

Hydrogeological modelling and its application to IWRM concepts

R. Stollberg, W. Rodrigues Borges, , T. Diniz Conçalves, J. Eloi Guimarães Campos

Final Workshop - Project IWAS ÁGUA DF Integrated Water Resources Management in Distrito Federal – DF June 4-6, 2013

NOVACAP

Patrocinado por

Funded by

and Research

- \circ Introduction: groundwater management \leftrightarrow IWRM
- o Groundwater modelling: Pipiripau watershed
- Work in progress & conclusion

June 4-6, 2013

1	١

Introduction

Feature	Groundwater resources and aquifers	Surface water resources and reservoirs			
Hydrological characteristics					
Storage	Very large	Small to moderate			
Resource areas	Relatively unrestricted	Restricted to water bodies			
Flow velocities	Very low	Moderate to high			
Residence time	Decades/centuries	Mainly weeks/months			
Drought vulnerability	Generally low	Generally high			
Evaporation losses	Low & localised	High for reservoirs			
Resource evaluation	High costs & uncertainty	Lower cost & less uncertain			
Abstraction impacts	Delayed & dispersed	Immediate			
Natural quality	Generally high	Variable			
Pollution vulnerability	Variable natural protection	Largely unprotected			
Pollution persistent	Often extrem	Mainly transitory			

Main objectives

- To realise the importance of aquifer characterisation in groundwater resources management
- Understand key properties of aquifers for improving the groundwater management
- Understand main hydro-geological systems and groundwater dynamics, and their implications in terms of groundwater development

Pipiripau watershed

Regional objectives

- Available hydrogeological data representative?
 - Hydrogeological structural data
 - Hydraulic conductivities
- o Estimation of groundwater flow velocities
- Estimation of groundwater recharge
- Mean groundwater age?

Hydrogeological data integration

- o <u>Structural setup</u>
 - Conceptual model includes several soil & aquifer units
 - Lithological information of about 60 boreholes
 - Finite element model contains numerous model layers

2

Final Workshop - Project IWAS ÁGUA DF

Integrated Water Resources Management in Distrito Federal June 4-6, 2013

Calibration of hydraulic conductivity

Hydraulic systems	Kf-values [m/s]	Kf _x -values _{model} [m/s]	Kf _y -values _{model} [m/s]	Kf _z -values _{model} [m/s]	Kf-values _{model} [m/s]
Porous Units					
P1	1.68E-6	1.68E-6	1.68E-6	1.68E-6	1.68E-6
P4	3.11E-7	3.11E-7	3.11E-7	3.11E-7	3.11E-7
Saprolite	1.68E-6 to 3.11E-7	3.98E-6	4.03E-6	5.90E-7	2.87e-6
Fractured Units					
А	2.06E-6	1.07E-7	9.80E-8	1.30E-8	7.27E-8
R3/Q3	8.43E-7	3.10E-7	3.32E-7	3.80E-8	2.27E-7
R4	1.26E-6	7.90E-8	4.70E-8	7.00E-9	4.43E-8

Hydraulic system characteristics

- o Groundwater recharge
 - Coimbra (1987): 12%
 - Carmelo (2002): 34%
 - Stollberg (2013): 17-19%

- Groundwater flow velocity [m/a]
 - Soil unit: 0.017 (min) 11.073 (max); 4.633 (mean)
 - Saprolite unit: 0.003 (min) 12.279 (max); 4.623 (mean)
 - Bedrock unit: 0.001 (min) 1.249 (max); 0.027 (mean)

IWAS Brazil ÁGUA-DF

Final Workshop - Project IWAS ÁGUA DF Integrated Water Resources Management in Distrito Federal June 4-6, 2013

2 Analytical groundwater recharge model

- **Recharge estimation**
 - Schroeder & Wyrwich (1990), Meßer (1997)
 - Modified & implemented

• Considered input data

- Tropic soils & land-use
- Relative relief

Run-off

- Depth to groundwater
- regionalized precipitation
- Evapotranspiration (MODIS)

IWAS Brazil ÁGUA-DF

Final Workshop - Project IWAS ÁGUA DF Integrated Water Resources Management in Distrito Federal June 4-6, 2013

2

Mean groundwater age estimation

Mean age simulation

- Based on conventional steady-state solute transport modeling
- Mass concentration used as tracer for mean age

Retrieved information

- Mean age \rightarrow travel time
 - Age of extracted water → vulnerability mapping

Final phase

- o Transient model calibration
 - Seasonal groundwater level fluctuations
 - Baseflow estimation
 - Climatic scenarios
- Integrative model coupling of FE-model & SWAT
 - Effects of land-use optimization onto groundwater resources

- Understand key properties of aquifers for improving the groundwater management
 - 3-D hydrogeological structures
 - Hydraulic conductivities & groundwater flow velocities
- Understand main hydro-geological systems and groundwater dynamics...
 - Groundwater recharge estimation \rightarrow analytical model
- To realise the importance of aquifer characterisation in groundwater resources management
 - Mean groundwater age \rightarrow vulnerability assessment

- o Brazilian partners for support
- o BMBF for funding