Surface-Water Groundwater Interactions

The transition zone between groundwater and streams plays a key role for stream ecology and the turnover of solutes transported in the stream network and the adjacent aquifers. Our objective is to understand and quantify the combined effects of structure (pool- riffle sequences, gravel bar) and hydrologic and climatic variability (stream flow, groundwater level, temperature) on water fluxes, redox zonations and solutes turnover along morphological units and stream reaches. We develop improved monitoring equipment that is adapted to the dynamic conditions in streambeds and conduct numerical experiments using coupled computational fluid dynamics (CFD) simulations and flow and (reactive) mass transport in groundwater.

streambed flow
Water flow around and through a gravel bar (source N.Trauth)

Projects & Research activities

Campos P2 Subcatchment SFB
Campos P2 website


ENIGMA ITN
ENIGMA Website

Leverhulme Hyporheic Zone Network (finished in 2017)
An international network designed to conceptualize the organizing principles of interdisciplinary process interactions in the hyporheic zone through joint, interdisciplinary experiments along biogeographical and catchment gradients.
PIs: Stefan Krause (U. Birmingham), Jay Zarnetske (MSU), Adam Ward (U. Indiana), Scott Larned (NIWA), Thibault Datry (IRSTEA), Eugènia Martí Roca (CEAB-CSIC), & Jan Fleckenstein (UFZ).

Publications

  • Jimenez‐Fernandez, O., Schwientek, M., Osenbrück, K., Glaser, C., Schmidt, C., Fleckenstein, J.H., (2022): Groundwater‐surface water exchange as key control for instream and groundwater nitrate concentrations along a first‐order agricultural stream. Hydrol. Process. 36 (2), 1–16.
  • Laube, G., Schmidt, C., Fleckenstein, J.H., (2022): A systematic model-based evaluation of the influence of hydraulic conductivity, heterogeneity and domain depth on hyporheic nutrient transformation, Adv. in Water Resour. 159.
  • Nogueira, G.E.H., Schmidt, C., Partington, D., Brunner, P., Fleckenstein, J.H., (2022): Spatiotemporal variations of water sources and mixing spots in a riparian zone, Hydrol. Earth Syst. Sci., 26, 1883–1905.
  • Nogueira, G.E.H., Schmidt, C., Brunner, P., Graeber, D., Fleckenstein, J.H., (2021): Transit‐Time and Temperature Control the Spatial Patterns of Aerobic Respiration and Denitrification in the Riparian Zone. Water Resour. Res. 57 (12), 1–25.
  • Zhang, Z., Schmidt, C., Nixdorf, E., Kuang, X., Fleckenstein, J.H., (2021): Effects of Heterogeneous Stream‐Groundwater Exchange on the Source Composition of Stream Discharge and Solute Load. Water Resour. Res. 57 (8), 1–19.
  • Nogueira, G.E.H., Schmidt, C., Trauth, N., Fleckenstein, J.H., (2021): Seasonal and short-term controls of riparian oxygen dynamics and the implications for redox processes. Hydrol. Process. 35 (2), 1–16
  • Trauth, N., Musolff, A., Knöller, K., Kaden, U. S., Keller, T., Werban, U., Fleckenstein, J. H., (2018): River water infiltration enhances denitrification efficiency in riparian groundwater, Water Res. 130 , 185–199.
  • Boodoo, K., Trauth, N., Schmidt, C., Schelker, J., Battin, T.J., (2017): Gravel bars are sites of increased CO2 outgassing in stream corridors Sci. Rep. 7 , art. 14401.
  • Brandt, T., Vieweg, M., Laube, G., Schima, R., Goblirsch, T., Fleckenstein, J.H., Schmidt, C., (2017):
    Automated in situ oxygen profiling at aquatic-terrestrial interfaces Environ. Sci. Technol. 51 (17), 9970–9978.
  • Munz, M., Schmidt, C., (2017): Estimation of vertical water fluxes from temperature time series by the inverse numerical computer program FLUX-BOT Hydrol. Process. 31 (15), 2713–2724
  • Trauth N., Fleckenstein J.H., (2017): Single discharge events increase reactive efficiency of the hyperheic zone, Water Resour. Res. 53 (1), 779–798.
  • Vieweg M., Kurz M.J., Trauth N., Fleckenstein J.H., Musolff A., Schmidt C., (2016): Estimating time-variable aerobic respiration rates in the streambed by combining electrical conductivity and dissolved oxygen time-series, Journal of Geophysical Research Biogeosciences 121 (8), 2199–2215.
  • Fox A., Laube G., Schmidt C., Fleckenstein J.H., Arnon S., (2016): The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds, Water Resour. Res. 52 (9), 7460–7477.
  • Newcomer M.E., Hubbard S.S., Fleckenstein J.H., Maier U., Schmidt C., Thullner M., Ulrich C., Flipo N., Rubin Y., (2016): Simulating bioclogging effects on dynamic riverbed permeability and infiltration, Water Resour. Res. 52 (4), 2883–2900.
  • Munz M., Oswald S.E., Schmidt C., (2016): Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures. J. Hydrology 539, 74–87.
  • Schmadel N.M., Ward A.S., Kurz M.J., Fleckenstein J.H., Zarnetske J.P., Hannah D.M., Blume T., Vieweg M., Blaen P.J., Schmidt C., Knapp J.L.A., Klaar M.J., Romeijn P., Datry T., Keller T., Folegot S., Marruedo A.I., Krause S. (2016): Stream solute tracer timescales changing with discharge and reach length confound process interpretation. Water Resour. Res. 52.
  • González-Pinzón, R., Peipoch, M., Haggerty, R., Martí, E., Fleckenstein, J.H., (2015): Nighttime and daytime respiration in a headwater stream. Ecohydrology
  • Kurz, M.J., Martin, J.B., Cohen, M.J., Hensley, R.T., (2015): Diffusion and seepage-driven element fluxes from the hyporheic zone of a karst river. Freshw. Sci. 34 (1), 206–221.
  • Trauth, N., Schmidt, C., Vieweg, M., Oswald, S.E., Fleckenstein, J.H., (2015): Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions. Water Resour. Res. 51 (4), 2243–2263.
  • Vandersteen, G., Schneidewind, U., Anibas, C., Schmidt, C., Seuntjens, P., Batelaan, O., (2015): Determining groundwater-surface water exchange from temperature-time series: Combining a local polynomial method with a maximum likelihood estimator. Water Resour. Res. 51 (2), 922–939.
  • Trauth, N., Schmidt, C., Vieweg, M., Maier, U., Fleckenstein, J.H., (2014): Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions. J. Geophys. Res. 119(5), 910–928.
  • Trauth, N., Schmidt, C., Maier, U., Vieweg, M., Fleckenstein, J.H., (2013): Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour. Res. 49 (9), 5834–5850.
  • Lewandowski, J., Fleckenstein, J.H., Nützmann, G., Angermann, L., (2012): A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone. J. Hydrol. 475 , 1–11.
  • Schmidt, C., Musolff, A., Trauth, N., Vieweg, M., Fleckenstein, J.H., (2012): Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed. Hydrol. Earth Syst. Sci. 16 (10), 3689–3697.
  • Engelhardt, I., Piepenbrink, M., Trauth, N., Stadler, S., Kludt, C., Schulz, C., Schüth, C., Ternes, T.A., (2011): Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone. J. Hydrol. 400 (1-2), 255–266.
  • Krause, S., Hannah, D.M., Fleckenstein, J.H., Heppell, C.M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A.L., Wood, P.J., (2011): Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4 (4), 481–499.