Licht am Ende des Tunnels?

Wissenschaftliche Grundlagen zum Schutz des Blauschwarzen Eisvogels (Limenitis reducta) und weiterer Lichtwaldarten auf der Schwäbischen Alb

Heiko Hinneberg
Susanne Hensel
Prof. Dr. Thomas Gottschalk

Lichtwaldarten benötigen während mindestens eines Entwicklungsstadiums lichte Lebensraumbedingungen. (Jotz et al. 2017)

Vegetation

Insekten

Silberfleck-Perlmutterfalter

Graubindiger Mohrenfalter

Bergkronwicken-Widderchen

Feuriger Perlmutterfalter

Blauschwarzer Eisvogel

Braunfleckiger Perlmutterfalter

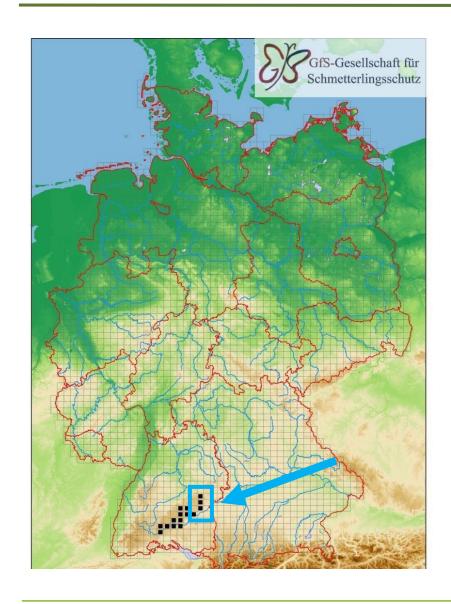
Schlüsselblumen-Würfelfalter

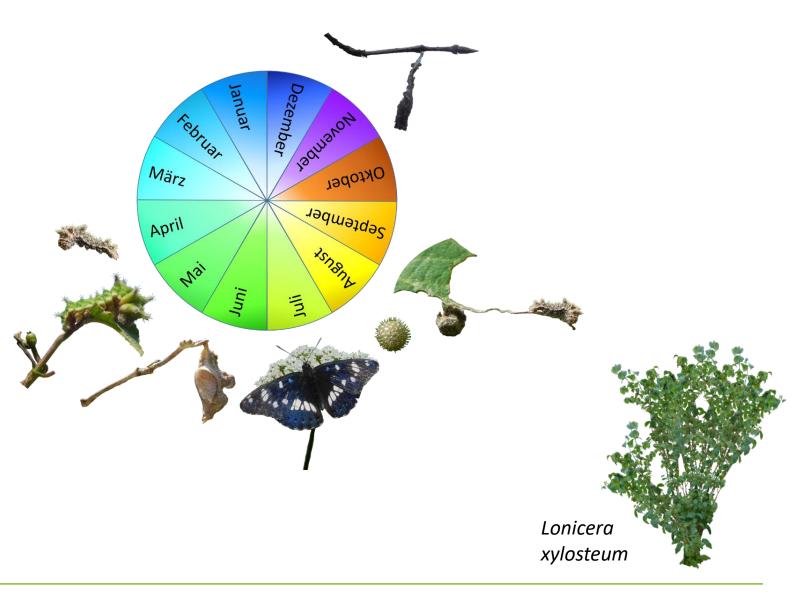
Kreuzdorn-Zipfelfalter

vorherrschende Phasen im Wirtschaftswald

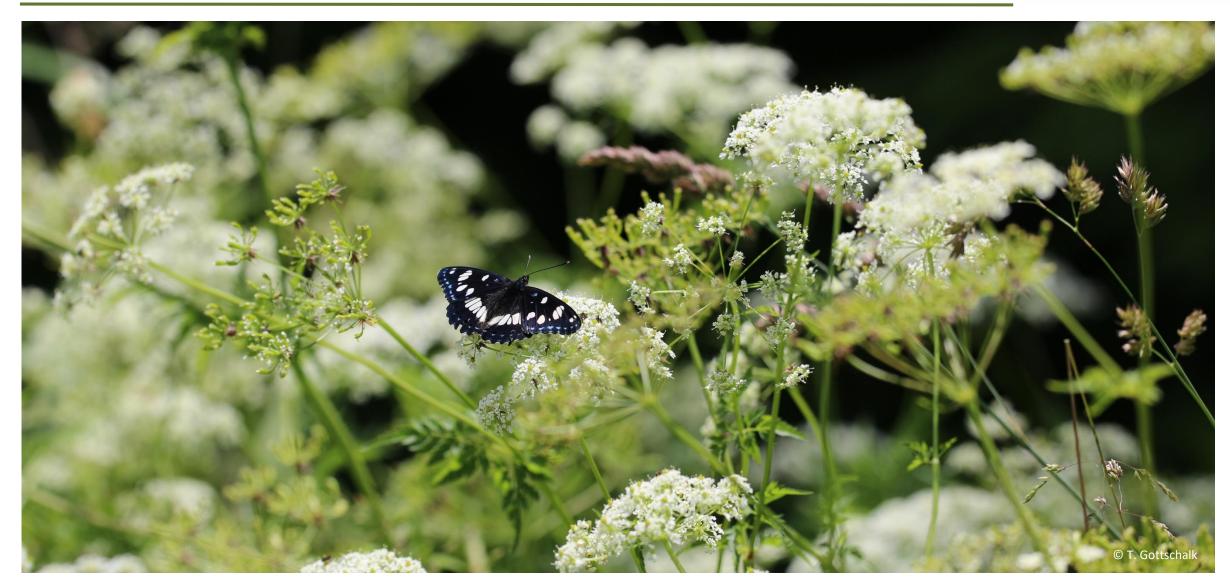
"Lichtwald"

Quelle: Scherzinger 1991, verändert




ohne Megaherbivoren und andere Störungen: dramatische Lebensraumknappheit

Verbreitung und Lebenszyklus in Deutschland



Grundlagenforschung - Methodik, Ergebnisse, Diskussion

Eiablagepräferenzen - Methodik

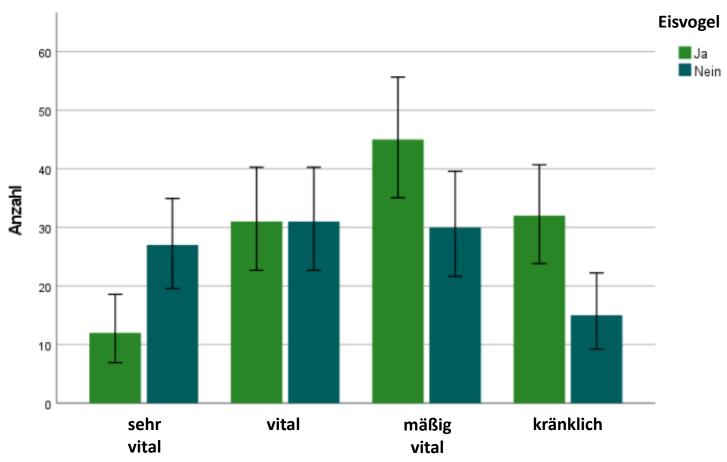
Vergleich von je 112 Roten Heckenkirschen mit und ohne Eiablagenachweis des Blauschwarzen Eisvogels

Untersuchte Parameter

- Mikroklima (Lufttemperatur, Taupunktdifferenz, tägliche Sonnenstunden im Juli)
- Umgebungsvegetation
- Überschirmung durch benachbarte Bäume
- Heckenkirschendichte im Umfeld

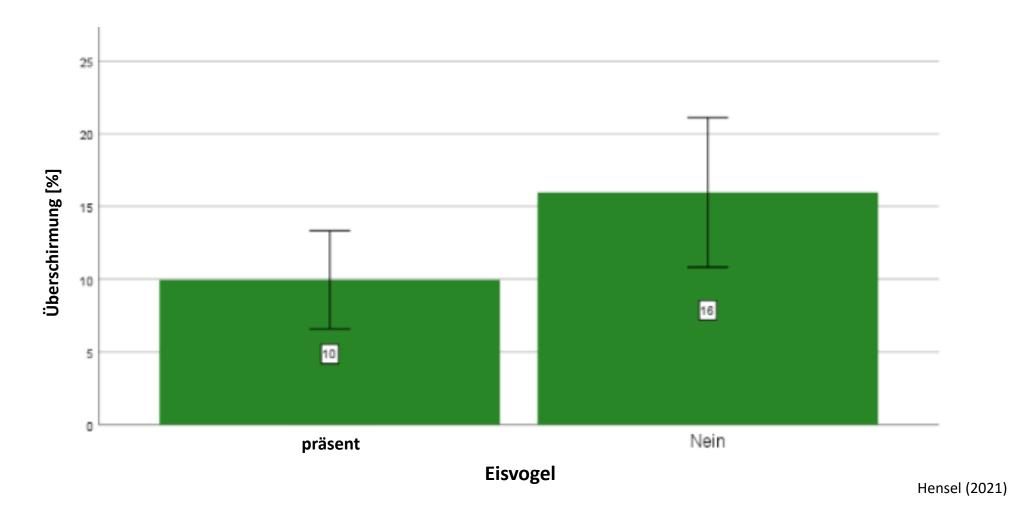
- Höhe und Grundfläche des Strauchs
- Vitalität des Strauchs
- Phänologie (Blattaustrieb und Seneszenz)
- Chlorophyllgehalt der Blätter
- Pilz- und Fraßschäden der Blätter

Datenanalyse


Generalisierte Lineare Modelle

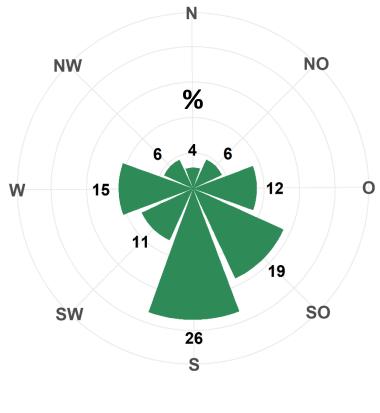
Eiablagepräferenzen - Ergebnisse

Bevorzugung "schwächelnder" Heckenkirschen



Hensel (2021)

Eiablagepräferenzen - Ergebnisse


Bevorzugung frei stehender Heckenkirschen

Eiablagepräferenzen auf Blattniveau - Ergebnisse

Bevorzugung südexponierter Blätter in der ersten Reihe

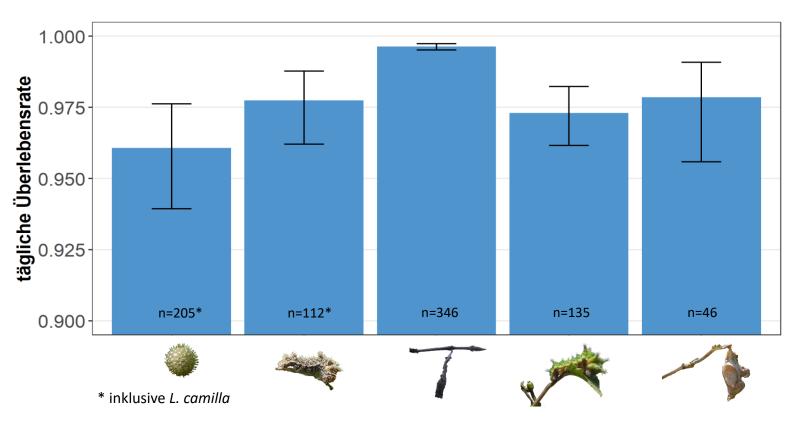
Innere 2. Blatt- 1. Blatt-Blätter paar paar 77%

n=144 n=84

Überlebensraten Präimaginalstadien - Methodik

- Suche nach Präimaginalstadien des Blauschwarzen Eisvogels
- Markierung von Fundstellen per GPS und mit Textilband am Strauch
- Wiederholte Kontrolle der Fundstellen
- Datenanalyse über Generalisierte Lineare Modelle

Überlebensraten Präimaginalstadien - Ergebnisse



• Eiablage: Mindestens 80 Eier/♀ für stabile Population erforderlich

Überlebensraten Präimaginalstadien - Ergebnisse

 Bezogen auf die Dauer der Lebensstadien niedrigste Mortalität im Hibernaculum und höchste Mortalität im Eistadium

Hinneberg&Gottschalk, in Vorbereitung

Überlebensraten Präimaginalstadien in Abhängigkeit von Umweltfaktoren - Ergebnisse und Diskussion

- Höhere Überlebensrate für Eier und Raupen in oberen Positionen
 (→ stärkere Besonnung?, weniger Prädation?)
- Höhere Überlebensrate bei niedrigerer Abundanz auf der Fläche
 (→ systematische Prädation bei großer Stückzahl?)
- Position im Winter irrelevant
- Kein Unterschied in der Überlebensrate zwischen Kahlschlagsflächen und Wald-/Wegrändern

Mortalitätsursachen der Raupen - Methodik

- zufällige Live-Beobachtungen
- "Totalüberwachung" (täglich 6-21 Uhr) mit Zeitrafferkameras

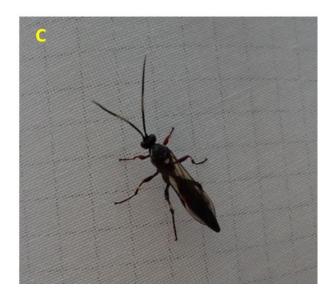
Mortalitätsursachen der Raupen - Ergebnisse

- "Vertrocknen" der Raupen im Hibernaculum
- Prädation von Jungraupen durch Ameisen und Spinnen
- Prädation von Raupen durch Vögel (?)
- Unwetter (?)
- Parasitierung von Eiern, Raupen und Puppen
- "Kultursicherung"

Im Zuge der Kultursicherung entfernte Rote Heckenkirschen

Eisvogelraupe mit Kokons einer Schlupfwespe

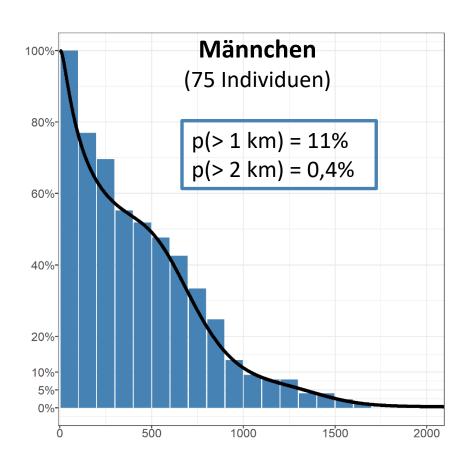
Mortalitätsursache Parasitierung - Ergebnisse

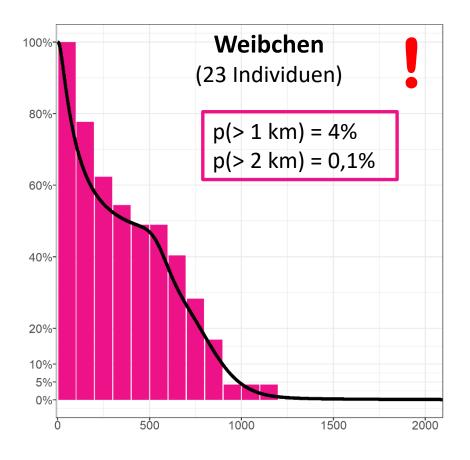


- A) Schlupfwespe: Micogasterinae, evtl. Gattung Apanteles
- B) Erzwespe: Pteromalidae, evtl. *Pteromalus puparum*
- C) Schlupfwespe: Ichneumonidae, evtl. Gattung Ichneumon

Mobilität und Populationsgrößen - Methodik

Fang von Faltern entlang fester Transekte in zwei Untersuchungsgebieten


Fang-Wiederfang-Untersuchung mit individueller Wiedererkennung



Nur wenige Weitstreckenflieger

maximale Ortsverlagerung: 1.604 m

maximale Ortsverlagerung: 1.135 m

Populationsgrößen - Ergebnisse und Diskussion

Markierte Individuen	2019	2020	2021
Gebiet A, ♀	10	26	18
Gebiet A, ♂	25	33	40
Gebiet B, ♀	3	12	17
Gebiet B, ♂	7	24	29

- Datenanalyse über CJS- und JS-Modelle
- Gesamtpopulationsgrößen je nach Gebiet und Jahr zwischen 35 und 130 Faltern
- Nie alle Falter gleichzeitig → Tagespopulationsgrößen auch in guten Jahren < 50 Individuen
- geringe Populationsgrößen trotz großer Gebiete (Gebiet 1: ca. 400-500 ha Faltereinzugsgebiet, Gebiet 2: >1000 ha Faltereinzugsgebiet)
- Fangwahrscheinlichkeit Weibchen: 17%, Männchen: 31%

Flächenbedarf Larvalhabitat - Methodik

Methodik

- Ermittlung larvaler Siedlungsdichten durch Suche nach Hibernacula im Winter
- Abschätzung der Erfassungswahrscheinlichkeit durch ein Such-Experiment mit mehreren Personen

Ergebnis

- unter Normalbedingungen
 - (durchschnittliches Gebiet und Jahr, durchschnittliche Heckenkirschendichte)
 - → Abundanz: circa 0,5 Hibernacula je 100m² Larvalhabitat
 - → notwendiges Larvalhabitat für 100 Falter: circa 25 ha
- unter Optimalbedingungen
 - (gutes Gebiet und Jahr, sehr hohe Heckenkirschendichte)
 - → Abundanz: bis zu 3 Hibernacula je 100m² Larvalhabitat
 - → notwendiges Larvalhabitat für 100 Falter: circa 4 ha

Für die Praxis

- Freiflächen und lichte Waldstrukturen im Metapopulationsverbund schaffen/erhalten
 → Zahlreiche kleine bis mittelgroße Habitatpatches im Erreichbarkeitsradius der Falter (1 bis 1,5 km)
- Besonnung als zentraler Faktor bei der Wahl von Eiablagehabitaten, -pflanzen und -blättern durch den Blauschwarzen Eisvogel
- Mortalitätsursache "Kultursicherung" abstellen → Brombeerrechen
- Monitoring der Populationen durchführen

Exemplarische Management-Maßnahmen - Böschungspflege

Pflege von Wegböschungen als Larval- und Nektarhabitat: Während der Maßnahmenumsetzung und 1,5 Jahre danach.

Exemplarische Management-Maßnahmen - Kleinkahlhiebe

Kleinkahlschläge für den Artenschutz: So lässt sich eine große Zahl voll besonnter Roter Heckenkirschen erzielen.

Exemplarische Management-Maßnahmen - Öffentlichkeitsarbeit

Heiko Hinneberg hinneberg@hs-rottenburg.de © K. Pfannschmidt

Fragen willkommen!

Unser besonderer Dank gilt

Deutsche Bundesstiftung Umwelt

- ForstBW
- Fachdienst Forst, Naturschutz am Landratsamt Alb-Donau-Kreis
- Christoph Freiherr von Freyberg
- Landschaftserhaltungsverband
 Alb-Donau-Kreis
- Jörg Döring
- zahlreichen weiteren Unterstützer*innen