economic perspective, droughts affect mainly agriculture, food and energy
production, inland navigation, and tourism. The agro-economic impact is typically
highest, due to losses in crop yield and lifestock. Energy production is negatively
affected if the water temperature rises above a critical threshold and, consequently,
the availability of cooling water for energy plants is limited. Wilhite et al. (2000)
considered droughts to be one of the most damaging natural hazards in terms of
economic costs. Widespread, long-term drought events, in particular, not only
have an impact on the regional agricultural sector but may also have international
impacts on commodity prices and food security (EEA, 2012b).

According to the European Commission, the frequency of droughts has increased
since 1980 and will, very likely, further increase (EEA, 2012a). To date, 11%
of the European population and 17% of the area of the EU have been affected
by water scarcity (European Commission, 2007, 2010). For example, the 2003
drought event, which covered major parts of Europe, caused 7,000 fatalities in
Germany alone (European Commission, 2012) and had an agro-economic impact
of 1.5 billion EUR. On the European level, the death toll was estimated to exceed
70,000 (Robine et al., 2008), and the agro-economical impact was estimated to
be 15 billion EUR (COPA-COGECA, 2003). This severe drought impacted many
components of societal life. It disrupted irrigation, inland navigation, and power
plant cooling (Fink et al., 2004; Parry et al., 2007). The current 2015 soil drought
event in Germany caused losses in crop yield and increased forest fire risk. An
analysis of the evolution of this event is presented in this study.

A precise and generally accepted definition of drought does not exist (Wilhite,
2005) because drought impacts are specific to the region of its occurrence and
to the field of interest. For example, an agricultural production engineer would
interpret a drought event in a different manner than a water resources manager
would. According to the WMO (2006) and Mishra and Singh (2010), four different
types of drought can usually be found in the scientific literature: meteorological,
hydrological, agricultural and socioeconomic droughts. Additionally, groundwater
drought (van Lanen and Peters, 2000; Kumar et al., 2015) is important on longer
timescales. Meteorological droughts relate to a deficiency of precipitation for a
defined period of time, whereas hydrological drought focuses on the availability
of surface and subsurface water (e.g., water levels of river and lakes). A meteo-
rological drought is often assessed by the Standardized Precipitation Index (SPI,
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McKee et al. (1993)). Groundwater droughts are characterized by exceptionally
low groundwater levels, groundwater recharge and baseflow. Agricultural drought
is connected to soil water availability for plants. A low amount of soil water being
available for plants can lead to crop yield reduction or crop failure. Furthermore,
socio-economic drought can emerge from all of the aforementioned drought types.
It is characterized by a shortfall in water supply (water scarcity), meaning that the
water demand could not be covered, leading to monetary losses. In terms of du-
ration, precipitation drought has the shortest occurrence, followed by agricultural
drought and finally hydrological and groundwater droughts.

A drought monitoring system that delivers timely information about the onset,
extent, duration and intensity could help to reduce both drought-related fatalities
and economic and ecological damages (Wilhite, 1993). The German Drought Mon-
itor (GDM) presented herein focuses on agricultural droughts, which are highly
relevant for Germany because they induce substantial agro-economic losses. In
situ soil moisture observations are usually unavailable at regional or national scales
and in near real-time. Alternatively, remotely sensed products are available over
large areas, but contain uncertainties (Sheffield et al., 2014), cover only short time
periods, are limited to sensor overflight times, depend on cloudiness and do not
close the water balance. Hence, this study presents a drought identification and
classification framework based on a distributed hydrologic model simulation.

5.2.1 Existing Drought Monitoring Systems

Several drought monitors for large parts of the world are currently available to
the public. On the continental scale, drought monitoring or forecasting systems
exist for North America (Lawrimore et al., 2002), Europe (Horion et al., 2012),
and Africa (Sheffield et al., 2014). On a national scope, online platforms for India
(Shah and Mishra, 2015), the Czech Republic (Trnka et al., 2014), and the United
States of America (Svoboda et al., 2002; Luo and Wood, 2007; Wood, 2008) are
available. Efforts to monitor drought evolution on the global scale have been made
by Pozzi et al. (2013) and Hao et al. (2014).

A variety of input data, spatial and temporal resolutions and estimated drought
indices can be found among these monitoring systems. The longest established
system is the US drought monitor launched in 1999. The weekly published map
is a composite of different indices based on meteorological observations, i.e., stan-
dardized precipitation index, the Palmer drought severity index, soil moisture
percentiles derived from hydrologic model simulations, and expert knowledge from
more than 130 people (Svoboda et al., 2002). Thus, local experts like agricultural
and water resources managers can add information and help verify the drought
map. The North American drought monitor was implemented in 2002 based on
experience with the US drought monitor (Lawrimore et al., 2002). It enlarges the
investigated domain to include Canada and Mexico and delivers monthly drought
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maps. The drought monitors of the University of Washington (Wood, 2008) and
Princeton University (Luo and Wood, 2007) cover the continental United States,
showing simulations and forecasts of soil moisture, snow and runoff at 1/8◦ spatial
resolution derived using the Variable Infiltration Capacity (VIC) model (Liang
et al., 1994).

Systems established for India (Shah and Mishra, 2015) and Africa (Sheffield et al.,
2014) are based on bias-corrected satellite precipitation with the latter including
a seasonal forecasting capability. These systems are running on 1/4◦ resolution
using the VIC model and provide drought indices based on precipitation, soil
moisture, and streamflow. The Czech drought monitor (Trnka et al., 2014) is based
on modeled root zone soil moisture, which is derived from local meteorological
observations. Maps are published on a weekly basis and have a spatial resolution
of 500 m.

The European Drought Observatory (EDO) publishes the current drought status
for Europe at a ten-day interval based on a combined drought indicator composed
of the standardized precipitation index (SPI) as well as soil moisture and vege-
tation conditions (Horion et al., 2012). The soil water and vegetation status are
assessed by its anomalies, which are calculated as the deviation of the long-term
mean divided by the standard deviation. EDO uses local observations to derive the
SPI and the hydrologic model LISFLOOD (De Roo et al., 2000) to estimate soil
moisture. The status of the vegetation is estimated based on the fraction of Ab-
sorbed Photosynthetically Active Radiation (fAPAR) retrieved from ENVISAT.
The spatial resolutions of precipitation, soil moisture and fAPAR are 25 km, 5 km
and 1 km, respectively, whereas their reference periods are 1981-2010, 1990-2010,
and 1997-2010, respectively (Horion et al., 2012).

5.2.2 Justification for a German Drought Monitor

The implementation of a national drought monitoring system goes beyond the
capabilities of the existing systems. In our work with regional stakeholders from
agriculture and foresty, the need for a high-resolution regional monitoring system
was expressed. Therefore, the drought monitoring system presented herein is based
on data provided by the German Meteorological Service (Deutscher Wetterdienst
(DWD), 2015), which are the most dense and reliable meteorological data available
for this region. Furthermore, due to the long-term availability of these data, we
are able to use a 60-year reference period for the estimation of drought indices
for every grid cell and day of the year. This is substantially longer than can be
found in other existing systems for this region. The estimation of drought indices
is based on monthly soil moisture percentiles instead of anomalies, which allows for
a better quantification of the drought in terms of drought magnitude and ranking
using historical events. Finally, we expect that the implementation of a national
drought monitor would encourage local experts, stakeholders and decision makers
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to take part in the future developments and in the verification of the GDM.

5.3 Operational Drought Monitoring Framework

The German Drought Monitor (GDM) estimates drought conditions based on near
realtime observed meteorological data (Deutscher Wetterdienst (DWD), 2015).
These forcings drive the hydrologic model mHM (Samaniego et al., 2010; Kumar
et al., 2013b) to estimate root-zone soil moisture conditions. A 60-year soil mois-
ture data set for the period 1954-2013 is created to reconstruct historic drought
conditions. This reconstruction is the statistical basis for estimating soil moisture
percentiles for current conditions for every location and time point. Furthermore,
it allows an evaluation of recent drought events with respect to historical events.
A similar framework to that used in the GDM is applied to rank historic drought
events in Germany (Samaniego et al., 2013) and for seasonal drought predictions
in Europe (Thober et al., 2015).

The operational system consists of four processing steps (Figure 5.1). In the
first step, local observations from the German Meteorological Service are retrieved
every morning (Deutscher Wetterdienst (DWD), 2015). These data are initially
quality checked by the DWD. Nevertheless, the GDM checks the downloaded data
for consistency and detects outliers as a supplementary quality control. Currently,
approximately 1700 precipitation and 500 climate stations, which observe the min-
imum, maximum, and average daily temperatures, are used to derive daily fields
of meteorological input data for the hydrologic model. The daily data are inter-
polated by external drift kriging using terrain elevation as external drift. The
spatial resolution of the resulting meteorological fields is a compromise between
the demands for highly resolved hydrological predictions, which are required by
stakeholders and practitioners, and the lowest reasonable resolution supported by
the input data. The average minimal distance between two neighboring precipi-
tation stations is approximately 6 km in Germany. Thus, we decided on a target
resolution of 4 × 4 km2, which would provide high-resolution information without
facing the risk of over-interpreting of the meteorological observations. These data
are available with a time lag of four days. Due to the high persistency of soil
moisture, this near real-time estimation is considered sufficient for agricultural or
water management purposes.

In the second step, these interpolated fields are used to force the hydrological
model mHM, a process-based model that treats grid cells as unique hydrological
units. It comprises hydrological processes such as interception, snow accumulation
and melting, infiltration, soil water dynamics, groundwater recharge and storage.
The generated discharge of a model cell consists of direct runoff, baseflow, slow
and fast interflow, which, after aggregating its components, is routed through the
model domain using the Muskingum-Cunge flood routing algorithm (Chow et al.,
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Figure 5.1: Framework of the German Drought Monitor. After 1) downloading and
interpolating of the meteorological data from the National Weather
Service (DWD) the data are fed to the hydrologic model mHM. 2)
mHM estimates the soil moisture for the entire root zone on a daily
basis which is used to 3) calculate the Soil Moisture Index (SMI). The
SMI is 4) classified and visualized in a drought map published online.

1988; Todini, 2007a). By using the Multiscale Parameter Regionalization (MPR)
technique (Samaniego et al., 2010; Kumar et al., 2013b), mHM directly accounts
for the sub-grid variability of physiographic characteristics. The model parame-
ters are estimated in a preliminary step on the lowest possible input resolution
of the physiographic variables, i.e., 100 × 100 m2. In a second step, effective pa-
rameters at the hydrological modeling resolution of 4 × 4 km2 are estimated by
applying particular upscaling operators. This technique makes mHM scale- and
location-independent because it connects effective parameters to physiographical
inputs (Kumar et al., 2013b). In several studies, the model has shown to perform
satisfactorily in a wide range of catchments with drainage areas ranging from 4
to 530,000 km2 and with contrasting climatic regimes (Germany, India, USA, Eu-
rope) as has been shown (e.g., Samaniego et al. (2013, 2011); Kumar et al. (2013a);
Rakovec et al. (2016)).

A soil moisture field, updated daily, is estimated by running the model with an
internal time step of one hour. The soil water availability is estimated in three dif-
ferent layers. The thicknesses of the upper two layers are 5 cm and 20 cm. A third
layer is spatially variable in depth, depending on the soil horizon properties speci-
fied in the input data. This variable depth, is on average, 1.8 m in Germany. The
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estimated soil moisture of each single layer is used to estimate the total root zone
soil moisture. The hydrological model stores specified state variables at the end
of a model run. To calculate the soil moisture statistical reference, we performed
a 60-year simulation from 1954 to 2013. Within the operational framework, we
are currently performing hydrological simulations initialized with the model states
of December 31, 2013. Thus computational time is minimized as the daily model
simulation runs from January 1, 2014, onwards. An evaluation of the hydrologic
model on the domain of Germany is provided by Samaniego et al. (2013).

The third step within the GDM is to transform the daily updated soil moisture
into the Soil Moisture Index (SMI) by estimating the percentile of the updated soil
moisture value with respect to its climatology. The daily updated soil moisture is
estimated as the average of the soil conditions of the preceding 30 days. Therefore,
it represents values that correspond to a time period of one month. The SMI is
estimated using a non-parametric kernel-based cumulative distribution function
based on a 60-year historic soil moisture reconstruction (1954-2013), as described
by Samaniego et al. (2013). The calculation of the SMI is comparable to other
indices such as the Standardized Precipitation Index (SPI, McKee et al. (1993)).
It is estimated on every grid cell and for the particular time of the year (i.e., the
average of the 30 days preceding the estimation day).

Finally, the fourth step consists of categorizing the estimated SMI into several
drought classes and visualizing the results. A main requirement for the appearance
of the publicly available drought map is intelligibility. For the visualization of
drought events, we adapted the appearance of the German Drought Monitor to
that of the US Drought Monitor (Svoboda et al., 2002), using five classes. Four
classes define drought conditions, and the fifth class describes the pre-warning
state of abnormally dry (Table 5.1). The four drought classes scale from moderate,
(vegetation prone to water stress) to exceptional (high probability of losses of crops
and increased forest fire risk).

The classes are derived using the thresholds of the Soil Moisture Index (Table 5.1).
These thresholds reflect the occurrence of similar conditions in the past and thus
indicate the potential impacts of these conditions. For example, the class of ex-
ceptional drought is defined by an upper threshold of 0.02. This implies that this
soil moisture conditions were observed in less than 2% of the time within the 60-
year reference period at this grid cell and time of the year. Thus, this drought
condition only occurred in less than 1.2 cases over the last 60 years, which is equal
to a return period of 50 a.

Because the SMI describes the status of the soil but not necessarily the impact on
the vegetation, this classification scheme still requires further research. Crops cope
with drought conditions better or worse at different stages of plant development
and may not be influenced by heavy drought conditions. Revisiting this argument
would mean that an effect of the Soil Moisture Index (SMI) on vegetation at
different stages of plant development has to be investigated.
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Table 5.1: The classification of droughts for the German Drought Monitor based
on the Soil Moisture Index (SMI) (adapted from Svoboda et al. (2002)).

SMI class Condition of the soil Description of potential impacts

0.30 ≥ SMI > 0.20 Abnormally Dry
conditions before or after a
preceding drought

0.20 ≥ SMI > 0.10 Moderate Drought
damages to crops and
pastures possible

0.10 ≥ SMI > 0.05 Severe Drought
losses in crops and pastures
are likely

0.05 ≥ SMI > 0.02 Extreme Drought
high probability of major losses
in crops and pastures

SMI ≤ 0.02 Exceptional Drought
high probability of exceptional
losses in crops and pastures

The resulting maps are visualized and published online in the GDM. Currently,
an up-to-date drought map is published every morning at 3 am CET on www.ufz.

de/droughtmonitor.

5.4 Benchmark for the Recent 2015 Drought Event

Germany has experienced two drought events since the implementation of the
GDM. The first took place in spring 2014, and the second occurred in sum-
mer/autumn 2015. These events are used to assess the performance of the GDM.
The 2014 event (see Figure 5.2, upper row) had its largest spatial coverage in April
2014. In Germany, 70% of the area was under drought conditions (SMI≤0.2), with
25% of the total area being under exceptional drought (SMI≤0.02). The situa-
tion relaxed significantly in May 2014 due to above average rainfall, and the total
drought area (moderate to exceptional drought) decreased to almost half of the
area affected in April. Furthermore, the area under exceptional drought reduced
to only 1%. As a consequence, the vegetation and, in particular, agricultural crops
received sufficient amounts of water, especially during the crucial growing phase
after seeding in April/May. In consequence, even the deterioration of drought
conditions in June did not have a negative impact on yield in 2014. On the con-
trary, the Federal Ministry of Food and Agriculture (BMEL, 2014) reported that
productivity of agriculture was superior to the preceding six years.

In 2015, the drought situation was different (Figure 5.2, lower row). In contrast
to the situation in 2014, soils were not experiencing extreme to exceptional dry
conditions in spring. The drought primarily evolved during spring and summer.
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Figure 5.2: Soil water conditions from April to August in 2014 (upper row) and
2015 (lower row).

Nevertheless, the growing phase of some crops was already delayed by water short-
age in May (BMEL, 2015). In some regions of Northern Bavaria and Eastern Sax-
ony, soils were under drought conditions since autumn 2014. These regions were
especially prone to losses in crop yield and to increased forest-fire risk. According
to (BMEL, 2015), corn yield was 22% below the average yield between 2009 and
2014 in Germany. Additionally, some regions of Germany were prone to losses in
animal food production, so they faced the decision of either buying additional food
or reducing livestock (BMEL, 2015). Due to the low water levels, inland naviga-
tion was stopped on the Elbe River. A hotspot for very dry conditions was Berlin
(Figure 5.2, lower row), where trees had already started shedding their leaves in
the middle of August. Reports on economic consequences have not been published
yet, but there were extensive fire watch activities due to very high forest fire risk
and losses in crops such as corn, which led to increased expenses. Almost 75% of
the area of Germany was under at least moderate drought in July 2015. During
August 2015, the total area under drought decreased, but the areas of extreme
and exceptional drought conditions increased to 22% and 5%, respectively.

The benchmark of the 2015 event with respect to historical drought events is
shown in Figure 5.3. The left graph of this figure is created by applying the
cluster identification algorithm proposed by Samaniego et al. (2013). This three-
step algorithm uses the duration, spatial extent and drought intensity to calculate
a dimensionless drought magnitude. The drought intensity is calculated as the
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negative deviation from the SMI value 0.2, whereas the magnitude is the integral
of drought intensity over time and space. The results show that the ongoing 2014-
2015 event ranks among the 10 largest events observed in Germany since 1954.

Figure 5.3: Ranking of the recently ongoing drought event in 2015. The panel on
the left shows the relationship between the area, duration and magni-
tude of drought events since 1954. The 4 panels on the right show the
drought area and magnitude at specific months over the last 62 years.
The magnitudes are represented by the size of the bubble and the color
code. The reference period for this figure is 1954/01/01-2015/10/31.

A more detailed insight can be obtained from the 4 panels on the right in Figure 5.3.
In these graphs, the event duration is fixed to one particular month, and only the
area and magnitude are variable and analyzed. The drought conditions in June
and July 2015, rank within the four largest events with respect to spatial extent.
The magnitude is highly correlated to the area under drought; hence, between June
and September, the 2015 event ranks among the 7 largest events for the respective
months. The displayed 2003 event is well remembered in Germany due to its large
socio-economic impacts. In 2003, the drought event evolved more slowly than
the 2015 one did, but the former peaked in August, with a magnitude M=2067,
which is greater than the maximum magnitude reached by the 2015 event in July
(M=1770).

5.5 Conclusion and Outlook

The German Drought Monitor (GDM) provides an easily accessible agricultural
drought information system on both the regional and national levels. This informa-
tion is available online since 2014. Feedback from regional stakeholders indicated
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that the main user groups are from regional agencies, agriculture and forestry.
Furthermore, during the 2015 drought, the GDM was widely used by the media
when drought consequences became visible in Germany (e.g., in tree leaf coloring
in summer).

The GDM is driven by an observational dataset, which enables drought estimates
on a high spatial resolution of 4 × 4 km2. The operation of the system allows
for estimates of the soil moisture on a daily basis. A drought map for Germany
is released to the public on a daily basis, with a latency of 4 days. This map is
intended to be easily understandable and easy to access via a web browser. The
information presented within the GDM may help agricultural planners or water
resources managers to optimize their actions. Furthermore, it enables the public
to obtain timely information concerning the drought conditions within their region
on an open access basis.

Benchmarking of recent or ongoing drought events with historical observations
helps to understand their severity and indicate potential impacts. Although we
intend to address agricultural drought in particular, further research should inves-
tigate the impact of low soil moisture status on agricultural yields and thereby
improve drought monitoring and prediction. Therefore, a collaborative effort with
agricultural engineers, water resources managers, hydrologists, policy makers, and
stakeholders should be brought into focus. This will improve the reliability of
drought information and increase the acceptance of the monitor. Additionally,
stakeholders could improve the information content and readability of the produced
drought maps through adaption to their needs. Therefore, we plan to jointly iden-
tify 1) how to improve the visualization of drought information (e.g., readability
and information content of the maps); 2) which additional information or drought
indices may be beneficial (e.g., SPI) and how to present them in a comprehensi-
ble, easy to understand manner, and 3) how to implement local expert knowledge
into the daily published product. An additional field of work remains in handling
predictive uncertainties. These uncertainties stem from the input data uncer-
tainty, the model’s structural uncertainty and the parametric uncertainty (e.g.,
Samaniego et al. (2013)). Further research is necessary to investigate how to com-
municate this additional information without counteracting the GDM’s simplicity
and intelligibility.

The German Drought Monitor presented above is an important step for the delivery
of a high-resolution, near real-time drought information in Germany.
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Discussion and Outlook

This study presents the development of a drought monitoring system for Germany
from scratch. This implicated the development of a method to estimate continu-
ous hydrological fluxes and states such as soil moisture on the national domain of
Germany based on hydrologic modeling. For this purpose a parameter selection
approach based on filtering well performing model parameters within the major
inner seven river basins in Germany was proposed. An uncertainty assessment
was presented which revealed parametric uncertainties in routed river runoff sim-
ulations as well as in gridded fields of hydrologic fluxes and states. The analysis
regarding the spatio-temporal distribution of uncertainties indicated that the spa-
tial distribution of uncertainties is highly correlated with the dryness index.

A consecutive investigation identified benchmark drought events in Germany based
on the uncertain estimations of soil moisture. These uncertainties of soil moisture
propagate to the identification of drought events and lead to significant classifica-
tion errors of drought characteristics such as drought area or intensity. Drought
area, for example, was found to have a standard deviation of up to approximately
7% of the area of Germany for particular events only due to parametric uncertainty.

A study using patterns of satellite derived land surface temperature for model cal-
ibration investigated the ability to reduce uncertainties in hydrologic predictions.
This method has the capability to better constrain several model parameters,
which will finally reduce overall uncertainty in hydrologic predictions, i.e., evapo-
transpiration. Reducing the uncertainty of evapotranspiration estimates directly
impacts the estimated soil moisture, since it is the major source of evaporative
water.

A final effort was dedicated to the implementation of an agricultural drought mon-
itoring system for Germany, the German Drought Monitor (GDM). This system
delivers information about soil moisture availability which has not been accessible
on regional or national scale in Germany before. This Information complement
data from local authorities about meteorological and hydrological drought condi-
tions and thus better inform them about potential drought impacts. The German
Drought Monitor got high attention from media due to its large spatial coverage
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A substantial degree of uncertainty in the above-mentioned simulated hydrologic
variables originates from the interchange of parameters between the major German
river basins. This parameter transfer assures the validity of the parameters on the
national scale. However, transferring parameters among distinct catchments can
lead to the application of inappropriate parameters in the receiver catchment. The
direct runoff parameter, for example, is almost insensitive for the Ems basin, but
has a high sensitivity in the Neckar basin. This behavior can be explained by a
quick response to precipitation events in the steeply sloped Neckar compared to the
almost flat Ems basin. Transferring this parameter from the Ems to the Neckar will
introduce uncertainties for hydrologic predictions. A simultaneous calibration of
multiple, distinct catchments would yield in better constrained parameters, which
are valid beyond catchment boundaries.

Another source of parametric uncertainty is attributed to the choice of the op-
timization algorithm. Within this study, the Dynamically Dimensioned Search
(DDS) algorithm was chosen for model calibration. This algorithm terminates
after a user specified number of model iterations. DDS converges very fast to a
good objective function value, but does not necessarily find its optimum. Due
to that reason, the estimated parametric uncertainty is sensitive to the iteration
budget. Herein, we ensured appropriate iteration budgets by checking the con-
vergence of the objective function values between several independent calibration
runs. Other optimization algorithms, e.g, the Shuffled Complex Evolution algo-
rithm, terminate if reaching a threshold of the remaining searchable space (the
complex). This approach converges to optimal objective function values but needs
much higher runtimes. DDS was an appropriate choice for this study due to its
lower computational costs for achieving satisfying model performances.

Knowledge about the implementation and operation of several hydrologic mod-
els has to be gained, to assess model structural uncertainties. This is usually a
big challenge since operating a single hydrologic model on large spatial domains
is already a big effort. Therefore, a model platform is emphasized which allows
for different representations and parameterizations of the same process. Efforts
to develop such a model platform were undertaken. The mesoscale Hydrologic
Model mHM was restructured and rewritten with significant contribution of the
author of this study. Thus, mHM became the ideal test platform for investigating
multiple model hypothesis as discussed in scientific literature (Niu et al., 2011;
Clark et al., 2011, 2015). As a first attempt, different representations of the po-
tential evapotranspiration approaches were implemented to mHM and applied to
several catchments in Europe. Future developments aim on the implementation of
different soil moisture approaches such as a variable infiltration capacity approach.

Beside the investigation of reducing and assessing predictive uncertainties, further
research is needed on how to communicate them. The German Drought Monitor
is designed to integrate scientists, stakeholders and decision makers. It is based
on a single model realization neglecting the afore-mentioned uncertainties. This
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is due to the fact that there is a lack of knowledge concerning the communica-
tion of uncertainties to decision makers and the public (Ramos et al., 2010). A
collaborative effort of many disciplines is needed to investigate potential commu-
nication approaches. Natural scientists and social scientists have to work jointly
on the communication and the education of stakeholders to interpret uncertainties
in drought characteristics.

6.2 Outlook

It is planned to expand the study for reducing parameter uncertainties based
on satellite retrieved land surface temperature with several other observations.
Constraining a hydrological model with various data from different sources will
lead to higher certainty for hydrologic predictions. In-situ observations of soil
moisture and evapotranspiration are one potential source. These variables have
major influence on the water balance and thus can be used to better constrain
model parameters. New technologies like cosmic ray neutron sensing and soil
moisture retrievals from ground truth stations of the Global Navigation Satellite
System, are thrilling opportunities to strengthen the predictive power of hydrologic
models.

Satellite retrieved soil moisture and evapotranspiration data unreliable in terms of
accuracy and temporal continuity, yet. However, satellites deliver valuable infor-
mation about the spatial and temporal distribution of the afore-mentioned vari-
ables. Satellite earth observations are a promising source of reliable information in
future. Hydrologic models should be ready to make use of this broadly available
data resource. Approaches for calibrating mHM on soil moisture data are focus of
my current research.

An additional promising data source is the Gravity Recovery and Climate Exper-
iment (GRACE). GRACE observes the changes in the earth’s gravity field. These
changes can be directly attributed to the total water storage, which describes the
mass of the surface and subsurface water. Total water storage observations have
already shown high potential to improve hydrologic predictions if considered in
the parameter estimation process. Unfortunately, these data are very coarse in
temporal (100-400 km) and spatial resolution (1 month).

So far, the German Drought Monitor is based on assessing the current state of
the soil moisture in Germany. A seasonal forecasting system would be beneficial
to planning purposes and mitigation measures. The most straightforward way to
make seasonal drought forecasts is to design an Ensemble Streamflow Prediction
system. This system uses past observations of meteorological variables, e.g., pre-
cipitation, instead of a numerical weather forecasts. The future development of the
monitor will focus on the implementation of an Ensemble Streamflow Prediction
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system, while a subsequent development will aim on the integration of probabilistic
numerical weather forecasts.

The need for the implementation of indices, e.g., Standardized Precipitation Index
or Runoff Index, will be assessed during stakeholder consultations. Therefore,
the Climate Office of Central Germany, seated at our department, aims to bring
together natural and social scientists as well as decision makers and stakeholders.
This cooperation will determine additional requirements on the German Drought
Monitor and will significantly influence its’s future appearance.

Summarizing, the implementation of the German Drought Monitor was a step
forward for informing the public and decision makers about agricultural droughts.
The historic reconstruction of droughts enables the evaluation of ongoing events
using benchmark drought events. Thus, potential negative impacts of drought
events may be mitigated based on information delivered by the herein developed
and published operational system.
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suivi hydrométéorologique opérationnel et les études. La Météorologie, 63:40–45,
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Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de
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