

Use of membranes for advanced wastewater treatment

Prof. Dr.-Ing. F. Wolfgang Günthert, Andreas Obermayer, Christina Tocha, Simon Faltermaier (UniBW), Patricia Bermond (UnB), Monica da Silva (Caesb), Dr. rer. nat. Gudrun Abbt-Braun (KIT)

> Final Workshop - Project IWAS ÁGUA DF Integrated Water Resources Management in Distrito Federal – DF June 4-6, 2013

NOVACAP

HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG UFZ

Federal Ministry of Education and Research

Overview

- **1. Background of advanced wastewater treatment**
- 2. Selected examples of advanced wastewater treatment technologies
- 3. The pilot plant
 - Concept and operating mode of the plant
 - Results

Goals of advanced wastewater treatment

Background of the project

Future usage of Lake Paranoá as source for drinking water

Position of the WWTP's at the Lake Paranoá

Cooperation within the project

UniBw	Caesb		
Conception of the pilotplant and analytical program	Operating company of the WWTP ETE Nortè and the pilotplant		
	ect: nced		
l In D	water Ment KIT		
Scientific accompaniment of the research work at the pilot plant	Analytics of mircosubstance samples		

Special focus - removal of microsubstances

- In aquatic systems and drinking water detectable organic compounds in a range of nanogramm
- Detection of micropollutants due to technical advances
- Special attention to micropollutants with expectable negative effect for environment and humans
- Typical groups of substances:
 - Pharmaceuticals (human and veterinary pharmaceuticals)
 - Industrial and household chemicals
 - Plant protection products and pesticides (PPPP)
 - Body care products, perfumes, disinfectants
 - Additives in wastewater and sludge treatment
 - Food and feed additives

Hazardous substances

- Relevant active groups: components with...
 - ... hormone-like substances (e.g. contraceptives, industrial chemical, plasticizer in plastics)
 - In genotoxic effects (e.g. cytostatics drugs for chemotherapy)
 - ... immunotoxic effects (e.g. chemical substances with adverse effects of the imune system)
 - ... anti-infective effects (e.g. antibiotics)

Microsubstances

Entry paths into drinking water

Final Workshop - Project IWAS ÁGUA DF

Integrated Water Resources Management in Distrito Federal June 4-6, 2013

Final Workshop - Project IWAS ÁGUA DF

Integrated Water Resources Management in Distrito Federal June 4-6, 2013

Spectrum of energy consumption of advanced wastewater treatment

Estimation of consumption from different literature references

(Sources: Thernes and Joss, 2006; Fahlenkamp et al. 2008, Pinnenkamp et al. 2010, Bolle et al. 2011)

Advanced treatment technology	Energy consumption kWh/m ³ wastewater	
MBR	0,1-0,5	
Microfiltration	0,1	
Ultrafiltration	0,15	
Nanofiltration	0,3 – 0,5	
Reverse osmosis	0,6	
Ozonization	0,05 – 0,48	
PAC	0,01 - 0,07	
GAC	0,01-0,17	

\rightarrow Depending on plant size and process combination

Membrane bioreactor

- Combination of aeration tanks and membrane filtration for the removal of sludge
- $\circ\,$ typical membrane modules:
 - microfiltration modules
 - ultrafiltration modules
- $\,\circ\,$ integrated or downstream processes

Source: http://www.iwar.tu-darmstadt.de

Final Workshop - Project IWAS ÁGUA DF

Integrated Water Resources Management in Distrito Federal June 4-6, 2013

Membrane technology in wastewater treatment Cleaning capacity and limitations

Increasing energy consumption and operational costs with increase of pressure...

Inge membrane: 1.5 mm capillary

Adsorption technique – PAC

Powdered Activated Carbon (PAC)

- Dosing PAC in wastewater stream
- Separation and disposal of the loaded activated carbon with sewage sludge
- $\circ~$ Dosing in aeration basin

 $\circ~$ Dosing in the effluent of the clarifier

PAC materials

Name	Material	K in μg/mg	BET in m²/g
PAC 2	Wood	0,096	904,8
PAC 3	Wood	0,016	578,1
PAC 4	Bet Coal	0,025	609,4
PAC 5	Veg	3,545	851,3

Influence on performance of AC				
Molecular weight	pH-value			
Molecular structure	Temperature			
Solubility	Ionisation			
Polarity				

→ Tests with different kinds of AC in order to get best results

Adsorption technique - GAC

Granulated Activated Carbon

- using as a fixed-bed adsorber (activated carbon filter, adsorption filter)
- Wastewater flows through the granulated activated carbon
- when maximum capacity is reached, replacement of adsorbent necessary

Source: Taudien2012

The pilot plant Arragement at ETE Nortè

The pilot plant Simplified flow scheme

The pilot plant

Function of the components

- Sandfilter (safety filter for UF):
 - Particle removal > 25 μm
- (Inline-Flocculation:
 - Integrate smallest particles and a part of dissolved organic compounds as flocks

 \rightarrow Avoid biofouling at UF)

- Ultrafiltration
 - Removal of residual turbidity and besides reduction of dissolved organic carbon (DOC) which are integrated in flocks
 - \rightarrow Avoid filter blockage at GAC
 - \rightarrow Enhances the adsorption capacity of GAC
 - by elimination of competing organic matter

The pilot plant Function of the components

- $\circ~$ Activated carbon filter ACF
- \rightarrow Adsorption of dissolved organic substances to surface
 - Silver doped coconut carbon
 - Contact time: 10 20 min,
 - Filter flow rate: 10 15 m/h
 - Filtration performance: 0,4 m³/h

Problems:

- Risk of filter blockage through high particle entry
- Number of free adsorption sites is limited
- Organic micropollutants come into competition with dissolved organic substances (DOC)

→ Pretreatment through ultrafiltration

Results of the pilot plant

Operational data from the pilot plant September/October 2012

Parameters						
Surface loading	l/(m²×h)	50				
Flush interval	min	25				
Rinse speed	l/(m²×h)	250 (Duration 45 – 60 s)				
Flushing after backwashing	l/(m²×h)	250 (Duration 30 s)				
Resulting operational data						
		Mean	Min	Max		
Permeability	l/(m²×h)	117	56	208		
Transmembranepressure UF	bar	0,44	0,27	0,62		
Primary pressure Sandfilter	bar	0,15	0,05	0,44		

Results of the pilot plant

- Stable operation of pilot plant could be achieved
- Daily chemical flushing (acidic pH 2,5 and basic pH 12,5) was conducted to support the membrane

Particle size distribution in pilot plant

Laser-induced breakdown spectroscopy (Mean value of 27.9/28.9/1.10.2012)

- Stepwise removal of particulate matter for most efficient protection of ACF
- Very sharp cut-off in UF indicates UF modules are in good order

June 4-6, 2013

Effect on removal of TOC (WWTP Holzkirchen)

Final Workshop - Project IWAS ÁGUA DF

Integrated Water Resources Management in Distrito Federal June 4-6, 2013

Effect on removal of microsubstances 27.9/28.9/1.10.2012

Pharmaceutical products

- Removal of micropollutants below detection limit by ACF
- Pretreatment has no effect on removal performance but is needed for protection ۲ of AC

Final Workshop - Project IWAS ÁGUA DF

Integrated Water Resources Management in Distrito Federal June 4-6, 2013

Effect on removal of microsubstances 27.9/28.9/1.10.2012

Ultrafiltration as advanced treatement for ETE-Norte

Research Team

- Brandão, Cristina PhD, Supervisor, UnB
- Marques, Adriana- PhD Student, PTARH/UnB
- Bermond, Patricia Master Student PTARH/UnB and Caesb
- Silva, Monica- Caesb
- Santos, Luana Graduate Student UnB

Master Thesis

- Ultrafiltration as advanced treatment for ETE-Norte
 - Phase 1 Evaluation of the UF system as a complementary treatment of the existing WWTP.
 - Phase 2 Evaluation of the influence of flocculation time in the performance of hybrid ultrafiltration as tertiary treatment for Brasilia North WWTP.
 - Phase 3 Evaluation the UF system as an alternative tertiary treatment for Brasilia North WWTP Substitution of DAF.

Operational Results (15/04 at 23/04)

Physico-chemical analysis

- Quality results were not satisfactory results;
- New analysis will be conducted
- Micropollutants analysis
 - 32 samples were prepared (extraction)
 - samples collected on alternate days for 5 days
 - The analysis will be conducted by German partners

Phase 2 - Evaluation of the influence of flocculation time in the performance of hybrid ultrafiltration as tertiary treatment for Brasilia North WWTP

Phase 3 - Evaluation the UF system as an alternative tertiary treatment for Brasilia North WWTP – Substitution of DAF

- Doctoral Thesis
- Comparison: GAC versus NF membrane

- Comparison of removal efficiency of selected micropollutants by nanofiltration membranes and granular activated carbon.
 - Part A Experimental evidence
 - Part B Model Development
- Regarding:
 - select drug residues, endocrine disrupting and detergent compounds;
 - influence of molecular wheigth, polarity and charge on the retention of both systems.
- Data discussion
 - Using simple logistic regression when checking the selected factors effecting the removal of micropollutants

Summary and prospects

- Removal of microsubstances is necessary with focus on water quality of the lake Paranoá and its future perspective for usage as drinking water reservoir
- $\,\circ\,$ The pilot plant shows good removal results
 - For the observed different groups of microsubstances
 - As well as for TOC
 - Protection of ACF by SF and UF as a unit is essential
- New fields of research are being examined (substitution of DAF, comparison to NF system)

Use of membranes for advanced wastewater treatment

Prof. Dr.-Ing. F. Wolfgang Günthert, Andreas Obermayer, Christina Tocha, Simon Faltermaier (UniBW), Patricia Bermond (UnB), Monica da Silva (Caesb), Dr. rer. nat. **Gudrun Abbt-Braun** (KIT)

> Final Workshop - Project IWAS ÁGUA DF Integrated Water Resources Management in Distrito Federal – DF June 4-6, 2013

NOVACAP

Funded by Patrocinado por

