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Zusammenfassung. Der Anstieg der Weltbevilkerung und der Klima-
wandel werden die Menschheit in den néchsten 50 bis 100 Jahren vor grofie
Herausforderungen stellen. Diese globalen Verénderungen werden sowohl zu
einem Anstieg des Trinkwasserbedarfs als auch regionenspezifisch zu einem
erhthtem Wasseranspruch von Pflanzen fiihren. Von den Folgen auftreten-
der Trockenperioden sind in Europa aktuell vor allem die Mittelmeerldnder,
insbesondere Spanien, betroffen. In solchen Gebieten kann der zu erwar-
tenden Wasserknappheit nur durch intensivere Bewdésserung des landwirt-
schaftlich genutztem Landes nachgekommen werden. Weltweit entstammen
etwa 20 % des fiir Bewiisserung eingesetzten Wassers dem Grundwasser-
speicher, 50 % des Trinkwasserbedarfs und 40 % des industriellen Was-
serverbrauchs werden durch die Nutzung von Grundwasser abgedeckt. Die
weltweiten Auswirkungen sinkender Grundwasserstinde aufgrund intensi-
ver Wasserentnahme kénnen in Gebieten wie der Nordchinesischen Ebene
oder dem mexikanischen Mezquital Valley sowie in und um Grofstiddte wie
Mexiko-Stadt, Bangkok, Sanaa, Tokio, Madras oder Shanghai beobachtet
werden. Um die Wasserressourcen der Erde, besonders in den genannten
Gebieten, nachhaltig nutzen und bewirtschaften zu kénnen ist ein umfas-
sendes Verstindnis des hydrologischen Kreislaufs notwendig.

Der Mensch entnimmt dem Untergrund hauptséchlich aus tieferen Schich-
ten Wasser, indem er Brunnen installiert. Pflanzen hingegen decken ihren
Wasserbedarf hauptsichlich durch die Wurzelwasseraufnahme aus der obe-

ren, ungesittigten Bodenzone ab. Um geeignete Aussagen iiber die momen-



tane Bewirtschaftung treffen zu konnen oder die Auswirkungen mdoglicher
Szenarien vorherzusagen sind diese Prozesse nachzubilden. Modelle der
Wasserentnahme aus dem Untergrund, sei es durch Brunnen oder durch
Pflanzen, beziehen sich meist auf die Grofienskala, auf der der Mensch ver-
kehrt (im Meter- bis Kilometerbereich). Etablierte Modelle der Grundwas-
serentnahme gehen auf dieser Skala von einem Aquifer konstanter Leit-
fahigkeit aus. Der Extraktionsprozess wird dabei durch Brunnenfunktionen
abgebildet. Gegenwértige Vegetations- und Klimamodelle beinhalten eine
Beschreibung der Wurzelwasseraufnahme auf der Skala ganzer Pflanzen-
gemeinschaften. Beide Ansitze bilden den Einfluff kleinskaliger Prozesse
durch die Verwendung einfacher, dquivalenter Parameter ab (iquivalente
Leitfdhigkeit bzw. Wurzeldichteverteilung). Die relevanten FlieSprozesse
solcher Wasserentnahmen finden jedoch auf kleinerer Skala statt und kénnen
durch solche Ansétze nur unzureichend beschrieben werden.

Der Grundwasserfluss wird durch die hydraulischen Eigenschaften des Aqui-
fers bestimmt - natiirliche Grundwasserleiter weisen dabei gleich auf meh-
reren Skalen rdumliche Heterogenitaten dieser Eigenschaften auf. Dariiber
hinaus ist in der ungeséttigten Bodenzone die Durchlissigkeit des Mediums
zusitzlich durch den lokalen Wassergehalt charakterisiert. Der Wasserfluss
im Boden wird dabei durch die nichtlineare Abhéngigkeit der hydraulischen
Leitfdhigkeit vom Wasserpotential beeinflusst. Sinkt dieses ab, so verringert
sich auch die ungeséttigte Durchlédssigkeit. Dieser Bereich kann je nach Bo-

denart mehrere Gréfienordnungen umspannen.



Das Hauptziel dieser Doktorarbeit ist es beide Extraktionsprozesse effektiv
zu beschreiben und den Einfluss lokaler Inhomogenitéiten bzw. Nichtlinea-
ritaten hydraulischer Mediumseigenschaften auf den gesamten Entnahme-
prozess zu quantifizieren. Dieser Arbeit liegt dabei die Annahme zu Grun-
de, dass lokale hydrologische Prozesse die Wasserentnahme auch auf einer
grofleren Skala beeinflussen. Der Einfluss dieser lokalen Eigenschaften ent-
steht durch die Ausbildung starker lokaler Stromungsgradienten innerhalb
des radialen Fliefifeldes. Den Begriff lokal verwenden wir hier stets gleich-

bedeutend mit sich in unmittelbarer Nihe der Entnahmestelle befindend.

Im ersten Teil untersuchten wir den Fall der Wasserentnahme aus einem ge-
spannten Aquifer. Dieser liegt zwischen zwei nahezu undurchléssigen Schich-
ten. Die Michtigkeit des Grundwasserleiters wird als konstant angenom-
men, da der Wasserspiegel nicht iiber die obere Deckschicht steigen kann.
Der hydraulische Druck in einem solchen Leiter liegt oberhalb dieser Schicht.
Die auftretenden Brunnenstromungen konnen aufgrund der Ausrichtung
des Fliefifeldes in Radialkoordinaten beschrieben werden. Fiir den Spezial-
fall der Grundwasserentnahme aus Aquiferen konstanter Leitfihigkeit (ho-
mogene Grundwasserleiter) existieren analytische Losungen. Dies sind im
stationiren Fall die Formel von Thiem und bei transienter Betrachtung
die Brunnenformel von Theis. In dieser Arbeit wird von der realistische-
ren Bedingung einer Grundwasserentnahme aus einem heterogenen Aquifer

ausgegangen. Die hydraulischen Eigenschaften werden dabei einer statis-



tischen Verteilung folgend durch die Parameter Mittelwert, Varianz und
Korrelationsldnge beschrieben.

Zur Charakterisierung von Grundwasserbrunnenstrémungen durch dquiva-
lente hydraulische Eigenschaften heterogener Medien existiert bereits eine
Reihe von wissenschaftlichen Arbeiten. Aquivalente Werte werden in die-
sen Arbeiten als homogene Ersatzwerte des subskaligen Grundwasserflus-
ses auf der betrachteten Skala angesehen. In dieser Arbeit wihlen wir fiir
die Beschreibung der Grundwasserentnahme einen anderen Ansatz. Wir
unterscheiden hierzu zwischen bisherigen dquivalenten und der hier ver-
wendeten adaptiv-vergroberten (coarse grained) Eigenschaft des Mediums.
Die Methode des Coarse Graining ist eine rdwmliche Mittelungsprozedur.
Die Volumenmittlung wird auf die Gleichung der radialen Grundwasser-
brunnenstréomung angewendet. Die Filterbreite des Coarse Graining ist in
diesem Fall radial-abhiingig. Die Anwendung der Methode resultiert in ei-
ner adaptive-vergroberten hydraulischen Eigenschaft, die als Funktion des
radialen Abstands zum Brunnen die Druckgradienten und den jeweiligen
Wasserfluss an allen Punkten des Strémungsfeldes verbindet. Die adaptiv-
vergroberte Beschreibung gilt im Unterschied zum dquivalenten Parameter
gleichzeitig an verschiedenen Radien der Brunnenstromung des durch das
heterogene Medium flieflenden Grundwassers. Dieser Ansatz beriicksichtigt
besonders die lokalen hydraulischen Prozesse in der Nihe des Pumpbrun-
nens, d.h. die auftretenden Strémungsgradienten und den Einfluss der lo-

kalen Wasserdurchlassigkeit.



Die hydraulische Leitfdhigkeit eines heterogenen Aquifers kann iiber mehre-
re Skalen variieren. Wir fiihrten fiir die Modellierung der Grundwasserbrun-
nenstromung eine Skalenseparierung der Heterogenitidten durch und unter-
schieden dabei zwischen grofskaligen (Meter bis Kilometer) und kleinskali-
gen (Zentimeter bis Meter) Brunnenstromungen. Auf dieser kleinen Ska-
la ist die hydraulische Konduktivitit die den Wasserfluss dominierende
Variable. Kleinskalige Brunnenstrémungen besitzen eine Ausdehnung im
Bereich von mehreren Metern und sind somit durch das heterogene Kon-
duktivititsfeld charakterisiert. In diesem Fall liegt die Aquiferméchtigkeit
im Langenbereich der horizontalen Fliefiprozesse. Deshalb untersuchten wir
kleinskalige Pumpversuche fiir kiinstliche Aquifere, die Heterogenitéiten in

horizontaler als auch vertikaler Richtung aufweisen.

VergréBert man den betrachteten Bereich auf Meter bis Kilometer, so treten
neue Heterogenititen in den hydraulischen Eigenschaften des Mediums auf.
Auf dieser Skala ist es die hydraulische Transmissivitit des Aquifers, die
den Grundwasserfluss bestimmt. Grofiskaligere Brunnenstrémungen dehnen
sich bis zu mehreren hundert Metern aus und werden somit von den Hete-
rogenititen des Transmissivititsfeldes beeinflusst. Die horizontale Ausbrei-
tung des Absenktrichters liegt dabei um ein vielfaches iiber der vertikalen
Ausdehnung des Aquifers. Dieser Umstand ldsst es zu die Auswirkung des
heterogenen Transmissivititsfeldes auf die Brunnenstromung nur in hori-

zontaler Richtung zu untersuchen. Wir begannen daher zunéchst mit einer



Betrachtung grofiskaliger Brunnenstromungen, dem sich die kleinskaligen
Untersuchungen in allen drei Raumdimensionen anschlossen.

Die adaptiv-vergroberte Gleichung wurde auf beiden Skalen der Grundwas-
serentnahme, d.h. sowohl fiir die groflerskalige Transmissivitit als auch fiir
die kleinerskalige Konduktivitit, durch Anwendung der Methode des Coar-
se Graining und einer Renormierungsgruppenanalyse abgeleitet. Zunéchst
betrachteten wir den Einfluss der Transmissivitit auf grofiskalige Brunnen-
stromungen. Als ein wichtiges Ergebnis stellte sich heraus, dass groBiskalige
Brunnenstrémungen vor allem in der Nihe des Extraktors stark von der lo-
kalen Transmissivitit abhingen. Im Fernfeld des Pumpversuchs nihert sich
die adaptive-vergroberte Transmissivitidt dem dquivalenten Wert fiir eine
uniforme Stromung, dem geometrischen Mittel des Transmissivititsfeldes,
an. Der Ubergang zwischen der lokalen Transmissivitit im Nahfeld und
dem geometrischen Mittel im Fernfeld wird durch die (horizontale) Kor-
relationslinge bestimmt. Fiir den Fall einer Ensemble Mittelung mehrerer
Pumpversuche entfiel der Einfluss der lokalen Transmissivitdt auf den ge-
mittelten Absenktrichter und wurde in der adaptiv-vergroberten Transmis-
sivitdtsformel durch das harmonische Mittel ersetzt. Dieses ist iiber das
geometrische Mittel und die Varianz des Feldes definiert. Die statistischen
Parameter des heterogenen Transmissivitidtsfeldes wurden mittels Monte-
Carlo-Simulationen kiinstlicher Pumpversuche invers abgeschitzt.

Die Ergebnisse grofiskaliger Pumpversuche iibertrugen wir auf Brunnen-

stromungen kleinerer Ausdehnung. Diese kleinskaligen Pumpversuche wer-



den durch die sowohl in vertikale als auch horizontale Richtung variierende
Leitfahigkeit beeinflusst. Die Methode des Coarse Graining wurde aus die-
sem Grund auf eine dreidimensionale Mittelungsprozedur erweitert. Dies
resultiert in einer Formulierung des hydraulischen, adaptiv-vergroberten
Konduktivitatsfeldes. Zusétzlich zu dem geometrischen Mittel, der horizon-
talen Korrelationslinge und der Varianz kommt in dieser Gleichung noch
der Einfluss des Anisotropieverhiltnisses zum Tragen. Dieses Verhéltnis
ist als der Quotient zwischen horizontaler und vertikaler Korrelationslinge
definiert. Ahnlich zu der inversen Abschitzung der Parameter grofiskali-
ger Pumpversuche wurden die vier genannten statistischen Parameter des
adaptiv-vergroberten Konduktivititsfeldes fiir kleinskalige Brunnenstrém-
ungen abgeschétzt.

Der zweite Teil dieser Arbeit beschiftigt sich mit der Modellierung der
pflanzlichen Wurzelwasseraufnahme aus dem Boden, der sogenannten un-
gesiittigten Zone. Ahnlich der Grundwasserentnahme aus der gesittigten
Zone wird hierfiir in die Wasserflussgleichung fiir die ungesittigte Zone (Ri-
chards Gleichung) ein Senkenterm eingefiihrt. An Stelle der Wasserentnah-
me durch den Pumpbrunnen trat die Wasserextraktion durch die Pflanze. In
Analogie zum ersten Teil der Arbeit erforschten wir den Einfluss der hydrau-
lischen Eigenschaften in unmittelbarer Ndhe der Senke, d.h. der Wurzel,
auf den gesamten Wasserextraktionsprozess der Pflanze. Da die hydrauli-
schen Eigenschaften des Bodens im Unterschied zur Grundwassergleichung

auch vom lokalen Wassergehalt abhiingen, ist die Richards Gleichung, die



die Wasserbewegung der ungesittigten Zone beschreibt, nichtlinear. Inter-
essierte uns in den Studien zur Grundwasserentnahme die rdumliche He-
terogenitét der Leitf.‘ihigkeifen, stand in diesem Teil der Dissertation die
Nichtlinearitdt der Potential-Fluss-Beziehung im Mittelpunkt unserer Un-
tersuchungen- der Wurzelwasseraufnahme.

Die Wurzelwasseraufnahme wird in aktuellen Vegetations- und Klimamo-
dellen durch eine bewuchsspezifische Wurzeldichteverteilung parametrisiert.
Dabei wird dem Bodenwassermodell ein Ausdruck fiir die vertikale Wur-
zelwasseraufnahme entlang der Bodentiefe hinzugefiigt. Dieser Senkenterm
ergibt sich, in dem der atmosphérische Transpirationsbedarf der betrach-
teten Pflanzenart iiber die Wurzeldichteverteilung auf die Bodenschichten
verteilt wird. Der Wasserbedarf der Pflanze wird durch ein Potentialkon-
zept ausgedriickt - der Wasserfluss findet entlang eines Druckgradienten
zwischen Bodenwasser und Atmosphire statt. Das Austrocknen einzelner
Schichten fithrt in diesen Modellen zu einer reduzierten Wasseraufnahme
und damit zu einer verringerten Transpiration.

Die Annahme, dass eine erhéhte Wurzeldichte zu einer erhthten Wasserauf-
nahme beitrigt, basiert auf der Vorstellung, dass die Vergréflerung der was-
seraufnehmenden Fliche zu erhéhten Aufnahmeraten fithrt. Ein Problem
dieser Art von Parametrisierung der Wurzelwasseraufnahme begriindet sich
darin, dass der Zusammenhang zwischen Wurzelstruktur und Wasserauf-
nahme durch Wurzeldichteverteilungen unzureichend reprasentiert ist. Des

Weiteren ist auch der radiale Anstrom des in Wurzelnihe befindlichen



Bodenwassers in solchen Modellen unzureichend abgebildet, obwohl die-
se den Gesamtaufnahmeprozess beeinflussen. Aktuelle Studien zeigen, dass
nicht die Aufnahmefliiche allein, sondern vor allem die Potentialverteilun-
gen im Wurzel- und Bodensystem verantwortlich fiir die Wasseraufnahme
sind. Dies ist im Einklang mit der Beobachtung, dass Pflanzen bei glei-
cher Wurzeldichteverteilung, entsprechend den momentanen Bodenfeuchte-
bedingungen ihre Wasseraufnahmeprofile deutlich &ndern konnen. Hierzu
miissen zwei Prozesse zusammen betrachtet werden: (1) Der Wasserfluss
innerhalb des Bodens zur Wurzel hin, sowie (2) der Wasserfluss innerhalb
des Wurzelsystems bis zum Ubergang in den Stamm.

In dieser Arbeit wurde der Wasserfluss innerhalb des Bodens zur Wurzel
zunichst in einem ”Split root experiment® numerisch nachgebildet. Da-
zu modellierten wir die Wasserentnahme aus zwei Bodenkompartimenten
gleicher rdumlicher Dimension und hydraulischer Eigenschaften, aber un-
terschiedlicher Durchwurzelungsdichte. Der Fokus lag dabei auf der Unter-
suchung des Einflusses der lokalen hydraulischen Gradienten des Wasserpo-
tentials in Wurzelnihe. Es zeigte sich, dass die zeitliche Entwicklung dieser
Gradienten in dem jeweiligen Bodenkompartiment das Gesamtwasserauf-
nahmeverhalten beeinflusste. Obwohl die Wurzeldichte in beiden Schichten
konstant gehalten wurde, verinderte sich die Verteilung der Entnahmera-
ten zwischen den beiden Bodenschichten iiber die Zeit hin betréchtlich.
Dies war besonders in der Periode der Fall, als der Bodenwassergehalt

noch nicht limitierend auf die Wasseraufnahme wirkte. Unsere Ergebnis-



se bestdtigen die Annahme, dass in Vegetations- und Klimamodellen die
Modellierung der Wasseraufnahme iiber die Wurzeldichteverteilung zu ei-
ner Unterschétzung der Wasserentnahme aus weniger stark durchwurzelten
Schichten fiihrt. Diese klassischen Ansiitze zeigen demzufolge eine verfriihte
Verringerung der pflanzlichen Transpirationsleistung.

Eine bedeutende Rolle fiir die Vorhersage der Wasseraufnahme gesamter
Wurzelsysteme spielt die korrekte Vorhersage des Wasserpotentials an der
Schnittstelle zwischen Wurzel und Boden. Dessen richtige Abschitzung ist
das Ziel des letzten Abschnittes dieser Doktorarbeit, indem die Wurzelwas-
seraufnahme fiir explizite Architekturen modelliert wurde. Die Verteilung
des Wasserpotentials innerhalb der Wurzel héingt in erster Linie von den
auf diesem Fliefipfad zu iiberwindenden hydraulischen Widerstinden ab.
Dabei unterscheidet man den radialen Fliefipfad vom Wurzeldufieren iiber
den Cortex zu dem Xylem und den axialen Flieipfad innerhalb der Wasser-
leitbahnen des Wurzelxylem. Der Wertebereich der hydraulischen Wurzel-
widerstdnde fiir den radialen und axialen Fluss Wefden innerhalb der wis-
senschaftlichen Gemeinschaft anhaltend diskutiert. Wihrend die axialen
hydraulischen Wurzelwiderstinde durch das Poiseuillesches Gesetz durch
die Anzahl, den Radius und die Lénge der Leitbahnen relativ gut beschrie-
ben werden kénnen, weisen experimentelle Messungen des radialen Flief3-
widerstandes verschiedener Studien eine Variabilitdt von mehr. als einer
GroBenordnung auf. Aus diesemn Grund simulierten wir die Wurzelwasser-

aufnahme parallel fiir zwei Szenarien mit stark unterschiedlichen radialen



hydraulischen Widerstdnden. Diese wurden dabei altersabhéingig durch ihre
Wurzelordnung parametrisiert. Das fiir diese Aufgabe entwickelte Wurzel-
wasseraufnahmemodell beinhaltet sowohl den Anstrom des Bodenwassers
an die einzelnen Wurzeln als auch den Wasserfluss innerhalb des explizit
generierten Wurzelsystems. Wihrend die Wurzelarchitektur in diesem Mo-
dell die raumliche Verteilung moglicher Wasserentnahmestellen im Boden
vorgibt, sorgt die Verteilung des Wasserpotentials im Wurzelsystem fiir die
anzunehmenden Aufnahmeraten an den jeweiligen Stellen. Um statistische
Aussagen iiber das Aufnahmeverhalten einzelner Pflanzen gleichen Typs
treffen zu konnen, wurden wiederholt Simulationen fiir verschiedene Rea-
lisierungen von Wurzelsystemarchitekturen einer bestimmten Pflanzenart
(Sorghum) durchgefiihrt. Unsere Resultat zeigen, dass sich die Wasseraui-
nahme innerhalb verschiedener Individuen der gleichen Art unterscheidet.
Je nach Parametrisierung des radialen Wurzelwiderstandes duflert sich dies
(1) fiir geringere radiale Widerstéinde in stark variierenden Wasseraufnah-
meprofilen iiber die Bodentiefe trotz vergleichbarer Wurzeldichteverteilung
oder (2) fiir hohere radiale Widerstinde in stark unterschiedlichen Was-
serpotentialen innerhalb des Wurzelsystems der einzelnen Realisierungen.
Diese Ergebnisse sind ein wichtiger Beitrag zur Verbesserung gegenwirtiger
Implementierungen der Wurzelwasseraufnahme in Vegetations- und Klima-
modellen.

Zusammenfassend verdeutlicht diese Arbeit die Relevanz subskaliger Pro-

zesse fiir die Wasseraufnahme von Pflanzen als auch fiir die Grundwas-



serentnahme. Wenn die Gesamtaufnahme auf gréflerer Skala richtig ab-
geschitzt werden soll, miissen demzufolge lokale Prozesse in Betracht gezo-
gen werden. Parametrisierungen durch dquivalente Mediumseigenschaften

sind zu diesem Zweck nicht ausreichend.



Abstract.  This thesis deals with describing the flow of subsurface water
towards a sink. We investigate the local impacts of hydraulic properties
close to the extractor on the overall flow process. This is done for two
examples of water extraction, that is well pumping groundwater and root
water uptake from the soil.

Although these two topics, root water uptake and well pumping, differ in
many ways, they also share some similarities. Regarding the flow process,
in both cases water moves along a radial pathway through a porous medium
towards the point of discharge. The water potential field that drives the
water flow hence develops strong gradients in the vicinity of the sink.
Nevertheless, root water uptake and well pumping show important differ-
ences considering the flow process. While water uptake of plant roots occurs
in the unsaturated zone, groundwater is pumped from the saturated zone.
Studying water flow in the unsaturated zone becomes complicated by the
fact that the hydraulic conductivity depends not only on the porous me-
dia material properties, but is also a nonlinear function of the soil water
potential.

For a confined, fully saturated aquifer, hydraulic conductivity does not de-
pend on the water potential itself. In this case, assuming the subsurface
hydraulic properties to be homogeneous, analytical solutions can be derived
(Theis and Thiem approach). However, aquifers typically exhibit spatial
heterogeneities at multiple scales. Taking this into account, we applied

a spatial filtering procedure (Coarse Graining) to the radial flow equa-



tion governed by the heterogeneous character of the pumped aquifer. The
coarse grained field is supposed to represent both, the statistical proper-
ties of the heterogeneous aquifer and the corresponding process quantities
like hydraulic head and discharge simultaneously. Whether the aquifer’s
corresponding hydraulic property is transmissivity or conductivity depends
on the scale of pumping. Here, we use a separation of scales and divide
typical well flows into small scale (a few meters) and large scale (hundreds
of meters). Thus, we applied two concepts, (1) one for the interpretation of
large scale well flows governed by the coarse grained aquifer transmissivity
and (2) the other for deriving the coarse grained conductivity field for small
scale well flows.

The second part of this thesis is concerned with modeling the below ground
mechanism of root water uptake. Compared to well flows, we still focused
on applying a sink term to the flow equation. Here, the water is removed by
the plant root. For water flow in the unsaturated zone, the flow equation is
highly nonlinear since the hydraulic conductivity depends on soil water po-
tential. Thus, we considered rather the nonlinearity in the flow-to-potential
relationship than the spatial heterogeneities. Similarly as in the well flow
study, the hydraulic properties in the vicinity of the sink (root) affect the
water extraction process significantly because of the local conductivity drop
when soil dries out.

In a first step, we investigated how local hydraulic gradients in soil water

potential influences overall root water uptake. For this we apply a numerical



split root model experiment with two soil compartments of same size and
soil hydraulic properties but different rooting density. We show that the
temporal development of the local gradients influences the pattern of root
water uptake. While rooting density distribution stayed constant with time,
the distribution of root water uptake changed considerably, particularly for
the period when soil moisture was not yet limiting uptake. We find that
the parameterizations in SVAT models tend to underestimate water uptake
from less densely rooted layers.

Besides regarding the potential gradients in the vicinity of the root, in the
last part of this thesis we included another significant process at the plant
scale that is the variation of potentials within the root system. Therefore,
we simulated the water uptake of an ensemble of root system realizations.
Our results suggest that root water uptake behavior might vary greatly
between individuals of a particular species. This challenges the state-of-
the-art approach modeling root water uptake at the soil plant continuum
by using a vertical function of root abundance. Additionally the developed
root water uptake model was able to give a precise estimate of the water
potential at the root collar that is necessary for extracting a given amount
of water from the soil.

In summary, this dissertation shows two examples where small scale hy-
draulic properties close to the water extraction point strongly influence
larger scale water extraction. In this cases, local subscale processes need to

be taken into account in order to model the system behavior on the scale of



human interaction. This thesis proposes solutions to describe, model and

quantify this subscale effects of water extraction from the subsurface.



List of Symbols and Abbreviations

Symbol
r [m]

z,Yy, 2 [m]
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radial distance

cartesian coordinates

time

hydraulic head

matric potential

matric flux potential

rate

volumetric flux

volumetric flow rates

volumetric water content
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hydraulic diffusivity
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hydraulic transmissivity

hydraulic resistance
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well radius

outer domain radius (range of pumping test)
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ra [m]

Tdisc [M]

I [m]

Ip(2) [m]
P, (z) [-]
Lj [mm'~]
LY [mm™]

zq [m]

correlation length in i-th direction
horizontal/vertical integral scale
variance

anisotropy ratio

correlation function

soil porosity

saturated volumetric water content
residual volumetric water content

soil specific parameter

soil specific parameter

soil specific parameter

root radius

radial distance from root center to the point where
bulk water potential appears

half root distance

radial disc size

root segment length

accumulated root length at depth z
fraction of total root length at depth z
accumulated root length per soil depth
accumulated root length per volume (RLD)

rooting depth
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thickness of soil layer k

root radial hydraulic conductivity
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Chapter 1

Introduction

1.1 Motivation

Water stored in the surface and subsurface is essential for humans and all
other known forms of terrestrial life. But only about 1 percent of the fresh-
water available on Earth is easily accessible surface water stored in rivers,
lakes or man made storage facilities (0,105 million km?), where another
1 percent counts for net precipitation falling on land. The vast majority,
namely 98 percent of the available fresh water, is stored in the subsurface
that is mainly groundwater and to a less extent soil moisture (together

10,53 million km?, all data by Gleick (1996)).

Today, the total global groundwater withdrawal is estimated to be between

600 and 700 km? /year (Zektser and Everett, 2006). In this sense, groundwa-
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ter provides about 70% of the piped water supply in the European Union,
it forms a cornerstone of the Asian “green agricultural revolution” and sup-
ports rurai livelihoods across extensive areas of sub-Saharan Africa (after
Foster and Chilton (2003)). Groundwater is available almost everywhere
on Earth, but cannot always be reached easily. Globally it is estimated to
provide at least 50% of current potable water supplies, 40% of the indus-
trial water demand and 20% for water use in irrigated agriculture (Zektser

and Everett, 2006).

The unsaturated soil reservoir forms only a minor water storage compared
to groundwater. While groundwater reservoirs residence times are often
counted in decades, centuries or even millennia, water resides in the soil
reservoirs on much shorter time scales due to its smaller dimensions. Soil
water either stems directly from rainfall or indirectly from agricultural irri-
gation. The principle users of soil water are plants. Water that is stored in
this part of the subsurface plays a fundamental role for vegetation growth
and composition. However, most of the water that enters the plant via
its roots does not stay there. Less than 1% of the water withdrawn by
the plant is actually assimilated. The rest of the water moves to the leaf
surfaces where it transpires to the atmosphere while stomata are open for
carbon uptake. This shows that soil moisture also affects the feedback be-
tween the atmospheric water reservoir and the terrestrial part of the Earth

(Rodriguez-Iturbe et al., 2007).



Soil water content is important for the water cycle such as for evapotranspi-
ration, the generation of overland flow or groundwater recharge by perco-
lation. The movement of water on, above, and below the surface is affected
by global change. The 2008 IPCC report on climate and water (Bates et al.,
2008) states that observed warming over several decades has been linked
to changes in the hydrological cycle such as increasing atmospheric water
vapor content, changing precipitation patterns, intensity and extremes and
changes in soil moisture and runoff. Supplementary, the latest world wa-
ter development report (World Water Assessment Programme, 2009) notes
that the demand for freshwater will increase by about 64 billion cubic me-
ters a year due to population growth. The majority of the additional three
billion pedple expected by 2050 will be in developing countries, where many
of these regions are already water scarce.

Due to the expected global changes, the need for water will increase world-
wide. Also, the dynamics of the water cycle will alter under the described
modifications. Not only, but especially because of these expected changes,
a sound understanding of the underlying processes is required to develop
sustainable management tools. For this aim, models have been developed.
Many of this models operate at the scale of human interest, that is at the
landscape scale of tens of meters up to several kilometers. For example,
groundwater extraction is very often modeled by well functions (Theis or
Thiem model) assuming the medium to be homogeneous. Plant available

water is estimated by vegetation specific water uptake functions.
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A discrepancy often exists in these models between the scale of human
interaction and the scale where the relevant process occurs. For example,
geologic structures of aquifers are neglected, if they are smaller than the
resolution of the groundwater flow model or, soil water extraction by plants
is often described as water removal from the bulk soil although the process
of water flow in both cases takes place at much smaller scale.

The focus of this work is on two examples of water extraction from the sub-
surface, one from saturated and one from unsaturated media: well pumping
and root water uptake. In both cases local processes show an impact on
the larger scale. In one case this is due to the small scale heterogeneity
of the hydraulic aquifer; in the other it is caused by the water saturation
dependent hydraulic properties of soil, both in combination with steep local
flux gradients.

Our main hypothesis is that singular small scale hydraulic properties close
to the water extraction point essentially determine larger scale water re-
moval. In a more general form, this hypothesis has been revealed many

times in the field of upscaling theory.

1.2 OQutline

Chapter 2 will shortly introduce the theory of water flow through porous
media. It especially covers the aspects of radial groundwater flow and

therefore motivates the following Chapters 3 and 4. These both have in
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common that the concept of Coarse Graining is applied to a radial field
of water flow through a heterogeneous confined aquifer. However, we will
make the distinction between large (Chapter 3) and small scale (Chapter 4)
well flows and particular stress the differences between current approaches
of introducing heterogeneity into radial groundwater flow and our coarse
grained approach.

In Chapter 3, we investigate numerically the effects of spatial heterogeneity
of hydraulic transmissivity on the performance of large scale well flows. We
propose a procedure for estimating the statistical properties of the hetero-
geneous transmissivity field under radial flow conditions and present a new
mathematical approach for interpreting an ensemble and single large scale
pumping tests. By applying the spatial filtering technique Coarse Grain-
ing, we derive an explicit formula for the coarse grained aquifer transmis-
sivity. Repeating numerical pumping tests over several aquifer realizations
(Monte Carlo Simulations), we test the applicability of the derived formula
for nonuniform radial flow configurations and show results for the statistical
parameter estimates like the mean, variance and correlation length.

The established method for interpreting large scale pumping tests (Chap-
ter 3) is extended to small scale pumping tests in Chapter 4. Starting at
the larger scale and then extend these findings to the smaller scale is due
to reasons of simplicity. Since the aquifer can be treated as quasi two-
dimensional at the large scale, it releases the progression of the proposed

procedure. In contrast small scale well flows have to be interpreted in



three dimensions. This is due to the fact that the vertical extent (aquifer
thickness) is within the same order of magnitude as the horizontal extent.
Therefore, the heterogeneity of the hydraulic conductivity varies in both,
the horizontal and the vertical direction. Focusing on the small scale in-
terpretation in Chapter 4, we develop a method to estimate the statistical
properties of the hydraulic conductivity field. In addition to the parame-
ters geometric mean, horizontal correlation length and variance, our inverse
estimation procedure will include also the anisotropy that characterizes the
ratio between the horizontal and vertical correlation length.

In Chapter 5 we complete the derivation of general principles for water
flow in the subsurface that is the water flow in the unsaturated zone and
especially root water uptake.

Regarding the root water uptake in the unsaturated zone, we focus on the
nonlinear nature of soil water flow. Therefore, we investigate the effect
of the local hydraulic conductivity decrease around roots when soil gets
dry. This is explored by a numerical split root experiment within Chapter
6. Simulating the water uptake from two compartments of different root
density, we test the applicability of the widely used root length density
approach for parameterizing root water uptake.

In- Chapter 7, we will extrapolate these findings to the root system scale.
In contrast to the split root experiment, plant water uptake is simulated
for explicit root architectures. We present a stand alone root water uptake

model (named aRoot), which calculates the sink term for any bulk soil

6



water flow model taking into account water flow within and around a roof
network. The variable determining the plant regulation for water uptake
in our approach is the soil water potential at the soil-root interface. We
apply this model to investigate the role of root architecture on the spatial
distribution of root water uptake.

Some overlap exist between the theoretical Chapters 2 and 5 and Chapters
3,4, 6 and 7. This was unavoidable since the latter are self explanatory
paper based manuscripts that have been or will be published in scientific

journals.
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Chapter 2

Theoretical background I:
subsurface water flow and

well Hows

2.1 Flow in porous media

This section deals with water flow in the subsurface and its derivation of
first principles. Here, we regard the subsurface as a porous media. The
theoretical part of flow in porous media was inspired by the lecture notes
of Roth (2007) and is based on the books of Bear (1988) and Maidment
(1993).

11



2.1.1 Porous media

Either consolidated or unconsolidated rock, both geological materials can
be regarded as porous media. The most significant properties of a porous

medium are defined as:

1. The solid matrix and the pore space (filled by water) together accu-

mulate to the total volumne of the medium.

2. Down to a minimal volumetric element of a characteristic size, both

solid matrix and pore space are present.

3. Regarding water flow, we focus only on the hydraulically connected

fraction of the pore space.

A porous medium owns different properties. It is characterized by its poros-
ity and in terms of water flow by its ability to hold and release water and
also by the ability of the material to transmit water. The latter two quan-
tities are mainly related to the pore size of the media and its material

composition.

2.1.2 Transition to continuum scale

Describing the water flow processes at the pore space in detail is not feasible
for most domains of practical environmental interest. The pore geometry
of the media and corresponding pore-scale phenomena own relevant lengths

in the range of micrometers while environmental systems extend orders of
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meters or higher. To bridge this gap in scales, the pore space and its pro-
cesses are transfered to the continuum scale. The outcome of this transition

are macroscopic field variables that still describe the observed phenomena.

REV Groundwater and soil water flow equations are defined on the basis
of a representative elementary volume (REV). At a macroscopic level, a
certain point P(z,y, z) could be treated as a REV within the porous media.
At the pore scale, this point would belong to one of the phases, either to
the solid or to the fluid matrix.

To sum up the following conditions for the REV must be kept:
e small enough to be regarded as a point on the macroscopic scale

e large enough that the variables velocity and head concerning this

volume remain stable/steady

In hydrogeology, the representative elementary volume (REV) is the small-
est volume over which a measurement can be made that will yield a value
representative of the whole. Below REV, the parameter is not defined and
the material cannot be treated as a continuum.

In order to establish a given porous medium’s property, samples of the
porous medium are measured (as plotted in Figure 2.1). If the sample
is too small, the measuring tend to oscillate. As we increase the sample
size, the oscillations begin to dampen out. Eventually when the sample

size becomes large enough the measuring become more consistent. This
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Figure 2.1: Definition of the representative elementary volume (REV) in ac-
cordance to Bear and Bachmat (1990) with n referring to the ratio between
the volume of void space U, within U.

sample size is referred to as the representative elementary volume. If we
continue to increase our sample size, measurements will remain stable until
the sample size becomes large enough that other hydrostratigraphic layers
can be included. This is referred to as the maximum elementary volume

(MEV).

2.1.3 Mass balance: continuity and diffusion equation

The continuity equation is derived from the principle of mass conservation
of the fluid. The mass balance states that the mass variation over time for a
representative volume (REV) in a certain medium is equal to the difference
between the mass flowing across the boundaries of the REV and additional
sinks/sources within the volume. Using the divergence theorem to turn the

flux across the boundary into a flux over the entire volume, the final form
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of the groundwater flow equation (in differential form) is:

oh
Vel - . 2.1
Cat Vv+o (2.1)

It states that the temporal change in hydraulic head h [m] (left hand
side) equals the negative divergence of the fluid velocity (v [ms™']) plus
the sink/source terms (o [s7!]). The hydraulic variable representing the

mediums ability to hold or release water is the water storativity/capacity

C [m~1.

Darcy’s Law As Eq. (2.1) has both head and flux as unknowns, Darcy’s
Law relates the fluids velocity to the hydraulic heads. It describes the water
flow as a relationship between the Darcy velocity of the fluid, the medium

and fluid properties and the hydraulic gradient:
v(x,t) = —K Vh(x,t), (2.2)

where h (x,t) is the hydraulic head at position x , K [m s™!] the hydraulic
conductivity of the medium, v (x,t) [ms~!] the Darcy velocity and x the

position vector (in a cartesian coordinate system):
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The hydraulic head of a fluid is composed of pressure and elevation head.
The pressure head represents the internal energy of water due to the pres-
sure exerted on its boundaries (usually defined with reference to atmo-
spheric pressure) where elevation head is the relative potential energy of
water raised above a particular reference point (usually defined with refer-
ence to sea level). Further, the hydraulic conductivity K relates the driving
force (gradient in hydraulic head) with the movement of water within the
media. Hence it quantifies the materials ébility to conduct water flowing

along the porous media.

In general the V-operator is the mathematical operator gradient, diver-
gence or rotation. For the head field, the V-operator is used as a spatial

differentiator (gradient of a scalar field) in the way of

g_fg

T

Vh(x)= g% . (24)
8h
oz

The Darcy equation can be transformed without loss of generality to

Ve Ky O 0 oh
VvV = Uy - - 0 quy 0 g'g H (2 5)
v, 0 0 K. e

hence the conductivity coefficients show up in a diagonal matrix.
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The main assumption of Darcy’s Law is a laminar flow (in contrast to
turbulent flow) and a sufficient size of the pore volume (the REV). This
assumption is fulfilled as long as the water flow velocities in the subsurface

are small enough.

2.2 Subsurface

From a microscopic view the overall subsurface can be regarded as a porous
media. However, we divide it into two main categories: the so-called un-
saturated (or aerated) zone and the saturated zone as illustrated in Figure
2.2. In the zone of saturation all pores are completely water filled whereas
in the unsaturated zone pores contain both gases (mainly air) and water.

The upper part of subsurface is usually formed by the soil water zone. Its
thickness varies greatly, from almost zero meters in swamps to hundreds of
meters in arid regions. This zone is typically followed by the intermediate
vadoze zone and the capillary zone. The unsaturated zone extends from the
ground surface down to water table where the saturated zone starts with
the topmost aquifer, the so-called phreatic aquifer. The lower boundary of

the saturated zone is usually formed by an impervious bedrock.

Soils (and soil water) Soils are the skin of the solid earth. They can
be categorized into three basic different soil types: a clayey soil, a loamy

soil and a sandy soil. Most soils are a combination of the three. Hence,
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Figure 2.2: Distribution of subsurface water after Bear (1988). The zone of
aeration in this notation will be renamed as the unsaturated zone in our
notation and refers to soils and soil water flow. The zone of saturation
corresponds to the saturated zone (aquifer) and the flow of groundwater.

the soil texture depends upon the amount of each soil type in a particular
given soil sample.

Water flow in soils, the so-called unsaturated/vadoze zone, is characteristi-
cally different from flow in aquifers in that (i) the hydraulic properties are
not only a function of space but also of soil water content, (ii) the flow en-
compasses variable fractions of the pore space, and (iii) it is strongly coupled
with the atmosphere through rainfall and evapotranspiration which leads

to stochastically induced fluctuations in the water content.

Aquifers (and groundwater) Formations carrying groundwater are

separated into aquifers and aquicludes. The aquifer is an underground

18



layer of water-bearing permeable materials (consolidated like rock or un-
consolidated like gravel, sand, silt or clay) and can be regarded as a hy-
draulic conductor of high permeability. On the other hand, aquicludes are
hydraulically isolated formations of low permeability. In general, ground-
water encompasses the part of the subsurface water that fills the pore space

entirely.

Groundwater layers can be categorized into the class of unconfined and
confined aquifers. For an unconfined aquifer the groundwater table is free
to move. In contrast, a confined aquifer is bounded by two aquicludes. The
thickness thus does not. change and it has no free water table. Thus, for the

confined case the water head is higher than the upper bounding aquiclude.

2.3 Groundwater flow

The head field h(z,t) describing the groundwater flow is determined by
combining the diffusion equation (2.1) and Darcy’s Law (2.2)

C@h (x,t)

5 V (KVh(x,t)) = o(x,t). (2.6)

If the capacity term C' and the conductivity term K are constant over the
entire domain, analytical solutions can be derived by simplifying Eq. (2.6)

as follows.
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2.3.1 Well flows: radial groundwater flow

In order to describe well flows mathematical, the well extracting water
from the aquifer is placed to the origin of the coordinate system. Under
homogeneous subsurface conditions (hydraulic properties of the aquifer do
not. change over space), the arising flow configuration does not depend on
the angle in horizontal direction. This setup is called a radially symmetric
flow field. If the pumping well is fully penetrating and the well is com-
pleted across the entire thickness of the aquifer, the water flow does not
depend on the vertical coordinates neither, hence the problem becomes one
dimensional:
oh 1__0h 9%h

C—==-K—+K

= —_— 2.
ot r  Or or?’ (2.7)

To solve this equation some supplementary conditions are required. The
first boundary condition (BC I) states that at the well radius ry with
z, being the aquifer thickness along the vertical axis, the pumping well
is extracting water by the flow rate Q,, [m3®s~!]. (BC II) states that the
hydraulic head is known at a certain reference point (for example a constant

background head hg at the outer boundary r = r4 of the flow domain).

(BCI) 27rz, Kaggr) =

Lr=rw

(BC H) h(i, r= ?"d) = hg (t},

20



and

(IC) h(t = 0, T‘) - himt(’r‘).

Based on the aquifers supposed homogeneity and the boundary and initial
conditions (IC) the below analytical solutions can be derived for steady and

transient state.

Steady state Setting the time derivative of Eq. (2.7) to zero gives the
ordinary differential equation (ODE)

1_.0h 9%h
i g — = 2.
TKGT * K8r2 0 (28)

with the analytical Thiem solution
h{r) = 2 In(r) + 71, (2.9)

where 7, and 75 are integration constants set by the boundary conditions

(the need for the initial condition vanishes under steady state).

Under steady state, the first boundary condition is adapted such that the
radial flow rate across the cylindric surface A, [m?] at any radius r multi-

plied by the Darcian flow velocity in radial direction v, equals the pumping

21



rate Oy at ry resulting in

Qw = As X v, = 27rz, X K%. (2.10)
™

Comparing Eq. (2.10) released to dh/dr with the first derivative of Eq.

(2.9), we find
Qw
=g (2.11)

Now, inserting 72 and the second boundary condition, namely that h(r =

rq) = ho is known, into Eq. (2.9) gives the other constant

w

2z, K

T = h[) — ln(rd). (2.12)

Transient state In transient state, the radial groundwater low equation
for homogeneous K and C reads

10h 8*h  10h

e - .
T8r+8?"2 a ot’ (%18

with a = & = const. Extracting water at a rate of Qy [m*s~!] from a
sink in the center of the aquifer with thickness z, leads to the analytical

solution

h(r,t) = 41T2WKF(U)’ (2.14)
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where I'(u) is the Theis or well function of u given by

T(u) = foo ool (2.15)

U

with u = (r2C)/(4tK). The imposed boundary and initial conditions for

the Theis solution are

(BCI) 27rzg K%h,rzrw = Qw(?),

(BC II) h(t,7 — 00) =1,
and
(IC) h(t=0,r) =/

2.3.2 Natural heterogeneity of hydraulic properties

All derivations and solutions shown in the previous section are based on
the assumption that the hydraulic properties of the aquifer (like capacity or
conductivity) do not change over space. However, aquifers typically exhibit
spatial heterogeneities at multiple scales. This is illustrated in Figure 2.3
showing the varying structure of sediments at several levels.

To express the spatial behavior of these properties, the following terms are

established:
e Homogeneity - the property under study is position independent.

o Heterogeneity - the property under study is position dependent.
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Figure 2.3: Natural heterogeneity of hydraulic properties at several scales.
Arrows indicate path of increasing magnification and rectangles mark the
clipping for the next step. Taken from Roth (2007) by courtesy of the
author.
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e Isotropy - the property under study is direction independent.
e Anisotropy - the property under study is direction dependent.

In terms of conductivity for example, the porous medium is homogeneous
and isotropic if K is constant or heterogeneous and isotropic if K (z,y, z) is
a function of space. Otherwise the medium is anisotropic if K is a symmet-
ric tensor of second degree (a matrix that is invariant against coordinate
transformation).

From the analyses of a large number of field data in different geological for-
mations, Freeze (1975) and Hoeksma and Kitanidis (1985) concluded that
hydraulic conductivity can be considered to be log-normally distributed as
one among other possibilities. Under such conditions, the hydraulic con-

ductivity field K (x) is given by

K(x) = Koexp (f(x)), (2.16)

where Kj is a conductivity of unit one that gives K (x) the correct dimen-
sion.

By definition, f(x) follows a normal distribution. The density function of
a normal distribution is fully characterized by its mean and covariance
function. Values close to the mean tend to built field-spanning struc-
tures where extreme values are less connected. Moreover, we assume f(x)

to follow a statistically homogeneous distribution. Hence the statistical
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moments become translation invariant in space. The space invariance of
f(x) = f = const. allows to split f(x) into its mean and the standard

deviation

fx)=f+ f(x), (2.17)

where the bar denotes an ensemble average over f(x).

The correlation (also named the covariance) function is in general defined

as

wy (F(), f(x)) = (F6) = 7G9) (Fx) = FG)).  (218)

For a statistically homogeneous field f(x), it can be rewritten by making

use of the splitting for f(z) as
wp(x — %) = f(x) f(x), (2.19)

where wy only depends on the distance (x — x’).

Under this condition, the second central moment variance a?, indicating

the strength of fluctuations, is space invariant and follows as

O'?: (f(x)—f_)2=f(x)2=wf(x=x’). (2.20)

For mathematical reasons, we choose a Gaussian shaped correlation func-

tion

- (2 — al)’
wp(x—x') = or? exp !— Z %——] ; (2.21)

=1
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where §; is the correlation length of f = logKy in the i-th direction of the

domain (where N is the dimension of the aquifer).

2.3.3 Separation of scales

Well flows are prescribed by the application of either a certain hydraulic
head or a fixed flow rate at the water extracting sink. No matter, which of
them is prescribed, the discharge relates to the gradient of hydraulic head
within the flow field. Restating Eq. (2.10), it is the hydraulic conductivity
that relates this two entities. On larger scales, where the radial extent of
pumping is much higher than the vertical thickness of the aquifer, the flow
field becomes essentially horizontal. Then, hydraulic conductivity is often
replaced by a variable called transmissivity T [m?s~1]. It indicates the
ability of the medium to transmit water through its entire thickness and is

given by

0
T= f K(z)dz. (2.22)

For constant K over z, the expression for 1" simplifies to the hydraulic con-
ductivity K times the aquifers thickness z, that is constant for a confined
aquifer.

Both hydraulic properties, K and T, can be estimated using pumping tests.
The setup for such well flows is shown in Figure 2.5. Since the water

extraction by the well affects the hydraulic heads in the flow field, the
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Figure 2.4: Hierarchy of hydraulic properties at multiple scales. Note that
at every scale new heterogeneities occur.

drawdown that is the cone of depression in an area around the well is
measured at several observation wells. The interpretation of these pumping
tests is done however under the assumption that the aquifer under study
is homogeneous. The state-of-the-art interpretation by the Theis or Thiem
solution (Eq. (2.14) for transient or Eq. (2.9) for steady state) is precisely
restricted to spatially uniform media.

For natural, heterogeneous aquifers the relationship between the discharge
and drawdown is not as simple as the Thiem or Theis solution suggests for
homogeneous aquifers. Using a single bulk property that relates extraction

rate and hydraulic heads at various distances from the well will therefore
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Scales small intermediate | large regional
107! —10% | 10'm 10%m > 10°m
heterogeneous | homogeneous | heterogeneous | homogeneous
parameter || K(x) Keq T(x) Tt

Table 2.1: Hierarchy of different scales

fail. Especially steep gradients occurring in the vicinity of the well em-
phasize the importance to consider the local heterogeneity of the hydraulic

properties at the process scale.

For heterogeneous media, a great deal of work has already been devoted
to identify representative hydraulic conductivities or transmissivities for
well flows (read the review of Sdnchez-Vila et al. (2006). In the beginning
of Chapter 3 we will stress the differences between current approaches of
introducing heterogeneity into radial groundwater flow and our approach

presented in Chapter 3 as well.

In fact, the hydraulic properties are not only heterogeneous, they also vary
on several length scales in space and hence, form the heterogeneous char-
acter of the aquifer at multiple scales. The hierarchy of different scales we

assume in the present study is given in Table 2.1 and shown in Figure 2.4.

We adopt the view proposed by Dagan and Lessoff (2007) and distinguish
between small scale and large scale well flows. Small scale well flows explore
small scale heterogeneities in the order of decimeters to meters. Their

drawdown exhibits only a few meters. Hence, the heterogeneity covered by
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these small scale tests is in the range of the varying hydraulic conductivity
field.

As explained in Section 2.3.2 and illustrated in Figure 2.4, in addition to
those small scale heterogeneities, larger scale heterogeneities may appear
on scales up to 100 meters or higher. Pumping the aquifer to such an ex-
tent, hydraulic heads and flow rates will be governed by the heterogeneous

hydraulic transmissivity field.

In this scope, we will try to answer the following two main questions:

1. How does the heterogeneous hydraulic transmissivity field interfere

with the large scale well low? (Chapter 3)

2. How is the small scale well flow affected by the heterogeneity of the

hydraulic conductivity field? (Chapter 4)
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Bedrock

Figure 2.5: The setup of well flows.
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Chapter 3

Large scale well flows in the

saturated zone '

3.1 Introduction

Hydraulic properties of an aquifer determine its ability to transmit wa-
ter and thus control the groundwater flow through the aquifer. A gen-
eral method for identifying these hydraulic properties is to perform pump-
ing tests where the cone of depression is measured as system response to
groundwater extraction. Well known in hydrogeology is the relationship be-

tween the steady-state drawdown and the pumping rate in a homogeneous

'This chapter is a modified version of the paper: Schneider, C. L., and S. Attinger
(2008), Beyond Thiem: A new method for interpreting large scale pumping tests in
heterogeneous aquifers, Water Resour. Res., 44, W04427, doi:10.1029/2007WRO005898.
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aquifer given by Thiem’s equation (3.1).

. Qw r
T= 57 AR In (a) (3.1)

In homogeneous aquifers, the radially convergent flow toward a well is two
dimensional and, thus, by performing an average over the vertical coor-
dinate a three dimensional aquifer might be modeled as two dimensional.
Doing so, the hydraulic conductivity K is replaced by the transmissivity

defined as thickness of the aquifer z, times hydraulic conductivity K.

In this expression, Ah [m] is the hydraulic head gradient at radial distance
r [m] from the pumping well, r,, is the well radius, Q. [m?®s™!] is the
discharge rate of the pumping well (located at r = 0) and T [m?s™!] the
transmissivity.

These conditions (steady-state flow to a fully penetrating well with no
nearby boundaries) are never fulfilled in nature, but often they can be used
as a valid approximation of the actual conditions. More restricting however
is the assumption of an homogeneous aquifer since aquifers typically exhibit
by spatial heterogeneities. As a consequence, Thiem’s equation and thus
formula (3.1) is not valid for such aquifer systems. During the last 30 years
an enormous amount of work has been devoted to identify representative
hydraulic conductivities or transmissivities (see review article of Sanchez-
Vila et al. (2006)). Representative hydraulic conductivities/transmissivities

relate averages of flux and head gradient for different flow systems. Here we
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adopt the notation of Sdnchez-Vila et al. (2006) and distinguish between
effective and equivalent hydraulic conductivities/transmissivities. Effec-
tive quantities relate ensemble averaged fluxes and head gradients whereas
equivalent quantities relate spatial averages of fluxes and head gradients.
Under ergodic conditions, both types of averaging result in the same repre-
sentative hydraulic property. For steady state uniform flow under ergodic
conditions for example, the geometric mean has been identified as the cor-
rect representative value for two dimensional isotropic flow fields whereas
for one dimensional cases the harmonic mean provides the appropriate value
(Indelman et al., 1996). A review of different methods for the calculation of
effective hydraulic properties can be found in Renard and Marsily (1997).
Representative transmissivity values in heterogeneous aquifers are more
difficult to estimate from pumping tests. Flow fields around wells have a
nonlocal structure and it is not possible to capture all aspects of nonuniform
flow in a single representative quantity. To this end, effective and equiv-
alent quantities do not only differ by the way they are derived (ensemble
averaging or spatial averaging) but also for what they are used for because
they address different features of radially convergent flows as we will show
in this study. An excellent review on existing literature is presented by
Sénchez-Vila et al. (2006) as well as Dagan and Lessoff (2007).

Several field investigations share that hydraulic properties typically vary
over a range of different scales. We adopt the view proposed by Dagan and

Lessoff (2007) and distinguish between small scale and large scale pump-
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ing tests. Small scale pumping tests explore small scale heterogeneities in
the order of decimeters to meters. In addition to these small scale hetero-
geneities, larger scale heterogeneities may appear on scales larger than 100
meters. Large scale pumping tests are governed by these heterogeneities.

On small scales, the aquifer is characterized by three dimensionally spa-
tially distributed hydraulic conductivity values (Dagan and Lessoff, 2007,
their section 2.1.1). Equivalent descriptions of the aquifer response after
short term pumping may be used to scale-up the aquifer response to inter-
mediate scales. On these intermediate scales the aquifer can be considered
as homogeneous. Firmani et al. (2006) performed numerical simulations
and confirmed previous theoretical investigations of Fiori et al. (1998): the
equivalent conductivity is close to the arithmetic mean near the well and
gradually approaches the equivalent conductivity in mean uniform flow
fields, Kepy [m s7!]. In highly anisotropic aquifers, K, is reached after
a few tens of horizontal integral scales. On large scales, the aquifer thick-
ness can be considered as much smaller than the horizontal range of the
influence of the pumping test and such large aquifers can be treated as
effectively two dimensional systems. Dagan and Lessoff (2007) (in para-
graph [30]) conclude that Kep, times the aquifer thickness determines the
large scale transmissivity to be used in large scale flow simulations. On this
large scale, transmissivity is a point value and due to large scale hetero-
geneities again heterogeneously distributed in space ((Indelman and Dagan,

2006). Large scale pumping tests in heterogeneous aquifers have been stud-
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ied first by Indelman et al. (1996), Sénchez-Vila (1997) and Sénchez-Vila
et al. (1999), more recently by Dagan and Lessoff (2007). The hierarchy of
different scales we assume in the present study was already given in Table
2.1 within Chapter 2.

We focus our analysis on large scale pumping tests in heterogeneous aquifers
with the aim to determine representative transmissivity values for such
pumping tests. Different strategies exist to define representative transmis-
sivities.

One strategy to account for heterogeneity in large scale radially convergent
flows is to determine an equivalent transmissivity, Teq. The underlying idea
is to determine a single transmissivity value that replaces the heterogeneous
distribution in a given area. For well flow, usually an area with radius r,
around the well is selected, boundary conditions are imposed and the dis-
charge is measured. The equivalent transmissivity is then defined as the
single value that should be assigned to the entire area to obtain the same
total outflow as observed for the heterogeneous area (Sénchez-Vila et al.,
2006) using Thiem’s equation. The equivalent transmissivity depends on
the radius r. and reproduces the same outflow and the correct mean draw-
down at the distance r. from the well. In this sense, the equivalent trans-
missivity is a block-averaged, single valued, upscaled transmissivity, which
might be used for simulating regional well flows on numerical grids with
grid sizes of Séveral thousand meters (Dagan and Lessoff, 2007, their para-

graph [79-80]). The approach is completely analogous to the approach used
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by Firmani et al. (2006) for upscaling small scale pumping tests. Equiv-
alent transmissivities for well flows have been investigated in several arti-
cles (Gémez-Herndndez and Gorelick, 1989; Desbarats, 1992; Sinchez-Vila
et al., 1999; Desbarats, 1994; Beckie and Harvey, 2002; Gémez-Hernandez
and Gorelick, 1989; Dagan and Lessoff, 2007). An excellent overview of the
results presented in these articles is given by Sénchez-Vila et al. (2006). Wu
et al. (2005) and Meier et al. (1998) obtained equivalent transmissivities de-
duced from local drawdowns at different locations, which are close but not
equal to the geometric mean. Their results are supported by theoretical
investigations of Dagan and Lessoff (2007). In their Figure 3, the harmonic
mean represents the equivalent transmissivity that yields the correct mean
drawdown and discharge close to the well. Its value slowly increases with
increasing distance from the well. On the other hand, the variance of the
equivalent transmissivity - normalized to the variance of the heterogeneous
transmissivity - depends on the distance from the well, too. It is equal to
one at the well and decreases to 0.6 after ten correlation lengths. These
results demonstrate the fact that well lows show nonergodic behavior for
two dimensions as recently elaborated out by Sanchez-Vila and Tartakovsky
(2007).

The equivalent transmissivity depends on the radius r. and one might be
tempted to assume that evaluating T.q at different distances r. = r from
the well, and using it in a single forward simulation yields the correct de-

pression cone for all distances r (see Figure 3.6 to compare the difference
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for the whole aquifer response when using effective and equivalent ‘trans-
missivities). This assumption turns out to be incorrect and will be illus-
trated in this study by numerical simulations. To reproduce the entire
aquifer response to the pumping test which is the complete depression cone
in a single forward simulation, another strategy is more successful. This
strategy is to determine effective transmissivities. As Shvidler (1962) and
Matheron (1967) pointed out already in the sixties, nonuniform flows show
a nonlocal structure that are not possible to be captured by a single trans-
missivity value. An effective transmissivity Teg that captures the entire
depression cone correctly has to depend on the distance from the pump-
ing well, Tog = Teg(r). Effective transmissivities have been presented in
several articles in the past. For a comprehensive presentation and discus-
sion of these article we refer again to the review article by Sanchez-Vila
et al. (2006)). Sanchez-Vila (1997), Neuman et al. (2004) and Copty and
Findikakis (2004) found effective transmissivity values that equal the har-
monic mean in the near field of the well and the geometric mean in the
far field. In principle, this outcome is consistent with results for equivalent
transmissivities. However, comparing the dependence of T.g and Teq on
r, the distance from the well, Ty increases very rapidly with r and ap-
proaches the geometric mean after a few correlation lengths. 75, increases
only very slowly and does not reach the geometric mean before 20 corre-
lation lengths. We conclude that equivalent and effective transmissivities,

Teir and Toq, are different and serve different purposes. Equivalent trans-

41



missivities are used for aquifer parameterizations in regional pumping tests
and numerical simulations of such tests with numerical grid sizes of several
kilometers. Dagan and Lessoff (2007)) proposed to use the geometric mean
in all regional grid blocks. On the other hand, effective transmissivities
may serve best to reproduce the complete and nonlocal aquifer response
to pumping on intermediate scales (ranging from hundred to thousands of
meters). In other words, equivalent transmissivities are best for upscal-
ing large scale pumping tests on regional grids and modeling the regional
system response. Effective parameterizations are best for simplified inter-
pretations of large scale pumping tests and modeling the subscale system
response.

Our work focuses on evaluating coarse grained transmissivities to capture
the entire depression cone similarly to effective transmissivities but using
a combination of spatial filtering and ensemble averaging. In this sense,
our work is complementary to the work of Dagan and Lessoft (2007) but
compares with other work devoted to determine effective transmissivities
(Sanchez-Vila et al., 2006). Effective transmissivities depend on the radial
distance from the well and we hypothesize that the transition from near
field behavior to far field behavior depends on the correlation length. Con-
sequently, we plan to exploit this dependence to reliably infer correlation
lengths from large scale pumping test data. Several closed formulas for
an effective transmissivity have been proposed making use of perturbation

theory approximations (Indelman et al., 1996; Sanchez-Vila, 1997) and/or
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heuristic assumptions (Desbarats, 1992). To the best of our knowledge all
existing formulas contain multi-dimensional integral expressions or infinite
series expansions that have to be evaluated numerically. To this end, they
have to be considered as semi-analytical formulas which complicates the
inversion on correlation lengths. Having an explicit formula at hand would
simplify the inversion considerably.

In summary, we wish to complete previous studies. Important questions
we address are: (a) Is it possible to mathematically derive an explicit and
closed formula for a radial distance dependent transmissivity value that
captures the shape of the drawdown of large scale well flow at all locations?
(b) What are the consequences of ergodicity breakdown close to the well
for a single pumping test? (c¢) Is it possible to obtain reliable estimates for
statistical properties like variance, geometric mean and correlation length
from a single large scale pumping test by inverse modeling? In case this is
possible, how many observation points do we need to make a robust and
reliable estimate of these statistical properties?

This chapter is organized as follows. We introduce the flow model for
simulating the cone of depression and the geostatistical properties of the
heterogeneous transmissivity field. Afterwards we derive a scale or resolu-
tion dependent radially convergent flow model by making use of a method
called Coarse Graining. In doing so, we end up with an explicit expression
of a scale or radial distance dependent transmissivity. This formula is ad-

justed to the boundary condition (by harmonic averaging for the Neumann
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boundary) and is used in a first step to reproduce the cone of depression of
ensemble averaged pumping tests. In a next step, we extend the formula in
order to account for statistical breakdown close to the well for a single well
flow realization. Finally, we evaluate this new effective Welll flow model to
derive geometric mean, correlation length and alike variance from pumping

tests by inverse modeling.

3.2 Model

We consider a steady state groundwater flow toward a well in a confined

aquifer of uniform thickness z,. The steady-state head equation then reads
-V (T (x) Vh(x)) = 0, (3.2)

where T'(x) is the transmissivity field and h (x) the hydraulic head field.
The well is located at the origin of the two-dimensional cartesian coordinate
system x(z1,z2), where r is the radial coordinate defined in the horizontal
plane. As boundary condition one may use a constant head h(r = ry,) =
hy or a constant pumping rate Q. We choose a fixed pumping rate as
in Dagan and Lessoff (2007); Sénchez-Vila (1997). In the far field of the
well, irregular boundary effects are excluded by assuming a circular outer

constant head boundary, h(r = ry) = hg.
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The transmissivity is assumed as log-normally distributed in space (Math-
eron, 1967). In this model, values close to the mean tend to build field-
spanning structures where extreme values are less connected. The trans-

missivity T'(x) is then given by

T(x) = Tyexp (F(x)) (33)

where f (x) is a spatial normally distributed function (with zero mean and
correlation function (3.4)). Ty is the geometric mean of the transmissiv-
ity. For mathematical reasons, we choose a Gaussian shaped correlation

function
N

(z; — x})?
wy(x —x') = ofexp [—ZLTE) : (3.4)
1=1
where cr?r is the variance and € is the isotropic correlation length of log T' (x).
The correlation length £ is much smaller than the range r4 of the pumping

test. For general clarification of following notations and quantities, we refer

to the nomenclature of this chapter listed in Table 3.1.

3.3 The concept of equivalent and coarse grained
conductivity

As already discussed in the introduction of this chapter, we would like to

state the differences between the concept of equivalent conductivity most
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Teff
TC ((x)r)
Tisaean (T}

TCG(T‘)

real

geometric mean of T'
harmonic mean of 7'
ensemble average over T
spatial average over T'

equivalent transmissivity relating

ensemble averages of fluxes and head gradients
effective transmissivity relating

spatial averages of fluxes and head gradients
spatial filtered transmissivity

for nonuniform flow (exact solution)
harmonically average of TC% ((x),)

adapted transmissivity representation of

T&?m (r) for a single (real) pumping test

Table 3.1: Nomenclature: Definition of notations and quantities
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of the present studies are based on, and the here implemented concept of
coarse grained conductivity.

An equivalent hydraulic conductivity is a parameter that relates the hy-
draulic pressure gradient at two given points to the corresponding flow
velocity within a given pressure and flow field assuming that this relation-
ship can be applied at all intermediate points. This concept of equivalent
hydraulic conductivity was originally defined by Matheron (1967). The un-
derlying idea is to determine a single conductivity value that replaces the
heterogeneous distribution in a given area (e.g. the area between pumping
well P and observation well A or B as can be seen in Figure 3.1). The
equivalent conductivity is then defined as the single value that should be
assigned to the entire area obtaining the same total outflow and head dif-
ference as observed for the heterogeneous area (Sanchez-Vila et al., 2006).
To put it in another way, equivalent hydraulic conductivity can also be re-
garded as the conductivity value that is weighted uniformly over the given
area of the flow field. However, the equivalent conductivity again assumes
to treat the aquifer as homogeneous.

The coarse grained hydraulic conductivity is not a single parameter that
relates the hydraulic pressure gradient at two given points to the corre-
sponding flow velocity. In contrast to equivalent hydraulic conductivities,
it is a space coordinate dependent parameter field taking the overall flow
characteristics into account. Hence, coarse grained conductivity does not

relate only the pressure heads and the flow between two points, but also
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the flow process in between. It can be regarded as a parameter field em-
phasizing the local effects of the representative conductivity value (as can

be seen in Figure 3.1).

3.4 Coarse Graining radially convergent flow to-

ward a well

Several recent articles present effective as well as equivalent transmissivities
for large scale well flows. We already discussed existing results and differ-
ences between them in the introduction. We propose another approach
that is a filtering procedure called Coarse Graining combined with ensem-
ble averaging for determining effective transmissivities. The strategy is the
following: Optimizing a numerical simulator, radially convergent flows are
numerically best resolved and discretized by volume elements aligned to a
radial coordinate system. In particular, volume elements close to the well
should be chosen smaller than volume elements in the far field of the well
since steeper head gradients close to the well require a higher resolution.
The question rises what are the correct transmissivity values that should
be assigned to the smaller and coarse volume elements. We propose to
use a nonuniform spatial filter. We wish to remind the reader that many
other spatial averaging methods like volume averaging or homogenization
techniques require averaging volumes that are much larger than the typical

length scale of the heterogeneities. This is not prerequisite for nonuniform

48



(a) Concept
of equivalent
conductivity

&_\\\ /
_\\

(b) Concept of
coarse grained
conductivity

Figure 3.1: Comparison of (a) equivalent and (b) coarse grained conductiv-
ity for interpreting a radial flow problem where P refers to the well location
and a respectively B refer to observation points in the flow field.
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filter methods. Applying the nonuniform filter results in a filtered flow
equation that shows almost none smoothing in the near field of the well
and large smoothing in the far field. Consequently, the well flow equation

is characterized by a nonlocal transmissivity field.

3.4.1 Uniform filtering

The filter method Coarse Graining was originally developed for Large Eddy
Simulations (LES) in fluid mechanics and turbulence theories (McComb,
1990). In newer works of Rubin et al. (1999) and Attinger (2003) Coarse

Graining was applied to uniform flow and transport in porous media.

Coarse Graining can be best explained as a spatial filter method that
smooths or averages over volumes of variable size V. The smoothing vol-
ume V sets a filter length scale A. The filtered head equation is defined
on a coarser resolution: head fluctuations smaller than A are smoothed
out and their effect is covered by an effective transmissivity that is A de-
pendent. Head fluctuations larger than A are still resolved by the filtered
head equation. For comparison, in ensemble averaging all transmissivity
fluctuations are averaged out and replaced by an a.sy‘mptotic transmissivity
tensor. If the averaging volume is very large compared to the correlation
length (A >> £), ergodicity holds and filtering and ensemble averaging give

the same results. For smaller averaging volumes A < £ or A = &, how-
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ever, Coarse Graining and ensemble averaging yield different results due to

ergodicity breakdown.

Coarse Graining offers two advantages. First, it is more flexible than ensem-
ble averaging since A is a free parameter, which accounts for preasymptotic
effects. Secondly, it is free of any perturbation approximation. The filtered
head equation is exact. Only if we need to compute effective transmissivi-
ties explicitly we calculate them in lowest order perturbation approximation

and sum up higher order contributions by a renormalization scheme.

For spatial averaging, we use a Gaussian filter uy (x) defined as a symmetric

weight function

1 1~ @ \?
) = s (ﬁi > (55) ) I

where x; is the component of x in direction i. The prefactor in front of the

filter scale A is a free parameter fixing the width of the Gaussian filter. In
Attinger (2003) we determined its optimal value to 1/v/8. In literature, for
large eddy simulations similar values have been identified to perform best

(Layton, 2002).

A filtered scalar field f (x) is defined as

U ) = f f £ (= %) up () dicy dch, (3.6)
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with

As A — 0, the points near x tend to be more weighted, so (f (x))x — f (x)
as A — 0. In the following, we briefly recall the results of applying a
uniform filter (Attinger, 2003): before applying Coarse Graining to the head
equation, we split the transmissivity field 7" (x) into its mean T and the
deviation T (x). The resulting filtered head equation looks very similar to
the original one with small but important changes. The filtered 7% ((x),)
depends on the filter volume A. It is the sum of the new mean T'(A) and a
residual fluctuating part of the transmissivity given by (T (x)),. Smoothing

the local heads by coarse graining results in

LOCAL heads (ﬁne scale)

v (T 2 T ) =0
-V (T x))2) VA ((x)2) = 0

FILTERED heads (coarser scale)

By renormalization group analysis, Attinger (2003) found an explicit ex-

pression for T'(A) for two dimensions

T\ =T, 1a £ (3.7)
()— efu €XP 20f§2+/\2/4 . .
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A discussion about this scale dependent mean transmissivity T'(A) incorpo-

rating subscale effects can be found in Attinger (2003).

The statistical properties of the smoothed transmissivity field (T(x))y are

given by a vanishing mean, renormalized variance

(ch)r = oF (62455\274) (3.8)

and renormalized correlation length

1/2

= (& +X3°/4) (3.9)

If all transmissivity fluctuations are resolved explicitly and no Coarse Grain-
ing procedure has been applied, A is zero and the variance reduces to the
small scale variance as introduced in formula (3.4). On the other hand, if all
transmissivity fluctuations are averaged out and replaced by an asymptotic
transmissivity tensor, the ratio A/ becomes very large and the variance
very small. The variance approaches zero in the limit of A\/§ — oo, which
is equivalent to an asymptotic upscaling of the transmissivity. In contrast,
the correlation length of the coarse grained logarithmic transmissivity fluc-
tuations is increased compared with the small scale correlation length. By
construction, the resolution scale of coarse grained processes is A. Hence,

all correlation lengths have to be at least of the order of magnitude of A.
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3.4.2 Nonuniform spatial filter for radially convergent flow

toward a well

Optimal grid cells for solving well flows are volume segments aligned to
radial coordinates. A volume segment is illustrated in Figure 3.2 and has
the volume

T ((r+ A2 = (r— A)?)

AV =
2

80 = 2(80)Ar. (3.10)

Moreover, 96 is the length of arc and A one half of the side length of

the volume segment. Choosing almost quadratic volume elements, we set

A =1/2(80)r, and finally end with a grid cell that has the volume of
AV = (80)%2. (3.11)

Close to the well, the grid cell is smaller and its volume increases with
radial distance from the well. It implies an optimal filter volume that is

proportional to 72.

Applying the nonuniform filter yields a non-uniformly filtered head equation

with filtered transmissivities

TCG (%)) = Tery exp (%U’%W—i?ﬁ) + <f’ (x)>r, (3.12)
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Figure 3.2: Radial volume filtering for radially convergent flow toward a
well.

where Tey, is the upscaled effective transmissivity for uniform flow, which is
the geometric mean T in two dimensions, and a free parameter ¢, fixed in
the following, since so far we only set AV o r2. Equation (3.12) is the exact
solution of filtering the pressure field for well flows. It still contains some
heterogeneities namely all heterogeneities close to the well and smoothed

heterogeneities in the far field.

3.4.3 Numerical simulations

We generated different realizations of heterogeneous, isotropic, two dimen-
sional transmissivity fields making use of FGEN96 (for further reference see
Robin et al. (1993)). The transmissivity values are defined on a uniform
rectangular grid of 256x256 quadratic cells. The uniform grid spacing is

Az = Ay = 0.2[L], hence the total spatial domain is 51.2x51.2[L]. Ensem-
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Ens £ in cells Tg O'? Ty

Ind. | x-dir. y-dir. [L2/T) [L2/T)
A 5.0 5.0 1x10°* 1.0 | 0.61x107*
B 100 100 | 1x107° 1.0 | 0.61x10~*
G 150 150 | 1x10°* 1.0 | 061 x10°*
D 200 200 | 1x107¢ 1.0 | 0.61 x10°*
E 250 250 | 1x107% 1.0 | 061x10°*
F 150 150 | 10x107* | 1.0 [ 6.07x107*
& 150 150 [57x107%| 1.0 | 3.45x10~*
H 150 150 [32x107%] 1.0 [ 1.94x 1074
¥} 150 150 [1.8x107%*| 1.0 |1.09x 107
o 150 15.0 | 1x10°* 1.0 | 0.61 x10~*
K 150 150 | 1x107* | 0.100 | 0.95 x 10~*
L 150 150 | 1x107% [0325]085x 1077
M 150 150 | 1x10~* [0.550 | 0.76 x 1074
N 150 150 | 1x107* [ 0.775 | 0.68 x 1074
@) 150 15.0 | 1x107¢ 1.0 [ 0.61x 1071
P 150 150 | 1x107° 20 [037x107%

Table 3.2: Index table of log-normally distributed transmissivity fields;
fields C, J and O are identical).

bles composed of n realizations each by the same statistical properties were
created using the stochastic generator FGEN96 with different seeds. More-
over, a certain number of ensembles was generated with different statisti-
cal properties like variance, correlation length and geometric mean using

identical seeds in between the ensembles to make the simulations of each

realization comparable (see Table 3.2).
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50 100 150 200 280

Figure 3.3: Coarse Grained transmissivity field by radial volume filter u)
with A o r.

The local drawdowns are numerically computed using the software MOD-
FLOW (USGS, McDonald and Harbaugh (1988)) in the user shell PMWIN
5.1 (Chiang and Kinzelbach, 2001). The numerical solver uses a precondi-
tioned Conjugate-Gradient package with a modified incomplete Cholesky
preconditioner. For simulating the pumping tests, we choose the follow-
ing parameters: The rectangular domain is bounded by a constant head
boundary at an outer radius of ry = 128 Az[L]. The rectangular grid cell
of the well is divided by 9 subgrids where the center subgrid cell is again
divided in 5 subgrids resulting in a ratio of ry, /£ = 1/1500...1/8500. This
ratio is in the range suggested by Hoeksma and Kitanidis (1985), hence, the

correlation length of the transmissivity compared to the well radius covers
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Figure 3.4: Drawdown of local T' (solid line) and radial filtered transmis-
sivity fields (T)C¢ with ¢ = 2 (dash-dotted line), ¢ = 1/2 (dotted line) and
¢ = 1 (dashed line) taken from ensemble A.

realistic values. All subgrid cells at the well are covered by a homogeneous
transmissivity value called Ty,. For the numeric simulations r is about
0.003Az. The latter is intrinsically set for simulating radially convergent
flow toward a well in MODFLOW. At the pumping well, a pumping rate
of —107*[L3/T] is fixed.

Forward simulations of pumping tests in aquifers parameterized by the non-
uniformly filtered transmissivity field (3.12) are compared to forward simu-
lations of pumping tests in aquifers parameterized by non-filtered transmis-

sivities. Fixing ¢ to 1 yields excellent matches for all simulations. For illus-
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tration of the filtering procedure, in Figure 3.3 we present a non-uniformly
filtered transmissivity field by ¢ = 1 . In Figure 3.4 drawdown the draw-
down of this filtered field ({ = 1) is adjoined by the local drawdown and
the drawdowns of the filtered transmissivity field by ( =2 and ( = 1/2.

The non-uniformly filtered head flow equation is of limited hydrological
applicability. We will simplify it more and define an effective transmissiv-
ity Tﬁ?m(r) by an ensemble average over the non-uniformly filtered well

flow equation since for practical applications the spatial distribution of the

filtered field <’f‘ (x)> in (3.12) is not known in detail.

3.5 Interpreting an ensemble of pumping tests

The filtered transmissivity T ((x),) reproduces the depression cone ex-
actly but it is difficult to make use of it in practical applications since
usually the exact distribution of the heterogeneities is not known. To sim-
plify T°C ((x),) we proceed as follows. Under the Neumann boundary
condition, we propose the well is assumed to average harmonically over the
transmissivity field T7CC ((x),) in (3.12). The harmonic mean of the het-
erogeneous field 7¢C ((x),) given by a mean T (r) and a fluctuating part

<T (x)>r with variance JJ% (r) can be easily calculated as

2
1 a
1% 0 =Toow -} 727 ) 519
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Equation (3.13) for radially convergent flow states that the transmissivity
is equal to the harmonic mean close to the well and equal to the geometric
mean in the far field of the well. The transition between both zones is essen-
tially determined by the correlation length. It occurs over large distances
from the well as the correlation length & increases. The variance ofp influ-
ences the ensemble transmissivity close to the well (T}, = T, exp(—o% /2))
- a larger variance gives a lower transmissivity at the well and therefore a
larger drawdown. The geometric mean is a multiplier in (3.13) and is influ-
encing the harmonic mean (besides the variance) and solely the ensemble
transmissivity in the far field. Recapitulating, the harmonically ensemble
averaged, coarse grained transmissivity T}g(r}m for radially convergent flow
toward a well converges to T}, for r = 0 and T for 7 — co. Our results give
different ensemble transmissivity values depending on the radial distance r
from the well and are in agreement with the work of Shvidler (1966), Dagan
(1989), Neuman and Orr (1993), Indelman et al. (1996) and Sdnchez-Vila
et al. (1999).
To compare current approaches mentioned before, we like to point out the
difference of equivalent and effective transmissivities. Figure 3.5 shows
a plot, where transmissivities for all approaches, the one of Sanchez-Vila
(1997), Desbarats (1992), Dagan and Lessoff (2007) and ours are illustrated.
The effective/equivalent transmissivity at the well is the same in all ap-
proaches and equals the harmonic mean. Our approach gives similar re-

sults as the solution of Sdnchez-Vila (1997) but they differ in the transition
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Figure 3.5: Effective, equivalent and coarse grained transmissivities as func-
tion of r/I (where I = £): our Eq. (3.13) (TXC ) (solid line), Figure 3 of

harm

Sénchez-Vila (1997) (dashed line), (Teq)n of Desbarats (1992) (dotted line)
and Fgq. (13) of Dagan and Lessoff (2007) (crosses).

regime from the harmonic to the geometric mean. The equivalent trans-
missivities of Desbarats (1992) and Dagan and Lessoff (2007) stay closer to
the harmonic mean. This is due to the fact that the transmissivity at the
well (which is the harmonic mean) is weighted stronger than it is the case

for effective transmissivities.

Equivalent transmissivities are only assigned to relate the mean flux and

mean head gradient between the well and distance r. Hence, a comparison
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Figure 3.6: Drawdown of resulting transmissivities given by our Eq. 3.13
(TS (7)) (solid line) and T.q by Eg. (13) of Dagan and Lessoff (2007)
(dashed line) compared to ensemble averaged (n = 100 realizations) heads
h (circles) of ensemble A.

of forward simulations of pumping an aquifer characterized by Teq(r) and
T (r) as shown in Figure 3.6 demonstrates that the equivalent transmis-

sivity is not capable to reproduce the complete drawdown.

Further, we test the validity of (3.13) for interpreting an ensemble of pump-
ing tests and their resulting drawdowns h by numerical simulations for dif-

ferent ensembles. Doing so, we compare the ensemble averaged drawdowns
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with the drawdown of the coarse grained and harmonically averaged trans-

missivity T]%?m .

3.5.1 Results for coarse grained transmissivities

According to Eq. (3.13), TS and in turn the depression cone depend on
the correlation length £, the variance a;‘i and the geometric mean 7. To
investigate this dependence, we generated ensembles of transmissivity fields
which differ by the three parameters &, ofp and T, as noted in Table 3.2, run
the numerical pumping test on each of them and, at the end, performed the

ensemble average over the resulting head fields of n realizations belonging

to the same ensemble.

The ensemble results of varying £ are displayed in Figure 3.7(a) and plotted
versus the drawdown of the transmissivity given by (3.13). To compare the
drawdowns in a homogeneous aquifer with a transmissivity equal to the
geometric mean and the harmonic mean are respectively plotted as well.
They form an upper and lower boundary for the ensemble drawdowns.
Close to the well the ensemble drawdowns are near the drawdown resulting
from the harmonic mean whereas in the far field of the well the ensemble
drawdowns approach the drawdown resulting from the geometric mean.
The transition between these two regimes depends on the correlation length.

The larger the correlation length the larger the distance from the pumping

63



3
i

=3

PR 7
= &
- L
@ o]
@ H
I I
5 '
g *T.dg‘
I} 4
5 il
}
e
t
1
5
3
1]
" |

L
2]

-1.2

Hydraulic Head [L]
1
nN

& =16

{
n
tn

|
n
L3
!
w
£

5 10 15 20 25 0 5 10 15
Distance from well (Radius r in cells) Distance from well (Radius r in cells)

o

Figure 3.7: Ensemble of pumping tests and drawdown of transmissivities
given by (3.13): (a) Impact of varying £ for ensemble A (n=150) (dashed
line) and E (n=50) (dotted line) compared to TCC  of A (dots) and E

harm

(asterisks), where the drawdown of T, (graded solid line) and 7}, (graded
dash-dotted line) are the upper and lower boundary. (b) Impact of varying
UJ% for ensemble K (n=>50) (solid line), M (n=120) (dashed line), O (n=150)
(dotted line) and P (n=300) (dash-dotted line) compared to T.CG  of K
(crosses), M (dots), O (asterisks) and P (plus).

well when the ensemble drawdown matches the drawdown resulting from
the geometric mean.

In Figure 3.7b the results of varying crfr are displayed. An impact of the
variance is observed close to the well. The larger the variance, the larger is
the ensemble drawdown at the well due to a lower effective transmissivity
as expected by Eq. (3.13).

Figure 3.7 illustrates that the simulation of a pumping test in a medium

with transmissivities given by (3.13) reproduces ensemble averaged draw-
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downs. Only close to the well mismatches might occur if the number of
realizations in the ensemble is too small. Whereas the geometric mean is
affecting the overall drawdown of each realization, the impact of the corre-
lation length on the drawdown decreases with increasing distance from the

well.

In summary, the results of Coarse Graining and the nonuniform spatial
filtering of radially convergent flow toward a well proved to be valid for
interpreting an ensemble of pumping tests under the Neumann boundary
condition. The drawdown of a coarse grained transmissivity given by (3.13)
is able to capture the ensemble averaged drawdowns for all ensembles A—O,
as it was shown only for ensembles A to E for varying £ and K,M,0 and

P for varying cr} in Figure 3.8.

3.5.2 Convergence of ensemble averaging

As tested by numerical simulations, for a given n (size of the ensemble) the
deviation of the ensemble averaged drawdown from the theoretical draw-
down is larger with smaller correlation length or higher variance. For a
correlation length of § = 5 grid cells the ensemble average over drawdowns
in at least 150 aquifer realizations converges and yields the same drawdown
as the simulation of the coarse grained aquifer given by (3.13). For £ = 10
grid cells convergence is found already by 100 realizations, for £ = 15 grid

cells by 80 realizations and for £ = 25 grid cells already by 50 realizations
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while dealing with a variance of UJQ, = 1. Increasing variance afr also effects
the number of ensemble realizations needed when comparing ensemble av-
eraged drawdowns to coarse grained results. For a variance of JJ% = 0.1, 50
realizations yield the coarse grained drawdown where for o*? = 2 up to 300
realizations are necessary to cover the simulated drawdown of the transmis-
sivity given by Eq. (3.13). This encourages us to increase the number of
realizations for ensemble averaging when dealing with smaller correlation
lengths or higher variances as done in Figure 3.7. These limitations have
led to alternating realization numbers for the different ensembles presented

in the previous section.

In their figures 1 and 2, Dagan and Lessoff (2007) have shown that sin-
gle pumping tests have to be interpreted by the effect of heterogeneity
manifested in the uncertainty of Ty,. Due to the radial dependency of the
filter volume size in our approach, ergodicity breaks down at the well and
the results of ensemble theory are not comparable to the near field heads
(determined by only small spatial averaging around the well) observed in
single pumping tests. Therefore, we evaluate the deviation of the calculated
transmissivity values by Thiem from the theoretical values to be expected.
In principle, this can be done at every location r. Here, we restrict the
analysis to » = 0 which is the borehole location since the variance will be

largest there and thus can serve at worse case estimation. At the well we
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define the error accordingly to

i e 2
Tw(n);—E(T)
5% (E5pn)

e(n) =1 — , (3.14)

where Ty (n), is the transmissivity in the ensemble ¢ of size n, where n
is the number of realizations out of ¢ (sample space) and m the number
of averaging repetitions. FE(7') is the theoretically expected value of the
effective transmissivity in the near field. It is given by 7}, for the Neumann
boundary condition. In equation (3.14), the ensemble transmissivity at the

well, Ty (n), is calculated accordingly to

Tw(n) = %ﬁ In (%) , (3.15)

where the bar = denotes for the ensemble average over n realizations in a

given ensemble.

A varying correlation length shows no significant influence on the assump-
tion of the coarse grained transmissivity in the vicinity of the well as shown
only for case A and F in Figure 3.8(a). Thus, the coarse grained transmis-
sivity at the well (defined in section 3.5 by the assumption of harmonical
averaging) is independent on the correlation length. This result is impor-
tant for interpreting single pumping tests. In contrast, the variance 012;

shows an impact on estimating the transmissivity at the well: to ensure
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Figure 3.8: Convergence of ensemble averaged transmissivity in the pump-
ing test near field (T_W)n to T (under Neumann boundary) for (a) varying
¢ and (b) varying J?; €(n) given by (3.14); (a) solid and dashed lines corre-
spond to ensemble A and E respectively; (b) solid, dotted and dashed lines
correspond to ensemble K, M and O respectively.

the validity of the ergodicity hypothesis, a larger variance requires a higher

realization number for ensemble averaging as shown in Figure 3.8(b).

3.6 Interpretation of single pumping tests

In single pumping tests, ergodicity breaks down close to the well and the
local transmissivity value dominates the drawdown at and close to the well
because the spatial filter volume at r << £ is small. The assumption of
ergodicity might fail for well flows as has been pointed out by Sanchez-
Vila and Tartakovsky (2007). We wish to illustrate this point by discussing

again local and large scale pumping tests. Firmani et al. (2006) consid-
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ered three dimensional short term pumping tests. In their approach, the
assumption of ergodicity is crucial to make use of statistical averaging in-
stead of spatial averaging. Doing so, the vertical depth of the aquifer has to
comprise at least 50 correlation lengths in vertical direction to make sure
that the ergodicity assumption is valid. The ensemble average which is
mathematically better tractable equals a spatial average in z-direction. A
spatial average over the vertical direction is physically reasonable since the
hydraulic pressure differences in vertical direction almost instantaneously
average out in the bore holes. Concerning a long time pumping test these
hypotheses are rarely met. The aquifer is considered as effective two di-
mensional and thus the local transmissivity close to the well will influence
the drawdown crucially and not a statistical average.

In our opinion this fact can be explained best by comparing local and large
scale pumping tests. Local pumping tests are considered as the three dimen-
sional aquifer response to short-term pumping. The vertical depth of the
aquifer usually comprises many correlation lengths in vertical direction and
hydraulic pressure variations in vertical direction almost instantaneously
level or average out in the well. To this end, a spatial average over the
vertical direction is also physically reasonable.

Equation (3.13) relies on ergodicity, hence, the spatial harmonic average
equals the ensemble mean. An ensemble of drawdowns is simulated with
isotropic transmissivity fields characterized by the correlation length £ = 15

cells, T, = 10~* L?/T and variance a;‘), = 1 (index C). The influence of local
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Figure 3.9: Ensemble averaged head field (solid line) over n = 100 real-
izations (graded solid lines) of Ensemble C; dash-dotted and dashed lines
correspond to drawdowns of T, and T}, respectively

transmissivity at the well to the drawdown development in steady state is
illustrated in Figure 3.9 for n = 100 realizations.

The fact that the local transmissivity at the well determines the drawdown
at the well in a single pumping test emphasizes the need for extending
Eq. (3.13) when applying the proposed procedure to a single pumping test.
The central question for interpreting a single pumping test in means of
inferring statistical parameters of the transmissivity field is how an effective
transmissivity field can reproduce the single drawdown of a heterogeneous

field?
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We propose a heuristic approach to account for ergodicity break down close
to the well and justify it afterward by numerical simulations. The starting
point is the observation that close to the well the drawdown is essentially
determined by the local transmissivity T’y instead of the harmonic mean
T}, (Neumann boundary). In the far field, the geometric mean determines

the drawdown as expected,

(L) TS (r=0)

real

T,
(3.16)

(2) TES (r— o0) =T,

real

Therefore, we propose to substitute the harmonic mean Ty, = T, exp (—1 / 20})
in (3.13) as the effective ensemble transmissivity value at r = 0 by the local
transmissivity T'. Hence, GJ?; in equation (3.13) has to be substituted by

In (T,/T)* The extended formula for the real transmissivity then reads

1l (;_‘”)2 . (3.17)

TCG — et
2 1+4r2/2

real (T} = Tg exp

It implies that for a single drawdown it is not possible to identify the vari-
ance o? while the correlation length £ effects the drawdown in the transition
phase and the geometric mean T} in the far field. Moreover, the question
arises how the local transmissivity value should be estimated since typi-

cally it is not known. We propose to assume the transmissivity as almost
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homogeneous in a small area around the well supported by the results of
Dagan and Lessoff (2007). Following this assumption, we can estimate the
transmissivity by Thiem equation (3.1) using the heads measured at the

well (ry,) and at a small distance to the well (7)

_ _Qu r
Tw=5omn (-], (3.18)

with Ah = h(ry)—h(7) and 7/ry, around 10 since for the numeric simulation
in MODFLOW the resulting equivalent well radius ry = 0.003Az and 7 is
around 0.03Az (two subgrid cells next to the well). We tested Eq. (3.17)
in forward simulations for all ensembles and compared them to forward
simulations in fully heterogeneous aquifers. We found a good agreement
in all simulations. By chance, the well may be located in an area with
a local transmissivity higher than the geometric mean. In this case, the
drawdown is smaller than that resulting from a pumping test simulation
in an aquifer with a transmissivity that equals the geometric mean. On
the other hand, if the well is located in an area with a local transmissivity
lower than the geometric mean, the drawdown lies under this curve. If, by
chance, the local transmissivity lies close to the geometric mean (T = T}),
both curves - the local drawdown and the drawdown from the simulation
in an aquifer with constant transmissivity that equals the geometric mean
- coincide and it is impossible to infer the correlation length from the local

drawdown of a steady state pumping test.
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3.7 Inverse modeling

This section is concerned with the inverse estimation of the geometric mean
T, and correlation length £ from the steady state drawdown of a pumping
test. Under ergodic conditions also the variance oy may be estimated from

an ensemble of long time pumping tests.

To achieve this goal, we perform a nonlinear regression to fit the simu-
lated drawdown ¢ of the effective transmissivity field (3.17) to the local
drawdown y (represented by reference points indicating measured heads)
of a single realization. Besides, to estimate the variance under the Neumann
boundary condition, we fit the drawdown of (3.13) to the ensemble averaged
drawdown resulting from n simulated pumping tests (again represented by
reference points).

The regression is based on the Gauss-Newton method, which solves nonlin-
ear optimization problems through the least-squares method in nonlinear
equilibrium problems. For the nonlinear problem the Newton method es-
timates a series of linear equilibrium problems that are then solved by the
default Gauss method. The optimization function (for discrete measure-

ment /observation points %)

D (G —y)* — min! (3.19)

will be minimized.
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3.7.1 Estimating correlation length and geometric mean

In practice, the drawdown data are only available at few observation points.
Hence, we do not use information of drawdowns in every detail as a test for
inversion. The observables for the nonlinear regression of the parameters £
(correlation length) and T;; (geometric mean) are selected reference points
of single drawdowns simulated for transmissivity fields which had not been
part of the forward modeling in the last section (new seeds). We select four
reference points for the estimation where the first and second point are also
necessary for the estimation of the local transmissivity T making use of
equation (3.18), for example: (1) The drawdown value at the well. (2) The
drawdown value 2 or 3 cells away from well (near field reference point). (3)
The drawdown value between 5 and 25 cells away from the well (transition

regime). (4) The drawdown in the far field (far field reference point).

The estimated regression parameters plotted in the histogram (Figure 3.10
and 3.11) rely on four selected reference points for n = 900 single realiza-
tions. The inversion is performed on ensembles A and E as well as for K,
L, M and O (for parameter details see Table 3.2). The well may be located
in an area of higher or lower transmissivity than the geometric mean which
is expressed by the relation of Ty /T, on the y-axis. As discussed in the
previous section, the local transmissivity around the well Ty, may be in the

range of the geometric mean T, coincidently (T, /T, ~ 1).
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Figure 3.10: Regression results for n=900 single pumping tests of ensemble
A (£ =5,T, =107%). (a) Histogram of estimated £ vs. calculated T /Ty,
(b) Histogram of estimated T, vs. calculated T\, /7.

Under this conditions, Eq. (3.17) reflects an almost homogeneous medium
without the transition regime and the estimation of £ gives higher confi-
dence intervals results as can be seen in the histogram of Figures 3.10a and

3.11a.

These results show that the method is robust enough to identify the sta-
tistical parameters £ and T, of a transmissivity field by inverse modeling
when the local transmissivity at the well is not in the range of the geometric |
mean. Beside this, using more reference points will increase the reliability

of the nonlinear regression and hence limit the confidence interval.
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Figure 3.11: Regression results for n=900 single pun}piug tests of ensemble
E (¢ =25,T,=10"%). (a) Histogram of estimated £ vs. calculated Ty /Ty
(b) Histogram of estimated T}, vs. calculated Ty, /Tj,.

3.7.2 Estimating the field Variance in ensemble averaged

drawdowns

In a last step, we inversely estimate also the variance from an ensemble
of pumping tests over n = 50 realizations. For the parameter estimation,
we use a pumping test performed in an equivalent aquifer under Neumann
boundary conditions. Based on (3.13), we estimate all three parameters,
correlation length, variance and geometric mean from the ensemble aver-
aged drawdown over n realizations through inverse modeling.

For the ensemble C with £ = 15 cells, 7, = 107 L?/T and a? = 1, the
estimates differ for £ by 12.2%, for T, by 10.2% and for a? by 12.9%.

Ensemble A, characterized by a smaller correlation length £ = 5 cells,
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T, = 107 L?/T and UJQ, = 1, yields also promising results: the estimation
of £ differs by 10.7%, of T}, by 8.3% and of O‘? by 21.3% from the theoretical
value. For an ensemble with higher correlation length, like E, with param-
eters £ = 25 cells, T, = 1074 L?/T and cr)zc = 1, the estimates differ for £ by
9.1%, for T, by 3.1% and for crj% by 6.4%. These estimates are precise with
a small confidence interval (high reliability) and a drawdown curve that fits
the drawdown of the ensemble average quite well. Changing the variance,
the inversion also works well for ensemble M, again with n = 50 realiza-
tions. The parameters of ensemble M are £ = 15 cells, Ty = 10~ L?/T and
JJ% = 0.55. Thus, the estimates differ for £ by 8%, for T, by 0.6% and for
0‘? by 4.4%.

3.8 Conclusion

By applying the filtering method Coarse Graining, we derived a closed

formula for T¢%(r), which describes an ensemble of pumping tests. The
TCG

harm

explicit result for (r) reads

0.2
73, 0) = Tyexp (4 5y ).

For single pumping tests, ergodicity breaks down close to the well and the

local transmissivity is dominating the drawdown at the well. Taking this ef-
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fect into consideration, we derived a formula for Tgﬁ (r), which successfully

reproduced the drawdowns in single pumping tests:

In( AL g
Ti4i(r) = Tyexp (% 15—3/?2 ) :

We tested the theoretical results in numerical simulations and found the
drawdowns in heterogeneous aquifers to be in good accordance with the
corresponding values of the coarse grained aquifers. We showed in this
chapter that Tﬁ?m(r) is appropriate to reproduce the depression cone of an
ensemble of pumping tests but fails when being applied to evaluate single
large scale pumping tests. Therefore, we adapted T}g?m (r) to the conditions

of a real single pumping test and called the modified transmissivity 7°5

real
(Eq. (3.16), section 3.5).

All results are beyond first order perturbation theory analysis and thus,
through the performance of Renormalization Group analysis, valid for strongly
heterogeneous media as well (Dean et al., 1996). This enabled us to develop
a very efficient inverse method to reliably estimate statistical parameters
like the variance or the correlation length of the transmissivity field from
pumping tests. In particular, we demonstrated that only four observation
points are necessary to reliably estimate the correlation length from a sin-
gle pumping test. On the other hand, we demonstrated that the variance

cannot be estimated from single pumping tests but only from an ensemble
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of pumping tests. Nevertheless at least 50 pumping tests are necessary to

obtain reliable estimates of the variance.
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Chapter 4

Interpreting small scale

pumping tests i

4.1 Introduction

Small scale or Shért term pumping tests stimulate the aquifer response on
small scales. Modeling this aquifer response, the aquifer is characterized by
three dimensionally spatially distributed hydraulic conductivity values (Da-
gan and Lessoff, 2007, their section 2.1.1). An area with a radius r, around

the well is selected, a constant head condition is imposed and the total out-

2This chapter is a modified version of the technical note manuscript: Schneider, C.
L., and S. Attinger. An alternative to equivalent parameters for interpreting small scale
pumping tests in heterogeneous three dimensional aquifers. to be subm. to Water Re-
sources Research.
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flow is measured. Recently, several publications addressed the question if
and how the aquifer response to pumping tests can be described by models
with effective or equivalent parameters (Sanchez-Vila et al., 2006).

It is important to be aware that effective and equivalent descriptions may
serve different purposes. Equivalent descriptions of the aquifer response
after short term pumping may be used to scale-up the aquifer response
to intermediate scales on which the aquifer can be considered as homoge-
neous. Consequently, the equivalent conductivity is defined as the single
value that should be assigned to the whole area obtaining the same total
outflow observed in the heterogeneous domain (Sdnchez-Vila et al., 2006).
The equivalent conductivity depends on the radius 7. and reproduces the
same outflow and the correct mean drawdown at the distance r. from the
well. Equivalent conductivities have been evaluated by Firmani et al. (2006)
and Indelman et al. (1996). We summarize the main aspects which are rele-
vant for the work presented in this article. Firmani et al. (2006) carried out
numerical simulations and confirmed the previous theoretical investigation
of Fiori et al. (1998). The equivalent conductivity is close to the arithmetic
respectively harmonic mean near the well and tends slowly to the equivalent
conductivity of mean uniform flows, Keg, [ms™t]. In strongly anisotropic
aquifers, for example, K, is reached after a few tens of horizontal integral
scales. By using the distance dependent behavior of the equivalent conduc-
tivity, Firmani et al. (2006) tried to inversely estimate the variance JLZr, the

horizontal integral scale I and the anisotropy ratio e as well as K.g, from
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drawdown data. While U?- and K., were reproduced very well by their

inference procedure, £ and e were much more difficult to estimate.

We wish to complete previous studies for three dimensional short range
pumping tests. In particular, we aim at the derivation of an explicit and
closed formula for an pseudo-effective and radial distance dependent con-
ductivity value that captures the shape of the drawdown of small scale
pumping tests at all locations as we demonstrated already in the case of
large scale pumping tests in the previous Chapter 3. With this alternative
approach, we wish to study the possibility to infer reliable estimates for
the horizontal correlation length &), and the anisotropy ratio e from a single

small scale pumping test by inversion.

This chapter is organized as follows. First, we specify a virtual pumping
test for simulating the cone of depression in a virtual heterogeneous aquifer.
Secondly, we derive a scale or resolution dependent pumping test model by
making use of a method called Coarse Graining in the line of Schneider
and Attinger (2008). In doing so, we end up with an explicit expression of
an effective, scale or radial distance dependent conductivity. This formula
is used in a first step to reproduce the cone of depression of a short range
pumping test as simulated in Firmani et al. (2006). We evaluate this new
effective virtual pumping test to infer geostatistical parameters and Kep,

from short range pumping tests by inverse modeling.
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4.2 Model

We consider a steady state groundwater flow towards a well in a confined

aquifer of uniform thickness z,. The steady-state head equation then reads

V(K (%) Vh(x)) = -V (‘KH%(X)) Vh (x) = 0. (4.1)

The well is located at the origin of the three-dimensional coordinate system
and r is the radial distance from the well. As boundary condition at the
well one may use a constant head h(r = ry) = hy [m] or a constant
pumping rate Qy [m>3s~!]. In the far field of the well, irregular boundary
effects are excluded by assuming a circular outer constant head boundary,

h(’f' = T'd) = h().

The conductivity is assumed to be log-normally distributed in three spatial
dimensions (Matheron, 1967). In this model, values close to the mean tend
to build field-spanning structures where extreme values are less connected.

The conductivity K(x) is then given by
K(x) = Kpexp (.f(X)) : (4.2)

where f(x) is a spatial normally distributed function (with zero mean and
correlation function given by Eq. (4.3). For mathematical reasons, we

choose a Gaussian shaped correlation function
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= (zi— @)’
wi(x —x') = ofexp [— Z %] (4.3)

i=1
where O’? is the variance and &; is the correlation length of log K (x) in
i-th direction. In this study, the domain has the dimension N = 3 and
the correlation lengths are identical in the horizontal plane, £;=§=§, and
smaller in vertical direction, £3=§, << &,. In addition, the correlation
lengths in all directions §; are smaller than the range ry of the pumping

test.

4.3 Coarse Graining for 3-dimensional short range

well flows

In the previous Chapter 3, we introduced a non-uniform filter method and
applied it to large scale well flows in two spatial dimensions. Here we extend
this method to three dimensional pumping tests. The most appropriate
coordinate system for a three dimensional pumping test is the cylindrical.
To this end, we propose to apply the radial filter according to Schneider and
Attinger (2008) in the horizontal plane and no filter in vertical direction.
This filter is suited best to reproduce the whole drawdown as response to
the pumping test as we have explained in detail in Schneider and Attinger

(2008). The filtered pressure (h (x)), then is defined as
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(h), = / d’z'h (x — x') u, (x') (4.4)

with the filter

1 z2 + 22
w () = gexp (- T8 ) ool (4.5

where x; is the component of x in direction 7. As r — 0, the points near x
tend to be more weighted, so (h (x)), — h(x) as r — 0.

The resulting filtered head equation looks very similar to the original one
with small but important changes,

- (KCG(T) + <K (x)> ) V (h(x)), =0 (4.6)

The effective conductivity depends on the radial filter r and is the sum of

the new mean K©© (r) and the residual fluctuating part of the conductivity

<R (x)>r.

Making use of lowest order perturbation theory, we find length expressions
as derived and stated in appendix A. For isotropic media, the result can be

approximated very well by

cG 1 5,1, 1 B2
e = . = —— s . 4.7
K1) = K, 1+60f+3af(1+r2/§,21> (4.7)

and exponentiation then gives
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KCC (r) = Kepyexp 1o‘2 (;)3/2 . (4.8)
NI+

According to Dean et al. (1996) and Attinger (2003), the renormalization
is exact for isotropic media and isotropic filters. In particular, it equals the

exponentiation of the lowest order perturbation theory result.

Isotropy is a special case of the given correlation function Eq. (4.3), where

the effective conductivity for uniform flow Kgg, generally reads

Koy = Ky exp (a} @ = ’y(e))) (4.9)

with vy(e) given in Appendix 4.6 (under isotropic conditions y(e = 1) =

1/3).

For anisotropic media, we find a very similar result
cG 2 (1
K™% (r) = Kg |1+ 0% 5—’}/(6)
+1 , 1 3/2
0 | ————— .
31\ 1+ B(e)r2/e2
Exponentiation then gives

ca B 1 1 3/2
K>" (r) = Kegy exp (gffﬁ (W) ) : (4.10)
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In case of anisotropic media or anisotropic filters, renormalization is not
exact anymore but still yields reliable results for anisotropy ratios up to 0.1

(Dean et al., 1996).

Further, simplifying the smoothed but still heterogeneously distributed con-
ductivity field, we proposed in Schneider and Attinger (2008) to approxi-
mate the transmissivity field by its harmonic mean in case of constant flux
(Neumann) boundary conditions and by its arithmetic mean in case of con-
stant head (Dirichlet) boundary conditions. For small scale pumping tests,
the dominating hydraulic property is conductivity instead of transmissivity.

The effective notation of the steady state flow equation then is
—VKE()Vhf () = 0, (4.11)
with the Dirichlet boundary condition
R (r = 0) = hy (4.12)

resulting in

2
i

(1 + B(e)é—;)gp

h

KEH(T) = Kepy €xp (4.13)

LI =
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as the effective conductivity equation for the constant head boundary con-

dition. For Neumann boundary conditions
—K*(r = 0) VA (r = 0) = Qu, (4.14)
we find

2
i

(1+ ﬁ(e)g%)g/ ’

1
K (r) = Kemexp | — (4.15)

4.4 Inversion of 3-D pumping test data by Fir-
mani et al. (2006)

Within this section, we are going to reinterpret data from Firmani et al.
(2006) as displayed in their Figures 5 and 11. These data are separated into
three sets: set A are data from their Figure 5 for constant flux (Neumann
boundary condition) where set B are data from their Figure 5 for constant
head (Dirichlet boundary condition). Data set C are recalculated data from
their Figure 11 for flux proportional to local K (comparable to Dirichlet

boundary condition).

Our aim is to reproduce the drawdown and pumping rates of all three
sets by a virtual pumping test with K ?VH respectively KBH as conductivity

fields. K ?\‘? and Kf)ﬁ explicitly depend on the four parameters: O’f‘;, £, e and
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Kepy- They are estimated inversely by finding the best fit of virtual forward

simulations with the drawdown data by Firmani et al. (2006).

The factor G(e) in Eq. (4.13) and (4.15) counts for the influence of the
anisotropy ratio e. Evaluating Eq. (4.13) and (4.15), we find that the
effective conductivity only depends very weakly on the anisotropy factor.
It explains the findings of Firmani et al. (2006) that e is difficult to inversely

estimate.

To quantify this effect within our inversion procedure, we make the distinc-
tion between two inversion steps. For step I, we assume that e is known a
priori, thus the parameter estimation includes beside the variance cr? and
the geometric mean K, only the horizontal correlation lengths &,. Regard-
ing inversion step II, we assume the anisotropy ratio to be unknown like
all other parameters unknown and, thus, re-include e into the estimation

procedure.

4.4.1 Numerical setup

The conductivity values are defined on an uniform rectangular grid of
256x256 quadratic cells with a refined well cell. The uniform grid spac-
ing is Az = Ay = 0.2}, hence the total spatial domain is 51.2I x 51.2Ij,
where the well grid cell spacing is Az, = Ay, = 0.041. This is done to

accomplish the comparison of our model results with the data simulations
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Figure 4.1: Grid refinement near the well.

of Firmani et al. (2006) as their grid at the well is also refined up to a factor

of 5 (for details see Figure 4.1).

For the inner boundary of data set A we apply a constant flux of Q, =
—0.0001[m?/s] and at the outer boundary h(ry; = 128Az) = 0[m]. For data
set B and C we assume a constant head of h(ry) = —1.5[m] at the well and
at the outer boundary h(rqy = 128Az) = 0[m]. The aquifer thickness is
set to z, = 1. For the numerical grid, all simulations are performed under
the assumption of a theoretical horizontal integral scale of I, = 3[m], the

equivalent well radius was tested to be r,, = 0.0237[m]. Since we are using
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a Gaussian correlation function Eq. (4.3), comparing the correlation length
& with the integral scale I used by the exponential correlation function of
Firmani et al. (2006), £ has to be scaled according to I = /w/2 &. The
characteristic relation plotted on the y-axis in Figure 5 of Firmani et al.
(2006) (divided by K ) as well as recalculations of Keq shown in their Figure
11 are the basis for inversely estimating the statistical parameters of the

conductivity field.

4.4.2 Step I: estimation of horizontal integral scale, geomet-

ric mean and variance

In a first attempt, we assume e to be known a priori and set S(e=1) =1
for data sets A and B, where 3(e = 0.1) = 1.18 for data set C (see Appendix
4.6 for derivation or Figure 4.3). Doing so, we infer in the following only
the horizontal integral scale, the geometric mean and the variance of the
heterogeneous conductivity field. This procedure lacks in estimating e and
hence the vertical integral scale I, = e x I;, which will be overcome later by
step II. For the isotropic data sets A and B (e = 1), K, can be replaced
in equation Eq. (4.13) respectively (4.15) by Kgyexp (%0’?) where for data
set C (anisotropic case, e = 0.1), we substitute Kep, by Kgexp (0.430?;).

In Table 4.1 we present the results of our inversion for the Neumann bound-

ary (data A) and Dirichlet boundary (data B and C), where for A and B
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Iy = w2 E) e K, 0'?
L [m] (fixed) 107%[m/s]
expect. param. 3 1 1 0.2
estim. param.
Data Set A, Eq. (4.15) 2.8924 - 0.9892 0.2193
(£0.5605) - (£0.0115) (£0.0126)
Data Set B, Eq. (4.13) 3.5478 - 0.9882 0.2314
(£0.6474) - (£0.016)  (£0.0238)
expect. param. 3 0.1 1 0.5
estim. param.
Data Set C, Eq. (4.13) 2.9346 - 0.8945 0.5163
(+0.4274) - (£0.0175)  (£0.0329)

Table 4.1: Inverse evaluation for step I; Values within parenthesis indicate
the 95% confid. interval.

the x-axis (r/I),) in Figure 5 of Firmani et al. (2006) is scaled for numerical

reasons to I, = 3[m].

We find an excellent agreement with the theoretical values. Only for Data
Set C, the geometrical mean K|, is underestimated by about 10%, where it
fits well for Data Set A and B. Nevertheless, the horizontal integral scale and
the variance match quite well for all three data sets. These inverse values
show also acceptable confidence intervals. Due to fixing the anisotropy rate
e, we reduced the degree of freedom for our estimation procedure step I
Therefore the data are fitted to Eq. (4.15) respectively (4.13) which include
only three instead of four free parameters giving smaller confidence bands.

This will be contrasted by the results of inversion procedure step II.
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Iy, e K, UJ%
| ml (= L/L)  10~*(m/s]
expect. param. 3 1 1 0.2
estim. param.
Data Set A, Eq. (4.15) | 3.6348 0.9212 0.998 0.1980
(£1.9300) (£0.5222) (£0.0195) (=£0.0785)
Data Set B, Eq. (4.13) 3.0792 1.2386 0.9983 0.2156
(£0.7919) (£0.6066) (£0.0199) (+£0.0967)
expect. param. 3 0.1 1 0.5
estim. param.
Firmani et al. (2006) 4.059 1.000 1.032 0.473
(for Ny = T7) (£0.855) (£1.860) (£0.156) (£0.307)
Data Set C, Eq. (4.13) | 3.3102 0.1478 0.9020 0.5211
(£0.6439) (£0.0700) (£0.0236) (£0.0853)

Table 4.2: Inverse evaluation for step II; Values within parenthesis indicate

the 95% confid. interval.

4.4.3 Step II: additional estimation of anisotropy ratio

For step II, we estimate all four parameters of Eq. (4.15) respectively

(4.13). In comparison to step I, we will now additionally include estimating

the anisotropy ratio of the hydraulic conductivity field. Since our inversion

procedure does not give the anisotropy factor directly, we will calculate e

and thus the integral scale I, = e x I, by estimating the corresponding

factor 3(e).

and shown in Figure 4.3.
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For data set C (see Table 4.2), we find that all parameter estimates for the
horizontal integral scale, the anisotropy ratio and the variance are closer
to their theoretical values than in Firmani et al. (2006). Although e intro-
duces a new degree of freedom in our inverse estimation for step II, we still
find a good agreement of our values and the expected parameters for all
three data sets except the estimated K, for data set C that shows again
some underestimation (like in step I). In general, the confidence bands in
step II show more spread than for step I, which is the result of including a
fourth parameter in the estimation procedure but still relying on the same
data. This is especially the case for the correlation lengths and the vari-
ance, where the confidence intervals of the estimated geometric mean show
approximately the same variability for step II than for step I. However, the
confidence band of the anisotropy ratio - with a variation of about +50% -
is much better than the interval of e given by Firmani et al. (2006).

Figure 4.2 includes the drawdown data of our simulations (with the esti-
mated, mean parameters shown in Table 4.2) and the data extracted from
Firmani et al. (2006) for sets A, B and C. The good agreement between
the depth averaged hydraulic head h of their simulated, single 3D pumping
test and our simulated drawdowns of the coarse grained conductivity fields
shows that the proposed method can be used for the interpretation of the
given data. This holds both, for a lux and a head boundary condition, as
long as ergodicity does not break at the well (i.e. the aquifer thickness is

much larger than the vertical correlation length).
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Figure 4.2: Data (lines) and our simulations (markers) for set A, B and
C; dotted line respectively asterisks are for set A, dashed line respectively
crosses are for set B and solid line respectively circles are for set C. The
parameters used for our simulations stem from the inversion procedure (the
estimated mean values) and are listed in Table 4.2.
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4.4.4 Limitations of the proposed procedure

We wish to emphasize two general limitations. Firstly, for low variances
(a? < 0.2), the effectivé conductivity field becomes more and more homoge-
neous and the estimation of the horizontal integral scale shows an increasing
confidence interval. This holds also for the anisotropy ratio. Secondly, ap-
plication of Dirichlet boundaries implies an effective conductivity equal to
the arithmetic mean close to the well (Eq. (4.13). On the other hand, the
effective conductivity in the far field of the well, Kq,, is close to the arith-
metic mean for highly anisotropic media. Hence, in this cases the finding
that the integral scale determines the transition behavior of the effective
conductivity between the vicinity and the far field of the well becomes inap-
propriate because the effective conductivity is close to the arithmetic mean
for all distances of r. Therefore, for highly anisotropic media the integral

scales are difficult to estimate by our procedure.

4.5 Summary and conclusion

For groundwater modeling, a hydraulic characterization and parameteriza-
tion of heterogeneous aquifers is a prerequisite (Rubin, 2003). A detailed
characterization of aquifers is very often neither feasible nor affordable.
Alternatively, a statistical description of the aquifer is a valuable option.
Heterogeneous conductivity fields are often characterized by a log normal

distribution in space defined by three parameters: the geometric mean K,
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that impacts the effective groundwater velocity, the integral scales I; re-
spectively correlation lengths &; and the variance O’?—. Within this chapter,
the main objective was to develop a new method to infer these geostatis-
tic parameters and to improve in particular the estimates for the integral
scale/correlation length from local pumping test data as simulated in vir-

tual pumping tests by Firmani et al. (2006).

Applying the filtering method Coarse Graining, we derived a closed for-
mula for K% (r), which describes a short range pumping test performed in
an aquifer of a thickness much larger than the vertical correlation length
(according to Firmani et al. (2006) at least 60 &,). The explicit result for
the effective pumping test model and K (r) reads
Kng(T) = Kefy €xXp i% JJ%
(1+80)%)

7 | (4.16)

where the algebraic sign depends on the imposed boundary condition at
the well (+ for Dirichlet and — for Neumann condition). We used this for-
mula to infer the integral scales, the anisotropy ratio, the variance and the
geometric mean within the virtual pumping tests of Firmani et al. (2006).
Our estimates were in very good agreement to the theoretical (virtual)
values. Therefore, we propose to test the derived method under field condi-
tions in order to estimate the statistical properties of natural heterogeneous

aquifers.
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4.6 Appendix

Following Schneider and Attinger (2008) and applying the proposed filter

Eq. 4.5, the formula for K©%(r), making use of Fourier integrals, reads

K°C(r =K,(1+ o’fc — o’fc fd v [exp(—# - z—g)—g(l —exp(— i?:;yg) :
Evaluation of the three dimensional integral gives
KPC(r) = K,(1+ crfr — Ufﬂy(e) + 6KCC(r)). (A-4.1)
The function 6KCC(r) is given by
5KCG(1~) _ lefg (71-!112 — 2!3%‘%4— 20115 arcsin(%%)) | o
4 I2*h

with Iy = /& +r2 and Iy = 1/£2(1 — €2) 4+ r2. The latter solution can be
approximated very well by the expression given in Eq. (4.13) respectively
(4.15) with the B(e)-function as plotted in Figure 4.3.

The y(e)-function in Eq. (4.9) is given for a Gaussian shaped correlation

function Eq. (4.3) by

e (71'\/1 —e2 +2e3 — 2e — 2¢/1 — €2 arcsin(e))
(e2 —1)2 T

(A-4.3)

.

v(e) =

and bounded between y(e — 0) =0 and v(e =1) = 1/3.
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Chapter 5

Theoretical background I1I:
unsaturated water flow and

root water uptake

In Chapter 2 we introduced the main principles of water flow through
porous media and in the saturated zone. Here, we extend these deriva-
tions to water flow in the unsaturated zone with a special interest on root

water uptake.
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5.1 Soil water flow

Like in saturated media, water in the unsaturated soil moves from points
of higher potential to points of lower potential. In unsaturated media,
this total water potential can be written as the sum of all possible compo-
nent potentials (Hopmans and Bristow, 2002). The main components are
the matric and the gravitational potentials. The gravitational component
counts for the elevation of water in the soil profile relative to a given refer-
ence level. Since water is flowing through a solid matric (for example clay
or sand particles) within the soil, adhesive forces between the water and
the solid will appear. The matric potential is caused by a combination of
such capillary and surface forces. It is negative if not all water pores are
filled. The hydraulic head at a given point in the soil is equal to the sum
of the gravitational and matric potential at that point and is commonly
used as an approximation of total water potential. Other potentials like
osmotic potential due to salinity are usually neglected because of their low

contribution to the potential gradients.

Assuming the validity of the Darcy equation for the given potential concept

in unsaturated media, water flow is described by

q=—Kk(¥)V (¢ +2), (5.1)
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where g [m s™!] is the volumetric flux, K k() [m s~!] the unsaturated soil
hydraulic conductivity, ¢ [m] the matric potential (expressed in pressure
head) and z [m] the vertical coordinate (upwards). An important difference
to water flow in the saturated zone is, that hydraulic conductivity is a

function of matric potential.

Combining the flow equation with mass conservation (similar to section
2.1.3) yields the Richards’ equation, which describes the water movement
in the unsaturated soil

00

5 = V EKW)V (¥ +2)], (5.2)

where 6 [m3m 3] is the volumetric soil water content and ¢ [s] is the time.

The volumetric water content can also be expressed as a function of water
potential by
v
0 =0() =0+ [ Cw)aw, (53)
w'rl’-f
with ¢/ a reference matric potential and C(¢) [m~!] the water capacity
defined as 90/0¢. This gives the Richards’ equation in matric potential
notation
W

W) 5 =V KKV @+ 2)]. (5.4

At the moment no analytical solution of Equation 5.4 is known since it

is highly nonlinear in its parameters k and C. Also solving this equation
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numerically, can be demanding due to the large nonlinear dependencies
of both water content and unsaturated hydraulic conductivity on the soil
water matric potential.

There are several ways to parameterize the functions k(v)) and 8(¢). For
example, one of the most common functional relationships, beside the ap-
proaches of Campbell or Brooks-Corey, is the Mualem-van-Genuchten pa-
rameterization (van Genuchten, 1980). The latter is the one, which is used

in this thesis.

Water retention cure Following the Mualem-van-Genuchten model, the
the relation between the volumetric soil water content f[m>m =] and the
matric potential ) given in Eq. (5.3) can be expressed as

o-6, [ 1 "
phin [1+|mp|”] ‘ ¢

o
t
—

Hydraulic conductivity Accordingly, hydraulic conductivity K [m s™!]
in dependency on relative water content is given by Mualem-van-Genuchten

as

K () = K.k(8) = K,0* (1- (1- eijm)z, (5.6)

where © can also be replaced by € making use of Eq. (5.5).

Hydraulic diffusivity Another important variable in the soil-water re-

lationship is hydraulic diffusivity D [m?s™!] (also named soil water diffu-
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sivity) defined by © as

D(O) = K(@)%. (5.7)

For the Mualem-van-Genuchten parameterizations, ¢ is given by the inverse
function of Eq. (5.5), namely,

—1/m _ l—m
W= — © . (5.8)

8

Thus, D(O) becomes

D(e) _ _K(@) (m _ 1)@(]—7:1)1:&(@1/m N 1)—mJ (59)

which can be transformed by inserting Eq. (5.6) after various manipulations

to

D(6) = D;8(8) = D,&*~1/m [(1 - eY/m)=m 2.4 (1 — e/m)m] |
(5.10)
with D, = K (1 —m)/(am) is the saturated hydraulic diffusivity.

In terms of relative water content ©, the Richards’ equation can be formu-

lated as

qb%—? =V [D;0(8)VO + Ke,|, (5.11)
where e is the unit vector upwards.
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Linearization by matric flux potential As already discussed in the
previous paragraphs, no general analytical solution of the Richards’ Equa-
tion (Eq. 5.4) exists because of the nonlinearities in its parameters. To
circumvent this problem, the second order term in the Richards’ equation
can be linearized by making use of an integral transformation. Using a
term called matric flux potential ® [m2s~!| given at the current soil water

potential v respectively water content 8 by

P ]
B(1),0) — &7 = /'K@ymw’ D(6)db, (5.12)
yrefl gref

where ®7¢f ¢l and 07¢/ are reference states of the system (for et gref —
—oo the reference matric flux potential tends toward zero @™/ — 0), hence

resulting in

P 7}
@W@:/MMMZ/D@ﬁ (5.13)

5.2 Root water uptake

The process of water transport within the soil-plant-atmosphere continuum
can be best described by a simple electric analogue (Van den Honert, 1948).
The water flow is driven by a gradient of total water potential between

the soil and the atmosphere. The atmospheric water deficit and the soil
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water status determine the flow across several components, that are the soil
matrix, the root system, the plant’s stem and the plant’s leaf.

Plant transpiration is regarded as the reason for the water uptake by roots.
Cohsidering the constituent pathways of this water flow, most of the plant
resistance is concentrated in the roots (Feddes and Raats, 2004). The soil
resistance is inversely related to the soil hydraulic conductance that appears
along the flow path from the soil matrix towards the root. Regarding the
overall flow resistance, soil resistance might become important when soil
gets dry (Cowan, 1965).

Water uptake by plants can be studied at two different scales: the plot scale
or the microscale. A review on approaches of modeling root water uptake at
several scales has been published by Hopmans and Bristow (2002), Feddes
and Raats (2004) and most recently Raats (2007). At the plot scale, root
water uptake is commonly treated as a bulk water extractor and introduced
as a sink term to the water flow Eq. (5.4). Unlike, at the microscopic scale,
the water movement is explicitly modeled along the uptake path from the
soil to the atmosphere. This approach resolves the soil water flow in the
vicinity of the roots and within the plant’s water transmitting components.

The two approaches are presented in the following sections.

Root water uptake at the plot scale At the plot scale, the soil water
flow is usually assumed to appear only in the vertical direction, which

makes the Richards’ equation (see Eq. 5.4) one dimensional. The root
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water uptake is then inserted as a vertical sink term p into the Richards’

equation resulting in

C(zp)aaif = "a% [Ksk(d;) (z—f + 1)} — o(z,1). (5.14)

The sink term function o(z,t) [s7!] is usually assumed to follow a vertical
profile of root abundance. Hence, the potential root water uptake rate

at a certain root depth is often related to the vertical root length density

% (z) [mm™3 like

Ly (2)

= qpot(t), (5.15)
J LY (2)d=

QPot(za t) —

with gpo¢[ms™!] the potential transpiration flux and rooting depth zg.

Under optimal soil moisture conditions the potential extraction rate gpyi(2)
integrated over rooting depth z; is assumed to equal the potential transpi-
ration rate that is governed by the atmospheric water deficit. Stress due
to dry or wet conditions (and/or high salinity concentrations) may reduce
the potential uptake rate. Then, pp,:(2z) is multiplied by a reduction co-
efficient counting for water stress (,.,). This will give the current uptake
rate o(z,t) as

Q(Z,t) = ﬁﬂu X QPat(znt)' {516)
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Soil water pressure head —»

Figure 5.1: Water stress function used in the Feddes model: Water uptake
above 1 and below 4 is set to zero due to oxygen deficit and wilting
point. Between 1o and 3 water uptake is maximal (B, = 1). Above 1
and below 13, the so-called critical point, water uptake gets limited where

the precise value of 13 is assumed to vary with potential transpiration rate
TPot-

The most common implemented water stress function (3., has the form

shown in Figure 5.1 (similar to Feddes et al. (1976)).

In summary, the macroscopic approach reflects the water uptake from the
root zone as a whole, without considering explicitly the effects of single
roots, the radial flow towards them or the radial and axial flow within the
root system. Root water uptake modeled at the plot scale follows, due to
reasons of simplicity, the common root length density approach (see Eq.

5.15). Then root abundance is used to distribute plant transpiration over

117



Figure 5.2: Scheme of soil cylinders around root nodes

the soil layers affected by the rooting density profile. This methodology
is commonly applied in many soil-vegetation-atmosphere-transfer (SVAT)

schemes (see Chapter 6 for further details).

Root water uptake at the microscale The microscopic approach con-
siders explicitly the water flow along the uptake path from the soil via veg-
etation to the atmosphere. Here, we first explore the radial pathway of
water flowing from the (bulk) soil to the root surface. The flow within the

root up to the root collar will then be explained in the next section.

Radial soil water flow At the microscopic scale, plant water uptake
consists of a flow from the soil towards the root surface. The soil water flow
is then modeled as the radial movement of water from the outer boundary

of a soil disc with radius rq;.. towards a single root segment of radius ry as
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illustrated in Figure 5.2. The uptake rate is given by a boundary flux at

the soil-root-interface.

The most sophisticated method for calculating water flow towards a single
root is the Richards’ equation in radial coordinates that covers the full
nonlinearity of the flow process. In transient state, the radial (1D) Richards’
equation reads in matric potential notation

9 19
ot ror

o

o) [Ksk(w)r—} (5.17)

ar

Approximations of radial soil water flow One of the first descriptions
for microscale radial water flow from the soil towards the root is the one of
Gardner (1960). The Gardner model is still used today in some applications
(Personne et al., 2003; Segal et al., 2006) as it proved to be very insightful
(Vrugt et al., 2001). It considers the radial flow of soil water towards the
root assuming a radially constant hydraulic conductivity. The root system
is substituted by a vertical cylinder of uniform root radius ry, uniform
hydraulic properties and a constant soil layer radius rgs.. For solving Eq.
(5.17), Gardner assumed a steady state behavior for the water uptake along
a cylinder of infinite length where the extraction rate is defined per unit

3

root length (Q [m3s~'m~1]). Under the described conditions (similar to the

Thiem solution for saturated flow), he proposed the following expression

Q=2rKIn (Tdisc) (Y0 — Yaise) » (5.18)

To
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where 1y and 4. are the matric potential at the soil root interface rg
and the outer soil layer radius 74;s.. Thus, the depletion resulting from
uptake by a single root is treated as a series of steady state flows in a
cylindrical soil disc with a homogeneous hydraulic conductivity along the
radial distance. The assumption of constant hydraulic conductivity can be
avoided, as shown in Cowan (1965), by replacing K with a radial averaged
hydraulic conductivity along r that serves as an effective parameter up-
dated at each time step. However, this approach still neglects the radial
dependency between K and the matric potential ¢(r). This results in a
permanent overestimation of the averaged conductivity, particularly near

the root surface (at the inner boundary).

Another approximative implementation of the Richards’ equation in cur-
rent root water uptake models is the steady rate approach (Jacobsen, 1974).
Firstly, applying the concept of matric flux potential (Eq. 5.12) and intro-
ducing D(#) = d®/d6, the Richards’ equation becomes

1 92 199 &9

D@ ot ror o (5.19)

Setting 1/Dd®/0t = p = const. in Eq. (5.19), the steady rate equation

then reads
109 0@

bt s A SV P
ror  Or? e (5.20)
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with the analytical solution

B(r) = %rz +iaIn(r) + 1 (5.21)

where ¢1, 12 and ¢3 are integration constants set by the boundary conditions.

Assuming the following boundary conditions for such a steady rate, radial

flow
a‘f-;ff) Jrad = %:0‘9,‘5 inner boundary,
r=rg -
afgir) }T:% = 0 outer boundary (no flow), (5.22)
D(r=rmryp) E= Py bulk matric flux potential at 7,

we end up in the steady rate analytical solution

®(r) = p(r)+
Qrad r2/1~8 & Tﬁisc/rg (ln (ﬁ) - Tg/r?iisc):l | (5.23)

2wl [ 2(1— Tﬁisc/?'g) 1-= 7'5,5‘%/':“8 7 2

that is, depending on the imposed boundary conditions, similar to the work
of De Willigen and Noordwijk (1987); Lier et al. (2006); Schroder et al.
(2009). Here, we assume that the bulk soil water potential transformed to
bulk matrix flux potential appears at a certain distance 3, which was shown
by Lier et al. (2006) to be a valid approximation. At the outer boundary
a zero flux is imposed, whereas at the inner boundary, the flux is given by

the coupling to the root water inflow. Eq. (5.23) is a good approximation
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of the radial flow towards the root under transient conditions as shown in

De Willigen and Noordwijk (1987).

Water flow within the plant roots Within the plant roots, water
moves (1) from the root surface to the inner root xylem and (2) within
the xylem vessels up to the root collar. The first pathway is called the
radial flow path whereas the latter is referred to the axial flow. The water
potential will decrease along the different components of the path. These
potential gradients drive the radial and axial water flow (J*d; J&* [m3s~1])

and are described in analogy to Ohm'’s Law for each root segment as

T 1 1, T
e
and
1
ar __ zylem =
g == (Aap™em + Az), (5.25)

where A refers to the potential gradient along the root xylem axis between
two root segments. Within this formulation, roots are modeled as a series of
axial and radial resistances (R%®; R™ [sm~?]) as in Van den Honert (1948);
Landsberg and Fowkes (1978). The introduced root resistances operate as
an effective value for the underlying processes described below. They are
plant- and age-specific and relate to the prescribed root order.

There is an ongoing debate on the range of the hydraulic properties of the

root components appearing along the water flow path. The axial resistance
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can be defined like in West et al. (1999)) by the number, radius and length
of the evolved xylem vessels in correspondence to Poiseuille’s Law (Greacen
et al., 1976; Tyree and Ewers, 1991). Where the axial pathway seems to be
well described, the range of hydraulic properties along the radial pathway
shows a great uncertainty (Passioura, 1988; Rincon et al., 2003). This is
partly due to the differences in functionality between the three possible
pathways (apoplastic, symplastic and transcellular) to pass the radial flow
path (Steudle and Peterson, 1998). Regarding the transmission of water,
their findings suggest a relatively low conductivity of the radial pathway
compared to the axial. On the other hand, Zwieniecki et al. (2003) find
larger radial conductivities which is in contrast to the previous findings.
Moreover, their results suggest that the capacity of a root to absorb water
depends upon the combined axial and radial resistances. For this reason,
both scenarios will be applied in parallel and compared within Chapter 7.
Within our plant modeling framework, the root system forms a network of
resistances including the axial and radial resistances of each individual root
segment. When the root system branches, the network shows parallel flow
paths. At the root collar, the up mést part of the root system, either a
transpirational flux or a transpirational water potential is assumed. Both
entities are fixed by the atmospheric conditions together with the plant’s
remaining resistances in the stem and in the leaves.

In summary, the microscopic approach, used within this thesis, reproduces

the small scale effects of root water uptake. On the one hand, this is the
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local radial water flow from the soil towards the root that will be represented
by Eq. (5.23). On the other hand, this is the water flow within the plant’s
root system along its several pathways.

In Chapter 6, we will focus on the local characteristics of the radial soil
water flow within a split root modeling study. We are aiming to show the
relevance of this local effects for the overall water uptake and compare them
to current water uptake models. Chapter 7 will further elaborate on these
outcomes by combining the microscopic soil water flow approach with the

water flow within the plant’s root system.

In this scope, we will try to answer the following two main questions:

1. How local hydraulic gradients in soil water potential influences overall

root water uptake? (Chapter 6)

2. What role does root architecture plays in the water uptake process?

(Chapter 7)
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Chapter 6

The split root modeling

study in the unsaturated

zone 3

6.1 Introduction

Plant water uptake is one of the major processes influencing soil moisture
and soil water fluxes. Limiting soil moisture on the other hand, influences

the shape of ecosystems as well as water and energy fluxes to the atmo-

3This chapter is a modified version of the manuscript: Hildebrandt, A., Schneider,
C. L., and S. Attinger. A critique on combining the water stress function with root
density distribution to find vertical water uptake profiles in SVAT models. subm. to °
Earth Interactions.
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sphere. A number of models deal with the estimation of water uptake for
given environmental conditions, of which SVAT (surface vegetation atmo-
sphere transfer) models are the ones, which are applied at a scale that is

relevant for atmospheric scientists, hydrologists and ecologists.

SVAT models were first developed to improve the surface characterization at
the lower boundary of Atmospheric General Circulation Models (AGCMs).
In the early 80’s the role of vegetation in partitioning of energy fluxes into
latent and sensible heat was recognized leading to the earliest generation of
SVAT schemes. The representation of vegetation and soil was basic, with
for example the soil only consisting of one layer, a “bucket”. SVAT schemes
sequentially introduced more detailed models of soil and vegetation Sellers
et al. (1997). Among others, in many SVAT schemes the bucket soil storage
was replaced by a layered soil Sellers et al. (1997), and vertical soil wa-
ter movement between layers calculated using the 1-dimensional Richards’

equation:

ot~ oz

z

=2 (K2 w+2) - o) (6.1)
where 6 [—] is the soil water content, ¢ [s] is the time, v [m] is the water
potential in the soil and K () [ms~!] is the unsaturated conductivity,
which is a function of water potential, and o(z) [s~!] is the depth dependent
sink term rate, which corresponds to plant water uptake at a given depth
(2 [m]). Thus, by introducing a more realistic representation of soil water

movement assigning a vertical water uptake profile p(z) became challenging.
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It is a sophisticated task since the processes shaping root water uptake are
not well understood, partly because measurement of root water uptake
profiles is inherently difficult (Hupet et al., 2002; Hupet et al., 2003)

In the meantime, researchers who were forced to implement some model of
0(z) relied on the intuition that vertical root water uptake is proportional
both to soil water content and root abundance. The applied parameteriza-
tions differ in detail, but not in the general idea. Table 6.3 lists a collection
of popular SVAT schemes, including all those used in AGCMs that con-
tributed to the 2007 report of the Intergovernmental Penal on Climate
Change (Randall et al., 2007). It gives the model equations used to derive
vertical water uptake profiles. Most models combine a water stress function
(Feddes et al., 1976; Tiktak and Bouten, 1992) with a function describ-
ing the vertical root. profile (Gale and Grigal, 1987; Schenk and Jackson,
2002) by normalizing the latter and multiplying it with the former. Both
can be derived from measurements on plants or plant communities, which
is theoretically an advantage. The parameter of the stress functions are
usually assessed by measuring transpiration and water content of potted
plants (Denmead and Shaw, 1962; Gollan et al., 1985; Sinclair et al., 2005).
Rooting distributions have been derived for different biomes from extensive
databases of root observation (Jackson et al., 1996).

SVAT models have also become popular with affiliated disciplines, like hy-
drology. This lead to further distribution of the described parameterizations

for root water uptake. It is no overstatement that the combination of root
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distribution with a stress function has become the standard method for
estimating uptake profiles. What is more, rooting density profiles strongly
influence modeled transpiration in SVAT models (Mahfouf et al., 1996; Fed-
des et al., 2001), and influence the results of climate models (Kleidon and
Heimann, 1998; Barlage and Zeng, 2004). When the upper, densely rooted
layers dry out, transpiration is decreased, even when water is available at
depth. This is in contrast to observation, which suggests that root water
uptake shifts towards deeper layers when the upper layers dry out and tran-
spiration is maintained (Green and Clothier, 1995; Lai and Katul, 2000; Li
et al., 2002).

This discrepancy has already been addressed by some macro scale model-
ers, for example by including compensation mechanisms to maintain tran-
spiration (Li et al., 2005), others returned to bucket uptake models and
optimized the rooting depth to maximize plant performance (Kleidon and

Heimann, 1999; Hildebrandt and Eltahir, 2007).

How important is root abundance than for uptake? This question can partly
be answered by microscale models of root water uptake. Since the 1960s,
soil scientists have developed approaches that calculate water uptake from
a microscopic perspective (Gardner, 1960; Cowan, 1965; Jacobsen, 1974).
These can be upscaled to the plot scale by taking into account absolute
root length (Levin et al., 2007; Schymanski et al., 2008; Siqueira et al.,

2008). Application of these upscaled models indicate that water uptake is
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not always congruent with the root profile, but shifts to moister layers when
densely rooted layers dry out (Levin et al., 2007).

Microscale models give the opportunity to look at uptake at the process
scale. Measurements of root distribution indicate consistently that a great
majority of roots is located in surface layers (Jackson et al., 1996). This is
in contrast to the observations cited above, which show that uptake shifts
to deep layers at times scales that are too short for root growth.

In this chapter, we use a microscale approaches to show that rooting den-
sity has a smaller influences on macroscopic water uptake than currently
applied SVAT parameterizations suggest. For an exemplary case we setup
a numerical split root experiment, and calculate water uptake based on the
microscopic Richards’ equation, which is the best currently available model
for microscopic water flow towards roots. We compare the results with
the ones obtained using parameterizations we found implemented in SVAT
models. We also plot some microscopic approximations of the Richards’
‘equation, which have been recently applied in models of SVAT scheme

scale (Schymanski et al., 2008; Lier et al., 2008).

6.2 Background

The uptake parameterizations shown in Table 6.3 use macro scale pa-
rameterization for water uptake. However, they can be motivated from

the perspective of water flow towards a single root. Root water uptake

133



only scales with rooting distribution if we make the important assumption,
that the water flow towards each individual root segment of unit length

(Qrqq [m3s~m™1) is the same for all modeled soil layers, i.e.

Qrad,i = Q?‘ad v iu . {62)

With the above assumption and at first with soil moisture not limiting (for

matter of simplicity), the total plant transpiration Ty [m?s~!] is given by

N N
To=Qaali =),  Ti=0aa) Ui (6.3)

where T; [m?s~!] is the transpiration from a layer between depth z; and
ziy1, 1% [m] is the total root length and I¢; [m] is the accumulated root
length in soil layer ¢ with

Zit1 Zit+1

= [ =i [ R @, (6.4)

Zi Z4
Here, 12(z) refers the accumulated root length at depth z and P, (z) [mm™]
is the corresponding fraction that ranges between 0 and 1. Under the
assumption stated above, Q,.,4 depends on total transpiration demand, and

is only a function of depth through the fraction of total root length Fj, at

z. Thus, the vertical distribution of the transpiration sink can be written
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layerwise as
e,
T; = Qrad l?-; = Qrad lfn()t X l:ﬁ = 'Plr,z' To, (65)
T

where F)_, is the fraction of total root length that is located in layer i.

In the case where soil water becomes limiting, another variable accounting
for soil water stress [3;, (see Table 6.3) can be introduced to a combined
stress term (F}), such that:

T; = B; Ty, (6.6)

All parameterizations given in Table 6.3) rely on this general form, but

differ in the representation of " and W.

Remember that the derivation of Eq. (6.5) and (6.6) rely on the assumption
that Q,,4 is exactly the same along the entire root network. In practice,
Q,4q depends on a number of factors that do vary along the root system,

such as the size of the root distance and soil moisture.

In this chapter we show, using different types of microscale models intro-
duced below, that Q,,4 changes in spite of a constant root length distri-
bution considerably, even in the non-limiting case, and hence, the main
assumption stated above cannot hold. The latter implies that the parame-
terizations in Table 6.3 do not correctly reflect the behavior of root water

uptake.
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6.3 Methods

For this study, we use a numerical split root experiment described in this
section. The experiment is simple, and allows us to look at the uptake pro-
cess in an isolated fashion. In the following paragraphs we give descriptions
of the applied macroscale and microscale models. We limit our investigation
to water uptake from two soil compartments since we wish to demonstrate
that the combination of a stress function with root distribution may fail
to correctly describe the distribution of water uptake already in this very
simple case. Our approach can be easily extended to more complex models

with more compartments.

The setup of the experiment is depicted in Figure 6.3. The root system of
one individual plant is separated into two unequal parts (A and B), which
are planted into two separate, sealed pots. Part A has a larger total root
length than B. The corresponding model consists of two independent soil
compartments of the same volume (V; = 0.5m?), but different root length
density. Since the pots are sealed and not in contact, there is no water flow
between them or in and out of them. The only extraction is from root water
uptake. The total water extraction from each pot is calculated similarly as
in Eq. (6.5), except that Q,¢ may differ between compartments and takes

a new variable name Q44 ;. Thus Eq. (6.5) becomes:

T = Q"rad,;", Lr,i~ (67)
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The distribution of de,g between comparfments A and B is not prescribed.
We only prescribe total (potential) transpiration from both compartments,
which is Ty and we find the inner boundary condition (i.e. the water po-
tential at the root surface ¢y for Models Type I and II dr the xylem water
potential 4, for Type III, see below) for which the criterion >.7; = Ty
is fulfilled. In order to solve this problem, we have to make the impor-
tant assumption that the inner boundary condition in both compartments
is the same. This corresponds closely to the assumption that the xylem
water potential within the root system is almost constant in space (Steudle
and Peterson, 1998). We apply the model mainly to conditions where the
soil is not limiting the uptake, unless indicated differently. We somewhat
arbitrarily assume that soil becomes limiting, when the water demand can-
not be satisfied at a soil-root-interface potential 1 that is somewhat below
the permanent wilting point (—160m). When this point is reached, we fix

1o = —160m in both compartments.

6.3.1 Microscale Models Type I, Richards’ equation for flow

towards a single root

The most comprehensive method for calculating water flow towards a single

root is a small scale, radial symmetric application of the Richards’ equation

o8 14 a
5% " 7or (’-’"K (¥) g?//) =0, (6.8)
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Figure 6.1: Scheme of the numerical split root experiment. We model
two independent soil layers, where the water extraction is modeled with an
embedded microscale model for flow towards a single root. For this, the soil
volume of each layer is explored with one soil cylinder (example in gray) of
radius rg and length [7;. Assuming ideal packing, the radii of the cylinders
belonging to compartment A and B are related like 74,74, = 1 : 2, and the
cylinder length I7 : 17, =4: 1
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with initial and boundary conditions, where r [m] is the radial coordinate
(the radial distance from the root center). Its range is ro < r < ry, where
ro is the root radius and ry the soil disc radius that is equal to half of the

average root distance of all roots within a soil compartment.

Assuming ideal packing in layer i, 74, relates to [¢, and the total volume

ri

of the soil compartment (V;) as

'T'dﬂ' = —_— (69)

Root water uptake per root segment of unit length (Q.44;, m?/s) is given

as the flow across the inner boundary (r)

, (6.10)

=g

Q'rad = 27r (K (h’i) g_,?f)

imposed by a Dirichlet boundary condition, with v(rg) = g, where 1(rp)
is the potential at the soil-root-interface. The outer boundary condition is

:0_

Q|r:rd

Currently, no analytical solution for this nonlinear equation is available,
and it therefore has to be solved numerically. Thus, although Richards’
equation is the most adequate formulation for modeling flow towards a

single root, it is not applicable on the scale of SVAT models, because of the

computational burden. We used the software COMSOL (COMSOL AB)
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to solve Eq. (6.8) numerically for the water flow towards the root segment

per length Q, 4.

6.3.2 Microscale Model Type II: Simplifications for flow to-

wards a single root

Microscopic models have recently been applied to model water uptake at the
plot scale (Levin et al., 2007; Siqueira et al., 2008; Schymanski et al., 2008;
Lier et al., 2008). All these models are approximations of the Richards’
equation. A recent review of microscopic approaches to modeling root
water uptake has been published by Feddes and Raats (2004) and Raats
(2007). We restated the two most relevant equations (the Gardner model
and the Steady Rate Approximation) in Table 6.4 and refer the reader for
more background to Feddes and Raats (2004), Raats (2007) and the related
literature. The Gardner model solves for the water flow per unit length
Qa4 to a root segment, while the Steady Rate Approxi'mation solves for

the uptake 7; from a given soil volume.

6.3.3 Microscale Model Type III: Inclusion of root radial

resistance

In the approaches above, the inner boundary condition is given at the root
surface. In reality however, it is the pressure inside the root (inside the

xylem vessels, ¥;), which drives the water flow towards the root. The
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impedance to water flow within the root (from root surface to xylem) is
called root radial resistance and can, under certain circumstances, have
substantial influence on the distribution of water uptake (Levin et al., 2007).
The radial flow through the root can be described in analogy to Ohm’s Law,

using the root radial conductivity (K, [ms™]), thus

(Y0,s — Vz)

Te

Qrad,;i = Kpr (611)

with r. the radial thickness of the root cortex for all segments of layer ¢ and
1o, is the water potential at the soil-root-interface. Using the inverse of
root radial hydraulic conductivity 1/K,, = Xp», we multiply this radial root
hydraulic resistivity x,, [sm '] with the roots radial thickness resulting in

(p, an empirically obtained specific root resistance.

The radial uptake per root segment perimeter Q.4 ; [mzs*l] ig then given

by
2mro

Gr

Note that, while in the previous section g was the same for all modeled

Qv‘ad.é = : ('labD,i = 'lfbﬂi) - . (612)

layers, now it can differ between compartments, since it depends on Q44 ;.
Instead, v, is the same for both layers. Measured specific root resistances
range from 1.5—35x 108 MPa sm ™! (Zwieniecki et al., 2003) to 1 x 107 MPa

sm~! (Steudle and Peterson, 1998). We chose small specific root resistances
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(¢p = 3 x 10° MPa sm™!, which corresponds to a radial conductivity of

K= 2% 107t

6.3.4 Special case: root-water uptake for a split root exper-

iment in linear soil

In order to understand the influence of the nonlinear behavior it might
be useful to have a model where nonlinearity is removed. Such a model
is presented in the following. The solution for this model serves also as
a useful benchmark for the numerical simulations. We rely on a simpler,
and analytically tangible approximation of the Richards’ equation, which is
based on the so called matrix flux potential ® [m?s~1] given in Eq. (5.12),

which for the Richards’ equation results in

g 9o _, -
TV e=0, (6.13)

where ‘fl—g’ is called diffusion coefficient D. If D is a constant, Equation 6.13

reduces to a linear equation and can be solved (see Appendix 6.7 A) in
Laplace space, which leads to the following solution for water uptake T; of

layer ¢
c+ico
1 .
= — TieStds, (6.14)
271y

c—io0

T;

where T; is the Laplace transformed of T; (given by Eq. (A-6.8) in Appendix
6.7).
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6.3.5 Macroscale Model

Table 6.3 gives an overview over common approaches for distributing root
water uptake between different soil layers in SVAT models. To give an
example, we adopt the approach of MOSES 2.2 (see Table 6.3). We some-
what arbitrarily fix the soil moisture level at which transpiration is first
limited to about 30% of fraction of transpirable soil water. This is a level,
which has been observed on potted perennial woody species (Sinclair et
al., 2005). We assume that 6,, is the water content at wilting point. For
the soil type sandy loam, applied in all simulations here, this corresponds
to 6. = 0.13 and 8, = 0.09. The root length distribution in all scenar-
ios is I : I%, = 4 : 1, thus the fraction of total root length for the two

compartments is L, = 0.8 and L,2 = 0.2.

6.3.6 Model Scenarios and Input

The soil in all microscopic models is parameterized according to van Genuchten

(1980):

0—0, 1 2
o= =4 = [T i

2
]

K(0) = K,0%5 [1 = (1= elfm)m] (6.16)

where © is the relative water content ranging from 0 to 1. 6, is the residual
water content, ¢ is the soil porosity, K(©) is the unsaturated and K, the

saturated hydraulic conductivity, «, m and n are parameters listed in Table
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Half Root Distance

Td,1 Td.2
small 0.50 cm 1.00 cm
medium 0.75 cm 1.50 cm
large 1.00 cm 2.00 cm

Soil Parameters
K, 14 x 10 ms~!

A 0.378
m A(A+1)
n A+1
0, 0.041
o} 0.453
o 7.1m

Table 6.1: Model input, plant and soil properties

6.1. We chose parameters that correspond to a sandy loam according to

the values listed in Maidment (1993).

The initial condition for soil moisture within the two compartments is field
capacity (in this soil 6;,; = 0.21). The total transpiration (7p) imposed
was held constant in the initial phase of the simulation. The resulting dis-
tribution of water uptake between layers is calculated as laid out in section
6.3. When the water potential at the root surface or xylem (depending
on the model) drops below the permanent wilting point (i.e. —160m),
we switch from imposing total transpiration 7y to imposing constant pres-
sure at the soil-root-interface (1) or xylem pressure (1), which is set to

-160m. We always applied the same ratio of root length for all scenarios
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with [t : [, =4 : 1, but varied the root distance rq and thus total root

length (see Table 6.1).

6.4 Results

6.4.1 Modeled macroscopic uptake considering only soil re-

sistance with a nonlinear Richards’ equation

Figure 6.2 shows the modeled water content (Figure 6.2a),the matric po-
tential (Figure 6.2b) and unsaturated hydraulic conductivity (Figure 6.2c)
profiles, for the less densely rooted compartment B. We plotted one profile
every 48 hours. At the beginning, the profiles of all variables are flat. After
some time, gradients develop first in water potential, later in water content
and also unsaturated hydraulic conductivity. As the result of the non-
linear water flow towards the root, hydraulic conductivity (6.2b) is much
decreased near the root surface (r = 0mm) as compared to further away
(r > 10mm). Hence, strong potential gradients are necessary to maintain
the water flow towards the root (6.2a). The gradients become stronger with
time and also depend on the total water demand of the plant and absolute
root length density. Figure 6.3 shows how both of these factors influence
the total uptake modeled from the two layers compared to total water con-
tent (sum of both compartments). For higher total transpirational demand,

plants get water limited (i.e. reach 1y = —160m) earlier as for low transpi-
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Figure 6.2: Model results for compartment B using the Richards’ equation,
total transpirational demand is 7x10™8m3s~!. Each line corresponds to the
profile of the plotted property at a given time {. The time distance between
lines is 2 days, the first (topmost) line is at ¢ = 0, the last (bottommost)
one at t = 28 days. Profiles are (a) water content, (b) matric potential, (c)
unsaturated hydraulic conductivity.

rational demand (Figure 6.3a). Also small absolute rooting density (larger
root distance, smaller root length) leads to earlier onset of water limitation
(Figure 6.3b). In both cases, this is because larger fluxes per root segment
require steeper potential gradients around the root, which in turn decrease

unsaturated conductivity.
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Figure 6.3: Total water uptake from compartments A and B as a function
of average water content for different levels of (a) transpirational demand:
1 x 107 "m3s™! (dotted), 0.7 x 10~"m?s~! (dashed), and 0.4 x 10~ "m3s~!
(solid) and constant half root distance (rg; = 0.0075m, 42 = 0.015m);
(b) varying half root distance rz; = 0.005m, rg2 = 0.01m (dashed),
rq1 = 0.0075m, r420.015m (solid), 741 = 0.01m, r420.02m (dotted) and
constant transpirational demand (0.7 x 1077 m3s™1).
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Figure 6.4 shows the expected evolution of water uptake separately for
compartments A and B, based on the numerical results of the complete
nonlinear Richards’ equation. For this, we first neglect root radial resis-
tance and return to it later. Imposed critical soil water contents are shown
in Table 6.2. Figure 6.4b covers the first houré of the simulation, much
before the limiting water potential is reached. During this time, when soil
moisture is not yet limiting uptake, current models, based on the bulk
water stress formulation, predict water uptake proportional to the root dis-
tribution (compared to Eq. (6.5)). This is much in contrast to the results
plotted here, where the contribution of uptake from each compartment
changes considerably with time. Initially, the ratio of uptake is equal to
the ratio of root abundance, but ap;l)roacheS rapidly a ratio of one, that is
both compartments deliver the same amount of water, regardless of root
length. The equal uptake phase is reached faster for scenarios with larger
total root length, but in all considered cases it is fast (less than a day).
Figure 6.4 shows that the ratio of uptake between the two compartments
changes again after some time: back towards the ratio of root distribution.
Also in this case, the timing depends on the actual root length, as stated
above. The observed phases are a result of two intertwined processes: (1)
the nonlinear nature of soil water flow in the unsaturated zone, and (2) the

resulting formation of a depression cone around the root (Figure 6.2).
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Figure 6.4: Water uptake from densely rooted compartments A (blue) and
less rooted compartment B (green) separately for (a) the entire modeling
period and (b) for the first 20 hours and varying half root distance: low
(rg, = 0.005m, rg2 = 0.01m, dashed dotted), medium (rgz; = 0.0075m,
rqa2 = 0.015m, solid), and high (r4; = 0.01m, rg2 = 0.02m, dashed).
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low medium large
f.1 0.09 0.10 0.11
f.2 0.10 0.12 0.13

Table 6.2: Soil water content, at limiting soil water content for compart-
ments A and B separately, for the model simulations plotted in Figure 6.4.

6.4.2 Comparison with simplified approaches

Figure 6.5 shows how the simplified microscopic approaches predict the to-
tal transpiration and partitioning of transpiration between compartments
A and B (described as T1/73), and also gives comparison to the nonlinear
Richards’ equation and the macroscopic parameterization from MOSIS 2.2.
All microscopic models agree with the results for the nonlinear Richards’
equation in that they predict that the contribution of the two soil com-
partments changes with time, and hence, is independent of root length
distribution. All models predict that uptake from the compartments is ini-
tially proportional to root distribution, but after a short period the uptake
from both compartments is the same. In some models (all excluding the
linear Richards’ equation) the third phase follows, where the curves for wa-
ter uptake separates again. The degree of separation depends on the model.
The nonlinear Richards’ equation and the Steady Rate Approach predict
the strongest separation: the proportion of water uptake approaches the
proportion of roots in each compartment. This separation is a result of

the increase of soil resistance from build up of gradients around the roots,
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pointed out above. The Gardner model does not account for these gradients

and underestimates the soil resistance.

It is noteworthy that the Steady Rate Approach agrees very well with the

Richards’ solution and is hence an excellent approximation.

The simplicity of the Gardner model offers some insight into the processes
leading to the observed dynamics. For the specific case modeled here, the
contribution from two different layers can be separated into different factors
by dividing the Gardner equation for compartment A by the same equation

for compartment B as in

T 'Bllﬂ,l . K(wl) ) ('l/JO —‘ﬁf’l)

- —F T Ty, 6.17
T, Balt, K) Wo—tn) ot 2% (6.17)

where v and 15 are the bulk water potentials in compartments 1 (A) and
2 (B). The time evolution of these factors is plotted in Figure 6.6. We see
that after a short initial period T1/75 = 1, which can only be achieved if

the product of F5 and F3 offsets the constant F; = 5.4.

Figure 6.6 shows that this offset is achieved by both factors at different
times. During the initial phase, F3 decreases abruptly, but increases later
again, while Fa decreases slowly, and later becomes the dominating factor
for offsetting ;. In other words, the nonlinearity of the functions () and
K (1) are responsible for the modeled behavior. Again, during the period
where the soil conductivity limits uptake, the Gardner model substantially

underestimates the soil resistance to water flow, since it only considers
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bulk variables and does not account for the gradients around the root.
Root length would have a much stronger influence, if K was calculated
as function, for example, of the water potential at the root surface (),

instead of bulk water potential (1);).

The solution obtained with the linear Richards’ equation resembles those
for the other models qualitatively during the initial phase (Figure 6.5¢).
After a short time, both compartments contribute equally to total uptake.
The reason is the same as shown above for the Gardner model. There
are two noteworthy differences. First, the point of equal uptake is reached
later for smaller D. Second, there is no separation of uptake from both
compartments, as is observed for the nonlinear Richards’ equation. These
points portray the importance of D in the nonlinear Richards’ equation.
In the linear Richards’ equation DD = const. while in the nonlinear case,
D = D(#). In the latter case D(f) decreases nonlinearly during the uptake,
and along the depletion cone around the root (see Figure 6.2). As shown in
Figure 6.2 the profile of # is almost even in the first phase of uptake, hence,
D is almost constant over the cross section, and uptake closely resembles the
linear Richards’ equation (”linear phase”). This corresponds to the time,
when uptake from both compartments is almost equal. Later, gradients
around the roots develop, also D along uptake cone changes, thus leading
to the observed separation of uptake profiles. Thus the crossectional profile

D(#), related to the steepness of the local gradients of water content around
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the root, plays the key role for unequal contribution from the compartments

during the later phase of uptake ("nonlinear phase”).

6.4.3 Modulation of macroscopic water uptake by plant fac-

tors: plant resistance

In the previous section, we only considered the macroscopic dynamics of
water uptake resulting from different formulations of soil resistance, and
omitted the influence of plant resistance from the relevant equations. In
this section, we include plant resistance, in order to show that the results
obtained above still hold, when root radial resistance is included in the
model.

Plant resistance introduces more complexity to the uptake model. In par-
ticular, the water potential at the root surface depends on the water flow
per segment. For example, for water uptake from the densely rooted layer
to be equal to the one from the less densely rooted layer, the uptake per
root segment in the latter has to be four times as high as in the former.
When taking into account root resistance, this disproportion would lead
to a larger pressure decrease between xylem and root surface in the less
densely rooted layer, and, hence, dampens the pressure gradient within
the soil. This again would lead to a comparatively larger influence of root
length distribution to the uptake, as already pointed out by Levin et al.
(2007).

153



total transpiration [mafs]

Tl T,

T1I‘T2
- N
—
\

time [days]

Figure 6.5: Comparison of the water uptake calculated with different mi-
croscale models and the macroscale model of CLM (a) Modeled total tran-
spiration over time, (b) Uptake from compartment A divided by uptake
from compartment B (71/7:) for default, nonlinear Richards’ equation
(solid), steady rate (dotted, hidden by the solid line of nonlinear Richards’),
Gardner (dashed dotted), MOSIS (dashed), (¢) The nonlinear Richards’
equation (solid) and the corresponding solution of the linear Model for
D = D(8rx = 0.21) (dashed) and D = D(6,, = 0.09) (solid), which are
only plotted for phase where water is not yet limiting uptake. Results are
for total transpirational demand Ty = 0.7 x 10~ "m?s™!, and medium root
distance.
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Figure 6.6: Factors contributing to shaping the distribution of uptake be-
tween compartments A and B in the Gardner model, for the factors defined
in Eq. (6.17), T} /T, (solid), F)(dashed dotted), Fy (dashed), F3 (dotted).
Results are for medium root distance and total transpirational demand
To = 0.7 x 107 m3s~ 1.



We only consider the Gardner equation and nonlinear Richards’ equation.
The available solution for the linear Richards’ equation does not yet allow
for taking into account plant resistance, and the Steady Rate Approxima-
tion gives the same result as the nonlinear Richards’ equation. Figure 6.7
shows the evolution of uptake from both layers with taking into account
radial resistance as indicated. The macroscopic uptake changes with time,
qualitatively similar to the cases above, with two main differences: (1)
the initial phase lasts much longer (the root length density distribution
has stronger influence), and (2) during some of the time, the uptake from
the less densely rooted layer is more elevated than the one from the more
densely rooted one. The latter is a result of the simple model setup and
should not be overemphasized. The first is a result of the Strongly increas-
ing total resistance to water flow (which is similar to increasing D in the

linear Richards’ equation as discussed above).

6.5 Discussion

The results of the modeling exercises not including root radial resistance
suggest that in moist soil rooting distribution plays only a minor role for
determining uptake partitioning between soil compartments. Rather it is
the distribution of the soil water potential that determines these profiles.
All of the simplified microscopic models agree on this, at least for the case

where root radial resistance is neglected. This general behavior agrees with
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Figure 6.7: Influence of including radial root conductivity to the model

result for the ratio of uptake between compartments A and B (T;/Ts), re-
sults of the Nonlinear Richards’ equation with radial conductivity (dashed),

Gardner model with radial conductivity (dotted) and the original nonlinear
Richards’ equation without considering radial conductivity (solid).



observations suggesting that the region of active water uptake moves over
time (Lai and Katul, 2000; Li et al., 2002; Garrigues et al., 2006). However,
nonlinearity in the soil water flow leads to development of strong potential
gradients around the root, leading to higher resistance and, hence, the im-
portance of root length increases. This takes place before the water content
limits total uptake. The development of these gradients depends also on the
total water demand, with higher water demand leading to stronger gradi-
ents. The higher water demand leads to an earlier onset of the water-limited
uptake phase, in this model due to the stronger decrease in hydraulic con-
ductivity around the roots. This behavior has also been observed in potted
plants by Denmead and Shaw (1962).

Some of the SVAT approaches for root water uptake already allow for tak-
ing into account experimental results like the ones by Denmead and Shaw
(1962). They do this by assuming two critical points for limiting soil mois-
ture (6., see Table 6.3), one for high and one for low transpirational demand.
However, our results suggest that 6, not only changes with transpirational
demand, but also with absolute root length (but note: same rooting density
profile) and most importantly, 6. was different in the two soil compartments.
In other words, 6. is not a unique species or soil specific parameter. This
implies, that values of 8. obtained with potted plants cannot be “down-
scaled” and applied in discretized soil profiles.

When root resistance is included to the microscale model, the rooting dis-

tribution becomes more important, and approaches the uptake modeled by
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the MOSIS parameterization. The debate about the magnitude of the root
radial conductivity is ongoing. Physiological measurements on root seg-
ments indicate that the values could be as low as 4 x 1071 - 2 x 107 12ms~1
(Zwieniecki et al., 2003) for maize roots. The conductivities applied here
(Kpr = 2 x 1071 ms™1) are close to the upper margin of that range. We
assume that for lower conductivities the role of root length would increase.
Nevertheless, our results show that with inclusion of radial conductivities,
the uptake ratios are still not proportional to the rooting distribution and
time variant. From this perspective, we would expect that the rooting sys-
tem adapts to drier soil conditions by increasing root length (not necessarily
root biomass). Observation suggests that this might indeed be the case at
the ecosystem level (Metcalfe et al., 2008).

Most importantly, the behavior of all small scale model predictions differs
greatly from those of parameterizations currently applied in SVAT mod-
els and summarized in Table 6.3, which predict water uptake during the
non-limiting phase to be proportional to the root length distribution. In
contrast, the microscopic approaches suggest that the uptake profile is not
only different from the rooting density distribution, but that it continu-
ally changes in time. Rather than defining the root water uptake profile,
the root length distribution acts like an envelope in which the root uptake
distribution evolves. The microscopic models show that not only total tran-
spirational demand (6.3a), but more importantly also absolute root length

(6.3b) determines the critical point of bulk water content (6.), where ac-
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tual transpiration deviates from the potential one. This should be taken
into consideration when interpreting experimental results in potted plants.
However, other factors may play an equal or more important role, such as
axial resistance, root growth, and soil-root connection.

With the model exercises above, we aim to show that microscopic root water
uptake models deliver important information about the macroscale root
uptake behavior. In particular, we want to illustrate from the point of view
of unsaturated flow that the root density distribution has a comparatively
smaller influence on uptake profiles than the approaches used in SVAT
schemes suggest. In this study we intentionally neglected other processes
that are important for shaping uptake profiles, like soil water flow within
the soil matrix, adaptation of the root length distribution and rooting depth
through root growth (Metcalfe et al., 2008), soil-root connection (Carminati
et al., 2009), and, most importantly, root to shoot signaling (Schachtman
and Goodger, 2008). We appreciate the importance of these factors, but we
believe that leaving out complexity helps to gain a better understanding of
the single process.

In this model we do not consider water ﬂdw between soil compartments,
which is an approach that researchers have taken earlier to investigate the
role of water uptake strategies (Teuling et al., 2006). In moist soil, redis-
tribution of water in the soil matrix interacts with uptake and would likely
modify the time evolution of the uptake pattern. However, this was not

the focus of this research. We tried to show that the distribution of uptake
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between two regions in the soil with a given soil moisture pattern can sub-
stantially change in time, even if root length is constant. This result holds,

regardless of the origin of the soil moisture pattern.

6.6 Conclusion

Based on applying a microscopic application of the Richards’ equation for
flow towards a single root, and further simplifications of this model, we
strive to show that current parameterizations in SVAT schemes overesti-
mate the water uptake in densely rooted regions versus less densely rooted
ones. This even happens for a larger part of non-water-limited uptake.
Our analysis is based on investigating the physical environment of the root
from a hydrological view point. From that perspective, there is no physical
basis for the commonly used parameterizations in SVAT schemes, which
distributes uptake according to root length distribution. Other processes,
particularly biological ones like root growth, may cause root water uptake

to differ even more from observed biome root length distributions.
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6.7 Appendix: Derivation of the Linear Split Root

Experiment

Together with specified boundary conditions and in radial coordinates, the

split root experiment can be written as a systems of equations based on

Eq. (6.13) as
0®; D; 0 ( iq)z) =0, (A-6.1)

ot r or ‘ or

for each volume Vj, with the following boundary conditions

=-> T,=-Q, (A-6.2)

i r=ro
®,_,, = Pp, (A-6.3)
if ®; (r=rg) =@ > Py, and
7"2@1- =0, (A-6.4)
or r=rg

where Az; = 0.5m denotes the thickness of the compartment %, and n; the
number of roots in the ith compartment. The system of coupled linear
advection-diffusion Eq. (A-6.1) and (A-6.4) can be solved making use of
Laplace transforms (Hafner et al., 1992). The fundamental solution for ®;

reads

®(s,r) = Biglo(pir) + BaKo(pir) (A-6.5)
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-

with p; = jop and the parameter s. For a soil comprising two soil layers
the four coefficients Bi1, Bia, Bay, Bas have to be determined making use of
the boundary conditions given by Eq. (A-6.2) and (A-6.3) as well as by the
no flow boundary condition of each separate layer given by Eq. (A-6.4). It

results for the Laplace transformed matrix potential and the root-uptake

st layer

n 10
Bi(ro,s) = Qg ;(Dmﬁ-m)ijj: ;] , (A-6.6)
d;(r,s) = %%{m,s}, (A-6.7)
Ti(s) = 2mro(DAZp) 258 (1o, ), (A-6.5)

Fi(r, s)
€i(r, 8) = J1(rapi)Ko(rpi) + Jo(rpi)Ko(rapi), (A-6.9)
Fi(ro,s) = Ji(raps)Ko(rop:) (A-6.10)
+Jo(ropi)Ko(rapi),

Si(r, s) = 91 (rapi) K1 (ropi) + 1 (ropi) Ko(rap:)- (A-6.11)

The functions Jg, J1, Ky and K; denote modified Bessel Functions of the
first and second kind. There is no simple back transformation for Eq.(A-
6.8). Therefore, we propose the-inversion by the numerical algorithm of

Stehfest. For further reading we refer to the book of Héfner et al. (1992).
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Chapter 7

Effects of root system on

plants water uptake *

7.1 Introduction

The global water and carbon cycles are key issues in climate and global
change research. Within these complex systems, plants are the central
interface between the atmosphere and hydrosphere. Transpiration plays
a crucial role for the surface energy balance as well as for the water cy-

cle. It is also linked to the carbon cycle through its close connection with

*This chapter is a modified version of the paper: Schneider, C. L., Attinger, S.,
Delfs,J.-O., and A. Hildebrandt (2009). Implementing small scale processes at the soil-
plant interface - the role of root architectures for calculating root water uptake profiles.
Hydrology and Earth System Sciences Discussions, 6 (3), 4233-4264.
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photosynthesis. Hydrological as well as climate models will benefit from
an improved understanding of the process of water flow through plants,
in particular because they are sensitive to root water uptake parameters
(Desborough, 1997; Zeng et al., 1998). Also, great uncertainty in model-
ing transpiration stems from lack of knowledge about how much water is

available to plant roots (Lai and Katul, 2000; Feddes et al., 2001).

Plant water uptake responds to soil moisture limitation at different time
and space scales. At the seasonal time scale, plants may adapt their rooting
system by root growth, in order to reach moister soil areas (Wan et al.,
2002). But also at smaller time scales (like hours to days), plants have
been observed to change their uptake zone, and without altering their root
system (Sharp and Davies, 1985; Green and Clothier, 1995; Garrigues et al.,
2006).

However, models for describing water flow at the soil-plant-atmosphere-
interface (SVAT-schemes) include these processes only partially. These
schemes use a heuristic parametrization for root water uptake that is ap-
plied as a sink in the one-dimensional Richards Equation. Commonly, ver-
tical root water uptake profiles are related to the product of a water stress
function and the vertical rooting density distribution (like in Feddes et al.
(1976)). However, this parametrization leads to early predictions of limited
transpiration, when densely rooted soil layers dry out (Feddes et al., 2001)

and thus neglects the plants adaptive response to water stress.
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In order to deal with these shortcomings, several algorithms have been
developed to allow for a longer period of transpiration in a SVAT context.
Li et al. (2001) and Teuling et al. (2006) presented models that compensate
water stress in one part of the root zone by increased uptake from other soil
areas without altering rooting density profiles. Also, besides compensation
effects, another mechanism sustaining transpiration in dry soil, is hydraulic
redistribution. It is defined as water transfer from wetter into drier soil
areas, via flow through the root system. Recently, Siqueira et al. (2008)
and Amenu and Kumar (2008) investigated this effect for delayed onset of
water stress in a root water uptake model, again based on rooting density
profiles.

The above models treat uptake and adaptation in a lumped way, and there-
fore do not consider the mechanisms at the scale at which they take place.
Models which include more detail could be used to gain the necessary pro-
cess understanding, in order to transfer it to the SVAT scale. Small scale
processes of root water uptake have already been implemented in models
of varying levels of complexity.

First level models distribute the transpirational demand on the soil domain
simply by the spatial distribution of roots either in one (as SVAT models
do), two or three dimensions (Vrugt et al., 2001; Clausnitzer and Hopmans,
1994).

Second level models include a description of microscopic water flow along

the potential gradient between the soil and the root, either using an ef-
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fective resistance along this gradient like Gardner (1960); Gardner (1964)
or more realistic radial dependent soil hydraulic properties (Tuzet et al.,
2003; Lier et al., 2006). The latter cover the nonlinear behavior of unsatu-
rated water flow. This is an important mechanism in drying soils (Schroder
et al., 2008; Hildebrandt et al., 2009), because steep potential gradients
develop aréund the roots. These models can be extended to include root
radial resistance additionally to soil resistance (Siqueira et al., 2008; Schy-
manski et al., 2008). For example Levin et al. (2007) showed with such
a combined model that vertical uptake profiles changed depending on the
assumed radial resistance. Schymanski et al. (2008) applied such a model
to modify root distribution within biological constraints according to soil
water availability.

The approaches above imply that the potential on the side of the root is
constant throughout the root system. However, Zwieniecki et al. (2003)
suggested in a combined measurement and model study that internal gra-
dients along the root xylem exist. Depending on the ratio between the roots
radial and axial resistance, the active uptake region could extend over the
entire root or just part of it. This research was conducted only for a single
root, but might also be relevant for uptake along the entire root system.
Third level models combine a variable xylem potential distribution along
the root structure with the flow processes in the soil domain. One such
model was introduced by Doussan et al. (1998). Such root water uptake

models can be coupled to three dimensional soil water flow models as done
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in Doussan et al. (2006) or Javaux et al. (2008). Simulations with these
detailed models show that the region of water uptake moves with time to
deeper and moister layers, when top layers dry out. The coupling of soil and
root water flow in the vicinity of the root segments was first based on an
averaging approach. A finer spatial discretization of the numerical soil grid
around the roots (as shown in Schrdder et al. (2009)) can represent the local
gradients in soil water potential but at the cost of increased computational
burden.

In summary, previous research using small scale models for water uptake
indicates that both water flow in the soil near the root, but also within
the root system itself shape the uptake behavior of the plant. Plant root
systems vary greatly in form and morphology, not only between species,
but also between individuals of the same species. This chapter contributes
to answer the question, how does this variety influence the expected uptake
pattern. Therefore, we propose a simplified third level model called aRoot
and apply it to simulate the water uptake of an ensemble of root systems
of the same species and age. Our model results suggest that water uptake

profiles vary significantly between individuals.

7.2 Models and methods

The major assumption for this study is that the process of plant water

uptake is gradient driven by the difference between soil water potential and
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atmospheric demand. In real plants, this leads to a distribution of water
potentials from the leaves (stomata control) over the trunks to the stem and
finally to the root system. Hence, the outer boundaries of the plants water
uptake system are the atmospheric water deficit and the soil water potential.
In this model exercise, we only consider the part from the soil up to the
root collar. Within this study we make a comparison between two model
approaches for root water uptake. One approach uses a full 3D Richards
Equation (see Section 7.2.1) coupled to the classical root length density
approach combined with the Feddes reduction function (Section 7.2.4) to
simulate soil water stress effects on root water uptake. The other approach
again uses the 3D Richlards Equation to model the bulk soil water flow
combined with a smaller scale water uptake model called “aRoot” (Section
7.2.2). This "aRoot* model was divided into two scenarios of different root

hydraulic parameterizations.

7.2.1 Bulk water flow in the unsaturated zone

The Richards’ equation describing the water movement in the soil system

is known as

% =V [Kv ('ﬂbsoil + Z)} - Q(CE: Y, Z,t) ’ (71)

where 8 [m®m 3] is the volumetric soil water content, ¢ [m*m™?s™"] is the
sink term rate delivered by the root water uptake model (see Eq. (7.22)

for the aRoot approach of volumetric flow rates) and ¢ [s] is time. The

180



numerical solution of the Richards Equation for bulk soil water flow is

provided by GeoSys (Kolditz et al., 2008).

Volumetric soil water saturation 6 is defined as a function of the soil water
potential %s,; [m] and can be expressed by the Mualem-van-Genuchten
parametrization (van Genuchten, 1980) as

68— 0, 1 e
=0 = 7.2
¢ — O © |:1 + [aGw.soiilnG] ' ( )

where © is the normalized (or relative) water content, ¢ is the porosity of
the soil and @, the residual volumetric water content (at so-called permanent
wilting point), where ag, ng and m¢ are soil specific parameters (see Table
7.2). K [ms~!] in terms of normalized (or relative) water content © is then

given by
a yme\2
K(0) = K.k(0) = K,0%¢ (1 — (1 — E—)mc) ) . (7.3)

where © can be replaced by . using Eq.(7.2). The saturated hydraulic
conductivity K as well as the bulk soil porosity ¢ are given in Table 7.2.
Accounting for the effect of root segments exploring a certain soil volume,
within our model the porosity ¢ of all soil grid cells is decreased by the
corresponding fraction of volumetric root content. This is motivated by

the fact that as root volume increases in a soil volume, there is less pore
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Symbol  Units Description
r m radial distance
T, 52 m cartesian coordinates
Iy ™m root segment length
t s time
P m matric potential
] m?/s matric flux potential
) m3m~3  volumetric water content
J,T,8 m3/s volumetric flow rates
K m/s hydraulic conductivity
R s/m? hydraulic resistance
K m?/s  hydraulic conductance
¢ [m/m?® accumulated root length per volume (RLD)
RLD root length density
RWU root water uptake

Table 7.1: List of Variables and Abbreviations.

space for water to occupy. The resulting reduction of porosity was in all

realizations relatively low (up to 5 % in some soil voxels)

7.2.2 The hydraulic root water uptake model “aRoot”

In the following, we present a stand alone root water uptake model called
aRoot, which calculates the sink term for the bulk soil water flow model.
Since we apply an analytical expression for the radial water flow towards
the root, our model concept does not require intense iteration between the

bulk water flow model and aRoot for each time step.
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Water flow within the root system Water flow within the plants
takes place as a flow from root surface to the inner root xylem (radial) and
along the xylem tubes (axial). The hydraulic uptake model applied to the
root system is spatially explicit consisting of a network of root segments.
Each individual root segment is modeled as a series of axial and radial
resistances similar to Doussan et al. (1998). These root resistances operate
as an effective value for the underlying processes, like xylem development
for the axial pathway and radial connectivity within the root cortex and
epidermis (as described in Steudle and Peterson (1998) as the apoplastic,

symplastic and transcellular pathways).

Root hydraulic properties are assigned to each root segment according to
their root order given by RootTyp (see Section 7.2.3 and Table 7.2). The
axial resistance R, is calculated by multiplying the axial i‘esistivity per
length with the corresponding root length [, while the radial resistance R,
is estimated by dividing the specific radial resistivity (material property of

each root segment) by root surface area.

The influence of osmotic potential differences are neglected as well as the
effect of aquaporins changing the specific radial resistivity per root segment
(Steudle, 2000) or the effect of cavitation on xylem vulnerability increasing

the axial resistance (Sperry et al., 2003).
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For each root segment n the axial flux is implemented by the formula

n 1

Jaa: = ﬂ (Awgylem + Azn) ) (7'4)

where A is the potential gradient along the root xylem axis between two
root nodes. The radial flux, which is the inflow from the soil to the root

segment n is given by

1 n
rod = R_?(w:?y[em = Yeit(10)) » (7.5)
with Y7 100 denoting the xylem water potential within root segment n and

Y? . (ro) the soil water potential at the root surface of the corresponding
soil dise n.

By applying the Kirchhoff’s Law for summing up all in- and outflows at a
root node, we receive a system of equations describing the water fluxes of

the root network that can be best described in matrix notation such as

A wzy[em =B wsoii(TD) +c, (76)

where A is the system matrix (regarding radial and axial root resistances)
coupling root xylem pressure for interlinked root nodes, B is the input
matrix connecting xylem potential to corresponding soil potentials and c is
the offset vector accounting for gravitation (lifting water up over the vertical

axis) and the upper boundary condition (flux or potential boundary at root
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collar). The boundary condition at the root collar is initially fixed to a
given flux Tp,:. If the corresponding variable collar potential drops below

a critical value w;;;gm, then boundary switches to a potential condition and

transpirational flux becomes variant.

Rearranging Eq. (7.6) gives
T)[):lzggriem = A_l B Tr/)soii(r()) s Aﬁlc : (77)

By rewriting Eq. (7.5) for all root segments N and introducing the conduc-
tance matrix &, (main diagonal matrix containing the inverse of the radial
resistances &, = diag [1/R?,..,1/R",..,1/R¥]) as well as new notations
E = A"'B and d = A 'c leads to a system of equations for the overall

radial fluxes in the root system, namely
Jrag =K [(E - I) d’soil(rﬂ) + d} , (78)

where I is the identity matrix of dimension N, the overall number of root

nodes. This system can be simplified to
de = stoii(’r()) +w, (79)

where W = &, (E — I) and w = k.d.
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The microscopic radial water flow within the soil The microscopic
flow towards the root is assumed to be only one dimensional in radial di-
rection towards the root, where the soil domain is modeled as a cylinder
of radius 745 and height /.. Local hydraulic gradients in soil water po-
tential towards the root can be obtained with an approximated analytical
solution of the Richards equation (steady rate assumption after Jacobsen
(1974) and De Willigen and Noordwijk (1987) where the temporal change

in water content is assumed to be r independent)

ag‘aoi 1 -
e = __?" |:[\ (wsoil)?'

: awsoil
at rd .

i ] = const. . (7.10)

In matric flux potential notation, this equation becomes an ODE as

l 8q)so*il 62@50'11

— 52 = const. , (7.11)
with the following solution
T3 2
Dypulr) = 2" + malog(r) + 11, (7.12)

where 7, are integration constants set by boundary /initial conditions.
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The matric flux potential @,y [m?s~] is defined as a function of soil water

potential 1, by

Vl)so‘xi
BuoilVuot) ~ 8 = [ Kb (7.13)
Voot
where @:ff;l and w:zj; are reference states of the system. For gb:ifl =¥ =o0;
the reference matric flux potential tends to @;i‘:t — 0, so
Wil
(I)soil(?.[)soil) = / K(h;oil)dhfso:il . (714)
—0Q

The solution of this integral depends on the functional form of K (tse).
Unfortunately, for the Mualem-van-Genuchten parameterization used in
our soil water model, no explicit solution is known. Therefore, a closed
analytical relationship between water potential A and matric flux potential
& cannot be established. Nevertheless, within a certain range of h, the

matric flux potential can be approximated by the following transfer function

(Dsoil(’r[)) = bl exp (bZ lwsoé![bs + b4) 5 (715)

with b soil dependent fitting parameters. For our simulations, the soil

parameters by of Eq. (7.15) were fitted to the numerical calculated ®-h-
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profile for a sandy soil set up by the Mualem-van-Genuchten parameters

given in Table 7.2.

The solution of Equation 7.11 (similar to Lier et al. (2008) or Schroder
et al. (2009)) with given boundary conditions (zero flux at outer boundary,
radial flux J,.g at inner boundary and a given bulk matric flux potential

at a certain radial distance rg¢,) can be written as

®(rp) = Pp +

R o l 2
Tyt (a v + ylog(a ’Y)) , (7.16)

27l 2 — 2y

with v = (ro,/ 7"0)2, ro the root radius, 74 the soil disc radius and rg, =
ar gise, where a = 0.607 is proposed by Lier et al. (2006). The soil disc radius
T4ise 18 linked to the root length in a given soil volume and is set equal for

all root segments n within the same voxel.

Hence, the soil water flow corresponding to all root segments is given by
the gradient in matric flux potential between the soil-root interface and the
bulk soil multiplied with a function determined by the boundary conditions

and hence depending on the segment geometry (giv'en by Eq. (7.16)),
red = 9" (Pu(ro) — B3) . (7.17)

with
, amri™(1 — ™)
e W Foary (7.18)
@& —agft % log(aty®)
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Writing the radial soil water flow in matrix notation for all N segments
with G the main diagonal matrix containing the functional terms g" (G =

diag [go, L ..,gN], we receive
Jrog = G (‘I)soil(TO) - (I)b) . (7'19)

Coupling the root and radial soil water flow The radial root water
flow (7.9) and the radial soil water flow (7.19) are set equal (coupled directly

via flux type condition)
Wihsoi(ro) +w = G (Psoit(r0) — @) (7.20)

with @ given as a nonlinear function of h depending on soil parameters

(here given by Eq. (7.15)) resulting in

Wihsoit(ro) + w = G (f (¥sou(ro)) — f (¥)) - (7.21)

This nonlinear system of equations is solved based on a certain bulk water
potential and the given root system with its specific boundary condition at
the root collar (forming the matrices W, G and the vector w) leading to a

distribution of the water potential at the soil-root-interface 1504 (r0)-

The sink term for the macroscopic bulk water flow in the unsatu-

rated zone Figure 7.1 shows the model scheme we use to implement the
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Bulk soil water
potential (h,)

- -«

aa—atb=-V[K{hb]’V(hb+4]—T

Sink term T = sum (J)),
Based on boundary h,

Figure 7.1: Concept of coupling microscale radial flow to bulk flow including
xylem potentials for a bulk soil volume £2;;y.

sink terms into the bulk soil water flow model and how the bulk soil water
potential feeds back to the microscale radial soil water flow model. Our
concept underlies the assumption that all soil discs around root segments
covering a certain soil volume §;;; share uniform bulk water potential ¢y

and soil disc radii 7 gjse.

The sink term S for the bulk soil water flow model is calculated by summing

up the radial fluxes J)7; of all soil discs m belonging to a certain bulk soil
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volume §);;, as

SGgk) = DY Jma ¥ Jiaa € Quji
Qi = {(z,9,2) ER®:q; <z < aiy1,

by 2 Sbjraete € 5 €8k

with 4,5 € {1... Nhor +1} C Z, k € {1... Nyert + 1} C Z, where Nj,, and
Nyert are the number of bulk soil volumes in the horizontal and vertical
direction and the rules for a;, b; and ¢ are the following

Qi = Tin + (1 — 1)Az; Ag = Zmer—Tmm,

hot

bj = Ymin + (.7 — 1)Ay; Ay — ymar_gmin;

hor

— . o . — Z —Zmin
Ck = Zmin + (kK —1)Az; Az= age—Smin,,

7.2.3 The root architecture model

The root architecture model used for our simulations is based on the generic
model RootTyp by Pages et al. (2004). The generator creates realizations
of the same species by simulating growth as a random process covering
root emission, axial and radial growth, sequential branching, reiteration,
transition, decay and abscission. The interplay of these processes is pa-
rameterized plant specifically. We used a parameter set for plant species

of sorghum type, which is a class of numerous grass species. The size of
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Figure 7.2: 2D-plot of two arbitrarily chosen root system realizations cre-
ated by the root architecture generator RootTyp.

the root system depends on the stage of plant development, hence age.
All generated root systems are characterized by their interconnected root
segments of a designated order. The order defines the segments axial re-
sistance per length (due to alternating xylem vessel elaboration), specific
radial resistivity.(due to different stages of suberization) and root radius
(see Table 7.2). Figure 7.2 shows exemplary a root system for one of the

50 realizations.
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7.2.4 The RLD model
The RWU function of Feddes (like in Feddes et al. (2001)) is the following

LY (z,y, 2)

" 7.22
[ L& (z,y,z)dV Tpot ¢
!

o(Mz,y,2)) = Bru(h)

with L% [mm™3] the accumuléted root length per volume (RLD) at a point,
V the overall volume of the soil-root domain and Tpy; [m*s~!] the potential
transpiration flow rate. To get the volumetric flow rate S(z,y, z), the ex-
traction rate (of volume of water per volume of soil per time) o [m*m=3s71]
has to be applied to a specific soil volume 2.

The RLD approach includes a water stress function (3,4, where the most

common implemented stress function has the form shown in Figure 5.1.

7.2.5 Model input and scenarios

The model exercise was divided into three characteristic cases: (1) the clas-
sical RLD approach widely applied in current SVAT models, but neglecting
the root systems network character as well as the microscopic radial water
flow within the soil. That approach was compared for the same root sys-
tems to simulations performed with the aRoot model under two scenarios:
(2) Scenario A where younger roots (higher order) have higher radial resis-
tances and (3) Scenario B where younger roots have lower radial resistances

(see Table 7.2 for those values). The reason for dividing the aRoot model
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in two Scenarios (A and B) is the ongoing debate on the range of the radial
resistance values (references from Steudle and Peterson (1998); Zwieniecki
et al. (2003)).

We performed the simulations for all three cases on 50 root system realiza-
tions. The simulation time for root water uptake for all realizations was
set to 10 days (with time steps of A¢ = 30 min.) starting from a uniform,
initial saturation of © = 0.4. The bulk soil water flow model runs on a
2.5 x 2.5 x 2.5[cm] grid cell size. The overall soil domain size in z-, y- and
z-direction is 27.5 x 27.5 x 22.5[cm| among all root realizations. The plants
root system age was set to 1 month (28 days) where there was no further
root growth applied within the simulation time.

The transpiration rate was assumed to be time invariant with Ty = —8 X
107109 m3s~1 over the 10 days of unlimited uptake, as long as the root collar

potential has not exceeded a given threshold. If the corresponding variable

crit
zylem?

collar potential drops below this critical value then the boundary
switches from a flux type to a potential type condition and transpirational
flux gets variant.

The specific radial resistance {, (as a material constant for root order k
with a given thickness of the roots radial pathway) is assumed to decline
with increasing k caused by less suberization, where (, is calculated by
multiplying the materials resistivity X,r with the roots radial thickness

r.. Radial resistance R, is the ratio of {, to the root outer surface area

(R, = (p/(2mrol) [sm™2]). Also, we assume that axial resistance per length
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R; increases with root order (due to decreasing root radius), multiplied by

the root segment length [ it gives the axial resistance R, = R; x I, [sm‘Q].

Parameters of Scenario A are in agreement to measurements by Steudle
and Peterson (1998)(page 778): Root properties of segment order 2 are
referenced by the mature late metaxylem measurements whereas for root
order 4 characteristics are given by the early metaxylem. For Scenario B
radial resistance was decreased, but only for higher order roots, so that
R,/R; is in the range of 0.025 in accordance to the results of Zwieniecki

et al. (2003).

7.3 Results

7.3.1 Influence of root architecture and hydraulic root pa-

rameters on root water uptake behavior

Figure 7.3 shows the modeled root water uptake (RWU) versus root length
density (RLD). The plotted points represent entities on the bulk scale where
the RLD was calculated by counting root segment lengths in each bulk soil
grid cells and RWU is the given sink term of the bulk soil water flow in Eq.
(7.1). We plotted all model runs (50 realizations of each, the classical RLD
approach, aRoot Scenario A and aRoot Scenario B) at three different time

steps (0, 5 and 10 days).
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Root properties

Segm. 1o [m] & (9] Ry [sm™3]

Order Scenario A Scenario B Scenario A/B

0 0.006 —0.004 5 x 1010 5 x 10%° 1 x 10°

| 0.004 —0.003 1.5x10% 1.5x10"0 2x10°

2 0.003 — 0.002 7 x 10° 9x10% ° 6x10°

3 0.002 — 0.001 3 x 10° 5% 10® 8 x 1010

4(Z)  0.001 —0.0005 1 x 10° 1% 108 1 %1012

Soil properties

gt 0.4 initial soil water status [-]

Gigyp 0.08 permanent wilting point saturation [-]

van Genuchten parameters for sandy soil

K. 1.785 saturated soil water conductivity [pum/s]

(0] 0.46 soil porosity [-]

oe. 1.44 [1/m)]

A —0.215 ]

Ba 0.534 ]

meg 0.348 = Be/(1+ Be)

ng 1.534 =fc+1

RLD model: Feddes water stress function ., for sandy soil

(1 o], [m]

P2 -2 [m]

U3 —100 [m]

’lp,; —150 [m]

Boundary conditions

Tpot —0.8 potential transpiration rate [mm?/s]
ot —150 critical xylem water potential [m]

Table 7.2: Model parameters
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For the initial time step plot (Figure 7.3(a)), all model runs provided very
similar results. The results of the RLD approach match perfectly the 1:1
line which was expected from the model assumption. For later time steps
(Figure 7.3(b) and 7.3(c)), we see that Scenarios A and B of aRoot show
some compensation effects: water uptake from areas of higher RLD is de-
creased and this decline is compensated by increased uptake from lower
RLD regions where Scenario B shows a stronger compensation than Sce-
nario A does. Also, at £ = 5 and t = 10 days, the sink terms of the RLD
approach and the aRoot Scenarios A and B were comparably similar for
higher RLD (between 0.1 and 0.35). Within the range of lower RLD (nor-
malized values from 0 to 0.2), water uptake was highest for the classical
RLD model and lowest for Scenario B. However, in the part of lower RLD
(up to 0.1) the sink terms for the RLD approach remained mostly at the
1:1 line with no compensational effects. This missing effects are a straight

result of the RLD model assumptions.

7.3.2 Influence of root architecture on vertical uptake pro-

files

In Figure 7.4, we plotted the vertical profiles for RLD and RWU. For this,
both variables were averaged over the horizontal soil domain and normalized

by the total root length respectively the potential transpiration rate Tpy;.
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Figure 7.3: Sink term vs. RLD for 50 Realizations of Scenario A (red square), Scenario
B (blue circle) and RLD (black dot) at (a) initial time step ¢ = 0, (b) after 5 days and
(c) after 10 days (sink terms are normalized by the potential transpiration rate T, and

RLD by total root length). 198



All 50 root system realizations showed a similar root length density profile
resulting in a narrow 90% confidence band. For the aRoot Scenarios A and
B, the RWU profiles showed larger confidence bands than the root length
density profile. Moreover, during the simulation, the confidence intervals
for the water uptake profiles increased in all three cases. The strongest
spread could be seen for Scenario B, while the RLD approach showed only

very little variation.

At the initial time step, ¢ = 0 days, the mean water uptake profile for both
aRoot Scenarios was in the range of the mean root length density profile.
The confidence bands showed a slightly higher spread for the uptake profiles
than for the RLD profiles. At t=10 days, the mean uptake at layers with
high RLD was for Scenario B only 40% of what would be expected by the
RLD profile. At the same time, it was up to 300% higher than RLD at
deeper soil layers of lower rooting density. The same trends were observed
for Scenario A but with smaller differences between vertical RWU and RLD

because of already limited uptake.

Furthermore, the vertical water uptake profiles of Scenarios A and B showed
a moving uptake front from layers of high RLD to layers of lower RLD
for both scenarios. This shift was faster for Scenario B than for A. Also
for Scenario A, RWU was limited earlier than for Scenario B resulting in
a slighter compensation of decreased uptake from higher layers (already

drier) by increased uptake from lower rooted layers (still wet).

199



Compared to the aRoot model, we see important differences in the RLD
model: at timestep ¢t = 0 days the profiles of vertical uptake do perfectly
match the RLD profiles as can already be seen in Figure 7.3(a). With time
the uptake in the layers of higher RLD decreases but with no compensation
of water uptake from less densely rooted layers. The width of the confidence
bands remains almost constant in the layers of decreased uptake while they
still match the RLD profiles in the nonlimited deeper layers. This general
uptake behavior leads to early limitation of water uptake compared to the

aRoot model.

7.3.3 Influence of root architecture on critical point of water

uptake limitation

Another important factor for modeling root water uptake is the relation be-
tween transpirational demand and resulting collar potential (or vice versa).
This can only be investigated with a model where xylem potentials are
resolved, which is the case for aRoot but not for the classical RLD model.
Figure 7.5 shows the evolution of the root collar potentials over simulation
time for all 50 realizations. The influence of root radial resistance on collar
potential becomes obvious by comparing Figure 7.5(a) (Scenario A) and
7.5(b) (Scenario B). We see that plants in Scenario A would exhibit a more
negative xylem pressure than in Scenario B. This is due the larger resistance

in the flow path from soil to xylem. The curves also show a high variability
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Figure 7.4: Vertical Profiles of RLD (dashed) and RWU (dotted) over soil
depth for 50 Realizations of Scenario A (left), B (middle) and RLD (right)
at time steps £ = 0 (up), 5 (middle) and 10 (bottom) days. The dark gray
band is the 90% confidence interval for the vertical RLD profile, where
the light gray band is the 90% confidence interval for the RWU profile
(transparent red bands denote limited water uptake).
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Figure 7.5: Temporal evolution of collar potentials for Scenario (a) A and
(b) Scenario B. The black dotted line is the mean xylem water potential
at the root collar for all 50 realizations. The gray band denotes the 90%
confidence interval and the light gray lines are the individual collar potential
curves.

among the realizations for Scenario A where for B, the confidence interval
is narrow for most of the simulation. We also see that plants in Scenario
A reach the critical point of limited water uptake much earlier than in
Scenario B. There, water uptake is still unlimited at the end of the 10 day

long simulations for all realizations.

In Figure 7.6, we plotted only for Scenario A mean soil saturation versus
resulting actual transpiration. We observed a wide spread of expected
water uptake from individual root architectures. While in early limited
root systems uptake was reduced by 40 %, other systems were still not

limited after 10 days of transpiration.
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Figure 7.6: Individual collar fluxes (black dotted line) for all 50 realizations
of Scenario A over mean soil saturation defined as the integral of the entire
soil domain (regarding the soil domain as a simple bucket).
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7.4 Discussion

In this model exercise we generated 50 root architectures using the model
RootTyp of Pages (Pages et al., 2004). These realizations could be inter-
preted as 50 different individuals of the same plant species and age. The
obtained root systems show similar root length density profiles, as indi-
cated by the narrow confidence intervals shown in Figure 7.4. Root length
density decreases exponentially with depth for all individuals. This is in
accordance to observations not only for grasses, but for all biomes (Schenk

and Jackson, 2002).

For these root systems, root water uptake was simulated over 10 days of
transpiration by three model cases: the architecture based aRoot model by
Scenarios A and B and the root length based approach used in many SVAT
schemes. We implemented Scenarios A and B both based on current litera-
ture in plant physiology (see Steudle and Peterson (1998); Zwieniecki et al.
(2003)). For Scenario A, the specific radial resistivity of higher order roots
is set within the higher range, where for Scenario B it is at the lower limit.
The model results for both Scenarios differ, but both show a confidence
spread over all modeled individuals, either regarding the evolved collar po-
tential and reaching limiting soil water conditions (Scenario A) or regarding

the distribution of vertical uptake profiles over soil depth (Scenario B).

While Scenario A gives vertical uptake profiles that do differ less among

the 50 realizations than Scenario B, it shows a high variability in xylem
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potentials that need to be applied at the root collar. The temporal evolution
of collar potential differs among the realizations for Scenario A already at
early times, which emphasizes the role of higher root radial resistances.
The opposite holds for Scenario B: We see more scatter among the vertical
uptake profiles than for Scenario A but less scatter in the evolution of
root collar potentials. This variability in the vertical RWU profiles is due
to the effects of local soil water depletion. Thus, the influence of root
architecture on RWU is either more on the plants side (concerning the
temporal evolution of collar potentials, Scenario A) or on the soils side
(concerning the vertical uptake profiles, Scenario B).

In our aRoot simulations the modeled root water uptake moves from densely
to less densely rooted layers with time. This is in agreement with observa-
tion (Garrigues et al., 2006; Lai and Katul, 2000) as well as with results from
detailed 3D models for root water uptake ((Doussan et al., 2006; Javaux
et al., 2008). Our results suggest that the dynamic of this shift depends
on the individual root architecture as well as on root properties (here the
range of radial resistances). The classical RLD approach does not show this
moving uptake behavior (as the model does not consider such effects) and
additionally lacks the scattering in water uptake rates versus RLD caused
by root system architecture.

Our simulations show that the occurrence of decreasing water uptake is not
at a unique critical point in soil water potential (corresponding to point

Y3 in Figure 5.1). This was the case, although we used the same soil
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environment and same plant species (with similar RLD profiles). Rather,
this study shows that root architecture influences the critical point of bulk
soil water content where water uptake becomes limiting. The diverse access
of the root systems hydraulic active roots to the soil water storage explains
this model result. Of course, this results need to be explicitly tested and
validated by experimental investigations. However, Javaux et al. (2008)
already pointed out, the parameterization based on RLD seems to have
little biophysical basis. Our results support this interpretation.

The proposed model aRoot underlies certain assumptions or simplifications.
Schroder et al. (2008) has shown, that the local soil hydraulic conductivity
drop around the roots becomes important when increasing the size of the
bulk soil grid cells. We accounted for this by implementing a microscale
radial flow model coupled to the bulk soil water flow. In their model study,
Schroder et al. (2009) concluded that for coarser soil discretization, sep-
arating the microscale (radial) flow from bulk soil water flow as done in
aRoot (similar to their method C) gave the best results compared to fine
discretized RWU models. The assumption of uniform bulk water content
and soil disc radii for all soil discs covering a certain soil volume is dis-
cussed in Lier et al. (2006). Further work would be necessary to quantify
the influence of this assumption.

Further on, within the current model version of aRoot no root growth occurs
within the 10 days long simulation. Although we have not implemented

root growth, our simulations can be regarded as a stepwise analysis of
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water uptake related to a certain soil water distribution. Coupling root
growth to soil water availability would change the focus of this chapter from
the role of root architecture on RWU to adaptivity issues. Nevertheless,
root growth can be implemented into aRoot later where we mainly expect
changes in estimating the point of water limitation (appearing later) due
to root systems adaptation to water stress.

For the field scale, an effective simulation of water uptake by the spatial
explicit aRoot model would be computationally very expensive. Neverthe-
less, application of models such as aRoot can help to identify, what sensitive
processes and parameters shape the root water uptake behaviour, beside
classical root length density distribution. The model can be applied also
for communities of plant individuals, and can be used to find effective pa-
rameters at the plant community scale, by horizontally averaging. Thus,
complex models like aRoot can contribute to defining alternative field scale

approximations.

7.5 Summary and conclusions

In this chapter we developed a simplified model, that captures small scale
features of plant-water uptake but is still computationally fast. Although
our model currently runs with a 3D Richards Model it is intended for later
implementation in SVAT schemes and for testing hypotheses on optimal

root behavior in different environments.
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With our model, we found a wide range of vertical water uptake profiles
even for very similar vertical RLD profiles, which is a result of the individ-
ual behavior of each root architecture and its hydraulic parameters. Root
architecture becomes more important for the spatial distribution of uptake
with time as shown by the increase of confidence bands for the vertical
uptake profiles.

The model predictions with the architecture based model aRoot show dif-
ferent behavior than the classical RLD model. The RLD model distributes
and limits root water uptake based on two key properties of the plant or
plant community: (1) the root length density profile, and (2) the critical
point where water uptake starts to be limited by soil moisture (see %3 in
Figure 5.1). Our modeling results with aRoot suggest that both of these
properties are not suitable for describing the distribution of real water up-
take. While the root length density distribution was similar for all 50 root
system realizations, root water uptake profiles differed considerably between
individuals. This was especially the case, when assuming relatively low val-
ues of root radial resistance (scenario B). Also, transpiration started to be
limited at a wide range of bulk water contents, particularly for scenario A,
where large root radial resistance was assumed.

Our results suggest that root water uptake behavior might vary greatly
between individuals of a particular species. More research is necessary to
support this conclusion, and to identify such root properties, which are

suitable for describing root water uptake profiles. Also, roots have a com-
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plex effect on soil hydraulic properties and the flow of water through the
soil, especially if the interaction between root growth and the surrounding
soil is considered. In case of roots clustering in a certain soil volume this
might significantly affect the pore space distribution, further impacting the

water holding capacity, pore distribution and soil water movement.
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Chapter 8

Synthesis

8.1 Summary and Conclusions

Humans extract water from the subsurface water storage mainly by in-
stalling wells and pumping groundwater whereas vegetation covers its wa-
ter demand mainly from the soil water storage. In this dissertation. we
hypothesized that singular small scale hydraulic properties close to the wa-
ter extraction point strongly influences larger scale water removal. Hence,
the main focus was to effectively describe and quantify the impact that
local heterogeneities and nonlinearities of the hydraulic properties have on
the overall water extraction. By local impacts we refer to processes that
occur close to the extraction point where strong gradients in water flux

evolve.
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We reviewed the theoretical aspects of subsurface water flow relevant for
this thesis in Chapters 2 and 5. For both groundwater and soil water
flow, we illustrated the case of radial flow towards a sink. Groundwater
extraction from heterogeneous aquifers was studied in Chapter 3 and 4
whereas root water uptake under unsaturated conditions was investigated
in Chapter 6 and 7.

The work described in Chapter 3 and 4 differs by the scale at which the
water extraction is studied. By separating the heterogeneity that hydraulic
properties approach at multiple scales, we distinguish between small scale
and large scale well flows. Small scale well flows explore small scale hetero-
geneities in the order of decimeters to meters. By definition the affected
area of lowered hydraulic heads exhibits only a few meters in the horizontal
plane. Hence, the heterogeneity covered by these small scale tests is in the
range of the varying hydraulic conductivity field. In addition to those small
scale heterogeneities, larger scale heterogeneities may appear on scales up
to 100 meters or higher. Pumping the aquifer to such an extent, the draw-
down and flow rates will be governed by these heterogeneities.
Correspondingly, both Chapters are based on the distinction between equiv-
alent and coarse grained parameters. We find that applying the derived
coarse grained transmissivity (large scale) respectively conductivity field
(small scale) gives better estimates for the parameters than commonly used
equivalent media approaches. This is because our procedure takes subscale

processes, especially in the vicinity of the extracting well, into account. It

218



is hence not based on an equivalent uniform value. In contrast, the coarse
grained field is a radial distance dependent function, which represents both,
the drawdown and flow rates across the flow field at the scale of human ob-

servation.

Chapter 3 deals with the interpretation of large scale pumping tests in a
confined aquifer. The focus was to find an effective description for the flow
towards a well, given the spatial heterogeneity of the aquifers properties.
By combining a multiscale technique called Coarse Graining with Renor-
malization Group analysis, we derived an explicit formula for the coarse
grained aquifer transmissivity. For an ensemble of pumping tests we see
that close to the well the coarse grained aquifer transmissivity equals the
harmonic mean of the heterogeneous transmissivity field whereas in the
far field the coarse grained transmissivity approaches the geometric mean.
The transition between both zones is mainly determined by the correlation

length.

However, real pumping tests are usually performed by only installing a
single well that pumps water. We show that the performance of a single
large scale pumping test is significantly determined by the local hydraulic
transmissivity around the well. Therefore, the local transmissivity - and
not any upscaled equivalent transmissivity - shapes the pressure drawdown
at the well pumping with a prescribed discharge. Our closed analytical

formula offers a simple possibility to cover this effect.
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Chapter 4 followed the line of interpreting pumping tests, but with the
focus on well flows at smaller scales. These tests have to be interpreted in
three dimensions, since the vertical extent given by the aquifer thickness
is within the same order of magnitude as the horizontal extent. There-
fore, the crucial variable is now the hydraulic conductivity, which varies in
both the horizontal and vertical direction. However, for small scale well
flows the distinction between single and ensemble pumping tests becomes
obsolete. Since the hydraulic head measured at a certain observation point
can be regarded as either the arithmetic (given head) or harmonic mean
(given discharge) of the appearing heads along the boreholes axis, this value
represents already the vertical heterogeneity of the aquifer. The proposed
method for small scale well flows covers the estimation of the statistical
properties of the hydraulic conductivity field. Our estimates for geometric
mean, horizontal correlation length, variance and anisotropy ratio are in
very good agreement to the values given for a virtual aquifer test.
Chapter 6 and 7 treat subsurface water flow to and through plants describ-
ing the physical principles of root water uptake. Compared to the previous
Chapters, we still focus on applying a sink term to the flow equation. But
for the water flow in the unsaturated zone, the flow equation (Richards’
equation) becomes nonlinear since the hydraulic conductivity depends on
the soil water potential.

As an outcome of the well flow study, we conclude that the local conductiv-

ity in the vicinity of the sink may affect the extraction process significantly.
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Whereas this finding within the saturated zone was based on the spatial
heterogeneity of the hydraulic properties, we expect this effect to be even
more pronounced in unsaturated media due to the local conductivity de-
crease when soil gets dry. For this reason the methodically focus changed
from the parameters’ spatial heterogeneity to the nonlinearity in the flow-

to-potential relationship.

In Chapter 6 we investigated the influence of local hydraulic gradients
around the root in shaping large scale uptake patterns. For this we con-
sidered a numerical split root experiment with two soil compartments of
same size and hydraulic properties, but different rooting density. We see
that while rooting density distribution is the same, the distribution of root
water uptake changes considerably with time, particularly for the period
when soil moisture is not yet limiting uptake. This is due to the nonlinear
nature of water flow towards the roots. Our results show that bulk param-
eterizations tend to underestimate water uptake from less densely rooted

layers.

Additionally to the occurring potential gradients in the vicinity of the root,
in Chapter 7 we included another important process on the plant scale
that is water flow within the plant and the resulting variation of potentials
within the root system. We simulated the water uptake of an ensemble
of root system realizations. Our results suggest that root water uptake

behavior might vary greatly between individuals of even the same species.
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It also turns out that root abundance is not a good proxy for estimating
the distribution of root water uptake.

In summary, we showed that singular small scale hydraulic properties close
to the water extraction point essentially determine larger scale water ex-
traction. This dissertation contradicts commonly used equivalent media
approaches where uniform hydrauiic properties are defined to model the
large scale behavior. We therefore contribute to the concept that for plant
water uptake and aquifer pumping local processes need to be taken into
account in order to model the system behavior on the scale of human inter-
action. We proposed solutions to describe, model and quantify this subscale
effects of water extraction from the subsurface and show an improvement

of the model prediction at the larger scale.

8.2 Outlook

Regarding groundwater extraction, the proposed solutions for the coarse
grained hydraulic property functions can be used for a characterization
and parameterization of the heterogeneous aquifer. This is a prerequisite for
groundwater modeling in heterogeneous media. A detailed characterization
of this heterogeneity is very often neither feasible nor affordable. Based on
our findings we consider the methods described in Chapters 3 and 4 as a
cheap alternative to the collection and statistical analysis of core samples

with the aim to identify correlation lengths of aquifer transmissivities on
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large scales or aquifer conductivities on smaller scales. The next step for
future work will be to test this method under field conditions, using real long
time pumping test data. For this purpose a suitable data set is provided
from an environmental test site in Germany (Horkheimer Insel). At this
site aquifer heterogeneity has been the subject of previous investigations.
Measured grain-size distributions of the aquifer sediments have been used
to estimate the spatial distribution of hydraulic conductivity.

Regarding plant water extraction from soil, a first step in future will be the
validation of our root water uptake model (called aRoot) against measure-
ments of water uptake by single plants. The developing imaging techniques
for rhizosphere studies like Neutron and X-ray tomography are suitable for
comparing the modeled and observed water flow and plant uptake mecha-
nisms. Further, we will extrapolate the root water uptake model to a plant
community and test if our results also apply there. To do so, the software
used (GeoSys for bulk soil water flow and aRoot for root water uptake)
needs to be parallelized to overcome the computational burdens for such
an extrapolation step. Of course, we want to highlight the need for more
research towards understanding, which root system properties, other than
root abundance, shape root water uptake profiles. Some particularly inter-
esting questions are: what is the role of hydrogels around roots (Moradi
and Carminati, in preparation), and what is the role of shrinking roots
(Carminati et al., 2009) or aquaporins (Javot and Maurel, 2002). All these

mentioned phenomena may significantly effect the local soil water flow to-
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wards the root and hence impact the overall uptake behavior additionally

to our findings.
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