

Water Resources in the Federal District: Groundwater Flow Model of the Pipiripau Watershed

Tatiana Diniz Gonçalves¹, Agnes Gräbe², Thomas Fischer², Olaf Kolditz², Holger Weiss²

¹Universidade de Brasília

²Helmholtz Centre for Environmental Research GmbH – UFZ

Motivation

✓ Scarcity of basic information to support water management

Objectives

✓ To better serve the water demands of the population✓ Minimize impacts on ecosystems

The challenge is to manage the availability and demand

Water Resources in the Federal District: Groundwater Flow Model of the Pipiripau Watershed

WAS

Brasil Água DF

Tasks

Location of Pipiripau Watershed

✓ Data and Model Set-Up

A comprehensive data set was collected and integrated into this study containing information about:

- Climate: strong seasonality, hot rainy season (about 80% of annual rainfall, between October and April) and cool and dry season from May to September; Average annual precipitation is 1.600 mm
- Geology: Pipiripau watershed is bounded on the northeast and southwest by faults from Paranã, which put tectonically the Paranoá Group on the Bambuí Group
- Hydrogeology: Campos and Freitas-Silva (1998) classified the groundwater systems reservoirs of the FD in two domains: porous (Upper Aquifers) and fractured (Lower Aquifers)
- Hydrology: stream hydrograph of the Pipiripau watershed, expected recharge areas

IWAS Brasil·Água DF Groundwater Flow Model of the Pipiripau Watershed

✓Hydrodinamic parameters such as hydraulic conductivity (K) is a better parameters to better define the potential of aquifers

Upper Aquifer Porous						
Aquifers Systems	K-values (m/s)	Average production (m³/h)	Transmissivity (m²/s)	Specific capacity (m ³ /h/m)	Porosity ηe or Ifi (%)	Average thickness saturated (m)
P1 - aquifer	1,68 x 10 ⁻⁶	0,8	4,20 x 10 ⁻⁵	-	11	25
P4 - aquitard	3,11 x 10 ⁻⁷	0,3	3,11 x 10 ⁻⁷	-	3	1
Saprolite	1,68 x 10 ⁻⁶ - 3,11 x 10 ⁻⁷	0,8 - 0,3	4,20 x 10 ⁻⁵ -3,11 x 10 ⁻⁷	-	3-11	0-50
		Lower A	quifer Fractured			
A - aquitard	2,06 x 10 ⁻⁶	4,0	1,15 x 10 ⁻⁴	3,32 x 10 ⁻¹	2,5	115
R3/Q3 - aquifer	8,43 x 10 ⁻⁷	12	3,46 x 10 ⁻⁴	1	2,5	140
R4 - aquifer	1,26 x 10 ⁻⁶	6,0	1,24 x 10 ⁻⁴	3,59 x 10 ⁻¹	2,5	100

 Conceptual Model, 3D Model and Groundwater flow model

IWAS Brasil·Água DF Groundwater Flow Model of the Pipiripau Watershed

✓ 3D mesh file generated into GMS and displayed on OGS, showing the different materials.

 ✓ Borehole logs, DEM, distribution of the measured water level used to the spatial and temporal discretization.

✓ Results – Steady State

Visualization of Flow filed and comparison between simulated heads and measured heads in selected wells.

✓ Results – Steady State

Measured vs. simulated groundwater level in monitoring wells

WAS Trasil·Água DF Water Resources in the Federal District: Groundwater Flow Model of the Pipiripau Watershed Conclusions

- The current model represents only the first step toward a comprehensive effort to the scenario analysis for a sustainable water resources management in Pipiripau watershed.
- ✓ The recharge rate in the model was assumed (250mm/y) and this simplification cannot represent the natural behavior of the catchment. More realistic infiltration and recharge conditions based on observations is necessary to reach a water balance
- These results indicate that it is possible to have a good representation of the geological structure of the basin but the estimates of the hydrodynamic conditions of the study area should to be analyzed more intensively.

Recomendations:

✓ Sensitivity Analysis of the hydrodynamics parameters

✓Transient model - water level time series and abstraction rates

- ✓Water Balance
- ✓ Land use, irrigation

and socioeconomic characteristics must be considere, in order to improve the systemic management of water resources in Pipiripau Basin

Thank you for your attention!!