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ABSTRACT 
The separation of the relative contributions of anthropogenic factors and stochastic natural factors is of 

particular importance for long-term sustainable management of semi-natural ecosystems. Due to the long 
inherent time-scales of vegetation change and a lack of long-term monitoring data, the separation of the effects 
of the two basic factors affecting vegetation in semi-arid ecosystems, i.e., grazing and highly variable rainfall has 
not been possible empirically and was not explicitly addressed by modelling studies. The general aim of this 
PhD is to provide an understanding of the small-scale processes involved in degradation. More specifically, I 
present an individual- and rule-based stochastic and spatially-explicit simulation model to investigate the effect 
of grazing under stochastic rainfall on the perennial tussock grass Festuca pallescens and to separate the causal 
effects on F. pallescens dynamics. One essential characteristic of the simulation model is that both exogenous 
drivers – grazing and precipitation – act on each demographic process of each individual grass tussock. This 
property of the model will finally facilitate the separation of the relative effects of both drivers for each 
simulated time step on F. pallescens dynamics. 

To respond to its aim, the model needs to include a number of detailed factors affecting the Festuca 
population dynamics under grazing. This is reflected in an intermediate complexity with some thirty model 
parameters. Due to the lack of field data most of these parameters could not be estimated directly. To calibrate 
the simulation model I followed the indirect multi-criterial pattern-oriented approach, which was developed by 
Wiegand et al. (2003). Within this PhD thesis I further developed this approach, using a step wise and cross 
calibration. I showed that the medium complex Festuca model with 30 free parameters can be calibrated with a 
small field data set to produce behaviour in accordance with field observations. An extensive sensitivity analysis 
showed the novel result that lateral local water redistribution has a relevant impact on the behaviour of the 
dynamics of the grazed ecosystem. It further revealed that the model system is highly sensitive against the 
senescence and the littering rate. Both parameters compete with the herbivores for green biomass.  

After model calibration (or with the expert parameterisation) I performed various simulation 
experiments to investigate the behaviour of the system and to investigate the effect of grazing on vegetation 
under stochastic rainfall. I found that the Festuca steppe shows an event-driven behaviour which is modified by 
grazing gradually as well as qualitatively. The vegetation cover showed threshold behaviour under the grazing 
gradient which is also reflected by the recovery times of the grazed system. I found that the beginning of 
vegetation decrease depends on both climatic and biological uncertainty. I proposed a method for determining 
risk levels for degradation and for the determination of long-term sustainable stocking rates. I analysed temporal 
autocorrelations of essential variables of F. pallescens to show how memory effects influence its complex 
vegetation dynamics. Finally I separated the relative effects of grazing and precipitation on vegetation for 
specific precipitation time-series. This elucidated the link between the short-term interaction of grazing and 
precipitation and the observed long-term grazing threshold. The presented simulation model improves the 
understanding of the effect of small-scale biological processes on patterns emerging at larger scales as e.g. the 
landscape scale.  

This PhD-thesis contributes significant new insights into the interaction of grazing and stochastic 
precipitation in semi-arid systems and provides instruments to estimate degradation risk considering biological 
and climatic uncertainty. Furthermore the presented indirect multi-criterial pattern-oriented calibration method 
helps to bridge the gap between theoretical and empirical ecology as it enables us to gain strong confidence into 
simulation models even if we dispose only over scarce evidence from empirics. This aspect leads not only to a 
better understanding of ecosystems which are endangered by land use and strongly affected by stochastic 
environmental processes, but is also of general interest for simulation models facing a high degree of uncertainty 
because this method allows to tie the model closely to the data, i.e. ensuring a biologically reasonable behaviour 
and parameter values. 
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1 INTRODUCTION: MOTIVATION FOR THE STUDY 
1.1 GENERAL INTRODUCTION 

The loss of perennial vegetation and soil in arid and semi-arid regions is considered as one of 
the main ecological threats facing the world (Schlesinger et al. 1990, Pickup 1996, Scheffer et al. 
2001, Dregne 2002). This phenomenon occurs at a planetary scale, affecting more than 70% of the 
area in Africa, Asia and the Americas and more than 50% in Australia (Cardy 1994). It threats one 
third of the earth's surface, adding up to an area of over 4 billion hectares and affecting one fifth of the 
world’s population. The effects can be locally observed, for example, in many areas of Asia, the Sahel, 
Latin America, throughout North America or along the Mediterranean.  

There are two different processes involved in the loss of vegetation and soil in drylands:  
Desertification and Degradation. The concept of desertification is used in a wide range of situations 
and contexts, and, probably due to the widespread use of the term, its definition has been controversial 
and vague (Schlesinger 1990, Reynolds and Stafford-Smith 2002). ‘Desertification’ refers to different 
natural processes leading to the expansion of deserts, including climatic change and gradual changes 
of summer radiation on earth (Schlesinger 1990, Scheffer et al. 2001). These processes can be also 
indirectly influenced by human actions. ‘Degradation’ is the long-term and potentially permanent loss 
of vegetation cover and soil which is directly induced by humans and often related to grazing (Pickup 
1996). Degradation may also provoke the reduction of animal productivity in rangelands. Therefore, 
an understanding of mechanisms that lead to man-induced degradation by overgrazing is essential for 
developing a sustainable land management and for avoiding further loss of productive soil. The 
general aim of the presented PhD-Thesis is to provide an understanding of the small-scale processes 
involved in degradation. I will use a bottom-up approach and investigate the general questions based 
on a specific system, the Festuca pallescens steppe in semi-arid North-West Patagonia (Argentine). In 
the next section I provide background information and motivate important specific objectives of my 
thesis. The structure of the thesis and the specific aims of the different chapters are given at the end of 
this chapter.  

1.2 BACKGROUND, STUDY SYSTEM, SPECIFIC AIMS, METHODS, AND 
CHALLENGES  
Understanding the interaction of precipitation and climate. — Debates related with 

degradation in semi-arid and arid regions have mostly focused on animal productivity (Ellis and Swift 
1988, Ellis 1994, Illius and O’Connor 1999, Illius and O’Connor 2000). Although the problem of 
degradation is known since decades, the details of the processes which are involved are poorly 
understood. It is often postulated, and generally accepted that the interaction between grazing and the 
stochastic variability in rainfall in semi-arid regions can cause discontinuous shifts in vegetation 
(Schlesinger 1990, O’Connor 1994, Pickup 1996, Fuhlendorf and Smeins 1997, Stafford Smith and 
McKeon 1998, Illius and O’Connor 2000, Teague et al. 2004). Although conceptually tempting, it is 
widely unknown how this interaction works in detail, and only recently some simulation studies have 
investigated the effect of white environmental noise on semi-arid vegetation within ecological and 
management relevant time-frames (e.g., Wiegand and Milton 1996; Jeltsch et al. 1996, 
Jeltsch et al. 1997). White environmental noise is defined as a stochastic varying external driving 
factor – like annual precipitation – which shows no temporal autocorrelation.  

The effect of stochastic environmental variation on population dynamics is an important issue 
in theoretical ecology (Levins 1969, Lewontin and Cohen 1969, May 1973, Chesson 1978, Wissel 
1989) and in conservation biology in relation with the risk of (meta)population extinction (Lande and 
Orzack 1988, Lande 1993, Beissinger and McCullough 2002, Lande et al. 2003, Drake and Lodge 
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2004). Approaches in theoretical ecology were mostly concerned with equilibrium probability 
distributions under stochastic environmental conditions, whereas conservation studies have focused on 
the extinction risk of small populations at longer time scale. However, a more systematic investigation 
of the effect of environmental fluctuations on semi-arid vegetation has yet not been undertaken. An 
extensive analysis of the interaction between highly variable rainfall and grazing is necessary to 
provide an understanding of the degradation process on a short management relevant time-scale. This 
is a central theme of this thesis.  

Equilibrium- and non-equilibrium dynamics. — Possibly due to scarce knowledge about the 
mechanism of degradation, a controversy about the type of dynamics shown by semi-arid and arid 
systems has arised in the last years (Ellis and Swift 1988, Ellis 1994, Illius and O’Connor 1999, Illius 
and O’Connor 2000, Briske et al. 2003). Ellis and Swift (1988) postulated that livestock does not exert 
on the long-term a strong negative impact on semi-arid and arid vegetation with high variable rainfall, 
whereas Illius and O’Connor (1999/2000) argued that grazing has a negative effect on vegetation. This 
controversy is strongly linked to the notion that vegetation in arid and semi-arid regions shows non-
equilibrium dynamics, due to the importance of precipitation and water availability (Noy-Meir 1973, 
Walker et al. 1981, Westoby et al. 1989). The basic aim of this thesis is to investigate the equilibrium 
dynamics of a specific semi-arid system in detail and how the dynamics are affected by grazing.  

Approaches to sustainable management. — The present thesis has also a strong applied focus. 
I will try to develop a criterion which helps to find long-term sustainable management of the 
ecosystem under study. The question how degradation and desertification could be faced is up to date 
an unresolved issue and ‘there is an urgent need for new, interdisciplinary approaches for addressing 
this global problem’ (Reynolds and Stafford Smith 2002).  

Pattern oriented and individual based spatially explicit modelling. — Due to the highly 
variable rainfall, the strong dependence of vegetation on rainfall, cross-scale interactions, the long 
time-scales of vegetation change, and the lack of empirical long-term studies on vegetation dynamics 
(Briske et al. 2003), it is nearly impossible to perform an integrated study of semi-arid systems without 
a simulation model. Therefore, I use a simulation model to answer the questions stated above. It 
simulates the grazing impact of herbivores on a dominant tussock grass species in a temperate semi-
arid steppe. The model includes also highly variable inter-annual stochastic precipitation. This 
simulation model will help assessing the short-term effects on vegetation of the interaction between 
grazing and highly variable rainfall, and the long-term effects of this interaction.  

I use a rule and individual based, spatially explicit simulation model and the pattern oriented 
modelling approach. Both concepts were introduced successfully into ecology during the last decade 
(Grimm 1994, Uchmanski and Grimm 1995, Wiegand et al. 1995, Grimm et al. 1996, Jeltsch et al. 
1996; Grimm 1999, Jeltsch et al. 1999, Grimm 2002, Wiegand et al. 2003, Grimm and 
Railsback 2005, Grimm et al. 2005). The individual-based approach allows for an optimal up-scaling 
from grazing effects which act on the individual tuft level to a landscape level where degradation 
becomes visible. The pattern oriented approach (Grimm 1994, Grimm et al. 1996; Wiegand et al. 
2003) allows for an optimal adaptation of the simulation model to the question and the data. In 
situations of scarce data the pattern oriented approach allows to use the available field data as a 
reference to calibrate the simulation models and to infer biological processes which operate at lower 
hierarchical levels than the provided field data (Wiegand et al. 2004a/b).     

Modelling grazing systems. — Several studies using rule based simulation models have 
investigated the effect of grazing on semi-arid ecosystems under stochastic rainfall (Jeltsch et al. 1996, 
Wiegand and Milton 1996, Jeltsch et al. 1997, Stephan et al. 1998, Weber et al. 1998, Weber et al. 
2000, Weber and Jeltsch 2000, Beukes et al. 2002). This approach has proven to be feasible and 
useful. However, no simulation study has yet combined a biologically plausible (and not only 
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theoretical) grazing model with the effect of stochastic rainfall on the demographic processes of 
individual plants. The simulation model presented here works at the individual level where individual 
plants of the tussock grass Festuca pallescens represents the smallest unit. In consequence the 
simulation model operates on a small spatial scale. 

The ecosystem under study. — The Festuca pallescens steppe is a cold temperate, semi-arid 
steppe in North-West Patagonia (Argentine) influenced by a highly variable rainfall. The tussock grass 
species F. pallescens is the dominant species in this steppe and accounts for ca. two-third of the 
vegetation cover and approx. 50-90% of biomass production (Defossé et al. 1997a). This ecosystem is 
endangered due to the long-term continuous grazing. The F. pallescens steppe is an especially suitable 
study system because its structure and productivity is mainly determined by one species which allows, 
in a first approximation, to abstract the ecosystem for the question of this thesis as a one species 
system. Of central importance for the feasibility of this modelling study is a large body of empirical 
studies which enables to generate specific and well-founded hypotheses about the rules of population 
dynamics of F. pallescens and the character of the grazing impact on it.  

 Methodological challenge I: High complexity versus scarce field data. — Grazing 
systems are complex systems (Parsons and Dumont 2003). This is mainly due to the fact that grazing 
may create heterogeneity at several hierarchical scales, e.g. at the population, the community, and the 
landscape scale (Golluscio et al. 1998, Parsons and Dumont 2003). My model includes the main 
drivers ‘grazing’ and ‘highly variable rainfall’ into the demographic processes of F. pallescens. This 
makes the model mechanistically rich, and requires inclusion of a large number of independent 
parameters. But as often the case in ecology, empirical data is limited. In the F. pallescens steppe and 
other semi-arid systems this can be attributed mostly to the effort required for extensive long-term 
studies which are needed observing the inherent complex dynamics (Wiegand et al. 1995; Wiegand 
and Milton 1996). Despite the high number of studies on F. pallescens, many important processes and 
parameters remain unknown.   

Inverse pattern oriented modelling. — Therefore a sophisticated approach was necessary to 
nevertheless determine uncertain parameters and processes of the model with the available data. The 
pattern-oriented modelling approach (Grimm 1994, Grimm et al. 1996; Wiegand et al. 2003) enabled 
me to adapt my model optimally to my questions and data. For pattern-oriented models a sophisticated 
calibration method, which might be called ‘inverse pattern oriented modelling’, can be applied. This 
method reveals characteristics of unknown demographic processes from a multi-criterial calibration of 
all parameters at an instant and allows finding model versions which describe the data best. The basic 
idea of this indirect method is to perform systematic model simulations over the entire plausible 
parameter space and to compare several observed and simulated patterns, rejecting model 
parameterisations (or model variants) which do not generate important observed patterns. If a simpler 
model variant does not reproduce one (or several essential pattern), it has to be replaced by a model 
with a more adequate structure, whereas alternative model variants that do not improve pattern 
fulfilment can be rejected. This method was conceptualized in Wiegand et al. (2003) and implemented 
in Wiegand et al. 1998, Wiegand et al. 2004a) for models with moderate complexity of a dozen 
unknown or uncertain model parameters. I applied and further developed this methodology for a 
medium complex model with some 30 independent parameters and scarce field data. A sensitivity 
analysis of all accepted and thus potentially biologically realistic parameterisations provided new 
insights on the functioning of the Festuca steppe. This new understandings of the fundamental 
biological processes of a semi-arid steppe might be tested in the field in a further investigation step. 

Challenge II: Up-scaling. — Understanding how the effect of individual processes at lower 
levels determines the behavior of an ecosystem is a major challenge in ecology (Levin 1992) and it is 
critical to device management schemes capable to operate at the ecosystem level. The presented 
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simulation model provides an up-scaling of the grazing (which impacts individual tussock) to the 
patch level (ca. 1500 m²). Finally I will discuss if the results of my model can be up-scaled to the 
landscape level. A further challenge of the up-scaling process will be to integrate and combine the 
results of the small-scale grazing impact on vegetation patches with the factors influencing grazing 
decisions of sheep on the paddock and the landscape scale (Rietkerk et al. 2002). To conceptualise the 
up-scaling procedure, I will discuss the results of this thesis with respect to its value for such an 
approach. 

1.3 STRUCTURE OF THE THESIS  
The general aim of the presented PhD-Thesis is to provide an understanding of the small-scale 

processes involved in degradation. More specifically, I investigate the long-term impact of grazing in a 
semi-arid F. pallescens steppe under stochastic climate. The presented thesis is structured in four main 
chapters. The single chapters are already submitted (Chapter 3) or planned to be submitted to 
international journals. The structure of four chapters follows directly from the logical sequence of 
challenges to be solved.  

I took over the first implemented version of the presented simulation model from Dr. Gerhard 
Weber. After I took over the first implemented version, I revised the complete rule set, and together 
with the cooperation partner Dr. Jose M. Paruelo we modified or newly included the following rules 
(see Appendix I): Rule I.12, I.13, I.17, and I.26. As I took over the simulation model there was no 
routine implemented to simulate specific scenarios or repetitions. There existed nor any result neither 
any analyses which were performed with the presented simulation model before I took over this 
project. The rule set was no yet documented, or any experiment was designed or conceptualised before 
I took over the project.  

The presented results in Chapters 2, Chapter 4, and Chapter 5 are completely the results of my 
own efforts and work. My contributions to Chapter 3, which was already submitted for publication, are 
indicated in section 2.7. The field data used during Chapter 3 and Chapter 4 were provided by Dr. Jose 
M. Paruelo. 

Chapter 2 is dedicated to the presentation of the simulation model. I present the philosophy of 
the simulation approach, the biological background and the translation of the biological data into 
model rules. I use the standard model parameterisation to investigate basic properties of the model 
such as the emerging F. pallescens demographic behaviour and the type of vegetation dynamics. (The 
standard model parameterisation was derived in Chapter 3 by field experts without calibration.) Key 
questions of this chapter are: (1) what type of vegetation dynamics shows the Festuca steppe in terms 
of equilibrium vs. non-equilibrium dynamics? (2) does grazing alter the type of dynamics found for 
the assumed ‘natural dynamics’ without grazing? and (3) what is the effect of stochastic rainfall on the 
demographic processes or compositional state of F. pallescens, and how are they modified by grazing?  

Chapter 3 tests basic assumptions of the simulation model with field data, the output of the 
model, produced by the standard model parameterisation, is compared with available field data, and a 
first global sensitivity analysis of the model is performed. Chapter 3 has a special status within the 
thesis because it presents to a certain extend the model development done previous to my thesis. 
However, this chapter does not portray the model as it was when I took over the project. I revised the 
model rules substantially and all analyses were based on the current model rules. Since this manuscript 
is already submitted I decided to include it as a separate chapter. Therefore some overlap exists 
between introduction, model rules and discussion of Chapter 3 and the rest of my thesis.  

Chapter 4 presents an exhaustive inverse pattern-oriented model calibration under limited 
empirical data, as well as a global sensitivity analysis of the investigated parameters. This is a great 
methodological challenge since the medium complex model contains some 30 uncertain or unknown 
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parameters. The main aims of this chapter are: (1) to calibrate and validate the simulation model 
presented in Chapter 2 and Chapter 3 by means of a multi-criterial, hierarchical indirect pattern 
oriented approach based on limited empirical data (calibration and validation), (2) to analyse the 
relative importance of the independent parameters and processes with respect to the key variables of 
the Festuca steppe (sensitivity analysis), and (3) to discuss the biological and ecological implications 
for the Festuca steppe and the general implications which result out of the sensitivity analysis.  

Finally, in Chapter 5 the accepted model parameterisations are used to investigate several 
applied questions concerning the degradation process of the F. pallescens steppe. I investigate the 
interaction of grazing with precipitation, and ask if the history of the stand plays a role within the 
grazing process. Key issues of this chapter are: (1) the impact of grazing on tussock density under 
stochastic climate and the remaining parameter uncertainty, analysed for different time scales, 
different types of forage selection and different grazing regimes, (2) development of a criterion for 
long-term sustainable grazing management under stochastic climate conditions which considers the 
remaining parameter uncertainty, (3) the temporal autocorrelation between the precipitation time series 
and the former state of the vegetation on key variables of the Festuca pallescens dynamics, and (4) 
how the interaction between grazing and stochastic climate affects the dynamics of F. pallescens. 

In the final discussion in Chapter 6 I come back to the challenge to up-scale the model to 
larger landscapes in discussing the relevant results of Chapter 5. 
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2 SIMULATION OF VEGETATION DYNAMICS UNDER GRAZING AND STOCHASTIC 
CLIMATE 

2.1 INTRODUCTION 
In Chapter 2 I present the detailed biological background, the basic philosophy of the 

modelling approach, the rule-set and an analysis of the basic dynamics of the simulation model which 
investigates the grazing impact of herbivores on the dominant tussock grass species Festuca 
pallescens in a temperate semi-arid steppe in Northwest Patagonia (Argentine). The main focus of this 
work is how grazing affects the dominant species due to an interaction with the highly variable 
interannual stochastic precipitation. The background and motivation for this study is the worldwide 
desertification and degradation of semi-arid and arid regions (Schlesinger et al. 1990, Pickup 1996, 
Scheffer et al. 2001, see Chapter 1).  

The basic philosophy of the modelling approach. — I use an individual based modelling 
approach (see Chapter 1), which integrates the two most important external driving forces – stochastic 
rainfall and grazing – into the essential demographic process of individual plants. This approach may 
allow separating short-term effects, which might be due to stochastic climate, from long-term effects, 
which might be due to grazing (Pickup 1996). The separation of natural and anthropogenic effects is 
especially difficult in semi-arid systems with stochastic environmental factors (Pickup 1996). Several 
studies have been carried out addressing the effect of grazing on semi-arid ecosystems, using rule 
based simulation models including stochastic rainfall (Jeltsch et al. 1996, Wiegand and Milton 1996, 
Jeltsch et al. 1997, Stephan et al. 1998, Weber et al. 1998, Weber et al. 2000, Weber and Jeltsch 2000, 
Beukes et al. 2002, see Chapter 1). Additionally a series of simulation models exists, which are mostly 
so-called process based models, emphasizing the physical details of different processes related to 
water dynamics, plant production or grazing (Riedo et al. 2000, Laio et al. 2001a, Laio et al. 2001b, 
Mitchell and Csillag 2001, Parsons et al. 2001, Pierson et al. 2001, Porporato et al. 2001, Schulte 
2003, Schulte et al. 2003, Janssen et al. 2004). All these models include theoretical grazing models, 
with different degree of realism.  

The rule based simulation model presented here includes a grazing model, which moves one 
step further towards a biologically realistic grazing model that mimics the interaction between the 
herbivore and the actual state of the individual grass tussocks. Additionally, the model integrates the 
joined effects of the grazing process and of the stochastic, highly variable rainfall on the essential 
biological processes, e. g. seedling recruitment, plant growth, and tussock mortality. Finally my 
approach includes space, which is essential for grazing (Parsons and Dumont 2003). This new 
approach for investigating grazing systems promises to yield new insights on grazing systems and to 
contribute to an improvement of management.   

Chapter 2 presents in the first place the biological background and the rule set, and specifies 
how the model includes the main drivers stochastic rainfall and grazing into the essential biological 
processes for F. pallescens, the dominant species within the Festuca steppe. Together with the 
presentation of the modelling concept, I will investigate the basic dynamics of the simulation model, 
i.e., the model behaviour with and without grazing and the behaviour of the demographic processes, 
in- and excluding grazing, and finally I will describe the basic effect of the highly variable rainfall on 
the demographic processes. 

Type of dynamics: equilibrium or non-equilibrium? — If the basic dynamics of the modelled 
system shows equilibrium- or non-equilibrium behaviour is decisive to understand the dynamics of a 
semi-arid system (Wiegand et al. 1995). As introduced in Chapter 1, there is an ongoing debate about 
the negative effects of grazing in non-equilibrium systems. One of the aims of this study is to 
contribute to a further elucidation of this ongoing debate, but this is only possible after testing the 
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basic model behaviour. Wiegand et al. (1995) found during simulation of the demographic behaviour 
of a semi-arid shrub steppe in the Karoo in Southern Africa, that the system showed highly event-
driven behaviour for recruitment and mortality and thus clear non-equilibrium behaviour. I will test 
within this chapter, if the Festuca pallescens steppe shows similar demographic behaviour as the 
Karoo shrub steppe and if and how such dynamics are altered by grazing.  

Questions. — Chapter 2 describes the philosophy of the modelling approach, the biological 
background of the study system, the rule-set, and simulation experiments to answer the following 
basic questions: 
• What type of vegetation dynamics shows the Festuca steppe in terms of equilibrium vs. non-

equilibrium dynamics? 
• Does grazing alter the type of dynamics found for the assumed ‘natural dynamics’ without 

grazing? 
• What is the effect of stochastic rainfall on the demographic processes or compositional state of 

F. pallescens, and how are they modified by grazing? 
 

2.2 MATERIAL AND METHODS 
2.2.1 General description of the study area 
The Festuca pallescens grass steppe is one of the most important grasslands of Patagonia with regard 
to productivity and forage value (Defossé et al. 1997a). It is one of the arid and semi-arid ecosystems 
of Patagonia, which occupy the majority of the Patagonian region of Argentina. The Festuca steppe 
occurs in the North-West of Patagonia within the province of Chubut as a narrow belt only few 
kilometres east of the Andes, ranging from 43°25’ S to 46° 15’ S and continues at 51° 05’ S near the 
Andes, widens towards the Southeast and reaches the Atlantic Ocean. The Festuca steppe has been 
classified as the Sub-Andean Floristic District of the Patagonian Phytogeographic Province (Soriano 
1956a, Cabrera 1976)). 

Vegetation. — The dominant species is Festuca pallescens (St. Yves) Parodi, which produces 
50-90% of the above-ground biomass (Soriano 1956a, Ares et al. 1990, Defossé et al. 1990, Aguiar et 
al. 1996). F. pallescens is a perennial grass, growing in tussocks and reproducing strictly from seeds 
(Soriano 1956b, Bertiller 1992). The community is defined in phytosociological terms as the 
‘community of F. pallescens, Rhytidosperma picta and Lathyrus magellanicus’ (Golluscio et al. 1982). 
The community has a mean total vegetation cover of 64%. F. pallescens itself has a mean cover of 
44% or 69% relative to the total vegetation cover. The community is species rich and its biodiversity 
reaches ca. 60 species including 2 exotic species (León et al. 1998). One sample in the field, covering 
ca. 500 m², may lead to 34 species at average. The number of endemic species is high (León et al. 
1998). Regarded from the viewpoint of biodiversity there is no doubt that this community is worth 
being preserved.  

Climate. — The meteorological reference site for our study is Media Luna Ranch (45° 36’ S, 
71° 25’ W), approx. 700 m above sea level. The precipitation data used in this simulation model is 
taken as a reference from the meteorological data of this site. This area is representative for the Sub-
Andean Floristic District (Defossé et al. 1990, Bertiller and Coronato 1994). At this site F. pallescens 
comprises approx. 45% of the total vegetation cover. The soils have a uniform, coarse texture, are well 
drained and accumulate organic material at the surface down to 30 cm (A.M Beeskow int. report 1987 
in Defossé et al. 1997a). Winters are cold and wet; summers warm and dry including a mid-summer 
drought (Defossé et al. 1990). The mean annual temperature is 4.7° C and the mean precipitation 
374 mm/year, with 67% of the precipitation occurring in winter and early spring. There is no frost-free 
period and strong westerly winds blow continuously throughout the year. The community occurs at a 
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lower precipitation limit of 300 mm and is limited to the East by the Patagonian shrub-grass steppe 
(León et al. 1998). In the West Nothofagus forests mark the boundary of the F. pallescens steppes. The 
upper precipitation limit for the Festuca steppe is approximately the 500 mm y-1 isohyet (Ares et al. 
1990). 

Grazing history. — It is assumed, that the Patagonian arid and semi-arid ecosystems evolved 
under a very low grazing pressure, which few native herbivores exerted on the native vegetation 
(Soriano 1983). Since the introduction of sheep around the end of the 19th century these ecosystems 
have been subjected to disturbances mainly caused by sheep grazing (Soriano 1956a, Soriano 1983, 
Ares et al. 1990). In many areas, grazing has reduced the vegetation cover and facilitated the 
development of bare soil patches where wind and water remove litter, plant propagules and in some 
instances the upper layer of the soil (Soriano 1956a, Ares et al. 1990). The bare soil areas are more 
vulnerable to wind and water caused erosion, and they are exposed to higher degrees of frost heaving 
(Defossé et al. 1997a). F. pallescens is considered one of the most valuable grasses native to Patagonia 
(Parodi 1953).  

Despite qualitative observations of a negative grazing impact on F. pallescens have been 
made, a quantitative understanding of the grazing impact on the long-term development of the native 
vegetation has not been achieved. It is discussed that the combined effects of long-term grazing and 
wind and water erosion have created relatively large bare patches between Festuca tussocks (Defossé 
1997a). Grazing pressure is the major form of this disturbance on F. pallescens and may account for 
its reduction (Soriano 1956b, Abadie 1967 in Defossé et al. 1997b, Léon and Aguiar 1985, Ares et al. 
1990).  

2.2.2 Available knowledge about processes 
In the following the empirical evidence about the Festuca grass steppe will be summarized and I will 
describe how a it is used for model development. The summary of the empirical evidence follows the 
order of implemented processes. 

Water inputs. — I use the Media Luna Ranch as meteorological reference. The long-term 
mean precipitation is 374 mm/year (Defossé et al. 1997a). The coefficient of variation (CV) for a 
precipitation sequence during 1975-1997 is CV = 17.4% (data provided by Family Ayling, owner of 
the Media Luna Ranch, one missing year). As the precipitation time series available for the Media 
Luna Ranch was too short for the time frame of the simulation model, we used a precipitation time 
series from Leleque Ranch during 1931-1998 (provided by J. Paruelo, mean precipitation 459 mm, 
CV = 25.9%) and transformed the nearby Leleque Ranch precipitation data to a mean annual 
precipitation (MAP) of 375 mm / year, a CV of 20% and a range of annual precipitation with values 
from 211 mm to 561 mm). The precipitation time series from the Leleque Ranch has a similar CV as 
the CV of the Media Luna Ranch and the temporal autocorrelation shows a similar pattern as that from 
Media Luna Ranch, and has no significant temporal autocorrelation as the Media Luna Ranch data, 
too. As the simulation model requires at least a precipitation time series of 100 years, the series was 
completed randomly and independently out of the first 68 available precipitation data points. 
Autocorrelation of the precipitation time series used for simulations within years was not significant. 
Only the time lag = 3 shows a trend to a negative autocorrelation for the transformed precipitation data 
(autocor. = -0.29, p = 0.077 (determined after Box & Ljung Q-statistics, StatSoft, Inc. (2004)). As the 
precipitation data lack a significant autocorrelation, I assume an independence of interannual 
precipitation.  

In addition to the annual precipitation, it is essential to estimate the proportion of precipitation 
that will be available to plants for transpiration. Paruelo et al. (2000) estimated the range of 
precipitation use efficiencies (PUE = transpiration per year / precipitation per year, equivalent to mean 
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PUE in the simulation model, compare Tab. 2.2) for semi arid ecosystems in Patagonia over a 
precipitation gradient ranging from 150 to 600 mm mean annual precipitation, using the water balance 
model DINAQUA (Paruelo and Sala 1995). For annual precipitation they found values between 200 
and 600 mm and PUE values between 0.1 and 0.7 with an overall mean of 0.38 respectively. The mean 
estimation is used as a guideline for the parameter estimation of PUE in the simulation model. The 
variability of PUE decreased with increasing annual precipitation (Paruelo et al. 2000). The soil 
moisture content is higher during winter and early spring with a steady decline during summer and a 
recharge in fall (Defossé et al. 1997a). The summer drought, I interpret in the way that no soil water 
from the previous growing season is available for plants with shallow roots (i.e. grasses) in the 
following growing season. 

Water redistribution. — Defossé et al. (1997b) show that in the 0-5 cm soil layer soil water 
content next to tussocks is higher than in the interspace between tussocks. This result shows that 
emerging seeds are favoured nearby the tussocks in comparison to the interspaces. This finding is 
interpreted as an effect of the local water redistribution, which is performed by the roots of adult grass 
tussocks which extend laterally to the bare soil neighbourhood in early spring. It can also be regarded 
as a reduction of evaporation in the neighbourhood of tussocks in comparison to the interspaces. On 
the other hand Defossé et al. (1997b) show, that adult F. pallescens tussocks exert competition against 
neighbouring emerged Festuca seedlings which are at least older than 4 months,  contain at least 5 
leaves up to one tiller, and start to use water from the 5-20 cm deep soil layer. This soil layer is mainly 
used by adult Festuca tussocks (Defossé et al. 1997b). Abadie (1967) in Defossé et al. (1997b) found 
that after several years of grazing exclusion, F. pallescens tussocks increase in size, whereas little or 
no seedling establishment of F. pallescens occurred. The competition adult tussocks exert against 
neighbouring Festuca seedlings is interpreted as a local water redistribution during summer where 
adult tussock gain additionally plant available soil water from their neighbourhood. 

Both observations will be indirectly included into the simulation model in the form of a local 
water redistribution rule, which will affect seedling dynamics in the neighbourhood of adult Festuca 
tussocks negatively (see eqn. I.3, Appendix I). The second possible spatial effect concerning the 
small-scale water redistribution is discussed by Bertiller and Coronato (1994). They propose that 
larger bare patches show negative effects, which might enhance the loss of Festuca seeds. A normal 
sized bare patch between two Festuca tussocks can be estimated with 40 cm diameter 
(Defossé et al. 1997b). Ares et al. (1990) discuss that a reduction of the Festuca cover is followed by 
aeolian soil erosion. Both hypotheses will be tested by the inclusion of a second local water 
redistribution rule, which increases water loss in large bare patches and thus indirectly considers 
erosion and leads to negative effects on seedling survival.  

Water induced vitality change. — How soil water influences individual plants is a complex 
process. A consistent quantitative theory about the impact of soil water stress on grasses seems yet not 
to exist. Drought obviously has negative effects on individual plants and has been studied since 
decades (see references in Novoplansky and Goldberg 2001). It can be expected, that both shoot and 
root biomass are negatively affected by drought (Briske 1991 in Mapfumo 2002, Novoplansky and 
Goldberg 2001). Plant growth and metabolism decelerate when soil water becomes less available 
(Horn et al. 2002). When drought continues, plants may enter into dormancy. This results in a 
reduction of the total amount of above- and below-ground plant biomass that is produced in a given 
growing season (Horn et al. 2002). During drought, plants use carbohydrates previously produced and 
stored in the roots or shoots. Oosthuizen and Snyman (2001) showed that the C4 grass Themeda 
triandra in South Africa increases the total non-structural carbo-hydrates under water stress, mainly in 
the shoots. Non-structural carbohydrates are used for a regrowth when the water stress ends. But 
though plants are dormant during drought, they continue to respire and to use energy. Brown (1965) in 
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Horn et al. (2002) suggests that this increased use of reserved carbohydrates can result in the loss of 
root vigour and mass may as well reduce the number of basal buds that are developed for the potential 
growth in the following year. Such empirical findings underline that memory effects within perennial 
grasses seem to exist. Thus, moisture stress could cause not only a reduction in forage production in 
the year of the drought, but also in subsequent years. Novoplansky and Goldberg (2001) found linear 
effects of water both on shoot and root biomass. Pavón and Briones (2000) found a high correlation 
between rainfall and fine root biomass production. Fuhlendorf et al. (2001) found a high correlation 
between precipitation and the basal cover of perennial grasses within a semi-arid savannah. 
Bertiller et al. (1996) show that water stress has negative effects on root growth of F. pallescens 
seedlings. Though information about the effect of water stress on adult F. pallescens tussocks does not 
exist, we can expect, that dry years will have a negative effect on vigour or vitality respectively – as I 
will call plant vigour in this work – of an individual tussock.  

I assume that the vitality of an individual tussock can be affected both by a reduced ability to 
intercept photosynthetic active radiation (PAR) and by a restricted capacity of water extraction out of 
the soil due to the reduction of fine root biomass. Though the exact mechanisms of these complex 
processes are yet not completely understood, it is biologically plausible and reasonable to include such 
an effect as a simple biological rule into our simulation model.  

Grazing induced vitality change. — The consequences of grazing become most evident by 
regarding its effect on the cover of a specific species. Bertiller (1996) demonstrates clearly the strong 
effect of grazing on the cover of F. pallescens in grazed uplands after at least 25 years of grazing. An 
exclosure, lasting for 10 years, had a Festuca cover of approximately 60%, whereas the corresponding 
grazed reference site showed a Festuca cover of only 20%. How this population level effect emerges 
out of the grazing effect on individual tussocks is poorly understood and has been investigated only 
theoretically up to date. One obvious process is defoliation itself; but it is unclear, if grazing affects 
the mortality of a tussock or if grazing affects vigour or vitality of a tussock. The model will include 
both options. In grazed areas fully grown tussocks (16.0 ± 1.8 cm diameter in upland areas) are 
smaller than in ungrazed areas where a diameter of 30 cm is characteristic (M. Bertiller pers. comm.). 
This is taken as a argument that grazing affects vitality negatively as it reduces the potential 
productivity of a tussock. Mapfumo et al. (2002) found that grazing has negative effects on root 
biomass of two perennial grasses of the genus Bromus, though their findings were not unidirectional. 
Briske (1991) states that one can expect that root biomass is negatively affected by grazing. 
Oosthuizen and Snyman (2003) found, that grazing removed important fractions of non-structural 
carbo-hydrates, which are gathered within the shoots in Themeda triandra, an important forage grass 
in South Africa. Thus, it is reasonable to include a non-mortal negative effect effect of grazing on the 
the vitality of a tussock, which will be mediated by a defoliation threshold and a transition probability. 

Plant Production. – Data on Festuca productivity are scarce, which is due to the lack of a 
long-term monitoring. But at least I have estimations showing the order of magnitude in which 
productivity for F. pallescens ranges. Defossé and Bertiller (1991) report the following numbers from 
the Media Luna Ranch, where they measured annual net primary production (ANPP) in newly erected 
exclosures: for 300 days in 1981/82 ANPP was ca. 100 g/m²; during the following year it was 150 
g/m² in 369 days. At a Festuca site near to Media Luna Ranch (45°58‘ S, 71°43‘ W) with a 372 mm 
long-term mean annual rainfall ANPP is ca. 120 – 150 g/m² (J. M. Paruelo pers. comm.). Primary 
productivity in clipped plots lagged 30-60 days behind controls during the vegetative period and 
showed compensation under grazing. In contrast, during the reproductive period primary productivity 
showed undercompensation under grazing (Bertiller and Defossé 1990a). How can we translate 
productivity on the individual tussock level and how do we consider precipitation and grazing effects? 
As has been shown for many grasslands and shrubland areas of the world (Milchunas and Lauenroth 
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1993), ANPP increases approximately linearly with the mean annual precipitation (Paruelo et al. 2000, 
Wiegand et al. 2004c). So it is assumed that precipitation has direct effects on productivity on the 
tussock level, too. The grazing effect will be indirectly included due to its modification of vitality as 
precipitation will act additionally indirectly due to its effect on vitality. 

Defoliation. — As mentioned above, grazing has a general negative effect on Festuca cover. 
In Media Luna Ranch exclosures, the grass cover reached 55-58% with a low CV of 15% 
Defossé et al. (1990). In order to understand the grazing process on the individual tussock level I use 
the simulation model to test the hypothesis that during continuous grazing within large paddocks, 
sheep forage strong selectively on individual tussocks and select them after their compositional state. I 
assume that an increasing amount of aboveground dead biomass leads to a lower defoliation 
probability, a tussock and vice versa if the relative amount of dead biomass (dfrac) is low. This 
hypothesis will be contrasted with non-selective scenarios and it will be tested, if selective grazing 
leads to a higher vulnerability of the system than other grazing scenarios. Field data will be collected 
to test the selective grazing hypothesis and some assumptions of this hypothesis will be tested in the 
following Chapter 3. 

Colonization. — Bertiller (1992) concludes that since grazing may reduce the cover, several 
consecutive years of high grazing disturbance may severely affect the seed production and can lead to 
the disappearance of Festuca from the seed bank. 

The recruitment of new F. pallescens individuals is a rare event (Defossé et al. 1995). The 
causes precluding F. pallescens seedlings from natural regeneration are not yet totally clear and were 
investigated with priority. Festuca pallescens reproduces strictly from seeds (Soriano 1960 in Soriano 
1983, Bertiller 1992). The soil seed bank for F. pallescens is replenished after the seed dispersal 
during fall. After the seed dispersal has taken place, the seed bank diminishes steadily during the 
growing season to a minimum at the end of summer (Bertiller and Coronato 1994). Festuca pallescens 
has a transient seed bank constituted by seeds that germinate in greater numbers immediately after the 
dispersal, which is due to the lack of a dormancy mechanism Bertiller and Aloia (1997). The 
persistence of the seed bank of F. pallescens is very low, particularly at canopy gaps (Bertiller and 
Coronato 1994). This short persistence might be a primary control of the regeneration of this species 
in Patagonia. The majority of seeds germinate in autumn and only a small fraction remains in the seed 
bank (Bertiller 1992). The second peak of emergence is in early to mid spring (Defossé et al. 1997a). 
Interspecific competition of adult F. pallescens tussocks affects the Festuca seedlings negatively 
(Defossé et al. 1997b). In the stage of 5 leaves up to 1 tiller, the seedling density in bare soil patches is 
higher than next to tussocks (Defossé et al. 1997b). Root competition of adult Festuca tussocks against 
Festuca seedlings did affect the density of seedlings in the 5-leaves-to-1-tiller stage: its density was 
significantly higher when there was no competition by neighbouring adult tussocks (Defossé et 
al. 1997b). It seems therefore probable that seedling survival is higher within the bare patches between 
adult Festuca tussocks, where the competition is reduced. But Bertiller and Coronato (1994) found 
that these ‘interspaces’ have no germinable seed bank before the next replenishment starts in summer. 
The causes for seed loss are not clear (Bertiller 1996). Bertiller and Aloia (1997) conclude that the 
establishment of plants seems to be dependent on the annual replenishment of the seed bank and the 
coupled occurrence of favourable water conditions, a dependence which explains the limited re-
establishment potential under grazing disturbance. 

Soil water effect on seeds. — Seedling emergence is significantly correlated with soil moisture 
content in 0 to 5 cm soil depth (Defossé et al. 1997a). During summer, when the soil water content 
reaches a minimum, the seedling emergence reduces to nearly zero and the mortality rates for 
seedlings up to four leaves (approximately 4 months old) increases (Defossé et al. 1997a). 
Experiments in the laboratory showed that 60 % of the seed germinated at a soil water content of 8%. 
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Such higher soil water contents and thus germination usually occurs in fall. A water content of 4% 
inhibits germination almost completely (Defossé et al. 1995). Such low soil water contents normally 
occur in summer. Seedlings that germinate in fall already show comparatively deep roots at the 
beginning of the following summer, so that they survive with higher probability than seeds germinated 
in spring (Defossé et al. 1997a). The seedling survival depends on locally available soil water 
(Bertiller et al. 1996, Defossé et al. 1997a, Defossé et al. 1997b). Water availability is likely to restrict 
the establishment of seeds (Bertiller et al. 1996); therefore, favourable years with above average 
rainfall may promote seed establishment. 

Grazing effect on seeds. — In clipped plots reproductive structures occurred only to a limited 
extent (Bertiller 1996, Defossé et al. 1997a). During three seasons, grazing had significant negative 
effects on two- and four-months-old seedlings. The effect on 6-month-old seedlings was negative, but 
not significant in one year (Defossé et al. 1997a). Defossé et al. (1997a) discuss, that large bare 
patches, a result of long-term grazing, are detrimental to the survival of Festuca seedlings. Seed 
production is proportional to grass cover (Bertiller 1992). In summer, after the seed rain, seed 
distribution is spatially homogeneous in patches of bare soil (Bertiller 1992) if the grass cover remains 
above a minimum threshold of 40 % (M. Bertiller pers. comm.). The total germinable seed bank 
density of perennial grasses after seed rain in late summer is positively correlated with the total 
vegetation cover (Bertiller 1996, see also seed production Bertiller 1992). Bertiller (1996) showed that 
over a range of total plant cover from 30 to 75%, the total germinable seed bank density increases ca. 
from 180 to 480 seeds / m². Seedling density increases linearly with the cover, in the case of 
F. pallescens from 0 to 30% cover (Bertiller et al. 1996). Defossé et al. (1997a) state that seedling 
survival is lower under grazing, on slopes, and on windward sides of adult plants. 
Defossé et al. (1997b) conclude concerning the effect of grazing in the Patagonian Festuca grassland, 
that grazing seems to be detrimental to seedling establishment. 

Concluding the empirical evidence about the seedling dynamics, it is obvious that seedling 
dynamics is a highly complex process. Thus, modelling seedling dynamics in an adequate way has to 
consider as minimum the following processes and factors: precipitation, vegetation cover, grazing, 
competition of adult Festuca tussocks against its own seedlings and saplings, seed loss in bare patches 
or ‘interspaces’ respectively. Important gaps in the knowledge are – apart from the uncertainty of the 
details of the processes and possible parameter values – mainly the uncertainty about seed loss in bare 
patches and the fate of one and more-year-old seedlings. It is highly probable that after the first 
growing season a surviving F. pallescens seedling consists only of one tiller (Defossé et al. 1997a). A 
one year old seedling therefore by no means can be considered as an adult tussock having at least 
15 cm diameter. I do not know how long a recently recruited seedling needs to reach a fully 
reproductive and structural state, corresponding to a fully-grown tussock. We will include a delay of 
two years until a seedling reaches the adult state for the following reason: at the beginning of the 
second year the fate of an approximately one-tiller-individual will be highly susceptible to the amount 
and timing of the first precipitations after the first summer drought. We assume that the growth from a 
one-tiller-state to a tussock with a diameter of ca. 10-15 cm will take at least two years. These 
assumptions are in accordance with qualitative observations of different empirical ecologists 
(M.B. Bertiller, L. Ghermandi, J.M. Paruelo, pers. comm.). During the sapling stages and the first year 
of the adult tussock stage, one may assume that the accumulation of dead material is not yet relevant, 
due to the low biomass production until this stage. Thus, it is reasonable to assume, that if grazing is 
selective in relation to the relative amount of dead material, grazing might have a stronger impact on a 
two year old recruit than on an adult tussock. Intraspecific competition and seed loss in bare patches 
will be considered indirectly by the spatial redistribution of plant available soil water. The negative 
effect of a reduced vegetation cover will be applied linearly to the survival of the first seedling state. 
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Senescence and littering. — Information about senescence and littering rates is very scarce. 
Bertiller and Defossé (1990a) mention that senescence rates are ‘very low’ during ‘early and mid-
spring’ and that they are ‘very high’ during ‘mid-summer’. As I will use a one-year time step in the 
simulation model, the senescence rate will describe the transition from the green biomass of the actual 
year to the dead biomass of the following year. The senescent biomass which goes senescent during 
the actual year will not be modelled explicitly and thus stays available for forage in the actual year. 
The seasonal effect of senescence on forage selection will be considered implicitly at the seasonal 
grazing scenarios. About littering rates I actually do not have quantitative information. If the dead 
biomass accumulates over years when grazing is excluded, the littering rate of F. pallescens might be 
lower than the senescence rate.  

Mortality. — Until December 2004 I have not found published data on tussock mortality of 
F. pallescens. Into the simulation model we will include rules, considering both precipitation by soil 
water status and grazing as possible causes for the individual tussock mortality. The mortality caused 
by grazing will only occur at the lowest vitality state and with a low probability. 

Summary. — As I have demonstrated above, detailed information about several biological 
processes in the Festuca steppe exists. Thus, more than 15 years of investigation have gathered 
enough information for a fully individual based simulation model to be developed. The model is 
individual based and introduces the specific impact of precipitation and grazing on specific biological 
processes e. g. the seedling dynamics, the tussock vitality and the mortality. However, there are some 
information gaps to be filled for the construction of a complete model that describes the vegetation 
dynamics of F. pallescens. Further, when presenting the essential concept of the simulation model, it 
will become obvious that I have to include a number of parameters with unknown ranges to fill the 
data gaps. Similarly I do not know a priori if all hypothesized processes are relevant. Consequently, I 
have to investigate, which of the included detailed biological processes is relevant to the behaviour of 
the system and I have to estimate reasonable parameter ranges for the different parameters, processes 
and sub-processes. This will be done by using inverse pattern-oriented modelling techniques (see 
Chapter 4). However, in this Chapter and in Chapter 3 I will study the dynamics of the model under an 
expert parameterisation and test the ability of the model to reproduce several observed population 
level patterns not used for model construction. 
 

2.3 MODEL DESCRIPTION 

2.3.1 Essential concept of the F. pallescens simulation model 
I built an individual-based, spatially explicit model to simulate the dynamics of a 

homogeneous stand of a typical grass steppe of F. pallescens of the Subandean district in Northwest 
Patagonia. The model simulates the behaviour of the system during the early stages of the degradation 
process. My focus was on individual tussocks of F. pallescens, the dominant species of the system. 
Therefore, I did not include invasive shrubs (Mulinum spinosum or Acaena splendens) into the model 
which play in important role during later stages of degradation. I considered, but did not simulate 
explicitly the dynamics of preferred but scarce species of forbs and small mesophytic grasses. 

Temporal and spatial grain. ⎯ The model simulates the dynamics of individual F. pallescens 
tussocks within a homogeneous patch of the Festuca steppe. The simulation of individuals is essential, 
because I assume that the grazing decision of the herbivore depends on the actual compositional state 
of each encountered tussock. Consequently the simulation model has to be spatially explicit and is 
implemented on a grid of 128 x 128 rectangular cells. Each cell represents an area of 30 x 30 cm, the 
typical size of a fully grown tussock of F. pallescens. The simulated patch size is hence approx. 
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1.500 m² (i.e. 1475 m²) in size. This patch is homogeneous with respect to soil, topographic 
characteristics and the precipitation regime.  

The model has an annual time step and the influence of different seasonal grazing regimes was 
simulated by modifying the forage selectivity of herbivores. The model description is provided at 
different levels of detail: in the rest of this section I describe the essence of the model, mostly related 
to the impact of precipitation and grazing on vegetation. A conceptual description of the implemented 
biological processes is given in the following section 2.3.2. The detailed description of the rule set 
follows is given in APPENDIX I. 

Cell states, essential properties and variables. ⎯ Each grid cell can take several discrete 
states, e.g. bare soil or empty, live tussock and dead tussock (see Fig 2.1, Tab. 2.2 for variable 
definitions). Seedlings Si – with the index i representing the age of each seedling – occur in empty 
cells only, and a new tussock recruits only, if seedling survive during three time steps. Qualitative 
field observations suggest that one-year old seedlings grow vegetatively for at least an additional two 
years, before they fructificate and can be considered as a fully grown tussock (Bertiller, M., Paruelo, 
J.M., and Ghermandi, L., pers. comm., see section 2.2.2). Seedlings Si are implemented as a transient 
state within an empty cell (Fig. 2.1 and Tab.2.2).  

The different cell states are related to each other by different ecological and biological 
processes (see Fig. 2.1-2.3), such as homogeneous precipitation (Global water input), small-scale 
neighbourhood water redistribution (Water redistribution), growth (Plant production, Vitality change), 
grazing (Defoliation), colonization, senescence (includes littering) and tussock mortality. A cell 
representing a live tussock is characterized by following state variables: green biomass (gbi), dead 
biomass (db), the dead biomass fraction (dfraci) and the tussock vitality (vit, see Fig. 2.1 and Tab. 2.2). 
The compositional state of a tussock consists of the dead fraction of biomass (dfraci) and the tussock 
vitality (vit). Dfraci is calculated as the relative proportion of dead biomass over total tussock biomass 
(gbi + db). Both fractions appear interspersed in the tussock. I assume that herbivores select tussocks 
strongly for tussock characterized by low dfraci (O´Connor 1992). Dead biomass may last in the 
tussock for several years (Soriano et al. 1976 in Soriano 1983, Jobbagy and Sala 2000).  

Vitality. — The second characteristic, tussock vitality (vit) is an aggregated variable, which 
describes the capacity of the tussock to intercept photosynthetic active radiation and thus its potential 
primary production. The aboveground component of ‘vitality’ (vit) is basically determined by the 
density of tillers and the amount of standing dead material. However, vitality can also be interpreted as 
an aggregated description of the compositional state of the root biomass. Hence the tussock vitality is 
a property which stores the history of the tussock. It is assumed that the state of the root system is 
affected both by precipitation and grazing (see section 2.2.2). The concept of vitality (or vigor) is used 
in rangeland ecology (Kirkman 1995, Peddie et al. 1995, Kirkman and Moore 1995), despite its 
definition may differ. Kirkman 1995 defines vigor as the plant potential to regrowth during a season 
after grazing occurred. The vitality concept used in this model uses Kirkman’s definition, as it reflects 
both the impact of the previous seasons on each tussock, and the effect of the actual time step.  

The concept of vitality has been successfully introduced into simulation modelling of 
vegetation dynamics (Jeltsch et al. 1995, Jeltsch et al. 1996, Stephan et al. 1996, Stephan et al. 1998). 

Philosophy of the simulation model. — The general idea of this model is to simulate the effect 
of the most important drivers – precipitation and grazing – at a scale, where both drivers act on the 
dominant species of an ecosystem. This scale is the small-scale of an individual grass tussock. So the 
approach is a cross scale-approach (Rietkerk et al. 2002), because it translates the effect of a large 
scale driver (precipitation) and a patch and landscape driver (herbivore grazing) onto the fine grain of 
individual plants. As I consider sub lethal effects of both drivers, it is necessary to include the impact 
of each driver into the ecological and biological processes (see Tab. 2.1). Tab. 2.1 shows the number 



2 SIMULATION OF VEGETATION DYNAMICS UNDER GRAZING AND STOCHASTIC CLIMATE 

 16

of parameters, which are included into each process of the simulation model, and how much of them 
are related to one of both drivers. Nearly all processes considered in the simulation model are affected 
by precipitation or by grazing or both, at least indirectly. Only senescence and littering are assumed to 
be just biological processes which are not affected directly neither by precipitation nor by grazing. 
Fig. 2.2 gives an overview over the implemented processes in order of implementation and indicates 
the included rules, which are given in Appendix I. 
 
Tab. 2.1.: Overview of how the drivers precipitation and grazing affect the ecological and biological 

processes. 
(i) means indirect effect of the driver on the process, e.g. water redistribution is influenced by tussock 
density, which is affected by grazing (see detailed Rule-Set). Processes are summarised compared to 
Fig. 2.2-2-3. 

 

2.3.2 Short description of the included biological processes 
This section gives a short overview over the included processes and how the model works in 

principle (compare Fig. 2.1-2.3). An overview of model variables is given in Tab. 2.2, while an 
overview of model parameters is given in Tab. 2.3.  

Initialisation. — The model is initialised with a tussock distribution of an assumed natural 
steppe with high Festuca cover of ~58%, oriented at observations of the oldest exclosure at the Media 
Luna Ranch. Hence the model is always initiated in an assumed optimal state. 

Biomass carry over. — The procedure Biomass Carry over calculates all the remaining living 
(green) biomass from the last simulated time step, which will be available as forage during the actual 
time step. 

Global Water input. — The procedure Global Water input simulates annual precipitation and 
calculates plant available soil water w, which initially is spatially homogeneous, as it is precipitation 
for the whole simulated area of 38.4 x 38.4 m ~ 1.500 m². Precipitation data are derived from a 
modelled precipitation time series derived from meteorological data out of the region (see section 
2.2.2). One parameter is introduced, which gives the fraction of total plant available soil water w 
which will be available for plant growth. This parameter (WI.1/PUE, Tab. 2.3) is equivalent to 
precipitation use efficiency per tussock of 0.09 m² area and is estimated from Paruelo et al (2000). 
Total annual water loss (1-WI.1*annual rainfall) is not further specified and may be caused by 
superficial water run off, deep percolation or evaporation. 

Water redistribution. — After precipitation two processes of small scale soil water 
redistribution are considered (Fig. 2.3 and Appendix I). The first process is water gain of living 
tussock due to lateral water uptake by roots from neighbouring empty or dead tussock cells, and vice 
versa water loss of empty or dead cells. The second process simulates higher soil water loss due to 
higher evaporation or run off at ‘larger bare patches’ with size of 3 x 4 cells or larger. This process is 

Process Total Precipitation Grazing 

Global water input 1 1 0
Local Water redistribution 2 2 (i)
Plant growth 3 1 (i)
Grazing 4 (i) 2
Colonization 6 4 2
Vitality dynamics 6 4 2
Senescence and Littering 2 (i) (i)
Mortality 6 4 2
Sum of parameters 30 16 8

Number of parameters
Driver

Number of parameters of a 
driver with causal effect on 

process
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Fig. 2.1: Festuca pallescens simulation model: grid cell states and transitions-scheme. 
Shaded boxes show possible cell states. Biological processes (thin framed boxes) mediate between the cell states. Dotted arrows indicate the influences of the external 
driver grazing on processes and variables, whereas complete arrows show the influences of precipitation on cell states and processes. Dashed lines indicate biological 
relationships within a live tussock.  
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included as a hypothesis to explain the difficulties to observe surviving seedlings of F. pallescens in 
the field. The local water redistribution is an essential process, because neighbourhood effects are 
modelled exclusively due to the indirect redistribution of plant available soil water. Adult tussocks 
behave neutral to each other, no water gain or loss is assumed between neighbouring living tussocks 
cells. Asymmetric competition (Weiner 1990) of adult tussocks against neighbouring seedlings is 
mediated by local water redistribution. After local water redistribution plant available soil water shows 
heterogeneous distribution on a small scale with dry, average or humid patches. The heterogeneous 
soil water distribution modifies the whole behaviour of the F. pallescens dynamics of the actual time 
step. 

Water induced vitality change. – After water redistribution tussock vitality changes according 
to its actual plant available soil water status (Fig. 2.3). Four parameters are included which change 
tussock vitality according to soil water thresholds, two may increase and two may decrease tussock 
vitality. Vitality is assumed to be deterministic, if there is a humid year all tussocks will profit, and not 
only a certain fraction. Water induced vitality change occurs before plant growth, because I assume 
that the soil water status of the actual time step has a strong effect on plant growth. Root growth starts 
in early spring at F. pallescens (Ares et al. 1990), so for humid years it is reasonable to assume that a 
tussock can profit from that to some extent. Increase of vitality is limited to one vitality class per time 
step. So it is assumed that a weak tuft (vitality = 1) can not grow to a strong tuft of vitality = 3 within 
one time step. 

Plant production. — Plant growth is simulated as a function of plant available soil water and 
vitality of a tussock. I used a Michaelis-Menten function to simulate plant growth. I assume that plant 
growth at low precipitations shows no delay, because F. pallescens steppe is a cold temperate semi-
arid steppe, so one can expect that in early spring there will always be a good soil water status at least 
for the upper soil layers due to snowfall in winter. Plant growth includes three parameters: one 
indicating the plant available soil water w at which a tussock produces 50% of its annual production, 
one parameter which estimates maximum tussock productivity (per m²) for a tussock at the lowest 
vitality class 1, and finally the parameter which estimates the increase in productivity for a tussock 
with a higher vitality. The differences in productivity are similar between two neighbouring vitality 
classes and the differences in productivity between minimum and maximum rainfall.  

Defoliation. ⎯ I distinguish two spatial scales for the grazing process: the local or tussock 
level, and the patch or landscape unit level scale. The latter scale covers the whole area considered, 
e.g. a paddock, or a part of a paddock. Grazing pressure or ‘utilization intensity’ is defined as the 
forage need over the available forage. A fixed total annual forage need FN (kg / ha) results from a 
fixed forage need per capita (i.e. 1 kg sheep-1 day-1) and a fixed stocking rate (e.g. 1 sheep / ha). The 
total amount of available forage TF (kg / ha) includes available forage from F. pallescens (AF) and a 
component of other species, which are consumed with higher priority than F. pallescens (i.e. forbs and 
small grasses), called primary forage (PF). I assumed that they contribute with 30% of total forage 
need, when F. pallescens cover is 40% or more, and its contribution is linearly reduced to 5%, when 
F. pallescens cover is 10% or less (values for the standard parameterisation PS). To calculate the 
forage consumed from F. pallescens, PF is discounted from total forage need FN, so I get forage 
needed from F. pallescens. Landscape level mean utilization intensity M for F. pallescens then is 
given as   

 
M = (FN-PF) / AF        (eqn. 2.1) 
 
Defoliation: Grazing process. ⎯ The grazing process is considered as a sequence of local 

grazing events that continue until the total forage need has been met, available forage reaches a 
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minimum or no suitable cell has been found over several consecutive trials. Due to off take 
restrictions, green biomass might not be available for grazing, e.g. high proportion of tussocks with 
high fractions of standing dead (high dfraci), allowing only limited defoliation severity. A grazing 
event consists of the selection of a tussock, and its subsequent defoliation. A tussock is selected by 
randomly drawing a cell from any position on the grid. If the cell holds a tussock which has not yet 
been grazed down to its minimum residual green biomass it is accepted for grazing with a probability 
that depends on the structure of the tussock (dfraci) and the mean utilization intensity. 

Under very low utilization intensity (M close to 0), grazing probability shows a close to linear 
decrease with increasing fraction of standing dead. With increasing utilization intensity M, livestock 
would increasingly accept tussocks with higher fractions of standing dead. The maximum defoliation 
severity (dsmax) a tussock can experience depends on the fraction of standing dead biomass (dfraci) 
and it is calculated only once, prior to the grazing routine. That is, dsmax is not altered during the 
grazing process.  

A tussock that has been accepted for grazing is defoliated with local defoliation intensity (lci). 
Although initially cells are selected at random, the algorithm ensures that tussocks are not grazed 
randomly but in a highly selective way since the probability of a tussock being accepted for grazing 
(gprob) depends on its individual composition (dfraci) as well as on the overall utilization intensity 
(M). With increasing utilization intensity, the grazing probability of a tussock with a given structure 
(dfraci) increases. In addition maximum defoliation intensity of a grazing event is determined by 
tussock structure.  

Defoliation: Grazing regimes. ⎯ To simulate different grazing regimes in a more realistic 
way, I introduced different grazing regimes according to the seasonality of the defoliation: continuous 
year round grazing or all forage needed is consumed in spring, summer-fall, or winter. Because the 
time step of the model is one year, grazing seasonality was simulated trough its influence on dfraci and 
hence on the probability of a tussock of being grazed (gprob). The low availability of forage items of 
high quality and the relatively softer structure of the tussock when the dead material is wet determines 
the seasonal changes in selectivity (Paruelo et al. 1993). As a consequence the highest selectivity 
occurs in spring or when the paddock is grazed continuously, i.e. the influence of dead fraction is 
higher than in other seasons. Further details are given in Appendix I. 

Colonization. — Seedlings are not modelled explicitly, so they carry no biomass and only 
general survival of seedlings per cell are modelled without density dependent mortality. There are one 
seedling stage and two sapling stages, each lasting one year, according to field observations (see 
section 2.2.2). Seedling and sapling survival are triggered by plant available soil water (three 
parameters), combined with a certain probability of survival (one parameter for seedlings, one for 
saplings). Seedling survival additionally depends on adult F. pallescens tussock cover as was observed 
in the field. This aggregated parameter thus includes additionally the history of the paddock, and thus 
considers both the grazing and the climatic history which may have influence on recruitment. Sapling 
survival may also be directly affected by grazing, mediated by the relative grazing intensity M. So here 
it is not necessary to introduce an additional parameter. 

Grazing induced vitality change. ⎯  After defoliation the vitality of each individual tussock 
might change, depending on its vitality and the individually suffered relative defoliation intensity. The 
higher the tussocks vitality, the higher is the tolerated grazing intensity. Two parameters are 
introduced, one threshold for the tolerated defoliation intensity at the lowest vitality of a tussock and 
one parameter for the probability of occurrence. 

Senescence and littering. — Senescence and littering are modelled at the end of the time step 
and it is the only process which is not influenced by climate or grazing. Two parameters determine a 
fixed rate of senescence and littering of the living and the dead biomass. As the Festuca steppe 
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accumulates dead biomass above ground I assume a higher senescence than littering rate for the 
standard model parameterisation PS. As I strongly simplify the process of senescence by using an 
annual time step, I assume that dry biomass, which went senescent at the actual time step may be 
consumed at the actual time step. Dry biomass is not modelled explicitly. Biomass which goes 
senescent is transferred to dead standing above ground dead biomass in the following year. Hence the 
senescence parameter is an aggregated parameter for the transition between green biomass at the 
actual time step and standing dead biomass at the next biomass. Green biomass thus also includes dry 
biomass of the actual time step, which will be consumed by livestock if no alternatives exist, as e.g. in 
late summer or during winter. 

Mortality. ⎯ Mortality occurs only for tussocks in the lowest vitality class. The probability of 
dying depends on thresholds related to soil water availability and defoliation severity.  

Conclusion. — As the sub lethal effects of grazing and precipitation are included, the medium 
complex model includes approx. 30 parameters. This complexity is necessary to investigate the 
combined effect of precipitation and grazing, as the basic grazing decisions take place at the plant 
individual scale (Parsons and Dumont 2003), if an individual plant is accepted for grazing, Simulating 
a coarser grain might miss the essence of the grazing process and so it would not be possible to 
simulate different forage selection scenarios or other characteristics of the grazing process in a 
biologically plausible way. Understanding how the effect of individual processes at lower levels 
determines the behaviour of an ecosystem is a major challenge in ecology (Levin 1992) and that will 
be tackled here. 

 
 

 
Fig. 2.2: Process flow-chart for the F. pallescens steppe simulation model.   

All biological processes are listed, which have effect on the behaviour of the system in the order of 
implementation. Within the boxes, which include the process-names, equation numbers are provided, 
which correspond to the included rules (see Appendix I).  
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Tab. 2.2: State variables of the Festuca pallescens simulation model at the tussock, population and patch/landscape level. 
Abbreviations are used in the text and the equations of the rule-set. General remark: the basic attribute carrying unit ‘live tussock’ (cell state cs = 2) comprises nearly all 
biological variables at the tussock level - e.g. prod(cs, vit, w) = prod(vit, w) etc. -  and is not mentioned  in every variable due to redundancy. In analogy to this syntax the 
variables related to the plant available soil water w / wG / w’(x, y, t), which depend on location and time, are written as w / wG / w’ in the rule set. All global variables 
depend on time step t. Variables only used in the Rule-Set see Tab. I.2. 

State 
variable 

Explanation Unit Detailed explanation Set  

value 

Tussock level 
cs (x, y, t) Cell state of one grid cell at 

location (x, y) and time t 
- States a grid cell at location (x, y) and time step t can take in: cs = 0 for a empty / bare soil 

cell; cs = 1 for a dead tussock; cs = 2 for a live tussock. 
cs  = {0, 1, 2} 
 

db, db(cs) Dead F. pallescens tussock 
biomass 

dead biomass / cell area . year 
 (g DM / 0.09 m² t)  

Dead biomass of a tussock, depends from cell state (cs), cell states cs = 1 (dead tussock) 
and cs = 2 (live tussock) include dead biomass 

 

dfraci Dead fraction of 
F. pallescens biomass 

- Dead fraction of total biomass of the i-th tussock; defines tussock structure  

ds Relative defoliation 
severity 

- Relative defoliation severity per tussock and time step, ratio of total consumed forage (lci) 
and pre-grazing total biomass gbP 

 

dsmax Maximum defoliation 
severity 

- Maximum relative defoliation severity depends from dfrac, calculated once before grazing 
routine 

 

gbi Green F. pallescens 
tussock biomass 

live biomass / cell area . year  
(g DM / 0.09 m² y) 

Live biomass (expressed in dry matter, DM) of a tussock; it is altered or updated during one 
time step (year) during following processes i =  biomass carry over (Co), production (P), 
grazing (G) and senescence (S). Only cells in cell state cs = 2 (live tussock) contribute to 
green biomass production. 

 

gprob, 
gprobGR.5 

Probability of a tussock to 
be accepted for grazing 

- depends on M, dfraci, and season (GR.5); gprobGR.5∈[0, 1]; At default for GR.5 = 1.0  
continuous grazing (a) it depends only on M and dfraci. 

 

gbmin  Minimum residual biomass 
after grazing 

gb / cell area . year 
(g DM / 0.09 m² y) 

Minimum residual biomass after grazing is calculated before grazing and depends on dfrac 
and gb 

 

lci Local defoliation severity gbprod / cell area . year 
(g DM / 0.09 m² y) 

Local consumption: total removed green biomass per tussock and time step during i 
defoliation events 

 

prod ANPP per tussock gb / cell area . year  
 (g DM / 0.09 m² y)  

Annual plant production is modelled as a function of vit and w with Michaelis-Menten 
kinetics 

 

Si Seedling of state i - Seedling of state i; i = 0: emerged from empty cell (cs = 0); 1: One year old seedling; 2: 
two year old seedling; survival of S2 leads to a fully grown tussock and to transition from 
cs = 0 →   cs = 2. 

i = {0, 1, 2} 

vit  Tussock vitality - Potential productivity of a tussock; vitality accounts for the memory the tussocks` history; if 
cs = 2 then vit >0; vit = 0 for dead tussock (tuss., cs = 1); vit=1: tuss. with low vitality; 
vit=2: mean vital tuss., vit=3: tuss. with high vitality; vit=4: tuss. with highest vitality. 

vit = {0, 1, 
2, 3, 4} 
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Tab. 2.2 continued: Population level 
w  Plant available soil water H²O / area 

 (mm / cm²) 
Local plant available soil water after local water redistribution  

 dfrac Mean dead biomass 
fraction 

- Mean dead biomass fraction (dfrac) returns the mean dfrac for all single dfraci of all live 
tussocks, per grid and per time step 

 

Min dfrac Minimum dfrac per 
simulation 

- -  

dfracCV -  Spatial variability of dfrac per time step and grid  
fTdfraci Tussock distribution over 

dfrac-class i 
- The tussock distribution over dfrac calls I denotes the proportion of tussocks with high or 

low proportion of dead biomass, and thus indicates how strong forage selection will act on 
the tussock population;  
dfrac-class i = 1 ([0-20%[dead biomass dfrac per tussock), 2 (]20-40%] dfrac), 3 (]40-60%] 
dfrac), 4 (]60-80%] dfrac), 5 (]80-100%] dfrac) 

 

Mean vit Mean vitality - Simulated mean vitality is calculated from all live tussocks per grid per time step   
Mean 
vitdfraci 

Mean vitality dfrac-class i - Mean vitality dfrac-class i gives the distribution of mean vitality for the live tussock 
population per grid, time step and per dfrac-class i = 1 ([0-20%[dead biomass dfrac per 
tussock), 2 (]20-40%] dfrac), 3 (]40-60%] dfrac), 4 (]60-80%] dfrac), 5 (]80-100%] dfrac) 

 

Patch / Landscape level 
- Seedling survival Si % Seedling survival Si is expressed in % per grid with i = 0 (germinated seedlings), 1 (sapling 

1st year), 2 (saplings, 2nd year) 
 

Recruitme
nt 

Tussock recruitment % Tussockrecruitment is expressed in % per grid area and time step t  

Mortality Tussock mortality % Tussock mortality is expressed in % per grid area and time step t  
TdS Tussock density Tussocks  / area  

(n / m²) 
The simulated tussock density (TdS) is calculated directly as ratio of all live tussocks / total 
grid size (~1500 m²). Due to the resolution of the grid (1 tussock = 0.09m²) 100% plant 
cover are equivalent to a tussock density of 11.1 

 

covi Cover cell state i % Relative abundance of different cell states i: F: live Festuca pallescens tussocks; D = dead 
tussocks; E: empty cells; EL: large bare patch cells; ES: cells potentially optimal for 
recruitment. 

 

Min covi Min coveri  Minimum cover (covi) of cell state i per simulation  
Mean 
prod 

Mean ANPP per tussock gb / cell area . year   
(g DM / 0.09 m² y) 

Mean ANPP per tussock and time step  

ANPP Annual net primary 
production 

Sum prod / grid area . year 
(kg DM / ha t) 

Landscape level annual net primary production, derived from the sum of all tussocks’ 
annual green biomass production (prod) per grid and time step  

 

Mean 
ANPP 

- Mean ANPP / grid area . year 
(kg DM / ha t) 

Mean ANPP per simulation  

Min 
ANPP 

Minimum ANPP Min ANPP / grid area . year 
(kg DM / ha t) 

Minimum ANPP per simulation  
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Tab. 2.2 continued: Patch / Landscape  level 
Max 
ANPP 

- Max ANPP / grid area . year 
(kg DM / ha t) 

Maximum ANPP per simulation 
 

 

Mean gbi Mean green biomass per 
tussock i 

gbi / cell area . year   
(g DM / 0.09 m² y) 

Mean live biomass (expressed in dry matter, DM) of a tussock; it is altered or updated 
during one time step (year) during following processes i =  biomass carry over (Co), 
production (P), grazing (G) and senescence (S). Only cells in cell state cs = 2 (live tussock) 
contribute to green biomass production. 

 

Bi Standing green biomass i Mean B / grid area . year 
(kg DM / ha t) 

Landscape level standing green biomass  as the sum of all live tussock biomasses (gb(i)) is 
updated during following processes i =  biomass carry over (Co), production (P), grazing 
(G) and senescence (S).  

 

max B Max green biomass 
 

Max.(BS) / grid area . year 
(kg DM / ha t) 

Maximum landscape level standing green biomass during one simulation, derived from 
yearly BS. 

 

AF Available forage from F. 
pallescens 

gbprod / area 
(kg DM / ha) 

Total available forage from F. pallescens  

FN Total forage need bm / area 
(kg DM / ha) 

Total annual Forage need by livestock  

F Forage need from F. 
pallescens 

gbprod / area 
(kg DM / ha) 

Forage yielded from F. pallescens  

M Theoretical defoliation 
severity M 

- Relative landscape/patch level necessary mean defoliation severity, relative to forage 
available from F. pallescens per time step 

 

Mreal Realised mean utilisation 
severity 

- Relative realised mean ds for all tussocks / grid per time step  

Max 
Mreal 

Maximum realised 
defoliation severity M 

- Maximum realised Mreal per simulation  

Min 
Mreal 

Minimum realised 
defoliation severity M 

- Minimum realised Mreal per simulation  

C Consumed forage gbP / area  
(g DM / 1500 m² t) 

Landscape / patch level consumed forage per time step: sum of lci for all live tussocks of 
the whole grid 

 

Min C Minimum consumed 
forage  

Min gbP / area  
(kg DM / ha) 

Minimum consumed forage C per simulation during time steps where grazing occurs   

Mean C Mean consumed forage  gbP / area  
(kg DM / ha) 

Mean consumed forage C per simulation during time steps where grazing occurs   

fTG Fraction of grazed tussocks - Relative proportion of grazed live tussocks  
Mean 
PUE 

Mean precipitation use 
efficiency, whole grid 

- Landscape/patch level average precipitation use efficiency, ratio w (all live tussocks) / wG 
(all cells), i.e. the sum of all plant available soil water for live tussocks / total precipitation 
input for all cells per time step. 

 

- Festuca state - Classification of F. pallescens into degradation states, for more details see Tab. II.1  
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Tab. 2.3: List of the parameters of the Festuca pallescens steppe simulation model.  
Parameters are grouped according to the processes they influence directly. The ‘Typical value’ column values correspond to the most reasonable values derived from the 
literature and from expert opinion (Standard parameterisation PS). The last two columns correspond to the estimated upper and lower boundary for each parameter. These 
values were used in the sensitivity analysis (Chapter 4). For Calibration and sensitivity analysis in Chapter 4 all parameters were varied independently (calibration 
scenarios NGi, Gi) and in groups to driver-related processes, calibration scenarios NGg and Gg). The parameters were grouped according the column ‘Parameter group 
for sensitivity analysis’. Legend: Column 1: Parameter abbreviation (Abb.) used in Chapters (C.) 2, C. 3, and C. 5; Column 2: Abbreviations used in C. 4. 
 

Para- 
meter 

abb. C. 
2, 3, 5 

Para- 
meter 

abb. C. 4 

Units Processes (bold) and explanation of parameters Typical 
value (PS) 

Parameter 
group for 
sensitivity 
analysis 

Lower 
level 

Upp
er 

level 

Water Inputs (WI) 
WI.1 PUE 

 
- Fraction of annual global rainfall which represents an input to plant available soil 

water w 
0.57 1. WI 

 
0.40 0.74 

Water Redistribution (WR) 
WR.1 WredT 

 
water (mm / cm²) Fixed amount of lateral soil water loss of a empty cell or a dead tussock due to 

water uptake from a neighbouring live tussock cell 
5  2. WR L 1 20 

WR.2 WredO 
 

water (mm / cm²) For empty cells in “large bare patches” only; fixed amount of soil water loss, for 
each empty neighbouring cell unaffected by lateral roots 

20  3. WR O 
 

10 30 

Plant growth (PG) 
PG.1 ProdV1 

 
gb / cell area .year 
(g DM / 0.09 m² y) 

Annual net primary production (dry matter, DM) of a live tussock with vitality =1 
(vit = 1) and year 

150 4. PG V 105 195 

PG.2 ProdincV
2-4 

idem Annual production increment of gb per unit increment of vitality > 1 and time step t 50 4. PG V 35 65 

PG.3 MMconst water (mm / cm²) Constant of Michaelis-Menten equation for plant production: Indicates soil water 
status which enables half of maximum plant production (equation 1) 

55  5. PG W 
 

38 72 

PG.4 SEN % Fixed % annual rate of senescence of green biomass left over after grazing 60  6. SEN 40 80 
PG.5 LIT % Fixed % annual rate of littering of dead biomass both from live and dead tussocks 40 7. LIT 20 60 

Grazing (GR) 
GR.1 Stock Sheep / area  

(n / ha) 
Stocking density: number of sheep (n) per hectare; experimental parameter  0.5 Fix (varied 

in Gi, Gg) 
0.0 2.0 

GR.2 FNd green biomass / 
day (g DM / d) 

Daily (d) forage need in green biomass (DM) per head 1000 fix fix fix 

GR.3 GRej - Fraction of dfrac, at which tussock is completely rejected from livestock. The 
parameter is related to the calculation of maximum defoliation severity (dsmax) as a 
function of a tussocks relative amount of dead biomass (dfrac).  

0.95 fix 0.95 0.99 

GR.4 Gshape 
 

- Shape parameter of equation (19): Determines shape of defoliation severity ds  as a 
function of dfrac;  Defines impact of increasing dfrac on ds 

0.5 8. GR T 
 

0.3 0.7 
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Tab. 2.3 continued: 
GR.5i GS - Seasonal shift of the effect of tussock structure dfrac on grazing acceptance 

probability gprob; Alters the probability of a tussock to be accepted for grazing, 
which is a function of dfrac and grazing season (eqn. 22);  
GR.5 = 1.0 for continuous grazing (a); 1.5 for spring grazing (b); 0.6 for summer 
and autumn grazing (c); 0.3 for winter grazing (d). 

GR.5a=1.0 
GR.5b=1.5 
GR.5c=0.6 
GR.5d=0.3 

fix fix fix 

Colonization (CO) 
CO.1 ColWS0 water (mm / cm²) Minimum soil water for emergence 200  9. CO W 140 260 
CO.2 ColS0p - Probability (prob.) of emergence at cover > 40 % if soil water w > CO.1 0.3 9. CO W 0.1 0.5 
CO.3 ColWS1 water (mm / cm²) Soil water for survival of first year seedlings 170  9. CO W 119 221 
CO.4 ColWS2 water (mm / cm²) Soil water for survival of second year seedlings 140  9. CO W 98 182 
CO.5 ColS0Cov % Minimum F. pallescens cover for maximum emergence and survival probabilities. 40 10. CO D 20 60 
CO.6 ColS12p 

 
- Survival prob. for seedling 1st and 2nd year if soil water w > CO.3 and w >  CO.4 

respectively 
0.9 10. CO D 0.7 0.99 

Vitality dynamics (VD) 

Water thresholds 
VD.1 VincW1 water (mm / cm²) w threshold for transition of vit = 1 → vit = 2 200 11. VD W 140 260 
VD.2 VincW2 water (mm / cm²) w threshold for transition of vit = 2 → vit = 3 or vit 3 → vit = 4 250 11. VD W 175 325 
VD.3 VdecW1 water (mm / cm²) w threshold for transition of vit = 4 →   vit = 3 260 11. VD W 182 338 

VD.4 VdecW2 water (mm / cm²) w threshold for transition of vit = 3 → vit = 2 or vit = 2→  vit = 1 200 11. VD W 140 260 
Defoliation severity threshold 

VD.5 VdecG - Minimum relative defoliation severity threshold for tussock transition vit n→  vit n-
1 

0.5 12. VD D 0.3 0.7 

VD.6 VdecGp - Prob. of grazing induced vitality transition 0.8 12. VD D 0.6 0.99 
Mortality (MO) 

MO.1 MortW1 water (mm / cm²) Water threshold 1: combined with MO.3 180 13. MO W 126 234 
MO.2 MortW2 water (mm / cm²) Water threshold 2: combined with MO.4 200 13. MO W 140 260 
MO.3 MortWp1 - Prob. of mortality if w < MO.1  0.2 13. MO W 0.05 0.4 
MO.4 MortWp2 - Prob. of mortality if MO.1 <= w < MO.2 0.1 13. MO W 0.01 0.2 
MO.5 MortG - Relative defoliation severity (ds) threshold for grazing induced mortality (only for 

vit = 1): combined with MO.6 
0.6 14. MO D 0.4 0.99 

MO.6 MortGp - Prob. of mortality if defoliation severity > MO.5 0.05 14. MO D 0.01 0.1 
Primary forage (PF) 

PF.1 PFmax % Minimum relative amount forage provided by other items 5 15. PF 0 5 
PF.2 PFinc % Increment in per cent for PF.1 per % cov increment of F. pallescens  0.83 15. PF 0 0.83 
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Fig. 2.3: Detailed process and equation flow-chart for the F. pallescens steppe simulation model.   

All biological processes and routines are listed, which have effect on the behaviour of the system in the 
order of implementation. Equation numbers are also provided, which correspond to the following rule 
(for the detailed Rule-Set see Appendix I). For the most complex processes the sub-processes are 
provided in order of implementation including equation numbers. 
 

2.3.4 Performed simulations and analysis 
Model behaviour – To obtain a first understanding of how the simulation model behaves I 

compared individual simulation runs which are all based on the same specific climate data set but 
different grazing levels (no grazing vs. highly selective continuous grazing).  

The first question I addressed was if the simulation model shows equilibrium or non-
equilibrium behaviour. To answer this question I analysed the response variables tussock density (TdS) 
and the demographic behaviour, i.e. tussock recruitment and tussock mortality. If recruitment and 
mortality are highly episodic then non-equilibrium behaviour of the system is highly probable. I 
compared demographic behaviour for different grazing levels (‘No grazing’, ‘Light grazing’ (stocking 
rate = 0.5 sheep / ha), ‘Moderate grazing’ (stocking rate = 1.0 sheep / ha) and ‘Heavy grazing’ 
(stocking rate = 1.5 sheep / ha). I put these qualifications in quotation-marks, because it was not yet 
known, which stocking rate can be qualified as light or moderate grazing. The selected grazing levels 

Biomass carry over
 (eqn. I.1)

Global Water input
 (eqn. I.2)

Water redistribution
(eqn. I.3 - I.4)

Water induced vitality change
(eqn. I.5)

Plant production
(eqn. I.6 - I.10)
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(eqn. I.11 - I.22)
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(eqn. I.23 - I.25)

t = t + 1

Senescence and littering
(eqn. I.27 - I.30)

Grazing induced vitality change
 (eqn. I.26)

Mortality
(eqn. I.31)
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I.6, I.7: Plant production I.8: dfrac calculation
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 (Tab. I.1)
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Exit
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were chosen in accordance with expert estimations of normally performed average stocking rates for 
the F. pallescens steppe (see Chapter 3). The comparison of demographic events including grazing 
should answer the question, if grazing alters the type of dynamics found for the assumed ‘natural 
dynamics’ without grazing. 

The reference model parameterisation used for this analysis was the model parameterisation 
estimated by the field experts (standard parameterisation PS). This parameterisation produced good 
accordance between the simulated and the observed patterns. These observations were made during 
preliminary simulations. Chapter 3 will demonstrate in detail that the reference model parameterisation 
leads to reasonable results by comparing the model output with field data. 

The simulations for investigating the demographic behaviour are based on one repetition per 
grazing level and the standard precipitation time series and were run for 100 time steps. To investigate 
to which extend demography was triggered by the precipitation events I calculated the Spearman rank 
correlation coefficient between demographic variables and actual precipitation. Hence, each 
calculation included 100 data points. 

To investigate the basic model behaviour I run two simulation experiments: the first 
experiment included a grazing gradient of stocking rates ranging from 0.0 to 2.0, with intervals of 
Stock = 0.1 and compared the trajectories for different stocking rates. The second simulation 
experiment investigates the time scales of natural recovery if livestock was removed after a grazing 
period of specific duration. 

Each simulation of the first simulation experiment was run for 150 time steps, using the same 
precipitation time series as above but I adding 50 randomly chosen data points. The first 50 time steps 
were run without grazing to equilibrate the model from initial conditions. Thus, each simulation 
included 100 time steps with grazing. These simulations were used to demonstrate the basic model 
behaviour and to investigate qualitatively if regeneration or grazing threshold were evident. The 
second simulation experiment repeated the first one, but including grazing duration as a parameter. I 
varied duration of grazing for each grazing level between 30 and 120 time steps. After the grazing 
period, I simulated 200 to 290 time steps without grazing to let the system recover from grazing. Thus, 
each simulation was undertaken for 370 time steps (50 time steps to equilibrate + 30-120 time steps of 
grazing + 200-290 recover time steps). Time to recovery was defined as the number of time steps the 
grazed scenario took to reduce the difference in tussock density TdS compared to the No grazing 
control to a difference TdS=0 -  TdSgrazed ≤ 3%.  

The effect of stochastic rainfall on the demographic processes, the compositional state of 
F. pallescens, and landscape level ANPP, and how they are modified by grazing, was investigated as 
follows: 100 repetitions of the standard parameterisation with different stochastic climates were 
performed for 100 time steps and the four grazing levels described above. For each grazing level, for 
all 100 climate repetitions and for all time steps I calculated the frequency distribution of the different 
demographic events. For the compositional state of F. pallescens (i.e. the tussock density TdS) I 
calculated the frequency distributions for the discrete time steps t = 10, 20, 50 and 100 years. This 
enabled me to take into account the environmental noise (or climatic uncertainty) to study the basic 
behaviour of the simulation model. Additionally the Spearman rank correlations between the 
demographic behaviour and several variables describing precipitation history were investigated for this 
simulated data. The precipitation history parameters were: precipitation at the actual time step t and at 
previous time steps t-i; i = {1,2,3,4,5}, and the running means including the actual precipitation plus 
the precipitations up to 5 years before actual precipitation. 
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2.4 RESULTS 

2.4.1 Model behaviour and equilibrium dynamics of the Festuca steppe 
At the beginning I describe some general features of the model behaviour (see Fig. 2.4). Fig. 2.4 A 
shows the event-driven behaviour of the system without grazing, the assumed natural dynamics of F. 
pallescens. Tussock recruitment and mortality occur sporadically. In this example (i.e. the standard 
parameterisation PS estimated by the field experts, and the specific precipitation time series), tussock 
recruitment occurs approximately once every four years, and tussock mortality occurs nearly every 
second year. However, one third of the mortality events is below 1.5% of the whole area and are thus 
 
A B 

C D 

 
Fig. 2.4: Demographic Behaviour of the Festuca steppe simulation model. 

Shown are the first 30 time steps of one specific time series with stochastic precipitation, and the 
demographic behaviour of Festuca pallescens, i.e. tussock recruitment and tussock mortality [%]. The 
model parameterisation used was estimated by the field experts (standard parameterisation, PS). A) 
tussock recruitment and mortality without grazing; B) Grazing = 0.5 sheep / ha; C) Grazing = 1.0 
sheep / ha; D) grazing = 1.5 sheep / ha. The event-driven behaviour of the model for recruitment and 
mortality is evident. Grazing decreases consecutive tussock recruitment to an equilibrium, which is 
characterized by low constant tussock mortality rates and a complete lack of tussock recruitment (D, 
after time step 18). 
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Fig. 2.5: Correlation of demographic behaviour with precipitation. 

Shown are the Spearman rank correlations for the four grazing levels with the actual precipitation for 
each one run and 100 time steps. Recruitment is weakly correlated for all grazing levels to precipitation, 
indicating a complex behaviour. Mortality is highly correlated to precipitation for the three lowest 
grazing levels. Correlation between mortality and precipitation is reduced for the highest grazing level. 

 

 
Fig. 2.6: Model Behaviour of the Festuca steppe simulation model. 

Shown is a time series (150 time steps) of one precipitation time series and the change of tussock 
density with different grazing levels. The first 50 time steps were run without grazing and are not 
shown. The model parameterisation used was estimated by the field experts (standard parameterisation, 
PS) for the high impact of precipitation on tussock density is evident (grazing pressure = 0.0 sheep / ha), 
as it is for heavy grazing (e.g. 1.5 sheep /ha).  
 

less important. As precipitation is the only factor varied during this scenario, it is evident that tussock 
mortality occurs nearly every second year, but one third of mortality events are below 1.5% and 
variability in precipitation is responsible for the discrete recruitment and the mortality events. Fig. 2.5 
shows the Spearman correlation coefficients between actual precipitation and the demographic 
behaviour for the four grazing levels. Recruitment is weakly correlated to actual precipitation for all 
grazing levels which indicates that recruitment is a complex behaviour. Thus it occurs not only 
sporadically, but the events cannot be explained directly with actual precipitation. However, mortality 
is strongly correlated to actual precipitation for the three lowest grazing levels. The highest grazing 
level leads to a weaker correlation to actual precipitation. 

Temporal variability and grazing. — Fig. 2.6 shows the temporal variability of tussock 
density, fluctuating with annual precipitation and under the complete grazing range from 
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0.0 sheep / ha to 2.0 sheep / ha. This time series provides several interesting qualitative insights. 
Without grazing the tussock density fluctuates strongly, between tussock densities ranging from 
approx. 4 – approx. 8 tussocks / m². Thus, the variation of extreme values of tussock density is similar 
to the variation of extremes for annual precipitation (range differs ca. 40% from mean). On the other 
hand, the time series demonstrates that tussock density shows a more ‘stable’ behaviour than 
precipitation. Tussock density may remain relatively unchanged, or is consistently increasing or 
consistently decreasing for several consecutive years. For example, for the No grazing scenario 
precipitation alternates between the time steps 60-70 on a yearly time step between ‘good years’ 
(above MAP) and ‘bad years’ (rain below MAP), but tussock density changes very little. During a 
series of either ‘bad’ years with precipitation below average or a series of ‘average’ and ‘good’ years, 
tussock density changes consecutively. For example a series of four bad years (time step approx. 75-
80) leads to a strong decrease in tussock density. Increases in tussock density become evident if 
combinations of good and mean precipitation years occur, e.g. time step 72-75 or 80-84. 

The next interesting result is related to the grazing effect on tussock density. I observe three 
groups of stocking rates: the first one (Stock 0.1- ca. 1.1) decreases tussock density moderately and the 
temporal variation follows the no-grazing temporal variation of tussock density. This group of 
stocking rates leads to long-term stable vegetation, without a stable or exact equilibrium, but a 
dynamic or ‘pseudo-equilibrium’. This ‘stability’ may be related to the fact that herbivore saturation is 
not reached, i.e. the consumed forage is always considerably lower than the total standing consumable 
biomass.  

The second group (Stock ca. 1.4 - 2.0) shows a trend to strong degradation (tussock density < 
1.0 after 50 years of grazing at time step 100). A strong decline in tussock density was induced by four 
dry years (time steps approx. 75-80). A strong reduction in tussock density occurred for all grazing 
scenarios during these time steps. But under these high stocking rates tussock density is already after 
25-30 years in such a reduced state, that it cannot respond positively to favourable climatic conditions 
following the four year drought. A regeneration threshold is evident at a tussock density of approx. 
TdS = 2.5. Below this threshold, tussock density is unable to recover. 

Finally a third group of stocking rates (parameter Stock, GR.1) is evident, namely Stock = 1.2 
– 1.3. With these stocking rates, tussock density tends to decrease in the long-term below the recover 
threshold, but considerably slower than at higher stocking rates. This regeneration threshold holds 
only for constant grazing.  

The qualitative different behaviour of the system under these three groups of stocking rates 
indicate that a second threshold, a grazing threshold, exists for the tussock density as a response to 
the increasing stocking rate. The first group lies below the threshold, so tussock density fluctuates 
similarly to its response to climate when no grazing occurs. The intermediate group seems to lie over 
the threshold, within the range of the decreasing slope. So it is an interesting question if a threshold 
can be detected with a quantitative analysis and if it has similar values for different rainfall scenarios 
or model parameterisations. 

Regeneration without grazing. — For Stocking rates Stock < 1.1 sheep / h the vegetation was 
able to recover within shorter time frames (Fig. 2.7). For this range of stocking rates recovery time did 
not depend much on the number of years grazed and was basically linearly related to stocking rate. 
However, for Stock > 1.1 sheep / h the relation between recovery time and stocking rate becomes non-
linear and recovery time exploded if the steppe was grazed longer than 30 years. An interesting 
question is if this threshold has similar values for different rainfall scenarios or model 
parameterisations. 
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Fig. 2.7: Natural Recover of the model Festuca steppe under a grazing and a grazing duration gradient. 

Time of recovery was defined as the number of time steps the vegetation needed to reach a tussock 
density equal to tussock density for No grazing ≤ -3%. A regeneration threshold is evident at 
Stock = 1.1 sheep/ha when grazing took longer than 30 years. Recover times increases exponentially 
above both thresholds. Simulations were run with the standard parameterisation PS; each simulation was 
run for 370 time steps, over a gradient of 30 to 120 time steps of grazing and a stocking rate from 0.0 to 
2.0 sheep/ha. Each scenario was repeated once and each simulation was first run 50 years without 
grazing for equilibrating from initial distribution. 
 

2.4.2 How does grazing modify the demographic processes of Festuca pallescens 
Fig. 2.4 shows how grazing modifies the demographic processes of Festuca pallescens for one 

exemplary precipitation time series. Tussock recruitment is not reduced substantially at ‘low’ grazing 
of 0.5 sheep / ha. At ‘moderate’ grazing of 1.0 sheep / ha tussock recruitment is already reduced to 
approximately half the rates observed with No grazing (compare Fig. 2.4 A with C). Finally, under 
Heavy grazing (Fig. 2.4 D), no recruitment occurs at all after some 20 time steps, indicating that 
Heavy grazing is detrimental for tussock recruitment. Thus the behaviour of tussock recruitment, 
which was event-driven and showed non-equilibrium behaviour for Moderate grazing and less grazing 
intensity, changes qualitatively to a new ‘equilibrium’ behaviour which consists out of no-recruitment-
events.  

Tussock mortality shows a different pattern of change, which seems to be dynamic. During the 
first 15 time steps, grazing increases mortality events moderately (e.g. time step 5, mortality during 
one dry year, Fig. 2.4 A-D). High mortality events, which occur during a series of dry years and 
during such a series mostly at the second year, are not influenced substantially by grazing. But Heavy 
grazing leads to another change of the event driven and non-equilibrium dynamics of the tussocks: it 
leads to a constant low mortality rate for Heavy grazing. Interesting is also the finding that under 
Heavy grazing mortality rates decline after a certain time (e.g. time step 18) in comparison with lower 
or No grazing. The reason for this is that the already strongly reduced tussock density of F. pallescens, 
cannot be further reduced to such a high extend. These results show that grazing has a strong impact 
on the type of dynamics shown by Festuca pallescens, and produces a negative effect on recruitment. 
The high mortality rates may explain the decrease of F. pallescens due to grazing. 

2.4.3 How does stochastic rainfall affect the demographic processes of Festuca 
pallescens? 
After the presentation of the model behaviour for specific simulations and time series I investigate if 
the observed event-driven behaviour can be generalised for different rainfall time series. Fig. 2.8 
shows the frequency distributions for the demographic behaviour which was generated by repeating 
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100 time steps simulation with 100 different stochastic climates for the four grazing scenarios. The 
event-driven behaviour under stochastic rainfall with a variability of CV = 20% can be considered as a 
general model behaviour (Fig. 2.8).  

Recruitment. — Under the no-grazing scenario more than 60% of the time steps have no 
recruitment at all, 15 to 20% of the time steps show recruitment below 2%, while the remaining time 
steps show recruitment above 2%. Grazing with 0.5 sheep / ha modifies this result only slightly. But 
Heavy grazing with 1.5 sheep / ha changes the recruitment pattern strongly: under this scenario 76% 
of the years show no recruitment, just 15% of the time steps show very low recruitment ≤ 2%, and just 
around 9% of the time steps show medium or larger recruitment events. With respect to large 
recruitment events (i.e., larger than 8%) dramatic effects of grazing become evident (Fig. 2.8 A-C). 
Without grazing 7.2% of all time steps show large recruitment events, Light grazing modifies this 
result slightly to 5.6%, and Heavy grazing does not allow large recruitment events at all. Whereas the 
increase of no-recruitment events under low and Moderate grazing is gradually, Heavy grazing 
extinguishes large recruitment events. Only low (<2%) and medium sized recruitment events 
(>2>x<8%) were observed. Thus, grazing does not modify the event-driven behaviour of the model 
system with respect to recruitment, but Heavy grazing significantly modifies the frequency of 
recruitment events, and the frequency of larger recruitment events above 6%. 
 
A 

 

B 

 

C 

 
D 

 

E 

 

F 
 

 
Fig. 2.8: Demographic behaviour of F. pallescens under 100 stochastic climates and different grazing 
levels. 

A)-C) Tussock recruitment; A) No grazing; B) Light grazing: 0.5 sheep / ha; C) Heavy grazing: 
1.5 sheep / ha; D-F) Tussock mortality: D) No grazing; E) Light grazing: 0.5 sheep / ha; F) Heavy 
grazing: 1.5 sheep / ha; shown are frequency distributions for demographic events; all simulations were 
run with the standard parameterisation (PS, estimated by the empirical ecologists), including 100 
repetitions with different stochastic climate rainfall time series and containing the annual data for each 
10.000 time steps. 
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Fig. 2.9: Correlation between precipitation history and demographic events. 

A), B) recruitment; C), D) mortality; A), C) No grazing; B), D) Heavy Grazing; Shown are the 
Spearman rank correlation between 9.500 data points for each demographic event with one of the given 
precipitation history parameters: Rainfall for specific years (t=t to t=-5 and running mean of t=t to t=i, 
i=-1, -2,-3,-4,-5). 
 
Tussock mortality. – Tussock mortality under grazing behaves somewhat different from 

tussock recruitment. Under No grazing the results are similar: approx. 60% of time steps show no 
mortality events, while approx. 20% show below 2% mortality. But already under low grazing of 0.5 
sheep / ha the mortality pattern is modified. Under this scenario at least some mortality occurs in 95% 
of the simulated time steps, though in most time steps mortality is low (in 71% of the cases it is below 
2%). Time steps without mortality occurred only in 5% of the simulated time steps (Fig. 2.8 E). The 
frequency of larger mortality events (>2%) is not much modified compared to No grazing (Fig. 2.8 D-
E). The shift in mortality which occurs already in 95% of the cases under Light grazing is a 
consequence of the rule that mortality may occur if a certain defoliation severity level is executed. 
This shift of the event-driven behaviour of the model system was unexpected.  

Under Heavy grazing an unexpected shift in system behaviour is observed (Fig. 2.8 F): now a 
similar pattern as for No grazing can be observed since during most time steps no mortality occurs. 
The explanation for this finding is different from that for the No grazing scenario. For the No grazing 
scenario tussock mortality occurs only under unfavourable environmental conditions, e.g. dry years. 
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During most time steps no mortality occurs. At Heavy grazing mortality occur rarely because no 
tussocks are left (they died early during the simulation) and no recruitment occurred. This indicates 
that overgrazing occurred. Constant low mortality rates were observed for intermediate stocking rates 
as 0.5 or 1.0 sheep / ha respectively. Thus the question arises, if the systematic shift from event-driven 
mortality to constant mortality or the subtle shifts in tussock recruitment would be responsible for 
changes in F. pallescens dynamics – if they occur – due to grazing. 

Correlation with precipitation history: recruitment. — Fig. 2.9 A  and Fig. 2.9 B show the 
correlations between recruitment and current and past precipitation events for No grazing and Heavy 
grazing, respectively. Both show similar patterns: Recruitment is weakly correlated with actual 
precipitation. The correlation increases subsequently until reaching the highest value at a time lag of 
t = -2. For longer time lags the correlation drops near to zero. The correlation with the running means 
of precipitation show a similar pattern. The mean between actual precipitation and that of the year 
before shows a similar correlation as that for t = -1; the highest correlation is reached for the running 
mean of the actual rainfall plus that of the two anterior years. The correlations drop consecutively for 
running means including earlier rainfalls. The correlations for Heavy grazing are in general lower than 
for No grazing. Light and Moderate grazing show similar behaviour as No grazing (data not shown). 

Correlation with precipitation history: mortality. — Fig. 2.9 C-D give the analogue 
correlations for mortality. For mortality the correlation picture changes completely: for both grazing 
scenarios, mortality is highest correlated with actual precipitation. The correlation to precipitation of 
the previous year drops already to approx. -0.1. The correlations of the running means with mortality 
are strongly dominated by the correlation with the actual time step. All correlations of running means 
have lower correlation value than that for the current time step t and drop consecutively for each added 
former rainfall. As shown for recruitment, correlations for Heavy grazing are lower with actual 
precipitation than for No grazing. Light and Moderate grazing show similar behaviour as No grazing 
(data not shown). 

 

2.4.4 How does stochastic rainfall affect the compositional state of F. pallescens and how 
is the compositional state modified by grazing? 
How is tussock density affected under the more general view including 100 different stochastic 
climates? After 10 years of grazing the simulations result show no differences between No grazing and 
Light grazing (Fig. 2.10 A). The peak density perceivable after 10 time steps is caused by the initial 
distribution (Fig. 2.10 A). ‘Moderate’ and Heavy grazing show already a slight change within the peak 
of the distribution, but it changes not qualitatively (Fig. 2.10 B). After 20 time steps the peak at TdS 
=7.8 disappears for the No grazing scenario (Fig. 2.10 C), and Light grazing shows no significant 
differences to No grazing. Moderate and Heavy grazing does not lead to significantly different tussock 
density distribution (TdS), but a few occurrences of F. pallescens cover below 20% (TdS ≤ 2.2) are 
evident, under Heavy grazing this fraction amounts more than 10% of all occurrences (Fig. 2.10 D), 
whereas at No grazing TdS does not fall below TdS ≤ 2.2.  
After 50 time steps of continuous high selective grazing strong qualitative differences are obvious 
(compare Fig. 2.10 E with F). Approximately 65% of the samples show a TdS ≤ 2.2 or cover ≤ 20% 
respectively and a strong negative effect of grazing on F. pallescens structure. ‘Moderate’ grazing 
leads to 15% of the samples with TdS below 2.2. Such a pronounced change means that negative 
structural changes have a high probability of approx. 65% to occur after 50 years, but under specific 
rainfall time series remains a probability of approx. 35% that they will not occur and thus the negative 
changes would be masked by climatic stochasticity. After 100 time steps the trend found after 50 time 
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Fig. 2.10: Frequency distribution for tussock density at different time steps after 100 stochastic climate 
repetitions. 

Shown are the frequency distributions of tussock density for 100 data points, consisting of 1 discrete 
time step repeated 100 simulations, each simulation run with a different stochastic climate (mean annual 
precipitation for the 10.000 data points MAP = 375 mm, CV = 20%, min. = 211 mm, max. = 561 mm). 
Tussock density classes á TdS = ]1.1] equal cover of 10%. A)-B): TdS after 10 years of grazing for 
stocking rates A) 0.0 and 0.5 sheep / ha respectively; B) 1.0 and 1.5 sheep / ha respectively. C)-D): TdS 
after 20 years of grazing for stocking rates C) 0.0 and 0.5 sheep / ha respectively.; D) 1.0 and 
1.5 sheep / ha respectively. E)-F): TdS after 50 years of grazing for stocking rates E) 0.0 and 0.5 
sheep / ha respectively.; F) 1.0 and 1.5 sheep / ha respectively. G)-H): TdS after 50 years of grazing for 
stocking rates G) 0.0 and 0.5 sheep / ha respectively.; H) 1.0 and 1.5 sheep / ha respectively. 
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Tab. 2.4: Mean and standard deviation for tussock density and ANPP distributions for discrete time steps. 
Given are means and standard deviations (SD) for the tussock density distributions shown in Fig. 2.10 
and ANPP frequency distribution (Fig. 2.11).  

 
steps of grazing is reinforced (Fig. 2.10 G-H): ‘Light grazing’ leads only to subtle changes of the 
F. pallescens structure, which might be difficult to detect in the field system. ‘Moderate’ grazing leads 
in more than 50% of the applied climatic sequences to a reduction of F. pallescens to a cover 
below 20%, the TdS-class ≤ 1.1 is the most frequent one, and the other TdS-classes up to TdS ≤ 7.8 are 
approx. equally distributed. Thus, the typical frequency distribution of TdS shown for the no or low 
grazing scenario is changed significantly. The Heavy grazing scenario leads to a nearly complete 
decline of F. pallescens, in more than 80% of the cases only a Festuca cover of 10% or less is 
remaining. 

After 20 years of grazing no negative impact of Heavy grazing can be detected because of the 
stochasticity of the rainfall. After 50 years of Heavy grazing however, negative impacts are clearly 
evident, but not for ‘moderate’ grazing, whereas 100 years of grazing show, that ‘moderate’ grazing 
would eventually lead to a strong reduction in F. pallescens cover and thus would not be sustainable 
on the longer term. A comparison with the single run (Fig. 2.6) shows clearly, that a long term 
sustainable stocking rate has to lie considerably lower than the first estimation of the stocking rate 1.1 
sheep / ha, which was ‘sustainable’ for the single run with a specific precipitation series. For the 
standard model parameterisation PS a sustainable stocking rate has to lie clearly below 1.0 sheep / ha. 
The shown tussock density distributions show that the model system has no stable equilibrium point, 
but would provide a stable probability distribution, which changes not over time. I expect that a higher 
number than 100 repetitions per time step would provide a normal distribution of tussock densities 
(compare Tab. 2.4).   

 

2.4.5 How does grazing affect the annual productivity of F. pallescens, considering the 
stochasticity of rainfall? 

How does the simulation model behave in relation to landscape level annual net primary 
production (ANPP), one of the key variables expressing the functioning of the ecosystem and a key 
variable also for key management? Fig. 2.11 shows the frequency distribution of ANPP for 100 
simulations with different stochastic climates averaged for 100 repetitions for the specific time steps 
t = 10, 20, 50, and 100 respectively and the four grazing levels. The picture is in general similar to the 
analogue frequency distributions of tussock density (compare with Fig. 2.10). The distribution for the 
No grazing scenario seems to be normally distributed, with a more shallow/flat distribution than for 
tussock density, indicating higher variability than tussock density. Similar to tussock density, 
pronounced changes due to grazing are perceivable after 50 years of grazing, to some extent for 
  

Time step Mean SD CV% Mean SD CV% Mean SD CV% Mean SD CV%
10 6.5 1.4 22 6.2 1.4 22 5.8 1.4 23 5.5 1.4 25
20 6.3 1.6 25 5.9 1.6 27 5.3 1.7 32 4.5 1.8 41
50 6.8 1.6 24 6.2 1.8 29 4.7 2.3 50 2.4 0.6 25

100 6.3 1.6 25 5.7 1.8 33 3.3 2.7 82 2.2 1.3 58

Time step Mean SD CV% Mean SD CV% Mean SD CV% Mean SD CV%
10 1053 295 28 1004 285 28 941 275 29 870 268 31
20 1030 325 32 963 320 33 862 323 37 721 329 46
50 1135 372 33 1031 384 37 769 431 56 382 364 95

100 1010 330 33 898 346 39 523 457 87 100 216 216

Stocking rate [sheep/ha]
Tussock density variability of frequency distribution

ANPP variability of frequency distribution
Stocking rate [sheep/ha]

0.0 0.5 1 1.5

1.510.50.0
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Fig. 2.11: Frequency distribution for annual productivity ANPP at four time steps including 100 stochastic 
climate repetitions.  

Shown are the frequency distributions of landscape level annual net primary production (ANPP) for 
F. pallescens for 100 data points per specific time step A, B: 10; C, D: 20; E, F: 50; G, H: 100 years of 
simulation. The four grazing levels are plotted. Each distribution consists out of 100 simulations, each 
run with a different stochastic climate Annual net primary productivity-classes á ANPP = ]0-
250] kg / ha.  
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moderate and clearly for Heavy grazing. The most interesting case here is ‘Moderate grazing’: after 20 
years 11% of the cases show ANPP ≤ 500 kg / ha, after 50 years this value increases to 24%, and after 
100 years to approx. 50%. ANPP ≤ 500 kg / ha is the assumed lower limit for No grazing. For No 
grazing ANPP felt below this value at maximum in 3% of the cases (see Fig. 2.11). Thus, after 50 
years, a decline in productivity will be masked by stochasticity of the precipitation time series with 
high probability, and after 100 time steps a significant decrease would be detected only with 50% 
probability. Tab. 2.4 shows the variabilities for the ANPP frequency distributions, which are in general 
higher than those for the tussock density frequency distributions. 

 

2.5 DISCUSSION  
During this Chapter 2 I presented in detail a simulation model which investigates the grazing 

effect on a dominant grass species of a semi-arid steppe. As the variability of rainfall varies strongly 
between years, the biological effects of highly variable soil water on individual plants has to be 
considered for investigating the combined effect of grazing and the highly variable rainfall on the 
dynamics of a dominant tussock grass. Additionally I investigated basic properties of the model 
dynamics responding to the following questions:  
i) What type of vegetation dynamics shows the Festuca steppe in terms of equilibrium vs. non-

equilibrium dynamics? 
ii) Does grazing alter substantially the type of dynamics found for the assumed ‘natural 

dynamics’ without grazing? 
iii) What is the effect of stochastic rainfall on the demographic processes and the compositional 

state of F. pallescens, and how are they modified by grazing? 
An analysis of the results for specific rainfall sequences reveals clear non-equilibrium 

behaviour of the model system (Fig. 2.4, 2.8). In approx. 60% of the simulated time steps, no tussock 
recruitment or no tussock mortality occurred in the scenario without grazing. Additionally most of the 
recruitment of mortality events had no strong effect on the change of tussock density. Thus, relevant 
changes occur only in one over 4 or 5 years (i).  

Grazing changes the dynamics of the assumed natural ungrazed system in two aspects: tussock 
recruitment changes gradually, so that the ‘no events’ increase slightly with ‘Light’ and ‘Moderate 
grazing’, but strongly with ‘Heavy grazing’, and the large recruitment events disappear, whereas the 
low and medium recruitment events occur more seldom (Fig. 2.8). Tussock mortality changes to a 
constant low rate of mortality, so that the term ‘event-driven’ may be applied only in parts. Larger 
mortality events (> 2%) might be event-driven by precipitation, but Heavy grazing adds a constant rate 
to the event-driven aspect (ii).  

Stochastic rainfall without grazing leads to sporadic recruitment and mortality events. (iii) The 
stochasticity of rainfall leads to an unpredictability of demographic behaviour (Fig. 2.8), and response 
variables such as tussock density (Fig. 2.10) and annual net primary production (Fig. 2.11). The 
frequencies of recruitment and mortality events are similar to distributions of exponential decay, 
whereas tussock density and simulated ANPP resemble more a normal distribution. A higher sample 
size than 100 repetitions or pooling the 100 repetitions x 100 time steps for both variables would 
provide a clearer picture.  

Grazing under the influence of 100 different stochastic climates leads to moderate to strong 
shifts within the distributions, which are perceivable only after 50 times steps, but for ‘Moderate 
grazing’ only after 100 time steps (Fig. 2.10,  Fig. 2.11) (iii). 
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2.5.1 Individual based modelling of stochastic climate and grazing 
The presented simulation model integrates stochastic rainfall and a biologically based grazing 

model on the individual plant level. Even though a number of simulation models exist, which deal 
with stochastic rainfall, plant growth and grazing (compare Introduction, section 2.1), no study exist to 
date which combines a biologically based grazing model with the individual level of plant 
representation. This approach allows integrating the interaction between precipitation and grazing and 
their effects on biological processes such as seedling survival, tussock mortality and others. The 
results presented here highlight that the approach can provide valuable insights into the process of 
interaction between stochastic climate and grazing and how natural and anthropogenic drivers lead to 
observations we are facing and want to explain. 

The presented model is a rule-based approach where several biological processes are 
formulated in an aggregated and phenomenological way, e.g. plant growth as an annual integrated 
response of individual plants to plant available soil water. Despite the rule is based on a physiological 
approach, many processes are explicitly formulated as aggregated rules because the detailed biological 
process is not yet known. An alternative approach might be to formulate such a model consequently as 
a process based model. A series of simulation models exists, which follow more the process based 
approach, emphasizing the physical details of different processes related to water dynamics, plant 
production or grazing (Riedo et al. 2000, Laio et al. 2001a, Laio et al. 2001b, Mitchell and Csillag 
2001, Parsons et al. 2001, Pierson et al. 2001, Porporato et al. 2001, Schulte 2003, Schulte et al. 2003, 
Janssen et al. 2004, compare section 2.1). But each of these models represents only parts of the 
complex interacting processes between plant available soil water, individual plants, individual grazing 
events which further interact with highly variable rainfall. A complete physically based formulation of 
the problem of my thesis would require such a high number of parameters that even a first parameter 
estimate might become extremely difficult as it would be the case for model calibration and validation. 

2.5.2 Investigation of the demographic behaviour 
Demography: Colonisation/Recruitment. – The finding that the simulation model for the 

F. pallescens dynamics shows non-equilibrium behaviour can explain the difficulties to observe 
natural regeneration of Festuca pallescens in the field (Bertiller 1996, Defossé et al. 1997a, 1997b).  
Non-equilibrium behaviour means that tussock recruitment and mortality occur sporadically. The 
chance to observe newly observed tussocks under natural conditions would be only 2/5, if one assumes 
that the expert parameter estimation is realistic. From these recruitment events, one third is nearly 
negligible, because recruitment events are of 0.5% or lower, which is equivalent to recruitments of 
maximum 6 tussocks / 100 m² (data not shown in that detail, compare Fig. 2.8). Additionally it is very 
probable that the whole area of the Festuca steppe is grazed at least with ‘moderate’ stocking rates 
(1.0 sheep / ha) or higher. Hence, recruitment would be additionally reduced due to grazing.  

Role of saplings for recruitment. — Further it is highly probable that an additional state during 
life-history of F. pallescens was identified, which has not yet been in the focus of empirical studies: 
the sapling state between seedling survival (1st year after germination), and the date a tussock can be 
considered as a fully grown tussock. There remains uncertainty regarding the age at which a recruited 
seedling reaches a size, vitality and a root system which is comparable to a fully grown tussock. 
However, it is estimated that reproduction might be reached after 2-4 years (M. Bertiller, L. 
Ghermandi, J. M. Paruelo, pers. comm.). Thus, my implemented rule for tussock recruitment after the 
third time step is a simplification, but in principle biologically realistic. The correlations between 
precipitation history and recruitment showed however that they are highest for the rainfall two years 
earlier, than the three years earlier one, as one could expect (Fig. 2.9 A-B). This result suggests that 
either the seedling survival or the survival of the one-year-old saplings are the most important for 
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tussock recruitment. But as I record the simulation results at the end of each time step, the survival of 
the germinated seedlings two years earlier may show the highest correlation with actual recruitment. 
However, it is not known, if recently recruited tussocks after 2 to 3 years reach vitality comparable to 
a tussock in the lowest vitality class and may also resist to grazing and dry years with the same 
strength. Therefore the model rules are optimistic within the time scale of 3 years until recruitment and 
recruitment might even be lower in reality. Additionally it is unknown, how sensitive saplings are to 
grazing and dry years, before they maturate.  

Mortality. — Mortality shows also an event driven behaviour (Fig. 2.4, 2.8). This was 
expected, as plant soil water related mortality threshold were implemented into the model. Surprising 
was the high negative correlation of mortality to actual rainfall (Fig. 2.9). Despite a similar result was 
expected, I expected additionally relatively high correlations to rainfall one year earlier, due to high 
mortalities which may occur after two or more years of consecutive drought. 

2.5.3 The type of vegetation dynamics the Festuca model shows 
The analysis of the demographic behaviour and the results with a specific rainfall series (Fig. 2.6) 
revealed an event-driven behaviour of the model system, but also that tussock density reacts with some 
delay to climatic variability which indicates that a certain memory lies within the system (Wiegand et 
al. 2004c). Two hypotheses may explain this finding: firstly, not only survival of seedlings is relevant, 
but also that from saplings and newly recruited tussocks, which have considerably higher survival 
probabilities than seedlings, but considerably lower ones than vital adult tussocks with vitality > 1 
(compare section before). Second, precipitation and grazing have sub lethal effects on tussock vitality. 
So a change in tussock density might occur in an unexpected time step, because during the years 
before, tussocks were weakened step by step due to grazing and/or dry years, and thus mortality events 
occur also with temporal delay. These aspects of population dynamics and episodic events are worth to 
be investigated empirically and with simulations more in detail and are treated in Chapter 5. Despite 
the found memory effects within the model, the event-driven and thus non-equilibrium character of the 
model is evident through the demographic behaviour. 

Non-equilibrum dynamics. — The concept of non-equilibrium dynamics was introduced by 
DeAngelis and Waterhouse (1987). Wiegand et al. (1995) showed with a simulation model for the 
shrub steppe in the South African Karoo the non-equilibrium dynamics of a shrub ecosystem. They 
simulated the population dynamics for five shrub species, which responded differently to precipitation. 
They included some parameters and processes which can be found also within the F. pallescens 
simulation model: ‘Age of establishment’, which is an analogy to the three seedling/sapling stages of 
F. pallescens, ‘Minimum size of safe sites’, which has an analogy with F. pallescens recruitment 
dynamics, which is less probable both close to live tussocks and within ‘large bare patches’, and ‘Rain 
thresholds for germination and seedling survival’ which exist in the F. pallescens model, too. Other 
parameters of the Wiegand et al. (1995) model concern mostly seed production, which was not 
modelled explicitly in the F. pallescens model, and life-span, which is difficult to define for tussock 
grasses (M. Bertiller, pers. comm.). Two main causes Wiegand et al. (1995) discuss which are 
responsible for event driven behaviour of the model: at first, it is the effect of highly variable rainfall 
on survival of seedlings, and additionally a relevant high number of available safe sites for 
colonisation, which have to be available during one year of favourable abiotic conditions. The 
coincidence of both independent events leads to the event-driven behaviour.  

Comparison of Karoo and Festuca steppe. — In principle one can expect that similar 
mechanism may work at the Festuca steppe. In difference to the model of Wiegand et al. (1995) is that 
F. pallescens have no defined maximum age. This is due to the impossibility to define one grass 
tussock as exact one individual (Soriano and Sala 1986). Thus, in analogy to the Karoo model, 
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recruitment events need favourable abiotic conditions to generate large recruitment events, but they 
need safe sites too. In difference to the Karoo model, F. pallescens mortality is not endogenous, but 
also triggered by precipitation (Fig. 2.4-2.6, 2.8-2.9). If a similar mechanism would underlie the 
dynamics of the Karoo and the Festuca steppe, than for natural dynamics of the Festuca steppe 
drought would provide the natural mortality of tussocks which would be necessary to create a 
sufficient high number of available safe sites for natural large recruitment events. That hypothesis 
would be interesting for further investigations. It would offer one explanation, why natural recruitment 
was not yet observed in the field (Bertiller 1992, Bertiller and Coronato 1994, Defossé et al. 1995, 
Bertiller 1996, Bertiller and Aloia 1997). 

Further Wiegand et al. (1995) proposed two concepts to distinguish ‘state’ and ‘transitions’ for 
event-driven systems: the ‘integral’ events, as e.g. tussock recruitment and tussock mortality are. They 
occur sporadically and in consequence community structure changes discontinuously, but these 
changes are essentially to the population dynamics in this semi-arid system with highly variable 
rainfall. The second concept is that of the ‘transition triggers’ which are events which are able to 
change the dynamics of the system essentially and thus lead to a different state. I identified grazing as 
an event which changes basically tussock mortality from a sporadic event to a constant event at low 
rates.  

Could this qualitative change be valued as a ‘transition trigger’ which leads to another state of 
the Festuca steppe? The low constant tussock mortality alone does not explain a transition between 
states, because the constant mortalities occur already at ‘Light grazing’ (0.5 sheep / ha), but the 
structure of F. pallescens does not change after 100 years of grazing (Fig. 2.10). I argue that the 
highest contribution to the transition from a dynamic equilibrium of sustainable Festuca cover to 
strong reduction in cover is mediated by the lack of recruitment due to Heavy grazing (1.5 sheep / ha, 
Fig. 2.4). This transition of the sporadic-event of recruitment to non-event occurs after some decades 
of heavy grazing. Thus an abrupt but non predictable lack of recruitment under heavy grazing may 
occur. Such non-event may be an irresolvable task for a range manager.  

The explanation for this finding may be sapling survival: the biological rule says, if the 
relative grazing intensity M is near to 1, sapling survival tends to zero. So, first there might be lower 
seedling survival, due to a reduced Festuca cover after a series of dry years. During the following 
years sapling survival is restricted by grazing, when the available biomass does not exceed the needed 
forage any more by a relevant factor. The biological assumptions about seedling mortality due to 
grazing and also that of reduced seedling survival at reduced Festuca cover should be investigated 
more in detail, as tussock recruitment seems to be one of the essential processes to understand Festuca 
dynamics. Wiegand et al. (1995) identified recruitment as the key process for the dynamics in the 
Karoo shrub steppe in South Africa, too. ‘Moderate grazing’ (1.0 sheep / ha) reduces tussock 
recruitment gradually. But on the long term it has the potential to change the structure of Festuca 
cover (Fig. 2.10). It would be interesting to investigate, if the change in recruitment occurs completely 
gradually or if it includes thresholds, and under which conditions thresholds might occur. 

2.5.4 The effect of stochastic rainfall on demography 
In general the effect of stochasticity on model behaviour is as could be expected from theoretical 
models (Wissel 1989). Including environmental noise leads not to a stable equilibrium, but to a long-
term stable probability distribution. Such behaviour was shown for tussock density and ANPP 
(Fig. 2.10-2.11). Instead the frequency distributions for recruitment (No grazing) showed exponential 
decay. This result is explained by the inclusion of thresholds of plant available soil water for 
colonisation and mortality. 
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Recruitment. — The event-driven behaviour of recruitment is not only explained by stochastic 
rainfall. The effect of stochastic rainfall is reinforced due to the interaction with the biology of 
F. pallescens:  I explain the sporadic occurrence of tussock recruitment events with the necessity of a 
series of at least three average or humid years, which allow a age-cohort of seedlings not only to 
survive the year of germination, but also the following sapling years. As the probability of dry years in 
this region is roughly 12 up to 20%, the probability is high that one age cohort does not survive until 
maturation.  

Mortality. — Stochastic rainfall influences tussock mortality in a similar way as recruitment: 
the inclusion of thresholds favour the event driven behaviour. One dry year may lead to mortality of 
recently recruited tussock, and additionally of other weak tussocks, which accidentally were within the 
lowest vitality class. A series of drier years, however, may weaken a high proportion of tussocks and 
lead to high mortality during the second dry year or even later. On the other hand, no mortality may 
occur during several years, if average, humid or years slightly below-average years occur.  

2.5.5 Grazing effects on Festuca dynamics 
Grazing leads to strong structural and functional changes, depending on the grazing scenario. 

‘Light grazing’ showed only small changes in comparison to No grazing (Fig. 2.8, 2.10, 2.11). 
‘Moderate grazing’ showed weak to moderate effects after 20 and 50 time steps, but strong effects 
both on structure and function after 100 time steps. ‘Moderate grazing shows one fundamental 
problem in semi-arid systems: the long time scales of change which may surpass human horizons 
(Wiegand et al. 1995, Wiegand and Milton 1996, Jeltsch et al. 1997, Weber et al. 1998, Weber et al. 
2000). ‘Heavy grazing’ shows extreme negative effects both on tussock density and productivity and 
should be qualified as heavy overgrazing. 

Grazing under stochastic rainfall leads for the standard parameterisation to threshold 
behaviour in two aspects: a grazing threshold appears to exist (Fig. 2.6), below which grazing might 
be sustainable on the long-term. Below this threshold a dynamic ‘pseudo-equilibrium’ is evident 
around which tussock density fluctuates driven by the stochastic rainfall sequence. The grazing 
threshold will be further investigated in Chapter 5.  

Regeneration threshold under constant grazing. — Additionally a regeneration threshold 
exists at approx. TdS = 2.5 (Fig. 2.6). If tussock density falls below this value, recovery of F. 
pallescens is not possible anymore. This regeneration threshold holds only for the case of constant 
grazing. I propose this threshold as a first degradation threshold for constant grazing, and I will use 
this threshold during this thesis. 

Time to recover, when grazing is stopped. — If grazing is stopped after a certain number of 
time steps, the regeneration threshold changes (Fig. 2.7). No tussock density value could be found, 
despite extinction of all tussocks, which impedes F. pallescens from recovering when grazing is 
stopped. But a relative regeneration threshold can be found (Fig. 2.7). This relative regeneration 
threshold can be expressed as the ratio between time of recovery needed to reach again a tussock 
density as the ungrazed control and the total grazing time. If this threshold lies below 1, recovery is 
shorter than the grazing time, recovery time increases linearly and is not prolonged significantly. If the 
ratio ‘time to recover / grazing duration’ changes to values > 1, this indicates that recovery time 
increases non-linearly in relation to the grazing time and the relative regeneration threshold was 
surpassed (Fig. 2.7). 

This ratio could be used as a measure for degradation in the model. If time to recover of the 
F. pallescens steppe for a specific stocking rate takes longer than grazing lasted before, the steppe 
shows severe degradation. Walker et al. (2002) proposed a time frame of up to a maximum of 200 
years as basis for an assessment if a system is degraded or not. Underlying this proposal, Fig. 2.7 tells 
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us, that for the F. pallescens steppe 80 years of grazing would lead to recovery times of 200 years. 
However, this time frame is unrealistic since already a recovery time of ~ 20 years would force a 
farmer to give up. Thus, an optimal minimum requirement would be not to surpass the ‘time of 
recover’ for the grazing intensity x grazing duration threshold, which lies at approx. 20 to 25 years at 
stocking rate = 1.1 and 30 years of grazing. For grazing management also such a value seems not to be 
realistic, and a farmer would only accept at maximum, if ever, recovery times, which naturally might 
occur after a heavy drought has reduced tussock density strongly. Such natural recovering time frames 
would be a next step to investigate.  

2.5.6 Equilibrium vs. non-equilibrium dynamic paradigm 
For nearly two decades ecologists have controversially discussed if and how resource (vegetation) and 
consumer (herbivores) are coupled and how this coupling affects dynamics of grazed semi-arid 
systems and its management (see Ellis and Swift 1988, Ellis 1994, Illius and O’Connor 1999, Illius 
and O’Connor 2000, Fuhlendorf et al. 2001, Briske et al. 2003, Archer 2004). The main disagreement 
is about the question if grazing exerts a long-term effect on vegetation or not. If resource and 
consumer are uncoupled, the consumers are expected to have no effect on the resource, but otherwise 
this would be the case (Illius and O’Connor 1999). Ellis and Swift (1988) postulated that high 
variability in precipitation may lead to uncoupled herbivore-resource dynamics and to non-equilibrium 
dynamics (Ellis and Swift 1988). As my investigations of correlations between demographic events 
and precipitation history show, this may be true for the F. pallescens only in parts (Fig. 2.9). As at 
least recruitment is correlated highest with the precipitation history two years earlier, vegetation 
dynamics may remain stronger coupled than expected, if such interactions between the biology of a 
perennial species with climate occur over several years. 

 Caughley et al. (1987) in Ellis (1994) postulated that in a semi-arid system where the 
precipitation exceeds a CV of 30% will show non-equilibrium dynamics. However, if herbivores and 
vegetation are coupled the system will show equilibrium behaviour, where grazing should lead to a 
negative linear effect on vegetation. The latter position is maintained mainly by Illius and O’Connor 
(1999). The equilibrium behaviour of a coupled system is explained by the deterministic behaviour of 
the system if herbivore saturation is reached. That means, if herbivore consumption exceeds plant 
standing crop, the system will go to extinction deterministically, otherwise the system will reach onee 
equilibrium point (van de Koppel et al. 1997). This simple theoretical models assumes no interaction 
between resource and herbivores i.e. the both interacting components have o negative on each other. 
Coupled resource-consumer models like that of Lotka (1925) and Volterra (1926), where both species 
have negative effect on each other, lead to a stable equilibrium point with damped oscillations under a 
certain threshold for the reproductive success of the resource (Wissel 1989). Above a certain threshold 
for reproduction of the resource the system becomes instable and the consumer goes extinct.  

I contribute the following results to this debate: the Festuca steppe simulation model shows 
non-equilibrium dynamics caused by episodic recruitment and mortality (Fig. 2.4 A), although 
precipitation varies only with a CV of 20%. I argue that the effect of herbivores on vegetation will 
depend on its relation to a threshold in stocking rate above which coupling of vegetation and 
herbivores occurs (see Fig. 2.6). Stocking rates below the threshold cause only a moderate reduction in 
tussock density (Fig. 2.6), and no strong effect is exerted on vegetation. I determined the threshold 
qualitatively for the Festuca steppe. 

However, if stocking rate exceeds the threshold, tussock density declines strongly at time 
scales, which are shorter if stocking rate increases (Fig. 2.6). The interpretation of this result is that 
herbivore and vegetation are coupled near herbivore saturation (van de Koppel and Rietkerk 2000). 
Herbivore saturation means that the forage consumed by livestock reaches the actual grazeable forage, 
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so that the realized relative grazing intensity (Mreal) ~ 1. At this grazing intensity the negative 
biological impact of grazing will surpass any potential recovery of F. pallescens. As a consequence 
tussock density will decline below the regeneration threshold if stocking rate is above the grazing 
threshold. The regeneration threshold ranges for the used parameterisation at tussock density TdS of 
approx. 2.5 (Fig. 2.6). Clearly this deterministic degradation due to a tight coupling between 
herbivores and vegetation occurs only because I assume that grazing has negative effects on vegetation 
such as higher tussock mortality, reduced vitality, and reduced regeneration (see further discussion 
below).  

If stocking rate is far higher than the grazing threshold, herbivore saturation is already reached 
after 20 years, and the system degrades towards a stable state of nearly complete loss of vegetation 
cover. However, such extreme degradation is outside the range of application of the model since in 
this case shrub encroachment mostly by Mulinum spinosum was observed (J. Paruelo, pers. comm., 
and own observation). We constructed our model only for at maximum moderate degradation. 

The interesting point here is that a stocking rate coinciding with threshold stocking rate at 
approx. 1.1 sheep / ha yields for the specific time series analysed only to moderately reduced tussock 
density. The difference to tussock density under No grazing would probably not be statistically 
significant. However a slight increase in stocking rate leads to degradation on the long term (Fig. 2.6).  

Fig. 2.6 shows that degradation occurs after a specific series of a combination of unfavourable 
rainfall events. This result was observed for constant stocking rates. I did not investigate natural 
herbivore dynamics. Therefore I can not decide if the variability of precipitation is sufficient to 
decouple vegetation and herbivores, but I expect that the coupling will be weaker than under a 
constant stocking rate (van de Koppel and Rietkerk 2000).  

My results clearly indicate that variability of precipitation has a negative effect on vegetation. 
However I would partially contradict the hypothesis of Illius and O’Connor (1999) that the grazing 
effect is especially severe during drought. My results indicate that reduced tussock recruitment after 
drought and under heavy grazing seems to be a more important factor. During drought grazing 
increases mortality only moderately, but in the following years recruitment fails under grazing 
(Fig. 2.4). These results are obviously related to the biological constraints included in the simulation 
model, mainly the reduced seedling survival at reduced tussock density. In humid years reduced 
sapling survival is obviously under grazing. Under heavy grazing recently recruited tussocks might be 
especially vulnerable, because they are preferred by sheep due to the low proportion of dead biomass. 
Without negative effect of drought or grazing regeneration of vegetation should be possible. Clearly, 
in some cases my study can be too optimistic because soil erosion is included only implicitly. With 
higher evaporation in larger bare soil patches, an explicit inclusion of irreversible soil erosion would 
possibly increase the negative effects, if high rainfall would follow a series of dry years. But soil 
erosion will only be important for heavy degradation which is outside of the scope of this study 

I argue that a model investigating the interaction of grazing with stochastic rainfall aimed to 
contribute to the debate about the equilibrium dynamics of semi-arid rangelands needs to include at 
least three essential characteristics: the most important factor of environmental variability (here: 
precipitation), an explicit representation of the small scale spatial processes and the biological effects 
of grazing on the resource. Neglecting one of these features, a study will fail to improve the 
understanding of or to make useful predictions on the interaction of drought and grazing.  

The modelling approach. — I included grazing as an explicit spatial process at a small scale. 
My model assumes that space is limited, i.e. herbivores are fenced in large paddocks, so tussocks have 
a certain probability of being re-grazed during one time-step. The biological constraints and the role of 
space are partly neglected in the debate concerning equilibrium dynamics in semi-arid grazing systems 
(compare Briske et al. 2003). The Festuca steppe in general is completely fenced and grazed all year 
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round. Thus, there is no buffering space available, which makes it a more vulnerable system. The 
theory of non-equilibrium dynamics developed by Ellis and Swift (1988) is based on additional 
available space to buffer lack of forage during drought. Illius and O’Connor (2000) included space in a 
simulation study. They investigated the effect of increasing resource variability in areas, which are 
accessible only during the dry season on the supported animal numbers in the presence of different 
large buffering areas, which are accessible during the wet season. They found that additional 
accessible space during the wet season increases the mean number of supported animals, but they 
neglect a possible negative biological effect of grazing on the key resource. Briske et al. (2003) 
conclude, that the question, which model applies best - the equilibrium or the non-equilibrium model – 
might be resolved only with the development of a model that accommodates both the equilibrium and 
non-equilibrium paradigm.  

The simulation model for the Festuca steppe is able to show both, equilibrium and non-
equilibrium dynamics and applies a biologically realistic grazing model. The conceptual framework of 
the model could also be applied to other semi-arid systems. I argue that existing simple theoretical 
models are not sufficient to investigate the grazing effect under highly variable rainfall. Although 
theoretical approaches may predict the stable states for simple grazing models (van de Koppel and 
Rietkerk 2000), they must fail if we want to investigate specific systems and grazing effects at 
concrete time scales.  

The consideration of the biological constraints, i.e. to estimate if grazing affects recruitment, 
mortality or other vegetation processes, is also essential and is often neglected during the equilibrium-
non-equilibrium debate. Ellis and Swift (1988) postulate, that vegetation and thus productivity is not 
negatively affected by grazing, but they give only a qualitative evaluation without evidence. Illius and 
O’Connor (2000) assume in their simulation model, that grazing has no negative effect on plant 
production. Briske et al. (2003) report, that empirical evidence is very scarce about how vegetation is 
affected by grazing in highly variable environments. In O’Connor (1994) I find the only empirical 
study which investigates the effect of grazing on distinct population processes of vegetation, but the 
time scale was too short to separate the effect of rainfall and grazing completely.  

 

2.6 SUMMARY 
During this Chapter 2 I presented in detail a simulation model which investigates the grazing 

effect on a dominant species of a semi-arid steppe. It integrates a biological plausible grazing model at 
the level of biological processes occurring at the individual plant level and the effect of plant available 
soil water at the same level as grazing. Thus, the model has the potential to separate anthropogenic 
effects (i.e. grazing) from natural effects (e.g. highly variable rainfall) from each other. I show that 
tussock recruitment and tussock mortality show event-driven behaviour which is induced and 
maintained by the highly variable rainfall. The investigations of the correlations between demographic 
behaviour and precipitation history parameters revealed that tussock recruitment is mainly related to 
precipitation two years before the actual time step, but mortality is mostly correlated with actual 
rainfall. 

Then I show that ‘moderate’ and ‘heavy’ grazing change the demographic behaviour in a 
complex manner, so that finally heavy grazing is hypothesized to be responsible for the observed 
strong reduction in Festuca cover. Heavy grazing leads to a lack of recruitment after a certain time lag 
of some 20 years, probably due to the reduced survival of seedlings and/or saplings under heavy 
grazing. I developed the hypothesis that at such point herbivore saturation is reached, were available 
and needed forage equal. In this case a deterministic tight coupling of resource and consumer occurs 
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and leads to a negative feedback response due to the possible tussock mortality due to grazing. The 
Festuca cover will decline deterministically near to extinction below the regeneration threshold. 

Thus, the results of Chapter 2 lead to a hypothesis explaining the reduction of Festuca cover 
under grazing including, which explains the causality between grazing, demographic behaviour of 
F. pallescens and the reduction in tussock density of F. pallescens. 

Conclusion. — I presented a model, which may show both equilibrium and non-equilibrium 
dynamics, depending on the biological and environmental constraints. Thus, it presents one further 
step in the understanding of long-term quantitative dynamics of the interaction between stochastic 
environment and grazing. 

 

2.7 VIEW 
In Chapter 2 I presented a simulation model, which simulates the interaction between grazing 

and stochastic precipitation on the biological relevant spatial scale – the individual level – and 
includes a biologic realistic grazing model. An analysis of the model behaviour using an expert 
parameterisation revealed event-driven behaviour of the model system, and how heavy overgrazing 
modifies the assumed natural model behaviour.  

The following Chapter 3 will explore the model behaviour under the expert estimation in more 
detail. It will present a first sensitivity analysis of the model, a qualitative comparison of field data 
with model predictions, three tests of essential model assumptions, and an analysis of annual net 
primary production (ANPP) and precipitation use efficiency under different grazing regimes. 

Chapter 3 represents to certain extend model development done previous to my thesis. 
However, this chapter does not portray the model as it was when I took over the project. I revised the 
model rules substantially and all analyses were based on the current model rules. Chapter 3 was 
submitted to ‘Ecological Applications’. For that reason I include the manuscript completely into my 
thesis. Only the formatting was adjusted to the format of the thesis. Some shorter repetitions of 
material of previous chapter occur, for example in the study site description (3.3.1) and the model 
description (3.3.2), Tab. 3.1 and Fig. 3.3. These sections are recommended to be read very roughly. 
The first author of Chapter 3 is Jose M. Paruelo and I am the second author. My contributions to this 
chapter, beside model development, are: Co-author of sections 3.1, 3.2, 3.3.2, 3.3.6, 3.4.2, the figures 
3.3, 3.6, 3.8 were produced with equal contributions by both main authors; and Tab. 3.1 was mainly 
my contribution. I estimate my contribution to the manuscript of Chapter 3 as high as approx. 25%. 



3.2 INTRODUCTION 

1 This chapter was submitted for publication in Ecological Applications as:  
Jose M. Paruelo, Sandro Pütz , Gerhard Weber, Monica Bertiller, Rodolfo A. Golluscio, Martin R. Aguiar and Thorsten Wiegand: Assessing 
the long-term dynamics of a semiarid grass steppe under stochastic climate and different grazing regimes. 
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3 ASSESSING THE LONG-TERM DYNAMICS OF A SEMIARID GRASS 
STEPPE UNDER STOCHASTIC CLIMATE AND DIFFERENT GRAZING 
REGIMES1

  
 

3.1 ABSTRACT  
To investigate the impact of small scale grazing events on vegetation dynamics at the patch 

scale, we built a grid-based spatial explicit stochastic simulation model to upscale vegetation dynamics 
to the landscape. The model simulates grazing events and basic processes like seedling establishment, 
growth or mortality of the dominant species.  Field data, generate at the same scale than the output 
variables of the model, were used to evaluate the model at the level of the predictions and to test some 
of its basic assumptions. Simulation experiments analyzed the interaction of precipitation and grazing 
regimes. 

Simulated tussock density and green biomass lies within the range defined by the extreme 
values observed in the field. Except for the heavily grazed paddock, simulated and observed values of 
the proportion of standing dead biomass per tussock were similar, ranging between 0.30 and 0.60. As 
we observed in the field, grazing increased the relative abundance of tussock with a low proportion of 
standing dead biomass. 

 Grazing generated a reduction in tussock density which results in a decline in Aboveground 
Net Primary Production (ANPP). Both variables presented a non-linear behaviour including high 
temporal variability and delay effects, which may prolong for decades. Changes in ANPP were 
minimum for winter grazing and maximum for continuous grazing and they become evident only at 
high stocking densities. Under high stock density conditions precipitation use efficiency (PUE) was 
82% lower than the values for non-grazed runs. Grazing reduced also the sensitivity of ANPP to 
interannual changes in precipitation. The variability and autocorrelation of the precipitation data had a 
significant effect on tussock density, and hence on ANPP. The interannual variability of precipitation 
was more important than the grazing regime in explaining differences in tussock density. Tussock 
density was higher and less sensitive to the grazing regime under a low-variability scenario. 

The results of the simulation model highlight some important issues regarding rangeland 
management: grazing regime might be as important as stocking density as a degradation agent, 
temporal lags might obscure degradation processes for decades, the definition of monitoring variables 
need to consider their response time constants. 
 

3.2 INTRODUCTION 
Desertification has been identified as one of the major environmental problems that arid and 

semiarid systems face at the beginning of the century (Dregne, 2002). The concept of desertification is 
used in a wide range of situations and contexts. Probably due to the widespread use of the term its 
definition has been controversial and vague (Reynolds and Stafford-Smith 2002).  The meaning of the 
term desertification becomes highly dependent on which specific aspect of the socio-economic, 
political, cultural or ecological system the analysis is focusing. In an ecological context one of the 
most useful ways to characterize these phenomena has been coined by Le Houreou (1984), who stated  
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that desertification is the reduction of the precipitation use efficiency (PUE, the ratio of net primary 
production to mean annual precipitation) of an ecosystem. Such reduction in PUE involves profound 
structural and functional changes both in the biota and the soil. Although climatic and geologic forces 
may be behind the desertification process (Oba et al. 2001, Harthey and Chong, 2002, Hillel and 
Rosenzweig 2002 ), at ecological time frames, grazing by domestic herbivores has been identified as 
the one of the major agents (Soriano and Movia 1986, Manzano et al. 2000, Paruelo and Aguiar 2003, 
Ares et al. 2003). Grazing promotes changes at different levels and on different components of the 
system. It alters the physiology of individual plants, modifying their water status, nutrient balance and 
relative growth rates. Selective grazing modifies both directly and indirectly the interactions among 
the different components of biotic community playing a key role in changing the structure of the plant 
community. The impact of grazing at the organism, population and community level scale up to the 
ecosystem, promoting changes in primary production (Oesterheld et al. 1999), species composition 
(León and Aguiar, 1985; Altesor et al. 1998) or nutrient balance (McNaughton 1990). Grazing is a 
complex process that involves a large number of individual processes: selection of a forage item at the 
species and individual plant level, herbivory in itself, trampling, etc. (Parsons and Dumont 2003). 
Each of these actions will impact differentially on individual plant, population and community 
processes.  

Since its introduction by European settlers at the beginning of the XIXth century sheep stocks 
start to rise in Patagonia, an extensive arid and semiarid area in the southern tip of South America 
(Soriano and Paruelo 1990). Livestock numbers peaked in the ‘60s and decreased since then 
(Golluscio et al. 1998).  Ecologists started to recognize signs of degradation in the steppes in the ‘50s 
(Soriano 1956b, Boelcke 1957). The grass steppes dominated by a tussock grass, Festuca pallescens 
experienced the highest changes in plant cover and physiognomy (Aguiar and Sala 1998, Bertiller and 
Bisigato 1998). Vegetation changes due to grazing by domestic herbivores lead to a steadily reduction 
of the cover of Festuca pallescens and, in the latest states of degradation, to shrub encroachment 
(León and Aguiar 1985, Bertiller et al. 1995). In grazed communities of F. pallescens, decreased 
senescence in grazed tussocks starts a positive feedback between successive grazing events. Due to the 
extremely selective defoliation regime, grazing pressure is not homogeneously distributed over the 
tussock population in a grazed area. Livestock persists on only a fraction of the total grassland 
resource maintaining distinct tussock populations side by side: heavily grazed tussocks with low 
fractions of standing dead, and almost ungrazed tussocks with high fractions of standing dead. 
Therefore, predictions of livestock impacts based on landscape level mean utilization intensity given 
by consumed over produced biomass are inappropriate, since such point model approaches ignore the 
high grazing impact on the preferred sites. Based on the particular traits of the F. pallescens grazing 
system, we hypothesize that livestock impacts on landscape level vegetation dynamics depend on the 
small-scale tussock level pattern of the grazing regime.  

Understanding how the effect of individual processes at lower levels determines the behavior 
of the systems at higher levels is a major challenge in ecology (Levin 1992) and it is critical to device 
management schemes capable to operate at the ecosystem level. The nature and the scale of the 
processes involved make the analysis of the degradation extremely difficult from a pure experimental 
approach. Difficulties arise from many unanswered methodological questions: In how many years can 
we detect the impact of a management strategy on the vegetation? Which are the variables that allow 
one for an early detection of the degradation processes? Given the spatial variability of the vegetation 
variables, how many samples need to be taken to detect grazing-induced changes? The answer to these 
questions is essential to device monitoring programs and to design management plans. This is 
especially difficult in arid and semiarid rangelands because rangeland dynamics are determined by 
complex interactions of biological processes, grazing, climate, and management which operate at 
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different temporal and spatial scales. Additionally, semiarid rangeland dynamics are characterized by 
episodic and event-driven behavior that occur in response to rare or extreme events e.g., triggered by 
stochastic rainfall (Walker 1993, Wiegand et al. 1995). As a consequence, the dynamics of many 
rangelands cannot be conceptualized using equilibrium theory (Walker 1993) and vegetation change 
may occur unpredictably over time scales much longer than most long-term studies. Because of the 
mismatch between time scales for observation and vegetation change (Wiegand et al. 1995; Wiegand 
and Milton 1996) and its inherently complex dynamics, little is known about the long-term dynamics 
of semiarid plant communities.  

With the development of powerful computers a new approach to the modelling of natural 
systems, especially for applied questions, has being adopted (e.g., Coffin and Lauenroth, 1990; 
Wiegand et al. 1995; Jeltsch et al. 1996; Wiegand and Milton 1996; Wiegand et al. 2003; Grimm and 
Railsback in press). These new models describe directly the dynamics of biological processes by 
simulating the fate of individuals or assemblages of individuals including the essential biological 
information in the form of rules rather than mathematical equations. Even with the most complex 
problems these models allow for the direct inclusion of expert knowledge (i.e. they are not necessarily 
restricted to hard data) and they do not rely on equilibrium concepts. Although there is little (long-
term) field data available on the full dynamics of arid plant communities, attributes of individual plant 
behavior are relatively easy to observe. The basic idea is therefore to incorporate the short-term 
knowledge in form of simple rules into a computer simulation model and to extrapolate from the local 
behavior of individual plants to long-term and landscape-level vegetation dynamics using time series 
of the external drivers such as rainfall. Festuca steppes are an ideal system to device such model 
because most of the biomass is concentrated in one single species, individual plants form discrete units 
(tussocks) that can be modeled as individuals, and enough information is available to define the rules 
and to parameterize the model.   

Our goal in this article was to provide a quantitative understanding of the impact of grazing 
and different scenarios of precipitation on vegetation dynamics at the scale of a Festuca pallescens 
steppe patch (10-100 hectares). The temporal scale of the analysis spans over decades and has a 
temporal resolution of one year.  Our approach is based on a simulation model. Based on the available 
knowledge on the spatially small-scale processes at the tussock level and on the controls of the 
defoliation regime, we built a grid-based spatially explicit stochastic simulation model to upscale 
vegetation dynamics to the landscape. Our model built on several studies on the effect of grazing on 
semiarid ecosystems that use rule based simulation models including stochastic rainfall (Jeltsch et al. 
1996, Wiegand and Milton, 1996, Jeltsch et al. 1997, Stephan et al. 1998, Weber et al. 1998, Weber et 
al. 2000, Weber and Jeltsch 2000, Beukes et al. 2002). We studied the long-term effects of livestock 
grazing with respect to two groups of factors: factors open to direct management (utilization intensity, 
timing of defoliation), and non-manageable factors (climatic conditions). Our study included also field 
measurements aimed to generate data at the same hierarchical level that the output variables of the 
model. Such data were used to evaluate the model at the level of the predictions and to test some of its 
basic assumptions. We analyzed the patterns generated by the model in the context of desertification 
processes. The evaluation of the model included a test of some of the assumptions of the model using 
field data, a sensitivity analysis, and the comparison of model outputs against field data. Finally, we 
performed simulation experiments to evaluate the response of the grass steppes to different climate 
and grazing scenarios.  
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3.3 METHODS 
3.3.1 Description of the study area 

Our analyses focused on the grass steppes of Festuca pallescens (“coirón blanco”) that 
characterize the Sub Andean district of the Patagonian Phytogeographic Province (Soriano 1956a, 
Paruelo et al. 1991, León et al. 1998, Paruelo et al. 2004) (Figure 3.1). They occur where mean annual 
precipitation is higher than 300 mm. As in most of Patagonia, precipitation is concentrated in winter 
(Paruelo et al. 1998). Mean temperatures are lower than 5oC, with mean monthly maximum of 10.5 oC 
(January) and mean monthly minimum of –2.2 oC in July. Winter temperatures and the distribution of 
precipitation determine an asynchrony between the wet and the growing seasons (Paruelo and Sala, 
1995, Paruelo et al. 2000). 

The Subandean district limits to the east with the shrub steppes of the Occidental district, and 
toward the west with the subantartic forests. Both the west and east boundaries correspond to a wide 
ecotone where the physiognomy of the vegetation change gradually (León and Facelli 1981, Bertiller 
et al. 1995, Jobbágy et al. 1996). Festuca grasslands are concentrated in a narrow North-south strip 
between 71o W and 71 o 30’ W that is continuous only between 43 o 30’ S and 46 o S (León et al. 1998, 
Paruelo et al. 2004 ) (Figure 3.1). Towards the north, grass steppes occurred in an intricate mosaic due 
to the complexity of the landscape (Jobbagy et al. 1996, Paruelo et al. 2004). The grass steppes have 
been defined phytosociologically as the “community of Festuca pallescens, Rhytidosperma picta and 
Lathyrus magellanicus” (Golluscio et al. 1982). The non-degraded steppes have a mean plant cover of 
64% and F. pallescens by itself accounted for by 69% of the plant cover. Total grass cover, including 
other perennial grass species represents more than 80% of the total plant cover. Overgrazing produces 
a sharp decline in Festuca cover, an increase of bare soil patches and, in advanced stages of 
degradation, the invasion of shrubs (Mulinum spinosum) and/or dwarf-shrubs (Acaena splendens) 
(León and Aguiar 1985, Bertiller et al. 1995). Such structural modifications were associated to 
changes in water dynamics, net primary production and herbivore biomass (Aguiar et al. 1996, 
Golluscio et al. 1998). A number of field studies analyzed the impact of grazing on single processes at 
the population or ecosystem level (Bertiller 1992, 1996, Bertiller and Coronato 1994, Defossé et al. 
1990, 1997a, b, Paruelo et al. 2000). 

In Festuca grasslands, standing dead biomass is not consumed by sheep, and may last in the 
tussock for several years (Soriano et al. 1976, Jobbágy and Sala 2000). As a consequence, green 
biomass located in tussocks with high fractions of standing dead biomass is protected from defoliation, 
due to the spine-like character of standing dead material. Hence, the selection of a grazing site at the 
spatial scale of a single-tussock is affected by tussock composition. Stock densities vary over the 
region according to the productivity and vegetation physiognomy of the paddocks (Golluscio et al. 
1998a).  The stock density on the Festuca grass steppes ranges from 0.4 to 1.6 sheep.ha-1. 
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Fig. 3.1: Map of the study region.  
The black areas corresponded to the Festuca 
pallescens grass steppes (Subandean district). 
Redrawn from León et al. 1998. 

 

Fig. 3.2: General view of the grass 
steppes of the Subandean 
district. 
Below: a detail with  a Festuca 
pallescens tussock. (Photo JMP). 

 

3.3.2 The model 

We built an individual-based, spatially-explicit model (COIRON) to simulate the dynamics of 
a homogeneous stand of a typical grass steppe of F. pallescens of the Subandean district in north 
western Patagonia (Figure 3.2). The model simulates the behavior of the systems during the early 
stages of the degradation processes. Our focus was on individual tussocks of F. pallescens, the 
dominant component of the system. Therefore, we did not include in the model invasive shrubs 
(Mulinum spinosum or Acaena splendens). We considered, but did not simulate explicitly the 
dynamics of preferred but scarce species of forbs and small mesophytic grasses. 

 Temporal and spatial grain.⎯The model simulates the dynamics of a homogeneous stand of 
a typical grass steppe of the Subandean district (Figure 3.2). The spatial resolution (cell-size) of the 
model is equivalent to a fully-grown individual tussock (30 x 30 cm). This is the spatial scale at which 
most of the plant processes and livestock forage decisions take place. The model has an annual time 
step but we simulated the influence of different seasonal grazing regimes by modifying the selectivity 
of herbivores. Model description is provided at three levels of detail: in the rest of this section we 
describe the conceptual model,  the equations and rules are presented in Appendix I and, finally,  the 
code is available on request (paruelo@ifeva.edu.ar or sandro.puetz@ufz.de ). 
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Fig. 3.3: Diagram of the COIRON model.  
State variables are presented in shadowed boxes (seedlings are not explicitly modeled). Non-shadowed 
boxes correspond to the different processes associated to the dynamics of the systems. Internal and 
external driving factors are represented in italics. 

 
Basic variables and states.⎯ There are three possible states for a cell (Figure 3.3). A cell can 

be empty or occupied by a live or dead tussock. A cell is still considered empty if only seedlings are 
present. A cell occupied by a live tussock is characterized by two state variables: green biomass (gb) 
and dead biomass (db) (Figure 3.3). Both fractions appear interspersed in the tussock. Tussock 
composition or structure (dfrac) denotes the fraction of standing dead db over total standing biomass 
db + gb. A tussock is characterized by a discrete level of “vitality“ (vit),  a property accounting for 
tussock‘s memory of its history, which is basically determined by the density of tillers and the amount 
of standing dead material. Both structural characteristics of the tussock will affect its ability to 
intercept radiation and then its potential primary production.  The dynamics of the state variable is 
basically controlled by plant available soil water (w) throughout its influence on the input and 
transference fluxes of matter (production, senescence). Dead biomass may last in the tussock for 
several years (Soriano et al. 1976, Jobbagy and Sala 2000). Standing green biomass is defoliated, goes 
senescent, or is carried over to the subsequent year. Standing dead biomass is carried over to the 
subsequent year or turns into litter. Litter is not considered as a state variable. For production response 
to soil water – the only resource considered – we assumed Michaelis-Menten kinetics. Potential 
production (vitality) determines the maximum production of the tussock. 

Water dynamics. ⎯ Annual rainfall is assumed to be spatially homogenous. A fixed fraction 
of annual rainfall is transformed into an annual amount of plant available soil water w. Such fraction is 
based on observed and simulated values of the ratio between transpiration and precipitation for the 
grass steppe (Paruelo et al. 2000). We generated a 100 year dataset based on the mean annual rainfall 
and variability of a typical grass-steppe site (Medialuna, Chubut). There is no carry-over of w from 
one year to another. Locally, w depends on climatic and on neighborhood effects. Neighborhood 
effects are modeled through soil water status exclusively: 1) gains of soil water in tussock sites due to 
lateral influx (absorption) from empty cells in the neighborhood, and 2) losses due to lateral efflux to 
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tussocks in the neighborhood. This redistribution of the homogeneous soil water input (precipitation) 
results in a locally heterogeneous pattern of w.  

Mortality. ⎯ Mortality occurs only for tussocks in the lowest vitality class. The probability of 
dying depends on thresholds related to soil water availability and defoliation severity.  Grasses 
reproduce exclusively from seeds, and seed distribution is considered to be spatially homogeneous 
(Bertiller 1992); seed production and distribution are not modeled explicitly. Seedling emergence 
occurs only in empty cells . Seedling mortality, emergence and recruitment probabilities depend on 
locally available soil water, and grazing.  

Grazing pressure. ⎯ We distinguish two spatial scales for the grazing process: the local or 
tussock level, and the patch or landscape unit level scales. The last scale covers the whole area 
considered, e.g. a paddock, or a part of a paddock. Grazing pressure or "utilization intensity" is defined 
as the forage need over the available forage. A fixed total annual forage need F N(kg ha-1) results from 
a fixed forage need per capita (i.e.1 kg sheep-1 day-1) and a fixed stocking rate (i.e.1 sheep ha-1). The 
total amount of available forage TF (kg ha-1) includes available forage from F. pallescens (AF)  and a 
component of other species, which are consumed with higher priority than F. pallescens (i.e. forbs and 
small grasses) , called primary forage (PF). We assumed that they contribute with 30% of total forage 
need, when F. pallescens cover is 40% or more, and its contribution is linearly reduced to 5%, when 
F. pallescens cover is 10% or less.  To calculate the forage consumed from F. pallescens, PF is 
discounted from total Forage need FN, so we get forage needed from F. pallescens. Landscape level 
mean utilization intensity M for F. pallescens then is given as   

 

M = (FN-PF) / AF        (3.1) 

Grazing process. ⎯The grazing process is considered as a sequence of local grazing events 
that continue until the total forage need has been met, available forage reach a minimum or no suitable 
cell has been found over several consecutive trials. Due to off take restrictions, green biomass might 
not be available for grazing, e.g. high proportion of tussocks with high fractions of standing dead (high 
dfrac), allowing only limited defoliation severity. A grazing event consists of the selection of a 
tussock, and its subsequent defoliation. A tussock is selected by randomly drawing a cell from any 
position on the grid. If the cell holds a tussock which has not yet been grazed down to its minimum 
residual green biomass it is accepted for grazing with probability that depends on the structure of the 
tussock (dfrac) and the mean utilization intensity. 

Under very low utilization intensity (M close to 0), grazing probability shows a close to linear 
decrease with increasing fraction of standing dead. With increasing utilization intensity M, livestock 
would increasingly accept tussocks with higher fractions of standing dead. The maximum defoliation 
severity (dsmax) a tussock can experience depends on the fraction of standing dead biomass (dfrac) 
and it is calculated only once, prior to the grazing routine. That is, dsmax is not altered during the 
grazing process.  

A tussock that has been accepted for grazing is defoliated with a local defoliation intensity 
(lc). Although initially cells are selected at random, the algorithm ensures that tussocks are not grazed 
randomly but in a highly selective way since the probability of a tussock being accepted for grazing 
(gprob) depends on its individual composition (dfrac) as well as on the overall utilization intensity 
(M). With increasing utilization intensity, the grazing probability of a tussock with a given structure 
(dfrac) increases. In addition maximum defoliation intensity of a grazing event is determined by 
tussock structure.  

Grazing regimes. ⎯To simulate different grazing regimes in a more realistic way, we 
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introduced different grazing regimes according to the seasonality of the defoliation: continuous year 
round grazing (a) or all forage needed is consumed in spring (b), summer-fall (c), or winter (d). 
Because the time step of the model is one year, grazing seasonality was simulated trough its influence 
on dfrac and hence on the probability of a tussock of being grazed (gprob). The low availability of 
forage items of high quality and the relatively softer structure of the tussock when the dead material is 
wet determines the seasonal changes in selectivity (Paruelo et al. 1993). As a consequence the highest 
selectivity occurs in spring or when the paddock is grazed continuously, i.e. the influence of dead 
fraction is higher than in other seasons. 

Table 1 summarizes the parameters of the model and the values used in the simulations. 
Further details on the parameters and the specific rules and equations of the model are provided in 
Appendix I. Parameter values were derived or estimated from the literature, unpublished data and the 
opinion of experienced local ecologists and range scientists. This version of the model, then, has been 
parameterized without indirect calibration using the field patterns of the output variables. The structure 
of the model formalizes and integrates a set of hypotheses on the dynamics of the systems. Such 
hypotheses have a variable degree of empirical support. To evaluate the model, we tested critical 
assumptions of the model, we performed sensitivity analysis varying the level of 14 groups of 
parameters, and we compared model outputs against field data. 

3.3.3 Field studies 

We conducted field studies a) to compare field data with model outputs, and b) to test some 
model assumptions. We selected 16 grazed paddocks in 5 private ranches and 3 exclosures distributed 
across the Subandean district. We had, then, estimates of 6 sites, one ungrazed with 3 replicates 
(exclosures) and 5 grazed with a variable number of replicates (1 to 5 paddocks). All paddocks 
corresponded to intermediate levels of degradation of the steppe according to the floristic criteria 
defined by León and Aguiar (1985). Extremely degraded paddock were excluded from the analysis 
because F. pallescens is not longer the dominant species (León and Aguiar 1985). Reliable estimates 
of long-term stock densities are very difficult to derive because of the lack of good records at the 
ranches. Additionally, the effective stock density varied spatially and it is impossible to assess such 
heterogeneity in large paddocks (more than 2500 ha). In an environmentally (soil, aspect, slope) 
homogeneous area of each paddock, we randomly placed three 30 m-long transects. On each transect, 
we measured, every three meters, the distance to the closest F.  pallescens tussock. From the average 
distances of each transect, we derived an estimate of tussock density as (Mateucci and Colman, 1982): 

 
Density (tussock.m-2) = (distance (m) . 2 ) 2) -1       (3.2) 

• On each of the target tussocks we recorded the following attributes: 
• Basal perimeter (cm) 
• Height of the vegetative portion (excluding panicles) (cm) 
• Proportion of standing dead biomass in the tussock (dfrac) 
• Defoliation (0, no defoliated; 1, slightly defoliated; 2, intermediately defoliated;  and 

3, intensely defoliated) (See Golluscio et al. 1998b) 
• “Vitality” (0, a dead tussock 1, low; 2; medium; and 3 high vitality and 4, very high 

vitality). Such categorical variable represents a qualitative assessment of the potential 
productivity of the tussock. 

 
We harvested 30% of the tussocks recorded and we determined in the lab the weight (oven 

dried at 70oC) of the green and standing dead fractions. From the original data, we calculated the 
diameter (cm) and the total volume of the tussock (= π . (diameter/2)2 .height / 3, assuming a coned-
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shape tussock). Multiplying the total volume times dfrac,  we obtained the forage volume. A subset of 
the recorded individuals were harvested and used to calculate the biomass density of the tussock (g.cm-

3). The product of the biomass density and the forage volume generates an estimate of the green 
biomass per tussock. Observations were performed during the growing season (September to April).  

On a subset of the sites, we estimated the fraction of the photosynthetically active radiation 
intercepted (fPAR) by the tussock. It was assessed using the Normalized Difference Vegetation Index, 
a spectral index derived from the reflectance in the red and infrared band (NDVI = (IR-R)/ (IR+R)). 
Many studies (i.e Asrar et al. 1984, Sellers et al. 1992) showed that NDVI is a linear estimator of 
fPAR, even in the presence of dead material (Di Bella et al. 2004). Monteith (1981) showed that the 
product of fPAR and PAR, the intercepted PAR (IPAR) is the main determinant of productivity. Based 
on this rationale, we used the NDVI as a linear estimator of the potential productivity of the tussock 
and hence as an alternative way to estimate the vitality of the tussock. We measured the reflectance of 
two or three portions of aprox. 50 cm2 on each tussock and we averaged them. We used a hand-held 
radiometer SKYE that measured reflectance in 650 nm (red) and 789 nm (near infra-red).  

3.3.4 Comparison of the field patterns and model outputs 

We based the comparison between field data and simulation outputs on three attributes: 
tussock density (m-2), tussock green biomass (g tussock-1) and the proportion of standing dead material 
of the tussock (dfrac). Comparisons were performed at similar spatial scales; field and simulated 
estimates were averages of several plots representing an area of c.a. 1500 m2. We generated with the 
model an estimate of each of the variables every 10 years and we averaged the values for decades 6 to 
10. Simulations were performed for three of stocking density that covered the range observed in the 
ranches studied (0, 0.9 and 1.5 sheep.ha-1) and for 100 years. The field data were summarized at the 
level of individual ranches (n=6). Standard errors were calculated over the paddocks analyzed per 
ranch. In one of the ranches only one paddock was surveyed. Because of the high spatial variability of 
the effective stocking density within a paddock it is difficult to assign a unique value to each field plot. 

3.3.5 Testing model assumptions 

We used field data to test three essential assumptions of the model. 1. The amount of dead 
material decreases as grazing pressure increases,  2. The degree of consumption of individual tussocks 
and its spatial variability decrease as the percentage of dead material of the tussock (dfrac) increases, 
and,  3. The vitality index is a reliable estimator of the potential productivity of a tussock. The dead 
material of the tussock corresponds to senescent biomass accumulated during previous growing 
seasons (Soriano et al. 1976). As a consequence, dfrac reflects pre-grazing event conditions. To test 
the last assumption, we generated (for the average precipitation conditions of the sampled Festuca 
steppes), values of biomass production per tussock using the equation included in the model (see 
Appendix I). We estimated tussock production from peak biomass (Sala and Austin 2000) and from 
NDVI data. We averaged tussock production for each vitality class (n = 570). 

3.3.6 Sensitivity analyses 

We analyzed the sensitivity of three key output variables of the model (tussock density, green 
production and average fraction of dead material per tussock) to changes in the parameter values. We 
grouped the parameters into 14 classes (table 1) because many of them only may vary simultaneously.  
Each class was associated to a particular ecological process simulated by the model.  Grouping the 
parameters reduced the numbers of runs and simplified the sensitivity analysis without loosing much 
information. 

We defined a lower (LV) and upper value (UV) for each parameter within a group (Table 1). 
Such definition was based on our best knowledge of the possible variation of the parameters because 
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of the lack of information on the probability distribution of each parameter.  Each of the 14 groups of 
parameter was modified in the same direction in each of the runs.  We performed, for the same initial 
conditions and climate scenario, 214 runs. We investigated the relative main effect  (RME) of each 
parameter class on each of the three output variables (tussock density, green production and average 
fraction of dead material per tussock). The RME was calculated as the difference between the sum of 
the values of the output variable for runs with the LV (-1) and UP (1), divided by the sum of the output 
variable for the whole set of runs (Paruelo and Sala, 1995). 

3.3.7 Modeling experiments 

To understand the dynamics of the grass steppe we designed modeling experiments based on 5 
climatic scenarios and 32 management scenarios. The 5 climatic scenarios were built on a series of 
mean annual precipitation (MAP) generated from a MAP=375 mm and  a coefficient of variation (CV) 
=20%. Such series represented the typical mean and variability of a grass steppe site (Jobbágy et al. 
1995). The original data were re-arranged in order to generate two periodic scenarios, one having a 
period of 10 years (C10) and the other of  20 years (C20),with a higher autocorrelation than the 
original data.  Two additional scenarios differed in the inter-annual variability. One of them, “high 
variability”, was generated by removing from the series the years with MAP close to the average, and 
the other, “low variability”, by removing extreme years. For the high variability scenario the CV was 
28% and for the low variability scenario 8%.  Every scenario had the same MAP (375 mm). The 
management scenarios derived from combining stocking densities and grazing seasonality. For three 
ranches we collected data on the long-term stocking density of 22 paddocks. The average size of the 
paddocks was 2571 ha, ranging from 555 ha and 7443 ha. Mean stocking density was 0.75 sheep.ha-1, 
ranging from 0.29 to 1.58 sheep.ha-1 (CV = 48%).  Based on the observed data, we defined 4 stocking 
density scenarios, from 0 up to 1.5 sheep.ha-1.  According to the information available for the area on 
grazing management (Golluscio et al. 1998), we defined 4 scenarios of seasonality: continuous, 
winter, spring and summer/fall grazing. 
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3.4 RESULTS 
3.4.1 Testing model assumptions  

The fraction of standing dead material of a tussock (dfrac) differed between grazed and 
excluded areas (p<0.05) (assumption 1: the amount of dead material decreases as grazing pressure 
increases,) (Figure 3.4, inset).  
In average more than 50% of a tussock in an excluded area corresponded to standing dead material. 
Most of the tussocks in excluded areas were concentrated in the 60-80% dfrac class while they were 
concentrated in the 40-60% dfrac class in grazed areas (Figure 3.4). Our data support the relationship 
between sheep preference and plant structure incorporated in the model: the degree of consumption of 
individual tussocks and its spatial variability decreases as the percentage of dead material of the 
tussock (dfrac) increases (assumption 2) (Figure 3.5). The consumption level and the frequency of 
defoliated tussock decreased as the proportion of standing dead material (dfrac) increased. The 
relationship based on the individual tussocks (n=480) showed also a significant negative relationship 
between the consumption level and dfrac (r=-0.37, F=61, p<0.01). Dead material estimates 
corresponded to pre-grazing conditions. The relative variability of the degree of consumption 
decreased as the grazing pressure increased (assumption 2) (Figure 3.6a). At low grazing pressures 
(low mean degree of consumption) highly defoliated tussocks coexist with no-defoliated plants. As the 
mean degree of consumption of a patch increases, the proportion of grazed tussock and the intensity of 
the defoliation of each tussock increases, reducing the variance among tussocks. The model (using the 
standard parameterization Table 1) was able to simulate the same exponential decline in variability as 
the proportion of the biomass consumed augmented (Figure 3.6b). The magnitude of the CV was 
similar between simulated and field data. Although they were completely independent, field and 
model estimates showed a similar relationship between productivity and vitality with a maximum 
around 25 g. tussock-1  for vitality class 4 (assumption 3: The vitality index is a reliable estimator of 
the potential productivity of a tussock) (Figure 3.7). NDVI, an independent estimate of light 
interception and hence carbon gains showed also a positive relationship with tussock vitality 
(Figure 3.7).  

Fig. 3.4: Relative frequency of F. pallescens tussocks corresponding to different structural classes  
Shown are the tussock distributions (proportions) over dfrac (proportion of dead biomass over total 
biomass) for grazed (GR, n=90) and ungrazed (exclosures, EX, n=480) areas. The inset graph showed 
the average dfrac (as %) for ungrazed (exclosures, EX) and 5 different grazed paddocks (GR). The lines 
on top of the bars correspond to the standard errors. 



3 ASSESSING THE LONG-TERM DYNAMICS OF A SEMIARID GRASS STEPPE UNDER STOCHASTIC CLIMATE 
AND DIFFERENT GRAZING REGIMES 

 58

Fig. 3.5: Average consumption level and proportion of tussocks defoliated. 
Consumption level: (0= ungrazed, 3 = all the tillers defoliated) for different classes of percentage of 
dead biomass per tussock (dfrac). 

 

 
Fig. 3.6: Relationship between the degree of consumption per paddock and the coefficient of variation of 

the degree of consumption among tussocks 
CV: (STD/mean) ; (a). field measurements, (b) model runs for stocking densities ranging from 0.3 to 
1.5 sheep/ha. 
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Fig. 3.7: Average tussock production per vitality class. 

Average tussock production per vitality class was derived from model equation (squares) and field data 
(peak biomass, diamonds) (n = 570). Triangles represent the NDVI recorded on 216 tussocks. Vitality 
was assessed visually. 

 

3.4.2 Sensitivity analysis 

Only six of the 14 groups of parameters have a relative mean effect on the output variables 
higher than 10%. The model was particularly sensitive to those parameters related to water inputs 
(Figure 3.8). The relative mean effect (RME) of the fraction of the precipitation available for plants 
(WI.1 ) on tussock density was 0.38. The rain factor parameter WI.1 (parameter group 1) represents the 
proportion of the incoming water transpired by the vegetation. Our estimates (0.57, Table 1) are well 
supported on the local data provided by the literature (Paruelo et al. 1998, 2000).  

Changes in the water redistribution parameters (group 2) had a larger effect on tussock 
production than on dfrac or tussock density. There is no data available to support directly the values 
used, but data on root lateral spread of Patagonian grasses (Soriano et al. 1987) and experiments on 
water competition in the steppe (Aguiar et al. 1992) suggest that the values assumed were reasonable. 
Plant growth parameters (group 4) had a high effect on tussock production (RME= 0.30) but no 
substantial influence on the other two output variables. A differential sensitivity of output variables 
was also evident for the colonization parameters pertaining to group 8.  The rate of senescence and 
littering (group 6) had an important impact only of dfrac (RME = 0.10).  The group of parameters that 
include the water thresholds for vitality-class change of a tussock (group 10) had a large effect on 
tussock density and on tussock production (RME= 0.27 and 0.25 respectively) and a lower but still 
high impact on dfrac (RME = 0.15). The parameters related to the effect of water availability on 
mortality rate (group 12) had a large impact on the tussock density and dfrac (⏐RME⏐ >  0.23) and a 
lower but strong impact (⏐RME⏐= 0.10) on tussock production. The large influence of this group of 
parameters was probably associated to the broad range of values used in the analysis. For two of them, 
the upper value was one order of magnitude higher than the lowest value and for the remaining two the 
upper value was almost twice the lowest value.  The influence of the parameters related to the grazing 
and the colonization routines was relatively minor within the range of values studied (Figure 3.8). 
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Fig. 3.8: Relative main effect of 14 groups of parameters on three output variables of the model. 
Tussock density, tussock production and the fraction of dead biomass per tussock (dfrac). 
Parameter groups are defined in Tab. 3.1. 



3.4 RESULTS 

 61

Tab. 3.1: List of the parameters of the COIRON model.  
Parameters are grouped according to the processes they influence directly. The column value corresponds to the most reasonable values derived from the literature 
and from expert opinion. The last two columns correspond to the estimated upper and lower boundary for each parameter. These values were used in the sensitivity 
analysis.  

Param
eters,  

Units Processes (bold) and explanation of parameters Typical value Parameter 
group for 
sensitivity 
analysis 

Lower 
level 

Upper 
level 

Water Inputs (WI) 
WI.1 - Fraction of annual global rainfall which represents an input to plant available 

soil water w 
0.57 1. W Inputs 0.40 0.74 

Water Redistribution (WR) 
WR.1 water (mm / cm²) Fixed amount of lateral soil water loss of a empty cell or a dead tussock due 

to water uptake from a neighbouring live tussock cell 
5  2. W Dis1 1 20 

WR.2 water (mm / cm²) For empty cells in “large bare patches” only; fixed amount of soil water loss, 
for each empty neighbouring cell unaffected by lateral roots 

20  3. W Dis2 10 30 

Plant growth (PG) 
PG.1 green biomass / cell area . 

year  (g DM / 0.09 m² y) 
Annual net primary production (dry matter, DM) of a live tussock with 
vitality =1 (vit = 1) and year 

150 4. Prod 1 105 195 

PG.2 green biomass / cell area . 
year  (g DM / 0.09 m² y)  

Annual production increment of gb per unit increment of vitality > 1 and time 
step t 

50 4. Prod 1 35 65 

PG.3 water (mm / cm²) Constant of Michaelis-Menten equation for plant production: Indicates soil 
water status which enables half of maximum plant production (equation 1) 

55  5. Prod 2 38 72 

PG.4 % Fixed % annual rate of senescence of green biomass left over after grazing 60  6. Sen  40 80 
PG.5 % Fixed % annual rate of littering of dead biomass both from live and dead 

tussocks 
 

40 6. Sen  20 60 

Grazing (GR) 
GR.1 Sheep / area  

(n / ha) 
Stocking density: number of sheep (n) per hectare; experimental parameter  0.5 Experiment 0.0 2.0 

GR.2 green biomass / day 
(g DM / d) 

Daily (d) forage need in green biomass (DM) per head 1000 Fixed fix fix 

GR.3 - Fraction of dfrac, at which tussock is completely rejected from livestock.  
The parameter is related to the calculation of maximum defoliation severity 
(dsmax) as a function of a tussocks relative amount of dead biomass (dfrac).  

0.95 7. Def max 0.95 0.99 

GR.4 - Shape parameter of equation (19): Determines shape of defoliation severity ds  
as a function of dfrac;  Defines impact of increasing dfrac on ds 

0.5 7. Def max 0.3 0.7 

GR.5i - Seasonal shift of the effect of tussock structure dfrac on grazing acceptance GR.5a = 1.0 Fixed fix fix 
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probability gprob; Alters the probability of a tussock to be accepted for 
grazing, which is a function of dfrac and grazing season (eqn. 22);  
GR.5 = 1.0 for continuous grazing (a); 1.5 for spring grazing (b); 0.6 for 
summer and autumn grazing (c); 0.3 for winter grazing (d). 

GR.5b = 1.5 
GR.5c = 0.6 
GR.5d = 0.3 

Colonization (CO) 
CO.1 water (mm / cm²) Minimum soil water for emergence 200  8. Col W 140 260 
CO.2 - Probability (prob.) of emergence at cover > 40 % if soil water w > CO.1 0.3 8. Col W 0.1 0.5 
CO.3 water (mm / cm²) Soil water for survival of first year seedlings 170  8. Col W 119 221 
CO.4 water (mm / cm²) Soil water for survival of second year seedlings 140  8. Col W 98 182 
CO.5 % Minimum F. pallescens cover for maximum emergence and survival 

probabilities. 
40 9. Col D 20 60 

CO.6 - Survival prob. for seedling 1st and 2nd year if soil water w > CO.3 and w >  
CO.4 respectively 

0.9 9. Col D 0.7 0.99 

Vitality dynamics (VD) 
Water thresholds 

VD.1 water (mm / cm²) w threshold for transition of vit = 1 → vit = 2 
 

200 10. Vit Wat 140 260 

VD.2      water (mm / cm²) w threshold for transition of vit = 2 → vit = 3 or vit 3 → vit = 4 250 10. Vit Wat 175 325 
VD.3      water (mm / cm²) w threshold for transition of vit = 4 →   vit = 3 260 10. Vit Wat 182 338 

VD.4 water (mm / cm²) w threshold for transition of vit = 3 → vit = 2 or vit = 2→  vit = 1 200 10. Vit Wat 140 260 
Defoliation severity threshold 

VD.5 - Minimum relative defoliation severity threshold for tussock transition vit n→  
vit n-1 

0.5 11. Vit Def 0.3 0.7 

VD.6 - Prob. of grazing induced vitality transition 0.8 11. Vit Def 0.6 0.99 
Mortality (MO) 

MO.1 water (mm / cm²) water threshold 1: combined with MO.3 180 12. Mort wat 126 234 
MO.2 water (mm / cm²) water threshold 2: combined with MO.4 200 12. Mort wat 140 260 
MO.3 - prob. of mortality if w < MO.1  0.2 12. Mort wat 0.05 0.4 
MO.4 - prob. of mortality if MO.1 <= w < MO.2 0.1 12. Mort wat 0.01 0.2 
MO.5 - Relative defoliation severity (ds) threshold for grazing induced mortality 

(only for vit = 1): combined with MO.6 
0.6 13. Mort def 0.4 0.99 

MO.6 - prob. of mortality if defoliation severity > MO.5 0.05 13. Mort def 0.01 0.1 
Primary forage (PF) 

PF.1 % Minimum relative amount forage provided by other items 5 14. Prim.for 0 5 
PF.2 % Increment in per cent for PF.1 per % cov increment of F. pallescens  0.83 14. Prim.for 0 0.83 
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3.4.3 Comparison of field patterns and model outputs 

The tussock density simulated by the model covered the range defined by the extreme values 
observed in the field (0.39 and 7.20 tussocks m-2) (Figure 3.9a). Tussock green biomass simulated by 
the model laid within the range of observed average values per ranch (Figure 3.9b). The simulated 
green biomass was slightly lower than the values measured in the field data. Simulated plots were 
much less variable than the sites surveyed. Observed biomass per tussock was more variable among 
plots than the simulated values. The indirect approach used to generate field estimates may be 
responsible of their high spatial variability. Except for the heavily grazed paddock, simulated and 
observed values of dfrac (the proportion of standing dead biomass per tussock) were similar, ranging 
between 0.30 and 0.60 (Figure 3.9c). As we observed in the field, grazing increased the relative 
abundance of tussock with low dfrac.  

 
Fig. 3.9: Field and simulated data for Tussock density, tussock green biomass and the fraction of dead 

biomass per tussock. 
Field data in 6 sites corresponded to private ranches. One ungrazed (EX) (black bar) and the other five 
grazed (GR) with different stocking densities (white bars), and from model outputs (gray bars) for 3 
stocking densities (0, 0.9 and 1.5 sheep.ha-1).The lines on top of the bars correspond to the standard 
error. 
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3.4.4 Simulation experiments 

Long term simulation of the dynamics of the Festuca pallescens steppe showed that the 
structural and functional attributes simulated are highly variable in time regardless of the grazing 
management or the stock density (Figure 3.10). Grazing generate a reduction in tussock density 
(Figure 3.10a). Under non-grazing conditions the 10-year mean tussock density varied between 4 and 
9 tussocks m-2 (Figure 3.10a). There was a clear delayed effect of grazing on tussock density (Figure 
3.10a). After 10 years of grazing, even under the high selectivity regime (continuous grazing), the 
differences among stock density scenarios were small. ). The proportion of grazed tussocks varied 
through time for a particular grazing scenario.The magnitude of the differences differed through time 
and can become minimum after a sequence of good years (decades 6 and 7, Figure 3.10a, b). For 
moderate stocking densities, it ranged between 22 and 44%.  As grazing increased, up to 100% of the 
tussocks were grazed.  It took, though, 20 years to achieve such proportion of grazed tussock under the 
more selective scenarios (Figure 3.10b). Grazing modified the structure of the steppe by reducing the 
amount of dead material per tussock (dfrac) and the spatial variability of this attribute.  
 
 

 
Fig. 3.10: Ten-year average values of simulated tussock density. 

(a), fraction of grazed tussock per grid (b), proportion of dead biomass per tussock (dfrac)(c) and 
standard deviation of dfrac (d). Simulations were performed for the ungrazed (NG) and continuous 
grazing (CG) conditions, at 3 different stock densities, 0, 0.9 and 1.5 sheep.ha-1 and for winter grazing 
(WG) at 1.5 sheep.ha-1. The climate scenario was the control. 
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Fig. 3.11: Average Aboveground Net Primary Production for different stocking densities and grazing 

systems. 
ANPP is shown for the last decade of the simulation for the grazing scenarios continuos vs. winter 
grazing. The climate scenario was the control. 

 

 
Fig. 3.12: Simulated Aboveground Net Primary Production as a function of current year precipitation. 

ANPP is shown for different stocking densities (NG: ungrazed, 0.9 and 1.5 sheep.ha-1). 

The proportion of dead biomass per tussock (dfrac) was less variable among years than tussock 
density, ranging from 0.53 and 0.62 (Figure 3.10c). The spatial variability of dfrac (standard 
deviation) varied between 0.03 and 0.11 (Figure 3.10d).  The temporal CV of the average potential 
productivity (vitality) of the tussocks was 11% (data not shown 

 The reduction in tussock density by grazing (Figure 3.10a) resulted in a decline in ANPP 
(Figure 11). Tussock density explained 82% of the inter-annual variability in aboveground net primary 
production (ANPP). ANPP showed a temporal coefficient of variation of 23% (data not shown) with 
extremes values of 1561 and 456 kg.ha-1. Under non-grazing conditions the precipitation use 
efficiency (PUE) averaged 0.35 g.m-2.mm-1. Differences in ANPP among grazing regimes become 
evident only at high stocking densities (>0.9 sheep.ha-1). The changes were minimum for winter 
grazing and maximum for continuous grazing, reflecting changes in selectivity. Under high stock 
density conditions precipitation use efficiency (PUE) was 82% lower than the values for non-grazed 
runs (0.055 g.m-2.mm-1). Grazing reduced also the  
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Fig. 3.13: Simulated tussock density as a function of the stocking density. 

Shown are two grazing systems: (a) winter grazing, and (b) continuous grazing  for five climate 
scenarios: control, 10 year period cycle (C10), 20 year period cycle (C20), low interannual variability 
(LV) and high interannual variability (HV). 

 
sensitivity of ANPP to inter-annual changes in  precipitation (Figure 3.12). The slope of the 
relationship between simulated ANPP and PPT was 0.35 g.m-2.mm-1 for non-grazed conditions and 
0.16 g.m-2.mm-1 for the grazed with a stock density of 0.9 sheep.ha-1. Stochastic and delayed effects 
incorporated into the models determined that less than 20% of the inter-annual variability of ANPP 
was explained by current year precipitation under non-grazing conditions (Figure 3.12). The 
precipitation from the two previous years accounted for a substantial portion of the unexplained 
variance (an additional 19%). For high grazing pressures (1.5 sheep.ha-1) the system became 
insensitive to changes in annual precipitation (Figure 3.12). The variability and autocorrelation of the 
precipitation data had a significant effect on tussock density, and hence on ANPP. The inter-annual 
variability of precipitation was more important than the grazing regime in explaining differences in 
tussock density (Figure 3.13). Tussock density was higher and less sensitive to the grazing regime 
under a low-variability scenario (Figure 3.13 a,b). The autocorrelation of the precipitation data 
increased the sensitivity of the system to high stock densities under winter grazing (Figure 3.13b). 
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 3.5 DISCUSSION 
Long-term dynamic of semiarid plant communities are often inherently complex because they 

may exhibit non-equilibrium dynamics where nonlinear processes (Westoby et al. 1989) and stochastic 
event-driven behavior (Walker 1993; Wiegand et al. 1995; Jeltsch et al. 1999) are involved. Our model 
results confirmed these findings. Moreover, we found that the structure of the Festuca steppe may be 
highly variable in time. This characteristic of the system makes difficult the evaluation of model 
performance using observed data because the initial conditions and the variability of the driving forces 
of the system (stock density, grazing seasonality, etc.) are difficult to assess. This sets logistic limits to 
a formal evaluation of the model at the level of the predictions, particularly if it is not possible to 
reconstruct the management history of the field plots. An additional difficulty arises because temporal 
and spatial scales in semiarid plant communities may not be well separated, but complex interactions 
occur across scales. For example, degradation due to grazing is a process which operates on the small 
spatial scale of individual plants and at the small temporal scale of defoliation events, but it becomes 
visible only at larger, say paddock, scales and at larger time scales of often decades. Similarly, driving 
events such as large recruitment events may change the structure and composition of the plant 
community rapidly but once large cohorts of non-palatable plants are established they may 
persist for decades (Wiegand and Milton 1996).  

3.5.1 Our modelling approach 

Models with applied orientation aimed to assess the long-term dynamics of semiarid plant 
communities and the impact of grazing need to include a considerable degree of detail to be 
meaningful. Although spatially explicit and individual-based simulation models are ideally suited to 
include the level of detail necessary to respond to these questions, they have been heavily criticized 
(DeAngelis and Mooij 2003; Wiegand et al. 2003). The main reasons are an inherent lack and 
uncertainty of data, the complexity of realistic simulation models which hinders a thorough model 
understanding and analysis, problems of error propagation, and the problem that it is because it is 
often not clear a priori which mechanistic details are relevant and which details can be safely 
abstracted. Appropriate methods to overcome these difficulties have only been recently developed 
(e.g., Wiegand et al. 2003, 2004a). In model construction and analysis we followed such a method, 
termed pattern-oriented modelling (Grimm et al. 1996; Wiegand et al. 2003, 2004a), which enabled us 
to handle and analyse our relatively complex simulation model, and to include many kinds of 
information.  

The first essentially ingredient of our approach was that we constructed our model on a spatial 
scale (i.e., the scale of individual tufts) which facilitated direct and easy comparison with field 
observations. This had two advantages: first, because the unit of the model was also the unit of 
observation we could transform our knowledge directly as rules into the model, and second, we could 
basically measure the same variable we measured in the field. The second essentially ingredient of our 
approach was that we compared the model against multiple field data. This is especially important to 
assure that the model performance is reasonable. While it might be relatively simple to reproduce one 
feature of a system (e.g., tussock density) with a number of substantially different models versions, the 
simultaneous agreement with multiple data each describing a different key-features of the system is by 
far non-trivial (e.g., Kendall et al. 1999; Railsback and Harvey 2002; Wiegand et al. 2003, 2004 a). 
Because the initial conditions and the variability of the driving forces of the Festuca system (stock 
density, grazing seasonality, etc.) are difficult to access and because the simulated structure of the 
Festuca steppe was highly variable in time we performed qualitative model evaluations which are one 
of few alternatives under such circumstances. The model showed in general good qualitative 
agreement with field observations. For example, simulated values of tussock density, tussock biomass 
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and dfrac for the range of stock densities, where within the range of field observations (Figure 3.9) 
and the spatial variability of the estimates was similar between simulated and observed data. 
Interestingly, the relationship between the relative variability among the degree of consumption of 
individual tussock and the measure of grazing pressure was similar for both simulated and observed 
data (Figure 3.6). The changes in tussock density and primary production associated with grazing 
matched the trends reported in the literature (León and Aguiar, 1985, Aguiar et al. 1996). The third 
essential element of our approach was performance of a sensitivity analysis to find critical model 
processes and parameters which deserve further field studies and to assure that the simulated dynamics 
of the model did not critically depend on the model parameterization. The model showed a moderate 
sensitivity (less than 40% of relative main effect) to changes in the parameter values within a plausible 
range (Figure 3.8). Such analyses indicated that, given the present structure of the model, the 
parameters related to water use efficiency and the effect of water on the potential production and 
mortality of a tussock had the largest influence on the outputs of the model. Field experiments 
focusing on the influence of water availability on actual and potential productivity at the tussock level 
and on plant mortality will certainly contribute to improve the model throughout a better definition of 
the parameters. Such experiments should be based on generating a broad range of water availability 
using watered plots and rainout shelters (see Yadhjian and Sala 2002) We found that the behaviour of 
our model was surprisingly stable and even the initial parameter estimates yielded reasonable model 
behaviour. This shows that our model indeed captures “the essence” of the dynamics of the Festuca 
steppe in a robust way. Once gained confidence in the model, we performed simulation experiments to 
address our specific questions. The approach taken in this study can be widely applied for 
investigating long-term rangeland dynamics and for assessing implications of different management 
regimes under unpredictable rainfall.  

 Despite its ability to reproduce observed field patterns, the model has some 
shortcomings. One of them is that it does not consider the dynamics of shrub encroachment described 
for the area (León and Aguiar 1985, Bertiller et al. 1995). The model only simulates the early states of 
degradation by grazing, which can be observed in the field. An additional shortcoming is the absence 
of explicit simulation of erosion processes. Erosion alters water redistribution and dynamcis, and it 
also constrains recruitment processes (Defossé et al. 1997a,b). To investigating later stages of 
degradation the mechanisms of shrub encroachment and erosion need to be explicitly incorporated into 
the model. This however, requires collection of more experimental data to gain a better understanding 
of these mechanisms. 

3.5.2 The long-term dynamics of the Festuca steppe 

The long-term simulations of the dynamics of the Festuca grass steppe highlighted some 
interesting characteristics of the systems that are not obvious nor clear from field observations and/or 
experiments. One of them is the temporal variability of its structure. Even in the absence of grazing, 
tussock density varied by a factor of two (Figure 3.10). The temporal variability would be associated 
with an important autocorrelation of the output variables. This autocorrelation generates a memory in 
the system that may last many years.  Different variables showed different memories: tussock density 
>  dfrac > fraction of tussock grazed. Such differences among ecosystem attributes are critical in 
evaluating the response of the system to management practices. Assessing the status of a plot based on 
the density or cover of Festuca would be, then, extremely difficult. The inter-annual variability of 
tussock density was higher than the variability among some of the grazing management and stock 
densities analyzed (Figure 3.10). The most reliable indicator of the impact of grazing was the fraction 
of dead material of the tussock (dfrac). Grazing treatments start to differ in dfrac earlier than in other 
variables. Highly selective grazing regimes (spring or continuous grazing) generate a population with 
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almost no standing dead material. Grazing also increases the spatial variability of dfrac within patches.  
Experimental data showed that current year precipitation explained a relative low proportion 

of the inter-annual variability in grassland and shrubland ANPP (Lauenroth and Sala 1992, Paruelo et 
al. 1999). Oesterheld et al. (2000) identified the influence of previous year production on current 
ANPP. Wiegand et al. (2004b) showed that in semiarid grasslands the memory of the system on 
previous precipitation might last many years. Simulation results indicate that even when precipitation 
is the main driver of ANPP,  a relatively small proportion of its variance is explained by current year 
precipitation (Figure 3.12). This is because the memory of the system determines an important effect 
of the distribution of “good” and “bad” years on tussock density dynamics and hence on ANPP 
interannual changes (Figure 3.13). A change in the variability or in the amplitude of cycles of 
precipitation levels may have an enormous impact on the system, even under the same mean annual 
precipitation. Interestingly, the response of the system to the inter-annual pattern of precipitation 
variability changes under different management scenarios.   

A highly degraded system can not respond to inter-annual changes in precipitation (Figure 
3.12). In such conditions, most of the incoming water is lost as deep percolation or runoff. An increase 
in runoff may generate serious erosion problem in the steppe (Paruelo and Aguiar, 2003). Each of the 
remaining tussocks will have, though, enough water and consequently the productivity of individual 
plants will not change dramatically with annual precipitation. As many authors pointed out (Le 
Houreou 1984, Prince et al.1998) a degradation of the system lead to an important reduction of 
precipitation use efficiency (PUE). O´Connor et al. (2001) observed a reduction in PUE in 
experimental plots as degradation increases in Southafrican grasslands.  Such reduction may result 
from a reduction in tussock density but also from lower PUE per unit of basal cover. The reduction in 
plant cover determined that the system become unresponsive to annual changes in precipitation. The 
slope of the ANPP-PPT relationship has been proposed as a descriptor of PUE and hence of 
desertification (Veron et al. submitted, Paruelo et al. in press). Our simulation results showed that long 
term grazing reduced significantly the sensitivity of ANPP to inter-annual changes in PPT (Figure 
3.12). 

 Stock density was the most important factor to account for differences in tussock density, 
ANPP and the fraction of standing dead material of a tussock among simulations (Figure 3.9). The 
total amount of biomass removed decreased the productivity of the steppe because its impact on 
tussock potential production (“vitality”). The magnitude of this change varied for different grazing 
management layout. Those that increase the selectivity of grazers generated more differences in 
tussock density and ANPP between non-grazed and grazed treatments (Figure 3.11). The response of 
tussock density and ANPP to stock density and grazing seasonality was non-linear. Such kind of 
response, added to the lag in the response of the system to management practices and to the 
interactions with climate, turn highly risky the definition of optimum stock densities and grazing 
systems on the base of “trial and error” approaches.  

3.5.3 Implications for management 

The model developed provide an important tool to explore the long term behaviour of the 
system under different scenarios of grazing management and climate variability. Both range managers 
and conservation agents may take advantage of this tool. An exploration of scenarios that combine 
different stock densities and grazing seasonality regimes would provide the basis to analyze the 
sustainability of different landuse alternatives for the steppe both in economic and ecological 
dimensions. In such a way the model may become an important aid in assessing desertification risks in 
the region. Model runs may help also to evaluate in the field the results of specific land use policies by 
providing an estimate of the probability of detecting changes using different survey variables (ANPP, 
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tussock density, tussock structure, etc.).   
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CHAPTER 4: BIOLOGICAL PROCESSES AFFECTING THE SIMULATION 
RESULTS: CALIBRATION AND SENSITIVITY ANALYSIS 
4.1 INTRODUCTION 
The model presented in Chapters 2 and 3 includes a high number of independent parameters (30). 
Most of them cannot be parameterised directly, due to the lack of field data. Additionally, the 
empirical estimation of parameters proves to be very difficult because they depend on a detailed way 
of unknown history of grazing and climate. Direct field estimates would require intense long-term 
field studies. It was evident from the beginning of the project, that the model cannot be parameterised 
directly from field estimates. Therefore I used and further developed an approach of model calibration 
and validation, which does not require direct empirical estimates of model parameters, but uses field 
data at higher aggregated population levels as they are usually provided by empirical studies, for 
indirect parameter estimation. 

This method can be called ‘indirect pattern oriented modelling’, because it indirectly derives 
parameter estimates for processes operating at smaller scales from comparison with patterns observed 
at larger scales. The method is a further development of the ‘pattern oriented modelling approach’ 
developed by Grimm (1994), Grimm et al. (1996), Grimm (1999), Grimm (2002), 
Wiegand et al. (2003), Wiegand et al. (2004b), and Grimm and Railsback (2005) and was applied e.g., 
by Jeltsch et al. (1996); Wiegand et al. (1998), Jeltsch et al. (1999), and Wiegand et al. (2004a). 

Uncertain or unknown parameters at the individual level are estimated indirectly by using 
observed patterns on a higher aggregated level (e.g. the vegetation cover or the observed dead biomass 
fraction). The basic idea of this approach is to select a high number of model parameterisations 
(several thousands) which are well dispersed in the entire plausible parameter space and to apply the 
model for all of these parameterisations. The calibration procedure basically consists in comparing 
several model outputs (= patterns) with field data. Some statistical criteria are necessary to prove that 
the simulated pattern and the observed pattern agree. All parameterisations which do not produce 
agreement between observed and simulated patterns are rejected. Parameterisations which produce 
agreement between all observed and simulated patterns are accepted because they generated model 
dynamics which are in agreement with the data about the system. The variation within the accepted 
model parameterisations reflects the remaining uncertainty about the system. 

Additionally to model parameterisation my basic interest is (1) to investigate in more detail the 
contribution of precipitation and grazing to different biological processes (e.g. colonisation, growth or 
mortality), and (2) how important these processes are in determining the resulting observable 
empirical data at the higher aggregated population dynamics or community levels. If I understand the 
relationship between these different levels, I may gradually advance the understanding about the 
combined effect of anthropogenic and highly variable natural factors such as precipitation in semi-arid 
regions. 

Detailed data about a certain ecosystem is often limited and in most cases very scarce. This is 
one reason to use simulation models when facing long-term questions. One major challenge in 
ecological modelling is to bridge the gap between theoretical ecology and empirical ecology (Bolker et 
al. 2003). Many ecological models make useful theoretical considerations, but they are weakly related 
to ‘real’ systems (Wiegand et al. 2003). Top down approaches, which do not use real systems as 
starting points, use often abstract variables or operate at scales which cannot be directly compared 
with field observations. The main challenge I am going to face in this chapter is the parameterisation 
and analysis of a medium complex simulation model with 30 free parameters, which are based only on 
a small empirical data set.  
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The main aims of this chapter are:  

i) to calibrate and validate the simulation model presented in Chapter 2 and Chapter 3 by means 
of a multi-criterial, hierarchical indirect pattern oriented approach based on limited empirical 
data (calibration and validation). 

ii) to analyse the relative importance of the independent parameters and processes with respect to 
the key variables of the Festuca steppe (sensitivity analysis). 

iii) to discuss the biological and ecological implications for the Festuca steppe and the general 
implications which result out of the sensitivity analysis. 
 

The presented calibration and validation protocol is based on the methods of the multi-criterial pattern 
oriented model calibration presented by Wiegand et al. (2003), and Wiegand et al. (2004b) and is 
further developed in this Chapter 4. Due to the complexity of the actual model with 30 independent 
parameters, the scarcity of available field data, and the strong stochastic behaviour of the model 
induced by the stochastic precipitation, I improved the indirect pattern oriented calibration by using a 
stepwise approach, which includes four steps of calibration and is combined with one step of 
validation. This stepwise approach was necessary to account for the stochastic behaviour of the model 
due to the stochastic precipitation. After the first calibration step I introduce an additional validation 
with field data that were not used before for calibration. The entire calibration procedure yields a set of 
model parameterisations which produced agreement between observed and simulated patterns. The set 
of accepted parameterisations (= calibrated simulation model) can be used for systematic experiments 
e.g. of varying grazing effects, different climates etc. The methods used during model calibration and 
sensitivity analysis are similar to those proposed by Saltelli et al. (2000). 
 

4.2 MATERIAL AND METHODS 
4.2.1 General strategy: Parameter estimation and uncertainty reduction  

The methodological section contains the following parts: first, it provides a short summary of the 
approach’s overall philosophy and a general description how model calibration is performed. Second, 
I will provide an overview about the detailed procedure of model calibration. The detailed explanation 
contains the following parts: (i) it explains how the available field data are used for calibration, and (ii) 
it describes how field data are processed to be used for calibration. Third, the steps of model 
calibration and validation are explained as well as the methods used for sensitivity analysis and the 
evaluation of the relative importance of one parameter for the outcome of the simulation model.  

General strategy. — I face the following challenge: a complex simulation model has to be 
parameterised with a high number of uncertain parameters, for which field estimations do not 
exist. I use a multi-criterial analysis of empirical data at the higher aggregated population dynamics 
level to derive indirect estimations of those parameters driving the biological processes which finally 
generate the observed outcome on the population and community level. The empirical data are a snap 
shot of reality (Jeltsch et al. 1999), since long-term monitoring is still lacking. A sophisticated and 
complex procedure is necessary because most of the biological processes are influenced by the two 
drivers of the system we are interested in: stochastic precipitation and grazing (see Chapter 2).  

The fact that precipitation, which is a driver on the largest spatial scale, also acts on the 
individual level of each tussock plant, makes it necessary to build a model on the individual tuft level. 
An approach like this is called a cross-scaling approach (Rietkerk et al. 2002).  

Pattern-oriented modelling approach. — The approach used for model calibration, validation, 
and sensitivity analysis, follows in general the concept of the ‘Pattern oriented modelling’ (Grimm 
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1994, Grimm et al. 1996). For the purpose of model calibration this approach actually passes a 
significant further development (Wiegand et al. 2003, Wiegand et al. 2004b). This further 
development of the pattern oriented modelling with the purpose of model calibration can be called 
‘inverse/indirect pattern oriented model calibration’. The main aim is to gain confidence into the 
biological plausibility of the simulation model and to reduce the parameter uncertainty substantially 
(Clark 2003, Higgins et al. 2003, Wiegand et al. 2004b) by a calibration of all parameters during one 
multi-criterial calibration step. 

A multi-criterial calibration means that different types of field data with varying quality are 
used together to exclude biologically unrealistic model parameterisations. It allows combining data 
from different hierarchical scales (e.g., community, population level and individual level if available) 
in a simulation model. Data from higher hierarchical levels are used to understand which processes or 
factors on a lower hierarchical level determine the aggregated results we observe at the higher level, 
e.g. the overall cover at the community level. It is a powerful instrument to reduce parameter 
uncertainty for simulation models.  

Another subsequent question to this model is, if the inverse pattern oriented method mediates 
between a medium complex simulation model with approx. 30 independent parameters and a scarce 
amount of available field data. A special feature of this approach in this respect is that it can also use 
data of weaker quality (i.e., data with larger uncertainties). Such data are used to exclude extreme 
improbable model behaviour since they indicate at least coarsely the order of magnitude where the 
model output should range. While one or two of such ‘weak patterns’ may not transport much 
information, several weak patterns together can reduce the uncertainty considerably because each of 
the weak patterns eliminates parameterisations which produce extremely wrong model behaviour. 

The main aspect of this approach is the transformation of different variables being sampled in 
the field into observed patterns (as general abbreviation: Pi, Pj, Pk, e.g. Pi = P1 (tussock density of 
F. pallescens), Pj = P2 (mean tussock biomass), that provide the criteria for the selection of model 
parameterisations using the simulation results. If several variables are available, several patterns can 
be derived from the variables. In this case I combine them to a pattern filter combination (Pj + Pk + 
Pl, e.g. P1 (tussock density) + P2 (mean tussock biomass) + P3 (mean tussock annual productivity: P1 
P2 P3). I use these filter combinations (general  syntax: Pi Pj Pk) to judge the similarity of the output 
of the simulation model with the field data. Combining different patterns to calibrate a model is a type 
of multi-criterial assessment (Reynolds and Ford 1999). The systematic and hierarchical comparison 
of the pattern with the model output, allows me to reject those parameterisations that lead to 
unrealistic results. Thus, I am able to reduce the parameter uncertainty in a substantial way.  

Hierarchical comparison of the pattern means, that first, one certain pattern which is assumed 
to be most essential, e. g. tussock density of F. pallescens (P1), has to be fulfilled by the output of the 
actually compared model parameterisation. During the following steps of comparison additional 
patterns (P2 and so on) are applied systematically to find those model parameterisations which fulfil 
the imposed filter combination. Each simulated pattern is compared with the observed pattern using a 
specific test statistic, which decides if both pattern are significantly different or not, which in general 
has to be developed newly for each step of comparison. 

This approach also requires testing the different confidence intervals of the observed patterns 
which are used for model calibration during the development of specific test statistics. This involves 
especially the question how much uncertainty can I tolerate in particular field data to still achieve 
realistic results. Additionally I test which filter combination is necessary and sufficient to obtain a 
satisfying model calibration. This includes the question, how much data (or pattern) are needed to 
calibrate the model sufficiently. After this analysis, I select the appropriate filter combination which 
provides the model parameterisations for further sensitivity analysis and simulation experiments.  
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The ‘indirect/inverse pattern oriented model calibration’ requires the following steps: 
• The characterisation of the available field data and evaluation of their uncertainty 
• The transformation of field data into ‘patterns’ for the comparison with field data 
• The definition of a test statistic and investigating the effect of its tolerance limits for the 

multi-criterial pattern fulfilment  
• The definition of the range within uncertain simulation model parameters are varied and 

the generation of the tested model parameterisations 
• The Calibration: multi-criterial comparison of the observed patterns with simulated 

patterns. 
• Sensitivity analysis of the calibrated model: exploration of the parameter space remaining 

after the Calibration. 
• Additional validation of the calibrated model parameterisations with independent data is 

performed (Rykiel 1996, Higgins et al. 2001, Gardner and Urban 2003), if independent 
data are available. 

 
This seven steps were performed for four different calibration scenarios of model parameterisations in 
different levels of detail. The different investigated scenarios were necessary to in- or exclude grazing 
as a parameter into the calibration (scenarios NG (No grazing included) or G (Grazing included, see 
Tab. 4.3)), and additionally to vary the parameters independently (index i, e.g. Gi) or in groups, to so 
called driver-related processes (see Tab. 2.3). Each driver-related process combines all parameters, 
which refer to a specific biological process (e.g. Colonization) and to one driver (precipitation or 
grazing). The grouped calibration scenarios were analysed up to the step of sensitivity analysis. Both 
independent calibration scenarios (NGi, Gi) were analysed and calibrated until the remaining 
parameterisations were considered as useful for simulation experiments. 

This general calibration scheme was later modified, which will be described in detail during 
the following sections. Additional calibration steps were necessary due to the inclusion of the 
stochastic driver precipitation. During the first calibration step (see below) only one climate was run 
for each parameterisation. For the calibrated parameterisations after the first step 100 repetitions with 
different climate scenarios were run to test the remaining parameterisations in detail.   

4.2.2 Detailed Approach: Indirect pattern oriented process analysis 

The detailed stepwise calibration approach is illustrated in Fig. 4.1. I modify the general 
strategy for the ‘indirect pattern oriented model calibration’ described in Chapter 4.2.1, due to the fact, 
that the Festuca steppe model has 30 free parameters, which is more than e.g., in 
Wiegand et al. (2003) and Wiegand et al. (2004b). On the other hand, I dispose over data for more 
qualitatively different response variables (pattern). This enables me to use some field data for 
calibration and others for validation. Thus, I can use additional options to control the model against 
independent response variables that were not ‘trained’ before the calibration (Gardner and 
Urban 2003). I use calibration in the sense of testing one parameterisation against several patterns with 
specific confidences intervals (tolerance limits) which were calculated from empirical data. If the 
output of the model using a given parameterisation produces results lying simultaneously within the 
ranges given by the confidence intervals of all patterns, the parameterisation is accepted and I assume 
that it has the potential to mimic the observed system dynamics.  

Detailed reasoning for the several calibration steps. — The calibration and the sensitivity 
analysis were performed in several steps (see list below). A first step (Step 4 of the list below) of 
model calibration sorted out all those model parameterisations showing system dynamics, which 
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were highly improbable to be biologically realistic, e.g. grasses died out in unrealistic short time 
horizons or grasses colonised the grid completely. Next, additional response variables for which field 
estimates were available were included (Step 6). This was a second selective criterion. These 
additionally variables were used during the 2nd calibration step both first for validation of the 
calibrated parameterisation out of the 1st calibration step, and then used for the 2nd calibration step. 
Only if an accepted parameterisation passed first this validation after comparison against the new 
included independent response variables, it was considered for further calibration steps. During the 
first two steps of calibration I performed only one repetition with one stochastic climate time series per 
parameterisation. I assumed that a parameterisation, which produced extremely improbable model 
behaviour for one stochastic climate will do so also for the most of the other stochastic climates. 
Additionally, the selection criteria during the first steps of calibration were weaker than during the 
following steps. This procedure was necessary due to the high number of free parameters. The third 
and fourth steps of Calibration (Step 7 and 8) provided the ‘fine-tuning’ of Calibration and 
considered repetitions of different stochastic rainfall time series. Thus, with the parameterisations 
validated during step 1 and 2 of calibration I performed 100 repetitions with different stochastic 
climates but no grazing and contrasted the results with a set of response variables.  

Evaluation of 3rd calibration step simulations. — For the evaluation of model 
parameterisations during the 2nd step of calibration I used an aggregated criterion for the selection of 
the parameterisation. It counted how many pattern were fulfilled at least in 80 out of 100 repetitions 
with different precipitation scenarios. The output of each simulation was compared to a set of patterns. 
For these patterns, stricter confidence intervals than during the first calibration step were used to fulfil 
the both. Additionally, the simulation results were evaluated against all patterns at different time steps 
(see Tab. 4.4), and I counted the number of repetitions (climate scenarios) leading to pattern fulfilment 
for each model parameterisation. So as a response I received a percentage of positive fulfilment for 
each pattern per model parameterisation, e.g. 17% from for the pattern tussock density, plus 23 % for 
the pattern annual net primary production etc. I demanded a threshold of 80% for the fulfilment of 
each pattern to accept the model parameterisation, and a threshold of 90% of positive fulfilment for all 
evaluated patterns. 

Fourth step of calibration. — Only if the evaluated results for the 100 repetitions of one 
model parameterisation exceeded the threshold so that they fulfil 90% of the pattern/time step 
evaluation at 80% or higher each, they passed over to the next step. The 4th step of Calibration 
included 100 climate repetitions per parameterisation and it included the whole range of stocking 
rates. I defined a criterion which sorted out model parameterisations leading to unrealistic stable 
results under heavy grazing. If this criterion was passed, the remaining parameterisations were 
accepted as fully accepted and were used for the subsequent simulation experiments. This method 
cannot exclude the possibility of false negative evaluations completely during the calibration step. But 
this is not problematic because I can assume that the false negative evaluations will occur at random 
and I assure systematic sampling of the parameter space. 

Calibration scenarios. — As mentioned in chapter 4.2.1, I chose four groups of calibration 
scenarios. One group consisted of a calibration with grazing (G) and one without grazing (NG). This 
approach was not only necessary, because grazing parameters could only be calibrated varying those 
parameters, but it was also necessary to calibrate the model without grazing, because a feedback 
between grazing and non-grazing parameters could not be excluded a priori.  

The second division I performed was the comparison of the calibrations of independent and 
grouped parameters (e.g. NGi and NGg). The idea of this approach is the following: independent 
calibration of each parameter is the most accurate approach, because one can test the sensitivity for 
each parameter individually. The disadvantage of this approach was that I had to test a large amount of 
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parameterisations due to the high degree of freedom and the high probability was high to test 
biological unrealistic parameter combinations. Therefore I grouped different parameters to parameter 
groups (driver-related processes, Tab. 2.3), which represent sub-processes mostly driven by one of the 
two exogenous drivers. Consequently, I grouped mortality parameters that are related to the soil water 
status and those parameters related to the grazing impact. The justification for this calibration 
procedure was, that it was biologically plausible to assume, that if one parameter of this group 
changed in one direction, it is probable that the other parameters also would change into this direction 
For example, if the water threshold for the first year seedlings increased, the water threshold for the 
second year seedling increased, too. It would be biologically implausible to generate 
parameterisations, where young seedlings survived better in drier conditions than the older saplings. 
The advantage of the approach is a considerable reduction of the dimensions of the parameter space, 
which reduced the simulation effort. The disadvantages are the additional assumptions on parameter 
grouping. One aim of this chapter was to compare both types of calibration to find the systematic 
effects concerning their results and to find out if different interpretations result out of these different 
approaches.  

The comparison of the simulation model with field data consisted of following steps: 
1. The characterisation of the available field data, the evaluation of uncertainty. 
2. The transformation of field data into ‘patterns’ for the comparison with field data, and the 

definition of test statistics and of statistical confidence intervals for the multi-criterial 
pattern fulfilment. 

3. The definition of the range within which uncertain simulation model parameters were 
varied and generation of model parameterisations. 

4. The Calibration, 1st step: multi-criterial comparison of the observed patterns with the 
simulated patterns, and the exclusion of highly unrealistic model parameterisations. 

5. Sensitivity analysis of the calibrated model: exploration of the parameter space remaining 
after Calibration. 

6. The Calibration, 2nd step: validation and calibration of the remaining parameterisations 
against the newly included pattern ANPP and green biomass.  

7. Calibration, 3rd step: Calibration including 100 different climates against a series of 
predictions (primary and secondary). 

8. Calibration, 4th step: compared the accepted parameterisations of the 3rd calibration step 
with tussock density over variable stocking rates. 

4.2.3 The characterisation of the available field data, evaluation of uncertainty  

The empirical data were collected for two purposes: The first purpose was to test directly three 
basic hypotheses made about the model: the vitality increment with increasing potential productivity, 
the distribution of the dead fraction of biomass at grazed sites compared to exclosures, and the relation 
between the mean grazing intensity and variability of the grazing intensity distribution at the 
individual tussocks (compare Chapter 3). The second purpose of the field data collection was the 
indirect parameterisation of the simulation model. Since the model was developed at the level of 
individual tussocks, most of the empirically measured variables corresponded directly to variables in 
the simulation model. Thus, the high degree of structural realism in the simulation model allows a one 
to one comparison between model and reality. 

The field data were sampled between 2000 and 2003 at four sites (ranches) and 20 paddocks. 
Six of them were paddocks excluded from grazing (exclosures), whereas 14 were grazed paddocks. 
The duration of time a paddock was excluded from grazing varied between 10 and 17 years. A detailed 
grazing history including data on the mean grazing intensity was in general not available. The detailed 
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 Tab. 4.1: The sample size of field data for model calibration. 
Per site, 30 tussocks were measured. Dead tussocks were not included into the database. One paddock 
of the grazed paddocks included only 20 tussocks, and two samples for vitality. These data were used to 
estimate confidence intervals by bootstrapping used for model calibration. 

 
description of the data sampling of the empirical variables was given in Chapter 3. Additionally to the 
data used in Chapter 3 we collected data from another 7 paddocks at two sites in 2002 and 2003, of 
which 3 were exclosures and 4 grazed paddocks. Precipitation data for the years after 1998 are not 
available. So the empirical data have to be regarded as ‘random samples’ within the possible range of 
values, assumed to depend largely on precipitation. For the calibration of the simulation model, I will 
choose the widest possible confidence intervals for model calibration to avoid strong assumptions 
about real values for the used variables, i.e. excluding only highly improbable model behaviour. I can 
do this because one advantage of this method is that excluding model dynamics which deviate strongly 
from observed several weak patterns will constrain the model dynamics considerably. This issue is 
discussed in detail in Wiegand et al (2004b).  

Field data. — Tab. 4.1 shows the sample size for grazed paddocks and exclosures. For each 
paddock the mean value was calculated, and median and range-of-paddock means are used to compare 
grazed paddocks with exclosures (Fig. 4.2). Possibly due to the different age of the exclosures and the 
presumably wide range of unknown stocking rates applied to grazed paddocks, significant differences 
cannot be detected for tussock density (Td, P1). 
 Also for the biomass estimations, gbdens(P2) and gbdiam(P3), an expected significant decrease for 
grazed paddocks is not evident. Nevertheless, some important variables show significant differences 
between grazed and ungrazed paddocks: as expected, the mean dfrac per paddock (P4, p = 0.017, U-
test) is lower than in grazed paddocks. As expected, too, for two out of five dfrac-classes the tussock 
distributions over dead biomass fraction fTdfrac1-5 differ significantly: as expected; tussock distribution 
over dfrac-class 2 (20 - 40% relative amount of dead biomass, fTdfrac2, P52, p = 0.0282) is lower for 
exclosures. Analogically, exclosures have a larger amount of tussocks with a higher fraction of dead 
biomass (60 - 80%, fTdfrac4, P54, p = 0.0293) than grazed paddocks. Finally mean vitality (mean vit) 
differs significantly in grazed paddocks and exclosures (P6, p = 0.026, U-test). 

Concluding the description of field data, it is obvious that some patterns will have a weak 
potential in discriminating between grazed paddocks and exclosures. Nevertheless, some important 
variables that help to discriminate between both factors will in conjunction show a significant 
behaviour. For the essential task, the overall calibration of the model regardless of grazing, it is 
essential to have a rough estimate of the possible range of the variables. The assumption is that several 
patterns, which are weak when used alone, will become strong patterns, when they are combined 
(Wiegand et al 2004b). 

Pattern Observed pattern/response variable Abb. n paddocks n tussocks n paddocks n tussocks
P 1 Tusssock density Td 6 178 14 409
P 2 Green biomass (density estimated) gb dens 6 178 14 409
P 3 Green biomass (diameter estimated) gb diam 6 178 14 409
P 4 Mean dead biomass fraction dfrac 6 178 14 409
P 5 Tussock distribution over dfrac f Tdfrac 6 178 14 409
P 6 Mean vitality mean vit 3 88 10 279

Exclosure Grazed
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Fig. 4.1: Scheme of model calibration and sensitivity analysis 
Explanation see sections 4.2.1-4.2.2. The calibration scheme guides through whole Chapter 4 and shows to which step of the procedure each Table and Figure refer to.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fine-tuned Calibration including stochastic climate 
and Cross calibration of all parameterisations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coarse Calibration applying conservative filter criteria, and one 
stochastic climate 

Model 
parameterisations: 
(Step 3) 
Calibration 
scenarios 
Ngi 
Ngg 
Gi 
Gg 
Tab 4.3 

1st  
Calibration 
(Step 4) 
Results: 
Tab. 4.5 
Fig. 4.3 

3rd 
Calibration 
(Step 7) 
Results: 
Tab. 4.10 

2nd 
Calibration 
and 
validation 
(Step 5) 
Results: 
Tab. 4.9,  
Fig. 4.7 

Sensitivity 
analysis 
(Step 5) 
Results: 
Fig. 4.6-4.8, 
Fig. 4.4-4.6 

4th 
Calibration 
(Step 8) 
Results: 
Tab. 4.11,  
Fig. 4.8 

2nd sim. a) 
100 
climates, 
No grazing 

2nd sim. b) 
100 climates, 
Grazing, 
eight stocking 
rates 

Rejected 
Simulations:
extreme 
improbable 
behaviour in 
four 
observed 
pattern 

Rejected 
Simulations:
unrealistic 
behaviour in 
Min ANPP 
and Max 
biomass 

Rejected 
Simulations:
unrealistic 
reproduction 
of a 
ungrazed 
steppe 

Rejected 
Simulations:
unrealistic 
robust 
against 
grazing 

Parameterisations 
for simulation 
experiments 

Pattern Data 1 
(Step 1, 2) 
Tab. 4.1, Fig. 
4.2 
Tab. 4.2 

Pattern Data 2 
Bertiller and 
Defossé (1993)
eqn. (4.1, 4.2) 

Pattern Data 3: 
Variable set 
Tab. 4.4 

Data 4: 
Threshold 
criterion 

1st sim. 
One climate 
Grazing and 
No grazing 



CHAPTER 4: BIOLOGICAL PROCESSES AFFECTING THE SIMULATION RESULTS: CALIBRATION AND 
SENSITIVITY ANALYSIS 

 82

4.2.4 The transformation of field data into ‘pattern’ for the comparison with field data 

In this section I define the criteria for pattern fulfilment. The general philosophy of the approach for 
this calibration step was given in section 4.2.1. It consisted of a comparison of observed patterns with 
simulated patterns. During this comparison a yes/no decision was applied for the simulated data, 
depending weather or not they reproduced the observed pattern. This required defining a statistical 
criterion, which decides if a significant difference between the simulated and the observed pattern 
exists. This approach takes two types of uncertainty into account: the uncertainty due to scarce data, 
and the pattern data uncertainty of both simulated and observed patterns. Here, I summarize the 
performed steps. As field data, especially from exclosures, are scarce, and detailed knowledge about 
the distributions of the data is limited, I decided to perform a bootstrap approach (Manly 1996).  

Sub-pattern. — Additionally to the standard approach, where one observed pattern is 
compared with a simulated pattern, a more sophisticated approach was necessary for pattern P5, the 
frequency distribution over dfrac-classes. The field data provided an estimate of the relative amount of 
the dead biomass fraction. As it was hypothesized, that exclosures and grazed paddocks differed in the 
distribution of tussocks over dfrac-classes, the classified frequency distribution had to be compared. 
Thus, the pattern was divided into five sub-patterns, which at first were compared individually with 
the simulated data (i.e., sub-patterns); secondly it was assessed if the simulated tussock distribution 
fulfilled all five sub-patterns of the observed patterns or less. Finally I generated a complex, sensitive 
and strict pattern for comparing simulated with observed pattern. 

Pattern filter definition by bootstrapping. — Bootstrapping was used to estimate upper and 
lower confidence intervals for each pattern used for model calibration. Bootstrapping is an 
advantageous approach, as only a small sample size was available, but for each empirical field 
variable 88 – 409 data points exist (see Table. 4.1, n of individual measured tussocks). Each of the 
10.000 bootstrapping data samples performed for each variable mimicked the available field samples. 
For exclosures, 6 samples of 30 tussocks were sampled with replacement out of the exclosure tussocks 
data set, analogically 14 samples for the bootstrapping out of the ‘grazed’ data set (for mean vitality, 
P 6, 3 or 10 samples respectively). In the following, for each sample the mean, the minimum and the 
maximum was calculated. I used the range of minimum and maximum values out of the bootstrapping 
procedure for those observed patterns, were the uncertainty about their range was highest (see 
Tab. 4.2); for the other observed patterns, I used the mean values out of each bootstrap sample to 
generate the frequency distribution, which was the basis to define the confidence intervals. Further, for 
the most observed patterns, for one ‘mimicked field sample’ of 6 exclosures or 14 grazed paddocks 
respectively the maximum mean and the minimum mean was recorded. For pattern including higher 
uncertainty the maxima and minima out of minima and maxima were recorded. Consequently, 10.000 
ranges of mimicked field samples were taken. Finally, I calculated the frequency distribution for both 
the maximum range and the minimum range test statistic based on the 10.000 bootstrapped data sets. 
Next, I tested the different confidence intervals which could be derived from these distributions. 
Finally, I chose a two-tailed 99.8% confidence interval for the acceptance of the simulation output, 
which is equivalent to a lower confidence interval of 0.1% and a upper confidence interval of 99.9%. 
This means that the simulated values that would lie below the 0.1% or above the 99.9% limit were 
rejected. Thus, nearly the whole range of the pattern generated by the bootstrapping procedure was 
accepted as a valid simulation result. The cut of 0.1% at both ends was used to exclude zero values out 
of the tussock distribution over dfrac-classes 2-4 (P52-P54, for exclosures), which are assumed to be 
unrealistic and returned biased calibration results in preliminary studies. Thus, I used a criterion for 
pattern fulfilment, which rejected parameterisations which would produce unrealistic behaviour, i.e. 
produced at least one pattern which was outside the observed field range. Considering the 
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Fig. 4.2: Field data used for multi-criterial model calibration.  

Median and range of data are shown for Exclosures (n = 6), and Grazed paddocks (n = 14). P1 - P6: 
Abbreviations of observed patterns used for indirect model calibration. *: Medians between grazed and 
exclosure significant different with p < 0.05 (U-test, Mann-Whitney). A): P1: tussock density Td; 
B): P2: green biomass gbdens, estimated via biomass density (mg green biomass / cm³) with relationship: 
green biomass = 70.727 * tussock diameter -0.4803 (R² = 0.31, n = 35, compare Chapter 3); P3: green 
biomass gbdiam estimated linearly as a function of tussock diameter: green biomass = 0.928 * tussock 
diameter (R² = 0.611, n = 62); C): P4: mean dead biomass fraction (dfrac) per 
paddock/sample, p = 0.016763 ; D): P5 (for exclosures): tussock distribution over dfrac-classes, divided 
into 5 sub-patterns P51-P55 for each dfrac-class: P51: frequency of tussocks with dfrac [0-20%], P52: 
frequency of tussocks with dfrac ]20-40%] and so on; E) P5 (grazed paddocks); P52 and P42 difffer 
significantly between exclosures and grazed: P52 (fTdfrac2): p = 0.023, and P54 (fTdfrac4): p = 0.028840; 
F): P6: mean vitality (mean vit), p = 0.027993 (n = 13). 
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Tab. 4.2: Definition of pattern fulfilment. 
Listed are the upper and lower values for the selected 99.8% confidence interval values derived from 
bootstrapped field data. Column 1 indicates the used observed pattern (compare Tab. 4.1, Fig. 4.2). 
Column 2 gives the pattern identifier; column 3 and 4 list the correspondent simulated variables, which 
were used for calibration. Subpattern: A sub-filter was necessary if i) more than one simulated variable 
was compared with one pattern (e. g. P2, P3, P4); or ii) if one pattern consists out of different classes 
(P5). Range of means: min. and max. of means of each bootstrap sample was used for calculation of 
the frequency distribution, which was used for determination of the confidence interval. Range of 
Min/Max: Min. and Max of each bootstrap was used for confidence interval determination. Range of 
Min/Max was used for biomass data of exclosures to include fewer assumptions about the exclosure 
biomass data. 

 
 

No grazing Grazing

data base for 
bootstrapping n = 178 n = 409

n paddocks 6 14

 Pattern or sub-
pattern Explanation

Used 
upper/lower 
confidence 

interval

Range of 
means

Range of 
means

Td P1 Td S(t  = 100) - 0.01% 0.70 0.43
99.9% 5.17 4.59

Range of 
Min/Max

Range of 
means

gb dens P2 Mean prod P21 0.01% 1.1 7.2

Mean gb S P22 99.9% 61.2 27.1

gb diam P3 Mean prod P31 0.01% 4.1 10.8

Mean gb S P32 99.9% 42 22.7
Range of 
means

Range of 
means

dfrac P4 Mean dfrac P41 0.01% 36.5 26.1
Min dfrac P43 99.9% 62.7 51.4

f Tdfrac P5 f Tdfrac P5 Tussock distribution 
over dfrac -class

f Tdfrac 1 P51 f Tdfrac 1 P51 [0%-<=20%] 0.01% 0.00 0.03
99.9% 0.37 0.57

f Tdfrac 2 P52 f Tdfrac 2 P52 ]20%-<=40%] 0.01% 0.03 0.07
99.9% 0.57 0.74

f Tdfrac 3 P53 f Tdfrac 3 P53 ]40%-<=60%] 0.01% 0.03 0.00
99.9% 0.63 0.60

f Tdfrac 4 P54 f Tdfrac 4 P54 ]60%-<=80%] 0.01% 0.03 0.00
99.9% 0.60 0.30

f Tdfrac 5 P55 f Tdfrac 5 P55 ]80%-<=100%] 0.01% 0.00 0.00
99.9% 0.10 0.14

Mean vit P6 Mean vit Step 2 0.01% 2.07 1.40
99.9% 3.07 2.40

compared with simulated Observed 
Pattern

Biomass estimation 
from biomass 

density 
Biomass estimation 

linear to tussock 
diameter

Type of confidence interval 
calculation 
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whole range of the field data is a weak criterion. However, because I demanded fulfilment of several 
patterns (i.e. the model should produce simulated patterns which lie all simultaneously within the 
observed ranges) my filter algorithm as a whole was very strict (see Wiegand et al. 2004b). 

Detailed description of field data. — Two alternative tussock biomass/annual net primary 
productivity pattern filter criteria were generated, because of high uncertainty about the biomass 
estimations. To estimate the observed pattern 2 (used for comparisons with mean prod (P21) and 
mean gbS P22), which estimates tussock biomass referring to biomass density, the method applied in 
Chapter 3 was used. Here, we fitted using an estimate of biomass density gbdens [mg green biomass / 
cm³], to a data set comprising 35 oven-dried tussocks. Then the tussocks were measured from the 
Media Luna Ranch: the pattern P2 green biomass (biomass density, tussock diameter) is estimated as 
gbdens = 70.727 * tussock diameter -0.4803 (R² = 0.31, n = 35). As the diameter was known from 
perimeter measurements, the volume of each tussock was calculated and the biomass density was 
estimated as a function of tussock diameter. The alternative biomass estimate for each tussock 
employed to calculate the observed pattern 3 (P32 and P32) additionally 27 tussocks measured at 
two other sites, and estimates green biomass as a function of tussock diameter assuming a direct linear 
relationship: the pattern P3 green biomass (tussock diameter) gbdiam = 0.928 * tussock diameter (R² = 
0.61, n = 62). As biomass can be carried over from the year before, we could not totally separate 
actual biomass data from the annual production. Additionally, as field data for the paddocks provide 
indirect estimates based on regressions, derived from a small tussock sample size, it is reasonable to 
test different alternative patterns for annual production and biomass. The two patterns for 
biomass/annual net primary productivity (P2, P3) tested both for mean tussock biomass after 
senescence at the end of each time step (mean gbS) and the mean annual net primary production per 
tussock (mean prod). This was because the available data could be split clearly into both components. 
However, both variables are important and had to be tested. I therefore used a similar pattern filter for 
both variables. Since senescence occurs mainly during fructification (Bertiller and Defossé 1990a, and 
1990b, see Chapter 2). It is improbable that the tussock’s annual production is substantially higher 
than the standing green biomass including dry biomass which becomes senescent during the actual 
year /time step.  

4.2.5 Range of varied parameters and generation model parameterisations 

For calibration and sensitivity analysis four calibration scenarios were investigated: at first, grazing 
(G) and no grazing (NG) scenarios were calibrated separately, and secondly, parameters were 
calibrated independently (index i) or in groups (g) of 15 (for scenario NGg) or in groups of 16 (for 
scenario Gg) driver related-processes respectively (Table 4.3). The definition of parameter groups is 
given in Chapter 2, Table 2.3.  

I tested as much different parameterisations as necessary to obtain a sufficient number of 
accepted parameterisations. Experience tells that about 0.1% of all parameterisations would be 
positive evaluated (T. Wiegand, pers. comm.). Of most parameters the range was not known. 
Therefore, the parameter range investigated was in general wide: I selected the estimation of the field 
experts’ ± 30%. For some parameters however, the whole possible parameter range was estimated 
(e.g. senescence SEN and littering LIT). The selection of a conservative wide range is necessary 
because the biological uncertainty is high. The defined pattern will filter out all those model 
parameterisations, which produce highly improbable behaviour, which does not agree with the field 
observations. 

The values of 29 or 30 model parameters respectively remained unknown or uncertain (see 
Table 4.3 and Table 2.3, Chapter 2). To sample this parameter space systematically, I used a Latin 
hypercube design (Stein 1987, McKay et al. 2000, Saltelli et al. 2000), a stratified sampling method
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Tab. 4.3: Number of parameterisations used for calibration and sensitivity analysis. 
Abbreviations: calibration scenarios: NG: No grazing included; G: Grazing included; indices: i: 
parameter independently estimated; g: parameter estimation in groups of sub-processes. Groups are 
defined in Tab. 2.3. 

Scenario x parameter block NGi Gi NGg Gg 

N parameterisations 196301 195428 161999 196347
N independent parameters or sub-processes 29 30 15 16 
N intervals/subcubes the parameter space is divided 11 11 21 21 

 
without replacement. For each parameter, I selected an interval within which the parameter was varied  
(lower and upper limits given in Table 2.3, Chapter 2). Then, I divided each interval into 21 or 11 
equidistant subintervals respectively (Table 4.3). I used 21 subintervals to obtain almost continuous 
relationships between model parameters and model predictions. For the scenarios (NGi and Gi) with 
29 or 30 parameters respectively I used 11 subintervals, ensuring that searching through the resulting 
high-dimensional parameter space was still practically possible. Thus, my 15-30 dimensional 
parameter space was subdivided into 1129, 1130, 2115 or 2116 sub-cubes respectively defining a 
hypercube. This hypercube was used in the following way to select parameter combinations for which 
simulations were run. At first, a sub-cube was randomly chosen. Then, all sub-cubes that coincided 
with the chosen sub-cube in at least one parameter subinterval were deleted from the hypercube and 
another sub-cube was randomly chosen from the reduced hypercube. This was repeated as long as 
possible, resulting in 11 or 21 selected sub-cubes defining 11 or 21 model parameterisations 
respectively. I repeated the above procedure until obtaining the number of parameterisations given in 
Table 4.3. 

Because the sampling points in the Latin Hypercube sensitivity analyses were well distributed 
within the parameter space, relatively few simulations are necessary to achieve significant results 
compared to a random or a full grid parameter selection (Stein 1987; Helton 1993). The simulations 
were all run with one identical stochastic climate for 100 time steps. The initial condition reflected a 
potential natural state of the Festuca steppe with a high cover of approx. 60% (see Appendix I). 

4.2.6 Calibration, 1st step: multi-criterial comparison of observed patterns with 
simulated patterns 

During this step, different methods to calculate the confidence interval, different confidence intervals, 
and different pattern filter combinations were explored. Finally the most appropriate pattern filter 
combination (P1 P2 P4 P5 for calibration scenarios NG and P1 P3 P4 P5 for calibration scenarios G 
respectively) was selected and used to filter all generated model parameterisations for a given 
calibration scenario. In the first calibration step I used conservative filter criteria to remove only 
parameterisations which produce highly improbable model behaviour in the five basic properties 
tussock density (equivalent to cover), tussock biomass and tussock annual productivity, mean dfrac, 
and tussock distribution over dfrac-classes. This ‘prefiltering’ was necessary because more detailed 
filters (i.e. in steps 3-4) required simulations with different climatic scenarios (i.e. including 
environmental stochasticity) and the computational effort would be too large. Therefore I filtered in 
this step only using conservative wide confidence intervals and with only one precipitation series 
assuming that a parameterisation which e.g. went extinct without grazing will do so for almost all 
precipitation series. 

The results of this 1st step of Calibration were model parameterisations which reproduced the 
different patterns simultaneously and were called accepted parameterisations. The most restrictive 
pattern during this procedure was the pattern tussock distribution over dfrac-classes (P5, fTdfrac1-5). 
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This pattern is a complex pattern and was the ‘eye of the needle’. The accepted parameterisations were 
used for the sensitivity analysis. Frequency distributions of the calibrated parameters over the whole 
investigated range (Tab. 2.3) are plotted. Frequency distributions of the calibrated parameters show, if 
the process related to the parameter is necessary, if parameter values unequal to zero are included and 
the value zero was included into the range. Further, one can test, if the valid parameter range was 
limited during calibration, and if the distribution differs significantly from an even distribution. 
Finally, one can try to estimate an optimal value, if the frequency distribution shows a clear maximum. 
I assume that approximately 100 accepted parameterisations are necessary to analyse the calibrated 
parameterisations and to obtain insight into the distribution of the parameters over their range. 

4.2.7 Sensitivity analysis of the calibrated model 

The sensitivity analysis was mainly performed with Spearman’s rank correlation. This is one possible 
method to relate the model input (parameterisations) and the model output (primary and secondary 
predictions) to each other (Saltelli et al. 2000). I chose Spearman’s rank correlation because it makes 
no assumptions about the relationship between the tested parameter and the response variable. For 
sensitivity analysis I use only those model parameterisations which fulfilled the conservative 1st 
Calibration step filter combination (P1 P2 P4 P5, for no grazing calibration scenarios NG, and P1 P3 
P4 P5 for the grazing calibration scenarios G). Hence, the sensitivity analysis investigated the 
remaining parameter uncertainty after the first step of calibration. The reasoning for this approach was 
that I assume that only those parameterisations, which fulfil the requested pattern combinations are 
potentially biologically appropriate. The sensitivity of the response variables within the remaining 
parameter range is of special biological interest. 

24 response variables were tested which describe different characteristics of population 
dynamics such as tussock density, live biomass, annual production, and vitality distribution. Nine of 
the variables included into the sensitivity analysis were primary predictions, and 15 were secondary 
predictions. The primary predictions are those used as patterns for the first step of calibration 
(Tab. 4.2). Secondary predictions are response variables which may be used for further model 
validation or model analysis, but which were not used as pattern for calibration. Additionally, a semi-
quantitative index was calculated to compare the relative importance of the parameters on all 
investigated variables. This relative correlation strength (rcs) is calculated from the sum of the 
absolute values of all significant correlations between the response variable and one parameter. For 
each scenario rcs is normalized by dividing all rcs for each parameter through the highest value. As 
each parameter is part of a sub-process and a process (see Chapter 2, Table 2.3), a qualitative 
comparison between the grouped and the independent scenarios for calibration is possible. 

4.2.8 Model validation: comparison of the 1st step calibrated model with secondary 
predictions 

Additional empirically observed or estimated variables were available (i.e. secondary predictions), 
which allowed validating the parameterisations accepted during the 1st calibration step. I use validation 
in the term of Rykiel (1996), Higgins et al. (2001), and Gardner and Urban (2003), which means that 
independent empirical data that were not necessary for calibration, are used. The result of the 
validation was that model parameterisations having produced model predictions lying outside the 
range of the variables used for validation, were also rejected like those during first calibration step. 
This filtering is equivalent to the 2nd calibration step. Thus, I used this step in two ways: as validation 
and as an additional calibration which rejects some parameterisations accepted during the 1st step of 
Calibration. 

The data base for validation was formed by the accepted parameterisations from the 1st 
calibration step. As example I show results from those calibration scenarios where parameters were 
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run independently, both the in- and excluding grazing calibration scenarios (Gi and NGi). As the 
number of calibrated parameterisations was high for Gi, I made a selection of exemplar 
parameterisations of the calibration for Gi. For the three most influencing parameters Stock, SEN, and 
LIT two parameterisations were included out of each positively calibrated interval. They were chosen 
randomly out of the pool of the calibrated parameterisations. 

The following variables were selected for the validation: the mean simulated vitality 
(mean vit), the minimum of mean annual productivity per hectare (min ANPP), and the maximum 
standing biomass (max B). Mean vit was chosen, because this variable is difficult to estimate in the 
field and the field data for vitality were not yet tested for plausibility (see Chapter 3). As only little 
was known about mean vit, I applied a less restrictive criterion, mean vit > 1. Only parameterisations 
showing a uniform tussock distribution at the lowest vitality level are discarded. Biomass and 
productivity were chosen, because they are essential variables for a simulation of grazing and thus I 
aim to avoid strong over- and underestimation of productivity and biomass estimations. For these 
variables only weak estimates were available. For the variable minimum of annual net primary 
production (min mean prod) a very rough estimate was available: min mean prod > 750 kg / ha 
(Bertiller and Defossé 1993, for a Festuca steppe in very good state). For maximum standing 
phytomass (max B) no estimation was available. So I derived a theoretical quantitative estimate for 
both biomass variables using the bootstrapped range values for tussock density Td (P1, Table 4.2) and 
the green biomass per tussock estimated by biomass density gbdens, P 21, see Table 4.2) as a basis for a 
theoretical estimation of a possible range for both variables. The data for exclosures were used as 
follows: 

 
min ANPP  = ((max TdE [n/m²] * max gbdensE[g/n] – min TdE[n/m²] * min gbdensE[g/n]  ) / 2) * 0.4 * 10  (4.1) 
 
max B   = ((max TdE [n/m²] * max gbdensE[g/n] – min TdE[n/m²] * min gbdensE[g/n]  ) / 2) * 1.5 * 10  (4.2) 

 
min ANPP Minimum ANPP for a Festuca steppe in an  assumed natural state [kg/ha]; 

max/min Td Maximum/minimum tussock density for the bootstrapped exclosure field data (compare Fig. 4.2 A), 

Tab.  4.2. pattern P1); 

max/min gbdens Maximum/minimum bootstrapped biomass per tussock data, estimated from biomass density estimation 

for exclosure paddocks (compare Fig. 4.2 B), pattern P21, Tab. 4.2); 

max B Theoretical derived maximum standing green phytomass [kg/ha] 

 
The idea of this estimation is the following: the first term estimates a theoretical mean biomass per m², 
using the extreme values for tussock density (range of means) and tussock biomass (range of 
min./max.) and adding an estimated confidence interval to it (0.4 for min ANPP, 1.5 for max B). The 
last factor (10) scales the unit to [kg/ha]. The estimated value for the minimum annual net primary 
production min ANPP = 630 kg / ha lies 10% below that given by Bertiller and Defossé (1993) and the 
estimated value for max B ~ 2.365 kg / ha is about 20% higher than the estimated maximum possible 
ANPP in the field (2.000 kg / ha, Bertiller and Defossé 1993). Thus, I assume that the maximum 
biomass carry over from a year preceding a year of maximum annual productivity will not exceed 25% 
of the maximum ANPP.  

2nd step of Calibration. — The validation of the results of the first step of calibration showed 
partly biologically implausible results (see 4.3.3). Thus I used the results of the validation for the 2nd 
calibration step for both calibration scenarios (NGi and Gi), using the variables derived above; for the 
Grazing calibration scenario (Gi) I used stricter mean vitality values (1.4 ≤ mean vitS ≤ 2.4, 
Tab. 4.2) than for the No grazing calibration scenario (NGi), due to the larger amount of accepted 
parameterisations. 
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Variability of accepted parameterisations. — The parameters of the remaining 
parameterisations after the 2nd step of calibration are ranked by their relative correlation strength (rcs) 
calculated after the 1st calibration step and characterised by i) their median values, ii) the % deviation 
of the standard parameterisation PS from the median, iii) the average deviation (%) of the accepted 
parameterisations from the median, iv) the in mean standard deviation (%) and v) the mean coefficient 
of variation (CV) of the average deviation of one parameterisation from the median. At this step all 
parameterisations from the scenarios NGi, Gi and the standard parameterisation PS are analysed 
together. The relative correlation strength (rcs) was then calculated newly as the median of both 
specific rcs - values for the scenarios NGi and Gi. 

4.2.9 Third step of Calibration, including repetitions of stochastic climate, No grazing  

Overview. — After the validation and the 2nd step of calibration, two further calibration steps 
were performed. This approach was due to the high stochasticity of precipitation acting upon the 
model. The remaining parameterisations after validation were run with 100 repetitions over 100 
different stochastic climates and over the whole range of stocking rates. The output of these 
simulations — first of all the output without grazing — was calibrated against a series of further 
patterns, and I calculated an aggregated index indicating how much patterns fulfilled the 100 
repetitions of one model parameterisation with a frequency of 80% (details see below). The approach 
of repeating 100 times each parameterisation was chosen to avoid false positive calibration due to the 
use of only one random precipitation regime. However, this more sophisticated and computationally 
intensive calibration makes only sense for biologically reasonable parameterisations. Therefore I use 
only the parameterisations accepted after the 2nd calibration step. The following final 4th calibration 
step investigated the resulting parameterisations with regard to their behaviour of tussock density at 
the whole stocking rate range. A criterion was established to reject all unrealistic stable 
parameterisations (details see next section).  

3rd step of calibration: Concept of Cross calibration. — As mentioned above, I used the 
remaining parameterisations from the previous calibration step and applied them with 100 climatic 
repetitions over the whole range of stocking rates. So the parameterisations selected from the no 
grazing calibration scenario (NGi) were tested for how they behaved under grazing and vice versa 
(Cross calibration (Cc)). Cross calibration means that parameterisations, which were calibrated under 
the non-grazed pattern filter combination were now tested additionally against the grazed conditions 
and vice versa. This approach ensures that all parameterisations, weather they were calibrated during 
the first both calibration steps, were both tested under both conditions and are accepted only, if they 
showed reasonable behaviour under both conditions. The 3rd calibration step test all parameterisations 
against no-grazing conditions, the 4th calibration step tests the same parameterisations under grazing 
conditions. 

Details of 3rd calibration step. — The simulations were run 150 time steps, where the first 50 
time steps were performed without grazing to allow the system to equilibrate from the initial 
conditions. From these simulations, the runs without grazing were separated and calibrated against a 
series of primary and secondary predictions (see Table 4.4). For each pattern a threshold was defined 
to select parameterisations showing a biologically reasonable behaviour under natural conditions 
(without grazing) and under most of the stochastic climates applied. The selected thresholds are more 
restrictive than the confidence intervals used in the 1st calibration step (see Table 4.4). The calibration 
of most variables occurred at two time steps (t = 50 and t = 150). Therefore, a stability criterion could 
be included into the calibration. Additionally, some patterns ask for a minimum or maximum value 
throughout the whole run, and thus, the pattern selects parameterisations showing certain system 
stability.  



CHAPTER 4: BIOLOGICAL PROCESSES AFFECTING THE SIMULATION RESULTS: CALIBRATION AND 
SENSITIVITY ANALYSIS 

 90

Tab. 4.4: Third step of Calibration: used variables for calibration of No grazing simulations repeated with 
100 stochastic climate repetitions. 
41 exemplar parameterisations, selected from the calibration scenarios Gi and NGi, calibrated during the 
1st and 2nd step of calibration, were run 150 time steps with 100 different stochastic climates. The results 
of these runs without grazing were calibrated against the listed variables. Each parameterisation had to 
fulfil the given threshold at least 80 times out of 100 repetitions. A parameterisation was accepted, if the 
Cross calibration index (Cc) counted 9 out of 11 (~ 80%) fulfilled patterns (column 1, 2) and thus the 
evaluation was positive.  

 
Further, an integrating index Cc (Cross calibration) including an aggregated threshold was 

defined, which summarizes the results of the calibration for each parameterisation. The variable 
thresholds select a reasonable, good compositional state under natural conditions after a long-term run 
of 150 time steps (compare with Bertiller and Defossé 1993). Three one-sided confidence intervals 
were tested (80%, 90% and 95%), which set the limit how many repetitions out of the 100 performed 
stochastic climate repetitions should lead to results lying within the variable thresholds. Finally, the 
confidence interval 80% was used. The integrating index Cc counts the number of fulfilled patterns 
per parameterisation under the given variable thresholds and confidence intervals (Table 4.4). A 
parameterisation was accepted during this step if the index Cc reached or surpassed the aggregated 
threshold 9 accepted patterns from the 11 possible ones, i.e. one parameterisation fulfilled at least 80% 
out of all patterns tested at the different time steps within at least 80 repetitions out of 100 different 
stochastic climates.  

During the 4th calibration step, the accepted parameterisations out of this 3rd calibration step 
were checked over the whole range of stocking rates. 

4.2.10 Fourth Calibration step 

Finally, the remaining parameterisations were checked against the whole range of stocking 
rates. I simulated the first 50 years without grazing to allow the system to equilibrate from the initial 
conditions, and applied different stocking rates for time steps 51-150. The median out of 100 
stochastic climate repetitions was calculated for time step 50 (not grazed) and for time step 150 (whole 
stocking rate range). This calibration step is a control of the performed calibration steps before. The 
reason for this is that some of the accepted parameterisations under no-grazing conditions might show 
an unrealistic stability against grazing, i.e. heavy grazing might not lead to the observed reduction in 

3rd step of calibration: Cross calibration (Cc) 1st step
Nr. Cc - 

evaluation
Variable Abb. Explanation Criterion / 

threshold 
Confidence 

intervals 
tested

Evaluated 
at time 
step t

1 Tussock density Td S - > 3.3 / m² 50

2 Tussock density Td S - > 3.3 / m² 150

3 Min cover F Min cov F - > 23% 1-50
4 Min cover F Min cov F - > 23% 1-150
5 ANPP - - > 750 kg/ha 50

6 ANPP - - > 750 kg/ha 150

7 Festuca state 1 Cov F*ANPP
cover: 30-90% 

ANPP 750-
2000 kg/ha

States: 7-9, 13-
15 50

8 Festuca state 1 Cov F*ANPP idem idem 150

9 Min. ANPP Min prod - >350 kg/ha 1-150

10 Mean ANPP - - 600-2200 
kg/ha 1-150

11 Max green 
biomass Max B - 1500-2500 1-150

80% / 90% / 
95% 

fulfilment out 
from 100 
simulated 
stochastic 
climates
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tussock density (Bertiller 1996). Thus, a selection criterion sorting out such biologically unrealistic 
stable parameterisations was introduced. As biologically unrealistic I define a model parameterisation 
that does not lead to a reduction in tussock density after 100 years of heavy grazing. Such a model 
parameterisation may occur, due to conservatively criterion for pattern fulfilment to accept a 
simulation result as valid. The stability criterion was defined as follows: if the median of tussock 
density at stocking rates of 1.5 sheep / ha or higher was higher than 3.3 (i.e. 30% cover) at time step 
150 (after 100 time steps of grazing), the parameterisation was rejected as unrealistically stable. The 
guideline for the threshold for discarding biologically unrealistic parameterisations is a statement from 
Bertiller (1996): She found that at least 25 years of grazing with stocking rates of 1.5 sheep / ha 
between May and December (approximately 1.0 sheep / ha for continuous grazing) reduced Festuca 
cover in uplands to approx. 30%. A criterion for biologically unrealistic unstable parameterisations is 
very difficult to develop, because there is a high danger of generating overly optimistic estimations for 
sustainable stocking rates. Thus, such a criterion was not yet tested. 
 

4.3 RESULTS OF PARAMETER ESTIMATION 
4.3.1 First step of Calibration 

Table 4.5 gives an overview over the results of the first step of calibration. Different filter 
combinations, confidence intervals and calculations of tolerance limits were tested. After testing 
several pattern filter combinations (Tab. 4.5), I decided to use the pattern filter combination P1 P2 P4 
P5 for the no grazing calibration scenarios NGi and NGg and the pattern filter combination P1 P3 P4 
P5 for the grazing scenarios Gi and Gg. These filter combinations include the patterns tussock density 
(P1), mean annual net primary production per tussock (P21 for No grazing /P31 for Grazing), mean 
total live biomass after senescence (P22 for NG / P32 for G), mean dead biomass fraction per grid 
(P4, includes both dfrac (P41), and min dfrac (P43)), and finally tussock distribution over dfrac-
classes (P5, divided in five sub-patterns, see Tab. 4.2). The final confidence interval I use is two-sided 
accepting all values, which lie within the 99.8% range of the by bootstrapping generated frequency 
distributions. 

For the no grazing scenario (NG) the more conservative biomass filter (P2) was applied where 
frequency distributions were calculated using the minima and maxima of each bootstrap sample 
instead of the mean values, as for other confidence intervals. The reason was the lack of knowledge 
about biomass for ungrazed situations, thus, it is appropriate to filter with fewer assumptions. 
Additionally, it was more difficult to find accepted parameterisations out of the No grazing calibration 
scenario (see below). Thus, I widened the confidence interval to obtain more accepted 
parameterisations.  

Two main results arise from the calibration. First, the numbers of accepted parameterisations 
are at least one dimension higher for the scenarios including grazing in comparison with those without 
grazing (Tab. 4.5, see the bold and shadowed marked results within the row No grazing). This result 
was unexpected. My null hypothesis about the system was that the No grazing situation was the most 
probable to reflect the natural situation. 
The number of calibrated parameterisations without grazing was relatively low. The second result is 
that the number of positive calibrations within the scenarios that grouped the parameters was higher 
than the scenarios run with independent parameters. This result was expected due to the reduced 
degree of freedom of the parameter space. There are at two possible explanations for the finding that I 
could accept only a low number parameterisations for the scenario NGi without grazing. First, it is 
possible, that one or more filters were set too strictly. Pattern 5, the frequency distribution over dfrac-
classes is extremely selective, especially on the No Grazing scenario (see Table 4.5), i.e. only few  
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Tab. 4.5: Overview over the results of the 1st calibration step. 
Shown are the percentages of parameterisations fulfilling a certain pattern filter combination (left 
column). All four possible calibration scenarios including Grazing and No grazing run each with 
independent parameters or grouped parameters runs are listed (NGi, NGg, Gi, Gg). Pattern filter 
combinations further used for the following 2nd step of calibration are bold marked and grey shadowed. 
P1 P2 P5 P6>1: pattern filter combinations used for calibration step 2: P6>1: parameterisations were 
accepted, if mean vitality was > 1.0. Pattern and confidence interval definition: see Tab. 4.2. Definition 
of calibration scenarios see Tab. 4.3. Definition of parameters and parameter groups (NGg, Gg) see Tab. 
2.3. 

 
parameterisations pass this filter. The demand to fulfil all five sub-patterns of pattern 5 (P51-P55) was 
possibly a too strong assumption. Second, it is possible that the whole system evolved under grazing 
and thus better calibration is generally achieved if light grazing is included. I assume both points are 
relevant, but I did not test a more tolerant pattern 5, because the 1st calibration step provided enough 
parameterisations for further work. Thus, the 1st calibration step has fulfilled his aims: to generate new 
hypothesis to understand better the Festuca steppe dynamics: i) one might test if relaxed assumptions 
about the tussock distribution over dfrac-classes (e.g. generating a sub-pattern consisting only out of 2  

NGi:        
29 free p.

NGg:14 
groups of p.

Gg:            30 
free p.

Gg: 15 
groups of p.

Range of confidence interval 99.8% 99.8% 99.8% 99.8%

Type of confidence interval 
calculation for bootstrapped 

biomass data

Range of 
Min/Max

Range of 
Min/Max

Range of 
means

Range of 
means

Filter combination \ Nr. of 
parameterisations

196347 161999 196347 196347

P1 25.79 22.96 19.01 15.66
P1 P21 25.79 22.96 18.90 15.66
P1 P22 16.98 15.65 5.15 14.93
P1 P31 25.79 22.96 16.47 12.85
P1 P32 11.91 11.05 2.80 4.38
P1 P41 9.25 8.63 4.69 5.62
P1 P43 9.86 9.20 4.77 7.85
P1 P5 0.11 0.24 1.92 2.21

P1 P2 16.98 15.65 5.12 14.93
P1 P2 P4 5.51 4.76 1.56 4.65

P1 P2 P4 P5 0.05 0.08 0.33 1.06

P1 P2 P5 P6>1 0.04 0.05 0.33 0.98

P1 P2 P5 P6 0.01 0.01 0.06 0.23

P1 P3 11.91 11.05 2.50 3.92

P1 P3 P4 3.91 3.49 0.76 1.79

P1 P3 P4 P5 0.04 0.06 0.13 0.27

P1 P3 P5 P6>1 0.03 0.04 0.13 0.26

P1 P3 P5 P6 0.01 0.00 0.03 0.05

 Results 1st step of Calibration

% Fulfilllment of total parameterisations

Data base and calibration 
scenarios

No grazing (NG) Grazing (G)

Multiple criteria analysis with different biomass estimators

Calibration scenarios

Biomass confidence intervals calculated by biomass density

Biomass confidence intervals calculated  by linear biomass estimation

% Parameterisations fulfilling pattern filter combination
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Fig. 4.3: Frequency distributions for exemplar parameters after the 1st step of calibration. 

Shown are the frequency distributions of the accepted parameters over the whole investigated range. 
Exemplar parameters are shown where the parameter range could be limited during the 1st calibration 
step. Left column shows the calibration scenario No grazing, each parameter independent (NGi, 
calibrated with filter combination P1 P2 P4 P5, N = 105); right column shows the calibration scenario 
Grazing, each parameter independent (Gi, calibrated with filter combination P1 P3 P4 P5, N = 250). 
Each parameter space was divided equally into 11 intervals. Parameters are defined in Tab. 2.3. Expert 
estimation: the thin bar indicates the expert estimation (see Tab. 2.3). 

Frequency distribution of accepted parameters (1st Calibration: 
Calibration scenarios (parameters independent): 

No Grazing (NGi)  Grazing (Gi) 
P1 P2 P4 P5 (N= 105) P1 P3 P4 P5 (N = 250)
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or 3 sub-pattern) lead to a wider acceptance of parameterisations and ii) the Festuca steppe evolved 
under light grazing. 

Frequency distributions. — Fig. 4.3 shows the frequency distributions of the accepted 
parameterisations for most parameters for which the parameter space was restricted through the 1st 
step of Calibration (calibration scenarios NGi, left column, Gi right column). Restrictions of parameter 
space for both calibration scenarios was possible for precipitation use efficiency (PUE), senescence 
rate (SEN), littering rate (LIT), and local water redistribution by live tussocks (WredT). For the 
calibration scenario No grazing (NGi) additionally the soil water induced mortality threshold 1 and 2 
(MortW1, MortW2) and one vitality change parameter, the soil water induced vitality decrease 1 
(VdecW1, data not shown) can be limited within the investigated range. For the parameters stocking 
rate (Stock) and the grazing shape parameter (Gshape, eqn. I.10, Appendix I, data not shown), which 
are part of the Grazing (Gi) calibration scenario, the parameter space could be restricted. For the 
parameters senescence and littering I investigated the whole parameter range. As expected, exclusion 
of one of both processes (i.e. SEN = 0 or LIT = 0) is not possible, there are on accepted 
parameterisations without these processes. Other parameters might show a specific maximum within 
their distribution, but cannot be restricted within their range. A restriction of the parameter space for 
all parameters was not possible because i) the applied pattern filter combination is still too tolerant to 
restrict more parameters, or ii) the parameters range is already reasonably well estimated. A further 
more detailed analysis would be interesting to resolve the question if further parameters could be 
restricted within their range under the condition of a better estimation of some assumed basic 
parameters (e.g. senescence rate SEN or littering rate LIT).  

4.3.2 Sensitivity analysis 

For sensitivity analysis I use the model parameterisations which were accepted at the 1st Calibration 
step. I show and discuss in detail the results for the most important parameters out of the calibration 
scenarios, were parameters were run independently. The results for the grouped calibration scenarios 
are given in Appendix II. For the calibration scenario No grazing (NGi) I used 105 accepted 
parameterisations, NGi = 122, Tab. 4.5), and for the Grazing calibration scenario Gi I used = 250 
parameterisations. First I discuss the ranking of parameters after their relative correlation strength (rcs) 
for each calibration scenario (Fig. 4.4). Secondly I discuss some results for important response 
variables in detail. 

Parameter ranking after relative correlation strength (rcs): Calibration scenario No grazing. 
— The most important parameters for the calibration scenario No grazing (NGi, Tab. 4.6 and 
Fig. 4.4 A, and NGg, Fig. 4.4 B and Tab. II.3, Appendix II) are the senescence rate (SEN) and the 
littering rate (LIT); thus these processes have the highest overall mean correlation with the 
investigated response variables. At the first glance this is a surprising result but it becomes 
understandable when we consider that senescence has a high influence on the biomass variables, from 
which 5 are included into this analysis. But senescence and littering show also significant correlations 
with classes 2 and 3 of the tussock distribution over the dead biomass fraction (fTSdfrac2-3, Tab. 4.6), i.e. 
tussocks with a dead biomass fraction of 20-40% and 40-60% are significant correlated with the 
senescence rate. The next important parameters at the calibration scenario Ngi with high mean relative 
correlation strength values (rcs) are vitality increase by water 2 (VincW2), basic plant productivity 
(ProdV1), vitality decrease by water 2, colonization 1st year water threshold (see Fig. 4.4 A, Tab. 4.6) 
and one water threshold for mortality. The most important parameter for tussock productivity 
estimates the maximum potential productivity for a tussock with lowest vitality (ProdV1 at vit = 1). 
This result is an expected one, because this parameter estimates the largest fraction of the tussocks‘ 
maximum potential productivity.  
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Tab. 4.6: Spearman rank correlation for calibration scenario No grazing, parameters independent (NGi). 
Shown are the descriptive statistics and significant correlations of important response variables against 
the 12 parameters with the highest rank correlation strength (rcs). Variables are defined in Tab. 2.2, 
parameters in Tab. 2.3. 

 

Tab. 4.7: Spearman rank correlation for calibration scenario Grazing, parameters independent (Gi). 
Shown are the descriptive statistics and the significant correlations of important response variables 
against the 9 parameters with the highest rank correlation strength (rcs). Variables are defined in Tab. 
2.2, parameters in Tab. 2.3. 

Ranking after relative correlation strength (rcs ) 1 2 3 4 5 6 7 8 9 10 11 12

Process SEN/LIT SEN/LIT VD WR VD PG VD CO MO CO PF PG

Sub-process SEN LIT VD W WR L VD W PG V VD W CO W MO W CO W - PG V

SEN LIT VIncW1 WredT VincW2 ProdV1 VdecW2 ColWS0 MortW1 ColS0p PFinc ProdincV
2-4

Variables Min
lower 

confide
nce

Median
upper 

confice
nce

Max Mean Sd Cv PG.4 PG.5 VD.1 WR.1 VD.2 PG.1 VD.4 CO.1 MO.1 CO.2 PF.2 PG.2

Td S 0.7 1.6 3.1 4.7 5.1 3.1 1.2 39 0.04 0.09 -0.25 0.22 -0.10 0.03 0.08 0.08 0.00 0.02 -0.03 0.10
Min cov F 0.3 0.6 1.5 3.7 3.7 1.7 0.8 47 0.24 0.24 0.20 0.22 0.24 0.26
Mean prod 6.9 8.7 11.7 4.7 19.6 12.0 3.0 25 0.10 0.18 -0.05 0.33 -0.37 0.72 -0.12 0.10 0.17 0.02 0.31 0.22
Mean gb S 1.2 15.1 14.8 45.1 57.6 20.7 16.0 77 -0.95 -0.78 -0.02 0.03 0.04 0.07 -0.05 0.21 -0.12 0.01 -0.04 0.12
Mean gb P 11 11 27 70 70 33 17 51 -0.88 -0.69 -0.05 0.12 -0.04 0.20 -0.04 0.25 -0.08 -0.03 0.04 0.16
dfrac 0.4 0.4 0.5 0.5 0.6 0.5 0.0 10 0.33 0.15 -0.10 0.16 0.04 -0.06 0.21 0.09 0.06 -0.05 0.04 0.14
f Tdfrac 1 0.0 0.1 0.1 0.3 0.4 0.1 0.1 56 -0.43 -0.46 0.13 -0.19 0.00 -0.05 -0.27 -0.18 -0.13 0.21 -0.05 -0.08
f Tdfrac 2 0.0 0.1 0.1 0.2 0.3 0.1 0.1 42 0.24 0.07 0.16 -0.15 0.09 0.09 -0.02 -0.06 -0.01 0.24 -0.06 -0.02
f Tdfrac 3 0.1 0.2 0.3 0.4 0.6 0.3 0.1 46 -0.11 0.21 -0.30 0.17 -0.05 0.13 0.06 0.19 0.07 -0.35 0.11 0.01
f Tdfrac 4 0.1 0.3 0.5 0.6 0.6 0.4 0.1 24 0.19 0.01 0.20 -0.09 0.03 -0.17 0.12 0.02 -0.08 0.09 -0.11 0.07
f Tdfrac 5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 427 0.11 -0.20 0.02 0.05 0.05 -0.13 -0.26 -0.14 0.10 0.25 0.02 -0.11
mean vit 1.0 1.0 1.6 2.2 3.2 1.6 0.5 34 0.09 0.18 -0.23 0.39 -0.47 0.02 -0.34 0.05 0.42 0.04 0.27 0.07
mean vit dfrac1 0.0 1.0 1.0 1.2 1.7 1.0 0.2 18 -0.33 -0.29 -0.45 0.01 0.07 -0.19 -0.36 0.08 0.15 0.04 -0.14 0.03
mean vit dfrac2 1.0 1.0 1.0 2.0 3.0 1.3 0.5 35 -0.01 0.13 -0.49 0.36 0.05 -0.07 -0.01 0.09 0.20 -0.11 -0.01 -0.05
mean vit dfrac3 1.0 1.0 1.6 2.1 4.0 1.6 0.7 42 0.00 0.17 -0.30 0.34 -0.41 -0.02 -0.26 0.05 0.34 -0.09 0.19 0.04
mean vit dfrac4 1.0 1.0 1.8 2.7 3.8 1.7 0.7 41 0.01 0.06 -0.07 0.35 -0.53 0.03 -0.36 0.04 0.40 0.15 0.30 0.09
mean vit dfrac5 0.0 0.0 0.0 0.0 3.0 0.1 0.5 383 0.10 -0.23 -0.02 0.04 0.05 -0.15 -0.30 -0.11 0.09 0.30 -0.04 -0.13
mean ANPP 215 383 530 857 1323 587 225 38 0.10 0.23 -0.05 0.09 -0.37 0.45 0.00 0.27 0.07 -0.06 0.21 0.31
min ANPP 37 111 189 340 585 215 108 51 -0.14 0.02 -0.21 0.29 -0.09 0.33 0.17 0.24 -0.18 -0.07 0.06 0.16
max ANPP 662 714 1147 2426 2754 1251 410 33 0.18 0.25 0.07 -0.13 -0.40 0.44 0.00 0.17 0.12 -0.02 0.15 0.38
ANPP 92 113 380 907 966 411 201 49 0.17 0.23 -0.20 0.34 -0.24 0.37 0.01 0.09 0.06 0.02 0.10 0.17
B S 26 40 416 2403 2425 643 583 91 -0.84 -0.69 -0.12 0.12 0.03 0.05 -0.01 0.26 -0.12 0.03 -0.06 0.15
max B 125 516 1420 3394 4896 1763 1239 70 -0.90 -0.73 -0.02 -0.13 -0.03 0.04 -0.08 0.24 -0.08 0.02 -0.02 0.16
relative correlation strength (rcs ) 0.21 0.21 0.12 0.12 0.12 0.11 0.11 0.07 0.07 0.06 0.05 0.05

Calibration 
scenario No 
Grazing, 
parameters 
independent 
(Ngi), N = 105, 
Filter: P1 P2 P4 
P5

P a r a m e te r s
Median, upper and 

lower median 
confidence (99%)

Descriptive statistics

Ranking after relative correlation strength (rcs ) 1 2 3 4 5 6 7 8 9

Process SEN/LIT GR WR SEN/LIT PG WI VD PG VD

Sub-process SEN GR M WR L LIT PG V - VD W PG V VD W

SEN Stock WredT LIT ProdV1 PUE VincW2 ProdInc
V2-4

VdecW
2

Variables Min
lower 

confide
nce

Median
upper 

confice
nce

Max Mean Sd Cv PG.4 GR.1 WR.1 PG.5 PG.1 WI.1 VD.2 PG.2 VD.4

Td S 0.96 2.23 3.80 4.47 4.59 3.60 0.83 23 0.41 0.33 0.15
Min cov F 1.0 2.1 3.7 4.5 4.6 3.5 0.9 24 0.17 0.44 0.42 0.18 -0.13

Mean prod 11.19 13.56 18.77 21.70 22.58 18.12 2.82 16 0.45 0.36 0.37 0.15 0.44 -0.19 0.18 -0.20
Mean gb S 10.82 11.11 13.55 18.09 22.67 14.05 2.53 18 -0.48 0.15 -0.14
Mean gb P 23.41 27.36 33.22 38.24 45.14 33.18 4.02 12 0.21 0.18 0.43 -0.18 -0.20 0.14 -0.12

dfrac 0.26 0.31 0.35 0.39 0.51 0.35 0.03 8 0.19 0.16
f Tdfrac 1 0.03 0.04 0.08 0.18 0.52 0.09 0.06 67 0.16 0.13 0.12
f Tdfrac 2 0.09 0.36 0.53 0.69 0.74 0.52 0.13 25 -0.45 0.24 -0.19 -0.16
f Tdfra c3 0.08 0.19 0.39 0.56 0.60 0.38 0.13 34 0.37 -0.27 0.15 0.14
f Tdfra c4 0.00 0.00 0.00 0.00 0.27 0.00 0.03 782 -0.22 -0.13 -0.34 0.13
f Tdfra c5 0.00 0.00 0.00 0.00 0.10 0.00 0.01 1581

mean vit 1.01 1.77 2.87 3.72 4.00 2.80 0.64 23 0.34 0.18 0.34 0.23 -0.17 -0.29 -0.32 -0.14 -0.33
mean vit dfrac 1 1.00 1.19 2.62 3.42 4.00 2.49 0.78 31 0.29 0.13 0.35 0.26 -0.39 -0.44 -0.20 -0.21
mean vit dfrac 2 1.00 1.73 2.86 3.73 4.00 2.81 0.66 24 0.33 0.15 0.31 0.26 -0.15 -0.29 -0.32 -0.13 -0.33
mean vit dfrac 3 1.01 1.75 2.93 3.83 4.00 2.87 0.66 23 0.33 0.23 0.30 0.14 -0.17 -0.16 -0.22 -0.34
mean vit dfrac 4 0.00 0.00 0.00 0.00 3.50 0.12 0.53 425 -0.17 0.15 -0.13 -0.37 0.17 0.14
mean vit dfrac 5 0.00 0.00 0.00 0.00 1.00 0.00 0.06 1581
mean ANPP 369 572 829 1049 1237 822 177 21 0.28 0.56 0.23 0.35 0.13 -0.15
min ANPP 133 309 625 805 932 586 177 30 0.31 0.57 0.50 0.13 0.31

max ANPP 663 940 1194 1449 2447 1200 186 15 0.15 0.38 0.55 0.30 0.26

ANPP 133 367 694 894 983 659 187 28 0.33 0.54 0.44 0.17 0.23
B S 119 305 496 728 892 506 152 30 -0.19 0.31 0.25

max B 412 638 861 1295 2330 931 282 30 -0.78 0.17 -0.43 -0.50 0.21 0.34
Relative correlation strength (rcs , out of 24 variables): 0.25 0.22 0.20 0.15 0.14 0.11 0.07 0.07 0.06

f TG 0.00 0.29 0.54 0.22 1.00 0.55 0.21 0.38 0.63 -0.66 0.16
cov EL 0.00 0.11 0.00 0.12 0.38 0.02 0.05 3.03 -0.21 -0.43 -0.54 -0.19
cov ES 0.00 0.01 0.00 0.00 0.01 0.00 0.00 1.29 -0.21 -0.40 -0.49 -0.16

mean PUE 0.06 0.11 0.27 0.19 0.41 0.25 0.07 0.27 0.18 0.47 0.68 -0.12 0.15 0.26
C 0 72 281 63 649 295 136 0.46 0.96 0.30 -0.55 0.14

Mean C 0 71 278 64 629 291 135 0.46 -0.13 0.96 0.29 -0.56 0.15 0.13
Mreal 0.00 0.12 0.24 0.09 0.55 0.25 0.10 0.41 -0.20 0.75 -0.74 0.15

Calibration 
scenaro Grazing, 
parameters 
independent 
(Gi):N = 254, 
Filter: P1 P3 P4 
P5

P a r a m e t e r s (1st row: names of Chapter 4, 2nd row: as in other chapters)
Median, upper and lower 

median confidence 
(99%)

Descriptive statistics
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The ranking of parameters indicates that each biological process (colonization, mortality, and vitality 
dynamics) has at least one parameter with relatively high correlations with the response variables and 
thus can be interpreted as important process for vegetation dynamics. Although this finding was 
intuitively expected, it was not clear if a rigorous analysis would confirm this expectation. This was 
because I have no data about the relative ranking of soil water related processes and I tried to include 
only important processes. An interesting finding is that the water threshold parameters show a stronger 
rcs than the correspondent survival probability parameter, e.g parameters ColWS0 vs. ColS0p, 
survival probability for seedlings (Fig. 4.4 A). Another interesting finding is that if I compare 
parameters from scenario NGi which were later grouped within the grouped scenario NGg (Tab. 2.3) is 
that in most cases one or two parameters of a given sub-process (e.g. MortW1 from the parameter 
group water induced mortality MO W, Tab. 2.3) are strongly correlated, while the other parameters of 
the given sub-process show only weak correlations (see Tab. 4.6, and Tab. II.2 for NGi). This indicates 
that a sub-process is driven by one or two parameters only and that it may thus be possible to abstract 
some parameters and thus reduce the model’s complexity without loosing much of information. This is 
an one important step towards an up-scaling of this model to the next larger spatial scale. A priori it 
was not clear which parameters of a sub-process would be the most important ones, because it was 
unknown how the model would behave.  

Comparing both No grazing calibration scenarios. — Comparing the grouped and the 
independent parameter run for the No grazing scenario (Fig. 4.4 A and Fig. 4.4 B), I find that the most 
relevant parameters (senescence and littering) are the same. Modifications of the ranking can be 
observed in parameter groups with lower rcs. The parameter group water induced mortality (MO W, 
Fig. 4.4 B, for parameter group definition see Tab. 2.3) shows higher correlations than the parameter-
group water induced vitality change (VD W). Parameters of the Colonization group (CO G), which 
comprises the parameter for seedling emergence colonization cover threshold (ColS0Cov) and 
colonization probability in the 1st – year (ColS0p), show higher average correlations than the soil 
water threshold related parameter group (CO W, Tab. II.3). Thus, grouping of parameters may lead to 
shifts in the relative ranking of sub-processes within one process (e.g. Colonization). An explanation 
for this is that a sub-process is more reduced in relative correlation strength the more parameters it 
includes which show no significant correlations to the investigated response variables. This finding 
shows that it is not straight forward to find the most important sub-process for reduction in model 
complexity. Thus, at this point it becomes evident that up-scaling of a bottom up simulation model is 
by far a non-trivial challenge.  

Parameter ranking for calibration scenarios Grazing. — The calibration scenarios including 
grazing (Gi, Tab. 4.7, Fig. 4.4 C, Tab. II.4, and Gg, Fig. 4.4 D and Tab. II.5 (Appendix II) show 
important similarities with the no grazing scenarios: the senescence rate is the most important, the 
littering rate is nearly as important as senescence (at 4th position), then the basic plant productivity 
(ProdV1), water induced vitality increase 2 (VincW2) and the water induced vitality decrease 2 
(VdecW2) follow. However, there are also important differences between grazed and ungrazed 
calibration scenarios: Colonization and mortality related parameters show reduced relative correlation 
strengths for the grazed scenarios and are reduced within the ranking. The most important new 
parameter is the stocking rate, which is absent for the No grazing calibration scenarios and is nearly as 
important as senescence, and shows the highest correlations for the grouped scenario (Fig. 4.4 D). This 
finding was expected, because stocking rate affects several processes. The biological interpretation of 
the finding that both senescence and stocking rate show the highest correlations is that both processes 
(grazing and senescence/littering) compete for the available living biomass. This interpretation 
emphasizes the importance of adequate estimations of senescence and littering rates. 

Small scale water redistribution by live tussocks. — The second new parameter with high  
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Fig. 4.4: Sensitivity analysis: Relative importance of parameters for the calibration scenarios after 

calibration.  
Shown are the aggregated results of the sensitivity analysis performed after the 1st Calibration step for 
the four calibration scenarios defined in Tab. 4.3 and Tab. 2.3. Parameters are ranked using the mean 
relative correlation strength (rcs) of one parameter/sub-process with 24 variables. The mean relative 
correlation strength is the mean out of the absolute values of all significant correlations between the 
regarded response variables and one parameter/sub-process (detailed results see Tables 4.6, 4.7, II.2-5, 
Appendix II). calibration scenarios: A) No grazing, all 29 parameters run independently (NGi); the 
parameter Stocking rate (Stock) is included for illustrative purposes at the rank it contains for scenario 
Gi; B) No grazing, parameter grouped (NGg, 15 parameter groups); C) Grazing, all parameters run 
independently, (Gi, 30 parameters); D) Grazing, parameter grouped (Gg, 16 parameters). Same colours 
refer to the same sub-process (e.g. black = soil water induced mortality). In brackets the included 
parameters are listed. If one colour passes over to white more than one parameter is included into this 
sub-process. 

  

ranking is the local water redistribution by tussocks (WredT, see Fig. 4.4 C-D). This result indicates 
that small-scale processes like water gain by live tussocks from the neighbourhood may play an 
important role for the vegetation dynamics in a grazed system. This finding was not expected, because 
the maximum value I chose for this parameter during parameter variation (20 mm, see Tab. 2.3) was 
low relative to the mean annual precipitation (MAP = 375 mm). A biological interpretation is that 
vegetation dynamics under grazing becomes more stable, if the tussocks are able to provide 
themselves with resources from the neighbourhood. This improves both tussock vitality and plant 
productivity, and reduces the overall relative grazing pressure. This also may reduce the decrease of 
the tussock vitality if a tussock is grazed. But there is also a trade-off included within this dynamics, 
so the interpretation is not straight forward. A tussock which improves productivity gaining water 
from its neighbourhood increases its probability of being accepted for grazing and exerts higher 
competition against neighbouring emerged seedlings. Nevertheless, this finding is a highly interesting 
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non-trivial result of the spatial component of this simulation model. The next important parameters 
within the ranking of scenario Gi are Global water input (PUE) and Productivity increment by vitality 
2-4 (ProdInc2-4) reflecting that parameters contributing to plant productivity become more important, 
i.e. the functional component of the vegetation dynamics increases in importance relative to structural 
components.  

Comparing both grazing calibration scenarios. — The grazing scenario with grouped 
parameters (Gg) shows similar results as Gi, which parameters were run independently (compare 
Fig. 4.4 C and 4.4 D). Differences are, that stocking rate and the parameter group plant productivity by 
vitality (PG V) rank higher than senescence rate (SEN), the parameter groups vitality change by water 
(VD W), mortality by water (MO W) and colonization water thresholds (CO W) increase in ranking, 
whereas littering rate (LIT) decreases in rank. These differences suggest that within the grazing 
scenarios the grouping of parameters leads to stronger changes in ranking than within the calibration 
scenarios without grazing. The strong decrease in relative correlation strength of the littering rate 
might reflect therefore that under grazing less biomass is available for littering due to the removal of 
biomass by grazing.   

Conclusion of the aggregated sensitivity analysis. — Concluding this overview over the 
sensitivity analysis, which investigated the relative importance of the parameters, I state that the 
parameters (for independent parameter runs) or sub-processes (for grouped parameters calibration 
scenarios) senescence and littering rate, the stocking rate, the local water redistribution by live 
tussocks and tussock vitality change by water, are those parameters/sub-processes which show the 
highest correlations with the investigated response variables and thus are evaluated as the most 
important parameters or sub-processes. Grazing and senescence are the parameters with the highest 
importance because they compete against each other for the available plant biomass. Water 
redistribution on the small scale (WredT) is an important parameter contributing to vegetation 
dynamics of the grazed scenario. There are normally one or at most two parameters per sub-process, 
which show strong correlations to model predictions. This is an important finding which indicates that 
model complexity can be reduced by removing parameters of a sub-process. 

I assume that a parameter is important if it shows high ranking. This is only true, however, if 
an important parameter could not be restricted considerably in range by calibration. In this case it 
would show a low ranking. As most parameters retained a wide initial range, low correlations can be 
correctly interpreted as low effect on the response variables.  

Detailed analysis of specific response variables and specific parameters. — Now I analyse if 
there are strong correlations between specific response variables and specific parameters, parameter 
groups or other response variables. Such an analysis should indicate whether response variables exist 
which are highly correlated to a small number of parameters or variables. If this is the case for a 
variable it might be easily predicted by a small number of parameters or with a relative simple linear 
model. I consider the key variables tussock density (TdS), ANPP per tussock (gbP), simulated mean 
vitality per grid (vit mean), the mean dead biomass fraction per grid (dfrac), and additionally for the 
Grazing calibration scenarios the available forage per tussock (TB), mean consumed forage (Mean C), 
and mean precipitation use efficiency (mean PUE). All significant rank correlation coefficients for the 
variables TdS, gbP, vit mean, and dfrac with specific parameters are given for the calibration scenario 
NGi at Fig. 4.5 A (for the six most relevant parameters), Tab. 4.6 and Tab. II.2 (Appendix II); for 
scenario Gi at Fig. 4.5 B (for the six most relevant parameters), Tab. 4.7 and Tab. II.4 (Appendix II; 
for NGg and Gg at Tab. II.3 and Tab. II.5 (Appendix II) respectively.   

Selected correlations of response variables are given in Tab. 4.8 for the independent 
calibration scenarios NGi and Gi. Correlations for grazing related response variables are given in 
Tab. 4.7 below and at Fig. 4.5 C. 
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Tussock density. — Tussock density shows the highest correlation with stocking rate (scenario 
Gi, cor.Stock = 0.41 (Fig. 4.5 B). This result is not intuitive because one would expect a negative 
correlation between TdS and Stocking rate, i.e. tussock density should decline with increasing stocking 
rate. For a specific model parameterisation this hypothesis is true (see following sections), if only 
stocking rate is varied. But during the calibration scenario Grazing, independently run parameters Gi 
each model parameterisation was run only with one stocking rate out of the whole range. Thus, a 
model parameterisation including a high stocking rate (e.g. Stock = 2.0 sheep / ha) may fulfil the 
applied pattern filter combination only, if other parameters are combined with that stocking rate in 
such a way that the specific filter combination is still fulfilled. E.g. the parameterisations might be 
selected with the highest productivity parameter values, low senescence and littering rates, low 
mortality thresholds etc. If such parameterisations are biologically plausible, should be tested in a 
following step. 

Tussock density, further correlations. – The second significant correlation is that to local water 
redistribution (Gi, cor.WredT = 0.33, Fig. 4.5 B). This correlation is biologically meaningful; it means 
that the more water tussocks may extract from the neighbourhood, the higher the probability is to 
remain at higher tussock density. The third significant correlation is a negative one to Vitality increase 
by water 1 (VincW1, corVincW1 = -0.25, NGi, see Tab.II.2, Appendix II)) and finally to Global water 
input (PUE, cor.WUE = 0.19 (NGg, Tab.II.3, Appendix II). The negative correlation between TdS and 
VincW1 shows how the water threshold for vitality changes affects tussock density, e.g. if vitality 
increases already at relatively low soil water status levels, we would observe higher densities than 
otherwise. The empirical knowledge about sub-lethal effects of soil water on plant vigour is scarce and 
was not yet investigated at the Festuca steppe.  

The analysis for tussock density shows that no strong correlations (i.e. cor. > ± 0.70) exist, 
which would allow to predict tussock density with a relative simple linear model and a few 
independent parameters. Most correlations between the investigated response variables and model 
parameters show values below cor. < ± 0.70. This reflects the complex interplay of different processes 
which finally lead to the value at the higher level variable, as e.g. tussock density. 

Mean vitality. — The next very important variable is mean vitality of tussocks, because it co-
determines strongly (together with precipitation) annual production of a tussock (prod) and thus is 
highly correlated, as expected, with the mean annual production per tussock (mean prod), with values 
cor.gbP = 0.63 and 0.55 (NGi and Gi, respectively, Tab. 4.8)). For the scenario No grazing with 
independent parameters (NGi) mean vitality shows a complex picture of medium strong correlations 
with the following parameters (Stocking rate (Fig. 4.5 B), VincW2 (Fig. 4.5 A), MortW1 (Tab. II.5, 
scenario Gg, WredT (Fig. 4.5 A), VdecW2, PFinc, ColWS2 and others, see Tab. II.2 and Tab. II.3). 
Thus, nearly all biological processes contribute significantly to mean vitality: vitality dynamics by 
water, mortality by water, Colonization, and local water redistribution. 

Mean annual net primary production per tussock. — Mean annual net primary production per 
tussock (mean prod) shows two strong correlations with response variables: one with mean vit 
(cor.mean vit = 0.63, Tab. 4.8, see above), and with basic plant productivity (ProdV1, cor.ProdV1 = 0.72, 
NGi, Fig. 4.5 A). These correlations are expected, because they reflect the plant productivity equation 
(see Appendix I, eqn. I.6). Correlations between mean prod and ProdV1 are weaker for grazed 
scenarios (cor.ProdV1 ~ 0.45, Fig. 4.5 B). 
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Fig. 4.5: Sensitivity analysis: Correlations between exemplar response variables and parameters.  

Shown are the Spearman rank correlations for the calibration scenarios No grazing and Grazing, run 
with independent parameters.  A) Calibration scenario No grazing, independent parameters (NGi), 
significance level: p = 0.05 (for cor. ≥ ± 0.19, N = 105); correlations of the variables tussock density, 
Annual net primary production per tussock, mean dead biomass fraction and mean vitality with: SEN: 
senescence rate; LIT: littering rate; VincW1: vitality increase due to soil water status 1; WredT: local 
water redistribution by tussocks; VincW2: vitality increase by soil water status 2; ProdV1: basic plant 
productivity at vitality = 1; B) Calibrations scenario Grazing, parameter independent (Gi); significance 
level: p = 0.05 (for cor. ≥ ± 0.12, N = 250); correlations of the variables as in A) with the parameters: 
SEN, Stock: stocking rate; WredT; Lit; ProdV1; PUE: precipitation use efficiency per tussock. C) 
Calibrations scenario Grazing, parameter independent (Gi), correlations with grazing related response 
variables: available forage per tussock (mean gP); Consumed forage (C) at time step (t); mean consumed 
forage per simulation (mean C).  
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Tab. 4.8: Correlations between response variables for the calibration scenarios NGi and Gi. 
A): Calibration scenario No grazing, parameters independent (NGi, N = 105); significance level: 
p < 0.05; B) Calibration scenario Grazing, parameters independent (Gi, N = 250); significance level: 
p < 0.05; Variables are explained in detail in Tab. 2.2. Bold: Correlations (cor.) ≥ ± 0.4 

A 

B 

 
A  

 

B  
 

 
Fig. 4.6: Correlations of local water distribution and grazing shape with exemplar response variables. 

Shown are data from the Calibration scenario Grazing, parameters independent (Gi). A) Parameter local 
water redistribution by tussocks (WredT). B) Parameter Gshape, which triggers forage selectivity of 
herbivores in dependence of dfrac. 
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Mean gb S 0.03 0.13 1.00 -0.05 0.03 0.05 0.07 -0.03 -0.13 0.72 0.11 0.58 0.60 -0.06 -0.09 -0.09 -0.35

dfrac -0.05 0.03 -0.05 1.00 -0.02 -0.02 -0.04 -0.05 0.14 0.05 0.01 -0.06 -0.17 -0.01 -0.11 -0.11 -0.14
Mean vit 0.23 0.55 0.03 -0.02 1.00 0.86 0.97 0.91 -0.17 0.34 0.31 0.20 -0.42 0.25 0.20 0.19 -0.02
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mean vit dfrac4 0.13 0.59 0.19 0.02 0.28 0.06 -0.13 0.06 -0.09 0.13 0.94 0.24 0.27 0.74 1.00 0.15
mean vit dfrac5 -0.03 -0.06 -0.13 0.15 -0.17 0.06 0.26 -0.37 0.04 0.93 0.11 0.10 -0.13 -0.03 0.15 1.00
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Parameter: Local water redistribution (calibration scenario Gi)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fraction of grazed tussocks

Mean Forage consumed (mean C)

Minimum Forage consumed

M Real

Minimum M real

Maximum M real

Variables

Significant rank correllation (Spearman)

Parameter: Gshape (calibration scenario Gi)



CHAPTER 4: BIOLOGICAL PROCESSES AFFECTING THE SIMULATION RESULTS: CALIBRATION AND 
SENSITIVITY ANALYSIS 

 102

Dead biomass fraction. — Dead biomass fraction (dfrac) shows a complex behaviour due to 
relatively weak correlations with several parameters: the highest one which was expected is that with 
senescence rate (SEN, cor.SEN = 0.33, NGi, Fig. 4.5 B). Other significant correlations exist to one 
vitality decrease parameter (VdecW2, NGi, Tab. II.2), to local water redistribution WredT (NGg, 
Fig. 4.5 B) and to plant productivity parameters. 

Mean available forage per tussock. — Mean available forage per tussock (mean gbP) is a key 
variable which indicates the potentially available biomass for livestock. Mean gbP shows strong 
negative correlations both to senescence (cor.SEN = -0.89, NGi) and littering (cor.LIT = -0.69, NGi, both 
see Tab. 4.6) These correlations emphasize the importance of both parameters as ‘competitors’ to 
stocking rate as a biomass consumer. Weak positive correlations were found with  plant productivity 
ProdV1 and to the water threshold parameter for seedlings (ColWS0, both NGi, see Tab. 4.6). The 
correlations of mean gbP with mean vitality are weak for the two calibration scenarios, with 
independent parameters: at the No grazing scenario correlation is cor.mean vit = 0.24, (NGi, Tab. 4.8), 
and at the Grazing scenario cor.mean vit = 0.34, (Gi, Tab. 4.8). The weak correlation for both scenarios is 
unexpected. This finding might reflect the effect of the wide range of both parameters SEN and LIT 
into sensitivity analysis. Hence available forage may include a highly variable fraction of biomass 
carry over remaining from several years before, which dies at highly different rates and thus reduces 
correlation between mean vitality of tussocks and available forage.  

Mean consumed forage per simulation. — Mean forage consumed per simulation and year 
(Mean C) has got a strong correlation with grazing (cor.Stock = 0.96, Gi, Fig. 4.5 C, Tab. 4.7), a 
intermediate correlation with littering (cor.LIT = -0.56, Gi, Fig. 4.5 C, Tab. 4.7), but only a weak 
correlation with senescence (cor.SEN = -0.13, Gi, Fig. 4.5 C, Tab. 4.7). This result reflects the finding, 
that littering rate is a stronger antagonist to stocking rate than senescence rate under grazing. But it is 
not an intuitive result. One might expect that senescence should be more important, because it directly 
reduces the available green biomass which is available for consumption. But grazing reduces green 
biomass and with it the absolute amounts of biomass available for senescence. Thus the relative 
importance of senescence rate decreases. Now littering rate takes over the importance, because lower 
littering rates lead to higher and longer lasting fractions of dead biomass, which increase forage 
selectivity and thus reduce the relative amount of green biomass which is consumed. This explanation 
emphasizes the importance of our initial hypothesis that forage selectivity is increased by above 
ground standing dead material.  

Defoliation shape. — A very interesting result is that the minimum of consumed forage 
(min C) is strongly correlated to the defoliation shape parameter (cor.Gshape = -0.83, Gi, Fig. 4.6 B). 
Also the realized minimum relative grazing intensity (min Mreal) is strongly correlated to the 
defoliation shape parameter (cor.Gshape = -0.63, Gi, Fig. 4.6 B). Both correlations show that if forage 
selectivity increases with increasing values of the parameter Gshape, the minimum consumed forage is 
reduced, which might be relevant during drier years. Finally, precipitation use efficiency is strongly 
correlated with local water redistribution WredT (cor.WredT = 0.68, Gi), and with stocking rate 
(cor.Stock = 0.47, Gi, see Fig. 4.6). 

Conclusion. — I conclude this section emphasizing that due to the complexity of the 
interacting processes some central variables might not be easily predicted with simple linear models, 
as e.g. tussock density and mean vitality. In contrast annual productivity (mean prod) shows two high 
correlations. Thus, this essential variable seems to be more accessible to prediction. However, one of 
the highly correlated variables is mean vitality; thus, mean prod is not easy to predict. These findings 
justify the use of a complex simulation model for understanding the complex processes governing the 
impact of grazing and precipitation on the biological processes of the Festuca steppe. Interesting 
results are the high correlations of local water redistribution with precipitation use efficiency and the 
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correlation of the grazing shape parameter with minimum consumed forage. 

4.3.3 Validation of 1st step calibrated parameterisations 

After the first step of calibration I performed a validation, since additional estimates are available for 
several secondary predictions, which were not used during the 1st step of calibration. Fig. 4.7 
exemplifies two important secondary predictions: the min ANPP per patch and the maximum green 
and dry standing biomass (max B). Only rough expert estimates are available for both variables 
(Compare section 4.2.8). Fig. 4.7 shows that the accepted parameterisations are likely to underestimate 
the min ANPP in most cases, if I assume a potentially natural Festuca steppe. The underestimation of 
ANPP could be a consequence of the confidence interval for tussock density in the No grazing 
scenario (NG). Some of the exclosures were only established recently and grazing was only excluded 
for few years. Thus, these data might reflect the grazing history rather than the natural state without 
grazing.  

The validation of maximum biomass (max B) shows a contrary result (Fig. 4.7 Β). An 
important fraction of the accepted parameterisations overestimates the theoretical estimation the 
maximum biomass (Max B ~ 2.400 kg / ha). The intuitive explanation for this overestimation is that 
too low senescence and littering rates lead to a long-term accumulation of biomass, which is 
biologically unrealistic. Alternatively, the overestimation could also be a consequence of a too tolerant 
biomass pattern filter P21 (Tab. 4.2).  

Conclusion of validation. — As a consequence of these validation results, a further model 
calibration was essentially necessary at this point.  

 
A  B  

 
Fig. 4.7: Validation of accepted parameterisations after 1st step of Calibration  

Shown are the frequency distributions of all accepted parameterisations from Calibration 1st step over   
the secondary predictions A) Minimum annual net primary production ANPP and B) maximum live 
biomass (max B) for validation against the range estimated in section 4.2.8. Used was the Calibration 
scenario No grazing, independent parameters (Ngi, N = 105). In many cases ANPP and max B are 
under- or overestimated: values for ANPP < 631 kg / ha, and values for max B above approx. 350 kg / 
ha < max B < 2365 kg / ha are biologically unrealistic. These findings require additional calibration of 
the accepted parameterisations out of the 1st step of Calibration. A minimum max B could not be 
determined; a determination of a maximum for ANPP was not necessary because maximum values lie 
within the expert estimation. 
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Tab. 4.9: Variability of parameters accepted after the 2nd Calibration step.  
Shown are: (row 3) the median for each parameter taken from the 41 accepted parameters after the 2nd 
step of calibration. The median is regarded as a ‘best fit’. Row 4 shows the parameter values from the 
expert estimation. Mean deviations from the best fit are shown for the expert parameter estimation (row 
5) and for the mean out of the 41 accepted parameterisations (row 6). Row 7 and 8 indicate the standard 
deviation and the coefficient of variation (CV) of the 41 deviations from the median (‘best fit’). Row 9 
gives the mean rcs calculated out of the scenarios NGi and Gi. Legend: NGi: calibration scenario No 
grazing, independent parameters; Gi:  Grazing, parameter independent; Row 5 and 6: white with bold 
margins: Parameter deviation ≤ 15% from median; grey shadowed: deviation 15% ≤ p ≤ 30%; grey 
shadowed and bold: deviation p > 30%.  

 
Calibration against validation variables: 2nd Calibration step. — As a consequence of the 

result of validation I filtered the accepted parameterisations (1st calibration step) with the variables 
mean vit, min mean prod, and max B, using the values described in Chapter 4.2.8. More restrictive 
confidence intervals were applied for the calibration scenario Grazing (Gi, e.g. 1.4 ≤ mean vit ≤ 2.4, 
Table 4.2), whereas mean vit > 1 for No grazing (NGi) was left more tolerant. The stricter use for 
scenario Gi was possible due to the high number of accepted parameterisations. A lower limit for min 
mean prod could not be defined and max B was validated positively for all parameterisations after 
validation against mean vit. The result of 2nd step of Calibration were 40 accepted parameterisations 
for the scenarios NGi and Gi plus the standard parameterisation PS which were used for the following 
two steps of calibrations which included the stochasticity of precipitation sequences. 

Variability of validated parameters. — Table 4.9 shows the median for each parameter out of 
the 41 accepted parameterizations (Tab. 4.9, 2nd and 3rd row). The parameter ranking corresponds to 
the mean relative correlation strength (rcs), calculated out of the rcs from calibration scenarios Gi and 
NGi (first row, Tab. 4.9, values for rcs are normalized between 0 and 1). The five parameters with the 
highest correlation strength show mostly high variability > 30% (Tab. 4.9, 5th row ‘Parameter mean 
deviation from median’), only the parameters senescence rate SEN and ‘basic productivity’ (ProdV1) 
show a moderate one (15% ≤ x ≤ 30%). The next seven ranked parameters mostly show low mean 
variability (≤ 15%) around the median.  

Rank mean correlation strength (rcs , 
mean of Gi + NGi calibration) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter SEN Stock LIT Wred
T

Prod
V1

Vinc
W2

Vdec
W2

VInc
W1

WUE ProdI
ncV2-

Mort
W1

ColW
S0

Mort
Wp1

ColS0
p

PFinc

Median out of 41 parameterisations 0.5 0.4 0.4 9 160 250 270 200 0.53 51.5 195 180 0.26 0.28 0.5

Expert estimation 0.6 0.5 0.4 5 150 250 260 200 0.57 50 180 200 0.2 0.3 0.83

Expert estimation: % deviation from 
median 20 25 0 44 6 0 4 0 9 3 8 11 23 7 66

Parameter mean deviation from median 
out of 41 valid parameterisations 24 142 40 50 17 15 15 14 12 16 14 14 37 42 53

Standard deviaton of mean deviation  
from median 18 117 34 38 10 11 7 11 8 11 9 11 25 22 32

CV of mean deviation from median 0.75 0.82 0.86 0.76 0.59 0.75 0.46 0.76 0.67 0.67 0.67 0.77 0.67 0.52 0.60

Mean relative rank correlation strength 
(Gi + NGi calibration) 1.00 0.89 0.79 0.68 0.54 0.42 0.38 0.28 0.26 0.26 0.24 0.23 0.16 0.16 0.15

Rank mean correlation strength (rcs , 
mean of Gi + NGi calibration) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Parameter Vdec
G

Vdec
W1

ColW
S2

Vdec
Gp

PFma
x

ColW
S1

ColS0
Cov

Gsha
pe

MMc
onst

Wred
O

Mort
Gp

ColS1
2p

Mort
W2

Mort
Wp2

Mort
G

Median out of 41 parameterisations 0.5 210 135 0.8 22 170 40 0.79 52 24 0.06 0.84 205 0.12 0.67

Expert estimation 0.5 200 140 0.8 30 170 40 0.50 55 20 0.05 0.9 200 0.1 0.60

Expert estimation: % deviation from 
median 0 5 4 0 # 0 0 36 6 17 17 7 2 17 10

Parameter mean deviation from median 
out of 41 valid parameterisations 31 13 17 12 48 19 24 66 18 19 28 9 16 46 23

Standard deviaton of mean deviation  
from median 18 9 10 9 30 11 15 48 11 17 25 5 10 26 14

CV of mean deviation from median 0.58 0.70 0.59 0.78 0.62 0.59 0.64 0.74 0.63 0.88 0.91 0.57 0.65 0.55 0.60

Mean relative rank correlation strength 
(Gi + NGi calibration) 0.13 0.11 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.03 0.02 0.00 0.00 0.00 0.00
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Comparing the best fit estimates with expert estimation. — I calculated the median values for 
all parameters out of the accepted parameterisations after the 2nd calibration step. Assuming 
independence between parameters, this median could represent a first rough estimate of a ‘best fit- 
parameterisation’. The correlations between parameters are in general weak (see Tab. II.6, 
Appendix II). A very strong positive correlation between LIT and SEN (littering and senescence) 
exists, as expected. A weak significant negative (cor. ~ -0.3 between precipitation use efficiency PUE 
and water distribution by tussocks (WredT) exists, which might indicate a weak compensatory effect 
between both parameters. Nevertheless, this correlation is that weak that for a first rough analysis, it is 
justified to regard them as independent.  

The standard parameterisation estimated by the field ecologists (PS) deviates slightly from the 
calculated median which represents my first ‘best fit’. The field experts estimation (PS, Tab. 4.9, 4th 
row ‘Expert estimation: % deviation from median’) shows in general lower deviation from the ‘best 
fit’ estimates than the mean variability of the 41 parameterisations (Tab. 4.9, compare 4th and 5th row). 
From the 10 parameters with the highest relative correlation strength (rcs) only local water 
redistribution (WredT) shows a high deviation from the best fit. Senescence (SEN) and stocking rate 
(Stock) deviate moderately, the other parameters deviate only slightly.  

High variability of stocking rate. — The high variability of the parameter stocking rate (Stock, 
Tab. 4.9, 5th row)  after the 2nd step of calibration was expected, because I did not yet include a pattern 
which controls the effect of grazing. However, in the next two steps all accepted parameterisations 
will be run over the whole stocking rate range and calibrated as run for No grazing and for Grazing 
(Cross calibration).  

The variability of the other 4 highly ranked parameters to reflect the remaining uncertainty 
within these parameters. The low variability of the following seven parameters (VincW2 to ColWS0, 
5th row) can be attributed to a good estimate of these parameters or to the limited degree of freedom 
which is left for a stable system. 

Conclusion. — I conclude that the independent parameter estimation from the field experts 
provided values which lie very close to the ‘best fit’ estimate of the model parameters. The five 
parameters with the highest ranking show moderate variability. This variability may be attributed to a 
lacking of cross calibration or it reflects the remaining uncertainty about these parameters, assuming 
their biologically plausibility. 

4.3.4 Calibration 3rd step 

Now I present the results of the cross calibration including stochastic climate repetitions (Step 7 of the 
protocol, section 4.2.2). This calibration step takes the stochastic variability of precipitation into 
account. This is important, because precipitation has a strong effect on some model variables. 
Additionally, parameterisations, which were calibrated under grazing conditions, are now calibrated 
under No grazing conditions and vice versa (Cross calibration). The 3rd calibration step calibrates the 
results of the accepted 41 model parameterisations only against a restrictive set of variables which 
represents a Festuca steppe in good compositional state (compare Tab. 4.4). 

Main result. – Only 15 of the 41 parameterisations were accepted and are selected for the next 
calibration step (Tab. 4.10, first row, framed parameterisations). Most of the accepted 
parameterisations (12) came from the Grazing calibration scenario, only 2 from the No grazing 
scenario. The expert estimation was also accepted. Thus the Grazing parameterisations provide more 
stable results, when averaged over 100 climates than the No grazing parameterisations. The reason 
why the No grazing parameterisations perform weaker is not clear. They reproduce in most cases 
mean ANPP well, but fail in Min ANPP. The threshold for Min ANPP may still be too restrictive, 
despite that it was chosen below the 50%-value of the minimum estimate for annual productivity for a  
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Tab. 4.10: Results of 3rd Calibration step: Cross calibration against no grazing conditions. 
Shown is the ranking of how well the 41 calibrated model parameterisations fulfil the criteria for 11 
primary and secondary predictions (patterns) after 100 repetitions with different stochastic climates 
(compare Tab. 4.4). All runs exclude grazing. Selected parameterisations for the final calibration step 
are framed and marked in bold (first row). The applied aggregated Cc-index threshold was: 9 out of 11 
patterns (approx. 80%) had to fulfil the given variable thresholds and ranges during at least 80 out of the 
100 simulations with different stochastic precipitation sequences (the applied confidence interval). Two 
groups of model parameterisations can be described after this calibration step. The selected group fulfils 
90% of the given criteria, whereas the rejected group fulfils only less than 50% of the given criteria. 
This threshold behaviour is mainly correlated with two variables: ANPP(t) and the aggregated variable 
Festuca state, which is a classification of the degradation state as a combination of tussock cover and 
ANPP(t) (compare Tab. II.1). ANPP(t) and Festuca state seem to be highly correlated, so a mismatch of 
one threshold normally leads to a mismatch in both pattern. The most sensitive variable is max B (last 
row). The selection threshold for Max B was probably too strict. The next sensitive variables are Min 
ANPP and Min TdS.  

 

 
Tab. 4.10 (continued).  

 
 

F. pallescens steppe in a good compositional state. I assume that it should have taken into account 
climatic variability in a sufficient way. The selection criteria for model calibration were probably too 
wide, so that also less stable parameterisations were accepted. Additionally No grazing 
parameterisations were not selected for productivity, whereas the Grazing calibration scenarios where 

5 6 24 26 28 1 2 3 4 7 8 23 41 9 25 15 16 20 22 29 11 18 21

80% 11 11 11 11 11 10 10 10 10 10 10 10 10 9 9 5 5 5 5 5 4 4 4
90% 11 11 11 11 11 10 10 7 10 10 10 10 9 9 9 3 2 4 4 2 0 2 1
95% 10 11 11 11 10 10 10 7 10 10 10 10 9 9 9 1 2 4 0 0 0 2 1

Variable
Threshold 
criterion

time 
step

Tussock density Td S(t) >3.3 50 100 100 100 100 100 100 100 97 100 100 99 100 100 99 100 93 97 98 95 86 83 93 84
Tussock density Td S(t) >3.3 150 100 100 100 100 100 100 100 97 100 100 97 100 100 100 100 67 90 97 94 87 84 37 40

Min. Tussock density Td S(t) >2.1
1-50

100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 99 96 96 95 94 85 100 100

Min. Tussock density Td S(t) >2.1
1-150

100 100 100 100 100 100 100 99 100 100 97 100 100 100 100 80 89 88 87 78 60 99 80

ANPP S(t ) >750 Kg/ha 50 95 100 97 100 100 100 100 82 100 100 100 100 96 99 100 47 25 43 33 30 31 14 25
ANPP S(t ) >750 Kg/ha 150 94 100 97 99 100 100 100 81 100 100 96 100 98 97 100 17 17 50 30 31 33 2 3
Festuca state 7-9/13-15 50 95 100 97 100 100 100 100 82 100 100 98 100 83 99 100 47 25 43 33 30 31 14 25

Festuca state 7-9/13-15 150 94 100 97 99 100 100 100 81 100 100 95 100 95 97 100 17 17 50 30 31 33 1 3
Min ANPP S >350kg/ha 1-150 98 100 100 100 100 100 100 100 100 100 100 100 100 100 100 87 45 56 36 26 10 90 60

Mean ANPP S
600-2200 
kg/ha

1-150 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 93 85 98 95 93 86 72 82

Max B
1500-2500 
kg/ha

1-150 100 100 98 100 91 0 0 23 64 75 100 0 16 0 53 78 0 32 56 86 0 0 1

Model parameterisation

Applied confidence interval (% 
fulfillment out of 100 repetition)

Cc index: N fulfilled patterns for all variables for the given confidence interval

N fulfilled threshold criteria for one variable and 100 repetitions with stochastic precipitation

27 38 32 35 30 31 34 36 10 12 13 14 17 19 33 37 39 40

80% 4 4 3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0
90% 2 2 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0
95% 2 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

Variable Threshold 
criterion

time 
step

Tussock density Td S >3.3 50 72 94 77 81 64 70 43 71 24 17 4 62 0 74 55 53 36 44
Tussock density Td S >3.3 150 29 86 82 61 67 76 37 77 5 0 0 52 0 65 55 46 9 31
Min. Tussock density Td S

>2.1 1-50
98 85 82 53 40 35 53 51 15 79 37 60 3 68 12 35 35 34

Min. Tussock density Td S

>2.1 1-150
86 54 37 12 6 3 16 9 0 17 0 18 0 23 0 6 2 2

ANPP >750 kg/ha 50 24 51 64 76 51 52 33 60 6 2 2 13 0 40 22 38 27 13
ANPP >750 kg/ha 150 1 51 62 57 55 53 27 62 0 0 0 4 0 35 22 37 6 6
Festuca state 7-9/13-15 50 24 51 64 70 51 52 32 59 6 2 2 13 0 40 22 38 27 13
Festuca state 7-9/13-15 150 1 51 60 56 55 53 25 62 0 0 0 4 0 35 22 37 6 6
Min ANPP >350 kg/ha 1-150 100 57 79 17 10 5 53 18 0 1 0 5 0 10 0 7 1 12
Mean ANPP 600-2200 

kg/ha
1-150 84 100 99 91 95 95 81 93 0 5 0 12 0 77 48 69 30 34

Max Biomass 1500-2500 
kg/ha

1-150
33 0 0 0 52 8 0 0 12 0 0 14 0 24 0 0 0 0

N fulfilled threshold criteria for one variable and 100 repetitions with stochastic precipitation

Cc index: N fulfilled patterns for all variables for the given confidence interval
Model parameterisation

Applied confidence interval (% 
fulfillment out of 100 repetition)
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indirectly selected for productivity. A further reason might be a too favourable precipitation scenario 
obtained by chance, which leads to erroneous positive calibrations.  

Conclusion. — Fifteen parameterisations were accepted during the 3rd calibration step, of 
these 12 come from the Grazing calibration scenario with independent parameters (Gi), 2 from the 
ungrazed scenario with independent parameters (NGi), and the expert estimation PS was also accepted. 
These parameterisations reproduce consistently an assumed natural Festuca steppe under no grazing 
conditions. The most critical response variables are Min ANPP and max B. It is difficult to find 
reasonably good estimates for both variables. Both variables were already identified as very sensitive 
during validation. 

4.3.5 Calibration 4th step 

The fourth step of Calibration and the second of Cross calibration (Cc) filtered the 15 selected 
parameterisations against the median of pattern P1, tussock density TdS, but over the entire range of 
stocking rates. This procedure is necessary to avoid too optimistic estimations of the 
 

Tab. 4.11: Results of the 4th calibration step. 
Parameterisations are filtered by using the median of tussock density out of 100 stochastic climate 
repetitions separately for each stocking rate. Shown are those parameterisations, which were accepted 
during the 3rd step of calibration (Tab. 4.10). The acceptance criterion was: tussock density < 3.3 at 
stocking rate 1.5 or higher. Accepted parameterisations are framed (1-8, 41). 

 

 
Fig. 4.8: Finally accepted parameterisations. 

Shown are the median of tussock density over the whole range of stocking rates for 100 repetitions of 
stochastic climates.   
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41 Median

Accepted 
Parameterisations

0.0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
Time step \ 

Parameterisation 50 150 150 150 150 150 150 150 150

1 5.1 4.6 4.4 4.0 3.1 0.1 0.0 0.0 0.0
2 4.9 4.4 2.6 0.2 0.0 0.0 0.0 0.0 0.0
3 5.3 5.1 5.0 4.8 4.5 4.1 3.2 1.4 1.1
4 6.2 6.0 5.6 5.2 3.6 0.0 0.0 0.0 0.0
5 6.2 6.1 5.9 5.6 5.3 4.8 1.7 0.5 0.3
6 6.3 6.4 5.8 5.2 4.7 4.0 1.6 1.2 1.1
7 6.0 5.9 5.4 5.0 4.7 4.3 3.0 1.2 0.8
8 6.3 6.0 5.7 5.4 5.1 4.4 3.1 1.1 0.7
9 6.7 6.6 6.5 6.4 6.0 5.5 4.7 2.6 0.5
23 7.0 7.4 7.4 7.2 6.9 6.2 4.4 0.5 0.3
24 5.3 4.9 4.7 4.5 4.4 4.2 3.9 3.5 2.6
25 6.2 6.2 6.0 5.7 5.4 5.1 4.7 4.1 2.0
26 6.4 6.3 6.3 6.2 6.2 6.1 5.7 5.0 3.9
28 5.1 4.8 4.8 4.7 4.6 4.4 4.0 3.4 2.3
41 8.0 8.1 7.7 7.4 6.9 6.0 1.1 0.1 0.0

Stocking rate [n / ha]Results 4th 
Calibration step
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sustainable stocking rate. Such parameterisations may lead to extreme stable dynamics of F pallescens 
(i.e. no reduction of Festuca cover) under unrealistically high stocking rates. To avoid this I defined 
the threshold criterion that tussock density should decrease below TdS < 3.3 after 100 time steps of 
grazing at a stocking rate of 1.5 sheep / ha or higher. Nine out of 15 parameterisations fulfilled this 
condition (Tab. 4.11, and Fig. 4.8). These 9 parameterisations are finally used for further model 
simulation experiments. Only one of these parameterisations results from the No grazing scenario with 
independent parameter run (NGi), one is the field expert estimation, and finally 7 parameterisations 
come from independent parameter run including Grazing (Gi). 

As I calibrated only the calibration scenarios run with independent parameters (NGi and Gi) 
completely, but not the grouped parameters, more parameterisations will be accepted if the grouped 
calibration scenarios will be calibrated analogically. But I expect, that for the grouped calibration 
scenarios, too, the No grazing scenario will provide less accepted parameterisations than the Grazing 
scenario. 
 

4.4 DISCUSSION 
The chapter had the following aims: 
• to investigate if calibration and partially validation of the simulation model presented in 

Chapter 2 and Chapter 3 was possible despite limited empirical data. and a new calibration  
• to analyse the relative importance of the independent parameters and processes with respect to the 

key variables of the Festuca steppe in a sensitivity analysis using the remaining parameterisations 
after the first step of calibration.  

 
The main results from model calibration were:  
 First, it was possible to calibrate the presented simulation model of the F. pallescens steppe, 
despite limited data of 14 samples á 30 tussocks for grazed paddocks, and 6 samples á 30 tussocks for 
non grazed exclosures. Thus, the inverse pattern oriented approach is a powerful tool to parameterise 
medium complex simulation models with some 30 unknown parameters. 
 Second, calibration using grouped parameters lead to a higher number of accepted 
parameterisations than calibration with independent parameters. The calibration of the No grazing, 
parameter independent calibration scenario yielded only few accepted parameterisations. This was due 
to the extreme selectivity of pattern P5 which describes the tussock distribution over dfrac-classes.  
 Third, a stepwise approach of calibration was developed which was necessary because of the 
stochasticity of precipitation. In a first step I excluded parameterisations which produced highly 
improbable simulation results compared with the observed pattern.  For this coarse assessment I used 
only one stochastic climate series. In a second step I used the reduced set accepted parameterisations 
for fine-calibration considering the full range of stochastic climates (i.e., 100 stochastic series).  
 Fourth, validation of parameterisations accepted in the 1st calibration step with independent 
data (not used during this calibration step) was possible and necessary and improved the calibration 
considerably.  
 Fifth, I defined an aggregated criterion for model calibration which allowed excluding 
unrealistic parameterisations in a more objective manner, because 100 stochastic rainfalls were 
considered and the strong impact of one stochastic rainfall was eliminated. 
 Sixth, I defined for sensitivity analysis a multi-criteria index (relative correlation strength, 
rcs), which summarizes the significant correlations between an independent parameter and important 
response variables. This enabled me to assess the relative importance of one parameter (or process) for 
the whole model. For the calibration scenario No grazing, the most influencing parameters were 
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senescence rate and littering rate, for the Grazing scenarios they were senescence rate, stocking rate, 
littering rate, basic tussock productivity, and local water redistribution by tussocks. The weighted 
correlation strength for both grazing and no grazing lead to following ranking in importance for 
following parameters and processes: senescence rate, stocking rate, littering rate, local water 
redistribution and basic plant productivity. 

4.4.1 Discussion of the Calibration method 

First calibration step. — Model calibration was possible despite the limited data due to the 
multi-criterial pattern oriented approach of filtering the simulation results. This approach combines 
several weak patterns which would have, taken in isolation, a high uncertainty. However, several weak 
patterns together constrained the model dynamics successfully because each pattern removes 
parameterisations which produce highly improbable behaviour in one pattern. An important tool 
enabling such a calibration was the bootstrapping of the field data for the definition of confidence 
intervals (compare Tab. 4.2). The bootstrapping allows considering the uncertainty inherent to the 
field data. The selectivity of the filtering approach was highly improved by the generation of 
hierarchical filters (P5, tussock distribution over dfrac-classes1-5, fTdfrac1-5), which consisted out of 
five sub-patterns (P51-P55) and thus generated a strong selecting pattern. 

Calibration yielded a reasonable amount of accepted model parameterisations for all 
calibration scenarios (No grazing and Grazing, parameters independent, NGi and Gi respectively, and 
for the grouped scenarios, Grazing or No grazing (Gg and NGg, respectively).  

However, one scenario showed a limited amount of accepted parameterisations: the calibration 
scenario No grazing, independent parameters (NGi). Several reasons may explain this finding. First, 
the complex pattern P5, tussock distribution over dfrac-classes 1-5 filtered too strict. This occurred 
probably due to a high inverse correlation of dfrac-class3 and dfrac-class 4 to precipitation: dfrac-
class 3 is positively correlated with rainfall while dfrac-class 4 is negatively correlated. Thus, during a 
good year, ANPP is high and dfrac will be reduced and vice versa, consequently, tussocks change 
between both dfrac-classes depending on the rainfall (see Chapter 5). I discovered this effect too late 
to repeat the subsequent calibration steps.  

A biological explanation is that ‘no grazing’ is not a natural state of the Festuca steppe, 
because it is assumed that the steppe evolved under light grazing (Lauenroth 1998, Baldi et al. 2001, 
M. Bertiller, pers. comm.). Therefore, under no grazing, the dead biomass fraction would become 
larger than field values for no grazing exclosures. One can assume that the exclosure excluded only 
grazing by large herbivores such as sheep or guanacos, but not rodents, hares and others.  

Finally, it is possible, that a biological process is lacking, at least for the no grazing scenario: a 
density dependent reduction of biomass production by tussock with high dead biomass fraction. A 
high dead biomass fraction may shade the remaining living tillers and lead to reduced productivity. 
This effect may reduce dfrac and later cause a recovery in productivity. This hypothesis could be 
tested in the field. However, this process may not influence the quality of the calibration. Our biomass 
growth rule includes already a general assumption of growth saturation, which may be induced by 
shading or saturated response at high soil water levels. Such biomass production rules are applied for 
individual plants (Passioura 1982, Richter 1985, Richter and Söndgerath 1990). 

Multi-criterial comparison in Sensitivity Analysis. — The most important result of the 
sensitivity analysis consists in a quantitative evaluation of the relative sensitivity of different 
parameters for a large number of response variables. This was done using the mean absolute 
significant values of the Spearman rank correlation of one parameter with all compared response 
variables. Multi-criteria model evaluation is a complex, non-trivial task (Reynolds and Ford 1999), so 
an intuitive interpretable and easy calculable approach to compare the influence of a large number of 
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parameters on a large number of response variables may help generating a fast and comprehensive 
understanding of a complex system.  

A limitation of this approach is that the selection of response variables will have an important 
impact on the ranking. To obtain comparable results, I included for each analysis the same set of 
variables. For the analysis of the Grazing calibration scenarios (Gi, Gg), it would be useful to analyse 
additional variables, not giving response within the No grazing scenarios, e.g. mean consumed forage 
(mean C). Including such grazing related variables will lead to a relatively stronger importance of the 
stocking (Stock) and littering rate (LIT) than senescence (SEN, data not shown). Another point of 
consideration is that I did not normalize the comparison to the number of analysed parameterisations. 
If one uses very low numbers of parameterisations for sensitivity analysis, results may be biased due 
to relatively stronger effect of stochasticity, because of the reduced sampling of the parameter space. 
Thus, I avoided sensitivity analysis with less than 100 parameterisations. A lower limit of a reasonable 
number of good estimates of sensitivity has yet to be determined.  

Regarding this approach it is important to have in mind that the relative importance of one 
parameter or process does not decide about the quality of the parameters’ estimation. Parameters, 
which show low correlations with most variables and are ranked low may be estimated very good, so 
that they do not have further impact on the response variable within the remaining parameter space. 
Such an evaluation has to take into account the variability of the remaining parameters (compare 
Tab. 4.9).  

Validation. — An in-between validation of the accepted parameterisations was possible and 
necessary after the first step of calibration. As aggregated data for large scale ANPP or standing green 
phytomass were not available, theoretical, from literature derived values (Bertiller and Defossé 1993) 
were used for validation. For the remaining parameterisations I calculated after this validation the 
variability of the parameters, and a weighted relative correlation strength (rcs), that integrates the 
results for the grazing and no grazing scenarios. Tab. 4.9 shows that the four parameters with the 
highest influence on the response variables showed high variability, whereas the following eight 
medium sensitive parameters show low variability. So the last group might be estimated appropriately 
with remaining but reduced sensitivity, whereas the first group should be specified more in detail for 
specific situations or scenarios.  

4.4.2 Biological interpretation of the results of the Sensitivity analysis 

The most important parameters found during parameter estimation and sensitivity analysis 
were: Grazing or stocking rate respectively, senescence and littering, local water redistribution, and 
finally basic plant productivity at the lowest vitality level. The second most important group is lead by 
three parameters of water induced vitality change, and then water use efficiency and finally one 
parameter group of soil water induced mortality and seedling survival in the first year. Thus, within 
the 15 most important parameters all processes of the model are found to have some relevance for the 
model results.  

The importance of stocking rate is intuitive, as it modifies a series of processes. The 
importance of senescence and littering is also intuitive, because they are competitors of herbivores in 
consuming the green biomass. But the high correlation with the investigated variables as e.g. with 
tussock biomass after senescence (BS), tussock distribution at dfrac-class1 (0-20% dead material, 
fTSdfrac1), mean tussock biomass before senescence (Mean gbP), and maximum biomass (max B) – all 
examples for calibration scenario NGi (No grazing, parameters independent) was somehow surprising. 
The importance of both processes emphasizes the importance of an adequate estimate of these 
parameters, which is especially difficult in perennial species with evergreen leaves.  

The importance of the basic plant productivity parameter (ProdV1) is also clear. Nevertheless 
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our knowledge about the link between structure and function on a small scale individual level is 
scarce. However, for an adequate description of the productivity dynamics of perennial plants one 
need to understand better how the compositional state of a perennial plant is related to its history, 
because this may decide about its productivity for the future. This analysis proved that a good estimate 
of the potential productivity of a ‘standard tussock’ is essential for estimating productivity and in 
consequence the grazing impact on a specific system. 

The high correlation of local water redistribution at live tussocks (WredT) with the 
investigated variable was unexpected. Though being theoretically easy to postulate and intuitively 
relevant, the role of spatial local water redistribution was neglected to date. Tongway et al. (2001), 
Sparrow et al. (2003) and Maestre et al. (2002) discuss the importance of small-scale water 
redistribution for the pattern formation in semi-arid regions.  

Local water redistribution has both a stabilizing and inhibiting effect on the system. It 
stabilizes the adult tussocks, because they benefit from resources in the neighbourhood, and survive 
better during drier years. On the other hand, resource competition reduces the survival probability of 
neighbouring conspecific seedlings and thus limits recruitment. If local water redistribution is working 
within this system, the best site for Festuca seedling to recruit should be theoretically a larger distance 
away from all Festuca adults. This would be a larger bare soil or matrix patch. But these bare soil 
interspaces often loose their seed bank very fast (see Chapter 2, discussion of empirical evidence). 
Seed bank loss in interspaces is probably due to second phase dispersal. However, the indirect 
consideration of a reduced recruitment within ‘large bare patches’ was not an important factor during 
sensitivity analysis (WredO, see Table II.2-5, Appendix II). However, seed bank loss may also take 
place in interspaces smaller than the size of the defined large bare patches. The model shows 
theoretically optimal recruitment if one seedling has in each direction two cells distance (approx. 
60 cm) to an adult tussock. Thus optimal recruitment results within an interspace of 90 × 90 cm. If the 
interspace is smaller, competition with adult tussocks occurs. The larger an interspace the higher the 
probability of seed bank loss due to wind. How interspace area and seed bank loss by wind are 
correlated, was yet investigated. I assume that 90 cm × 90 cm interspaces are sufficiently large to be 
subject to larger seed loss due to wind.  

I postulate a trade-off between asymmetric competition of adults against juveniles 
(Weiner 1990) and the size of interspaces, which increases the probability of seed loss due to second 
phase dispersal. That would be the competition-second phase dispersal trade-off. The larger the 
distance of a seed to its mother plant, the higher the survival probability. However seed bank loss due 
to wind dispersion increases with interspace size. Possibly, additional factors exists which could 
modify or determine the fate of a seedling. At first, the adult tussock density around an interspace may 
play a role. A high density around a medium sized interspace could protect the seeds better from wind 
dispersion. Lower wind dispersion enhances the probability of seedling germination in an interspace 
and thus seedling survival. Secondly, a process which leads to buried seeds could enhance recruitment 
in interspaces. This finding was highlighted by Rotundo and Aguiar (2004). Accordingly, it would be 
interesting, which processes could contribute to the burying of Festuca seeds in interspaces. 
Trampling by herbivores, burying by dispersion of litter, potentially the role of insects, or rodents 
should be considered. Despite the fact that a systematic investigation with the simulation model lacks 
to date, some features can be highlighted which are important for recruitment.  

Some interesting findings from the analysis concern parameters which seem to have low 
impact on model output. E. g. seedling survival in the second and third year had low correlations with 
the investigated variables. Nearly all grazing related parameters, besides stocking rate itself, had low 
correlations. The parameter with the highest correlation was vitality decrease by grazing (VdecG, 12th 
highest correlation, (Gi) see Table II.4, Appendix II). This can be interpreted in two directions: first, it 
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is mainly the stocking rate itself that has an impact on the vegetation dynamics, because relative 
grazing intensity has effect on several processes directly. Secondly, each process is affected by grazing 
in a subtle way and the overall negative long-term effect is an additive effect of a large number of 
small negative effects, which for itself are difficult to detect. 

Senescence and littering. – The sensitivity analysis highlighted the importance of both littering 
and senescence for the grazing system. It is intuitive that these processes are important, because these 
are the biological ‘consumers’ of living biomass, hence reducing the forage amount and quality for 
herbivores. Despite the importance of these processes, it is very difficult to find parameter estimates 
for both processes. Coupland (1973) in Coupland (1992) [163] estimated mass fluxes in Canada. 
Bertiller and Defossé (1990b) calculated relative senescence on a daily basis for the Festuca steppe. 
These estimates could not be translated to a yearly time step, because daily biomass estimates were not 
known. But otherwise, senescence is mostly neglected both in empirical and in modelling studies. 
Crawley (1997) named senescence one of the myths of botany, probably from an evolutionary point of 
view, because its biological ‘meaning’ seems not to be intuitive nor evident, but this statement 
underlines how few this phenomenon has been investigated to date. 

 

4.5 CONCLUSION 
I presented a sophisticated and new method for calibration of complex simulation models 

which can be applied when scarce empirical data are available. It can be named as inverse or indirect 
pattern oriented calibration and is a further development of Wiegand et al. (2003, and 2004b). Despite 
calibration of simulation models to field data is often neglected in ecology, a series of examples for 
calibrated or validated models in ecology do exist: Dieckkrüger et al. (1995), Higgins et al. (2001), 
Nathan et al. (2001), Clark et al. (2003), Gordon et al. (2004), Wiegand et al. (2003), Wiegand et al. 
(2004a/b), Risch et al. (2005), and Schurr et al. (2005). To date I could not find any example in 
Ecological Modelling, where 30 uncertain model parameters were calibrated in one step, as I presented 
within this chapter. The strength of model calibration is that it increases the confidence in the 
simulation model and that it ensures that model simulations produce an outcome which is within the 
biologically plausible range, given that the implemented biological rules are reasonable. Based on an 
extensive documentation of the biological knowledge about F. pallescens and its implementation as 
rules into the model, combined with the calibration, I showed that the model is biologically 
reasonable. Consequently, it was possible to estimate nearly 30 parameters at one step. Obviously, it 
would be desirable that some of the most relevant parameters would be further estimated empirically 
or by experiments. 

4.6 VIEW 
This chapter provided a novel approach for a step wise pattern oriented calibration and indirect 
parameter determination for a medium complex simulation model with 30 parameters, which could not 
be estimated in the field. The method developed by Wiegand et al. (2003, and 2004b) was further 
developed and applied successfully on a situation with strongly limited field data for model calibration 
and highly stochastic model behaviour due to the occurrence of stochastic precipitation sequences. 
Additionally the sensitivity analysis of the calibrated model parameterisations gave interesting new 
insights into biological mechanism of a semi-arid grazing system. The accepted model 
parameterisations, which represent the range of remaining biological uncertainty, are used in the 
following Chapter for simulation experiments. This will additionally show how the remaining 
biologically uncertainty will affect the simulation results. 
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5 INTERACTING BIOLOGIC AND ABIOTIC MECHANISMS EXPLAINING 
STRUCTURAL CHANGE OF A SEMI-ARID STEPPE  
5.1 INTRODUCTION 

Degradation of drylands occurs on a global scale, with an estimated minimum of 70% of the 
area affected in Africa, Asia and the Americas and more than 50% in Australia (Cardy 1994). 
However, the true extent of the problem is difficult to quantify (Pickup et al. 1998) due to the non-
equilibrium behaviour of the ecosystems (DeAngelis and Waterhouse 1987, Westoby et al. 1989, 
Walker 1993) caused by rainfall variability, which imposes dramatic changes in vegetation within 
short-terms. This causes a masking of the negative trends in vegetation condition except in the most 
extreme cases (e.g. Foran et al.1986). A controversy about the status and trend of rangelands exists, 
particularly in the African Sahel. The debate continues on whether the environmental changes labelled 
as `desertification´ represent massive land degradation or a misinterpretation of climatic variability 
(see Pickup et al. 1998, Fuhlendorf et al. 2001, Archer 2004). Non-equilibrium behaviour also makes 
it difficult to determine if land continues to degrade, remains in a stable condition, or improves, even 
when remote sensing data is indicating a change over time (Pickup et al. 1998). The presented work 
aims to investigate the interplay between short-term stochastic precipitation and grazing and how this 
interplay affects degradation of vegetation on the long term. 

Degradation refers to different characteristics of an ecosystem: to soils, vegetation (Rubio and 
Bochet 1998), and animal productivity (Illius and O’Connor 2000). Degradation of vegetation cover 
can be defined by structural destruction or removal of the vegetation cover (Rubio and Bochet 1998) 
and, as a consequence, a functional degradation of productivity of plant species important for foraging 
in rangelands (Milchunas and Lauenroth 1993, Oesterheld et al. 1999). For a more detailed discussion 
of the effect of grazing on plant productivity see Chapter 3.  

The semi-arid areas of Patagonia in Argentine are one of the large areas menaced by 
degradation (Del Valle et al. 1998). Increasing desertification in Patagonia is the main socioecological 
problem of the region (Soriano and Movia 1986). Del Valle et al. (1998) classified the desertification 
of arid Argentine Patagonia with satellite data for the whole region (approx. 780.000 km²). They found 
that more than 60% of the area was in the category of moderate to severe desertification or even in a 
stronger desertified state. However, they focussed strongly on soil characteristics and neglected to 
some extent the role of vegetation. Additionally, they could not separate the effects of natural and 
anthropogenic impacts on desertification. The separation of both effects in a stochastically fluctuating 
environment is one of the keys to understanding grazing impact on vegetation in an unpredictable 
environment (Fuhlendorf and Briske 2001, Archer 2004).  

The aim of this chapter is to gain an understanding of how grazing affects vegetation under 
highly variable, unpredictable precipitation. I use a simulation model, which includes the effects of 
grazing and precipitation on the essential biological processes of the dominant species of the Festuca 
steppe, Festuca pallescens (see Chapter 2 and 3). This approach allows for separating the effects of 
grazing and climate on different hierarchical levels, both on a higher one (e.g. vegetation or population 
dynamics), and a more detailed one (e.g. specific biological processes such as establishment or 
mortality). Additionally, the simulation approach allows evaluating sustainable management 
strategies, under climatic uncertainties and uncertainty regarding the knowledge about the biological 
dynamics. Remaining biological uncertainty is mostly expressed as remaining parameter uncertainty 
(Clark 2003, Clark et al. 2003, Higgins et al. 2003, Wiegand et al. 2004a/b, see Chapter 4). The 
determination of a sustainable grazing regime aims to avoid a decline of the key variable, tussock 
density below threshold values, from which regeneration of F. pallescens will be difficult. 
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Consequently this chapter is focussed mainly on the changes of tussock density under grazing 
and stochastic climate. Tussock density is a key structural component of vegetation dynamics 
(Briske et al. 2003). Additionally I assess the long-term effects on consumable biomass exerted by 
livestock under different grazing regimes and stochastic climate. This perspective provides the link to 
animal productivity which has been investigated thoroughly during the last years (Fynn and O’Connor 
2000, Illius and O’Connor 2000). However the impact of grazing on vegetation under stochastic 
climate is poorly understood (Fuhlendorf et al. 2001, Archer 2004). I will use the simulation model 
presented in Chapter 2 and Chapter 3 and the accepted parameterisations gained in Chapter 4 to 
address the following topics: 

 
1a) I analyse the impact of grazing on tussock density under stochastic climate and the remaining 

parameter uncertainty. 
1b) I analyse the grazing impact on tussock density for different time scales, different types of forage 

selection and different grazing regimes. 
2) I derive a criterion for long-term sustainable grazing management under stochastic climate 

conditions which considers the remaining parameter uncertainty. 
3)  I analyse the temporal autocorrelation between the precipitation time series and the former state of 

the vegetation on key variables of the Festuca pallescens dynamics. 
4) I analyse how grazing and the stochastic climate interact and how this interplay affects the 

dynamics of F. pallescens. 
 

Both the combined consideration of environmental and parameter uncertainty into the analysis 
of grazing effects on vegetation, and the separation of the natural and the anthropogenic components 
of the interaction between stochastic climate and grazing, are of general interest and might provide an 
additional step in advancing our understanding of the complex dynamics of grazing systems. 

 

5.2 MATERIAL AND METHODS 
5.2.1 Conduction of experiments 

General approach. — The aim of this chapter is to separate the effects of natural exogenous 
variability, represented here by annual stochastic precipitation, and the anthropogenic effect, 
represented by grazing, on the dynamics of Festuca pallescens. The general assumption is that the 
high variability in precipitation affects almost all essential biological processes such as establishment, 
mortality, and the important response variables of F. pallescens as e.g. annual productivity, standing 
green biomass, tussock density and (mean) tussock vitality. Therefore the negative effects of grazing 
are difficult to detect. The range of precipitation in sites of the Festuca pallescens steppe (e.g. Media 
Luna Ranch) differs up to 40% in both directions from the mean annual precipitation 
(MAP = 375 mm / year). Thus, a strong impact of precipitation on the dynamics of F. pallescens can 
be expected.  

The key questions are: can the effect of grazing be disentangled from the high variability 
introduced by precipitation? And furthermore, under which conditions does grazing have a negative 
effect on the primary response variables, simulated tussock density (Tds) and mean consumed forage 
(mean C)? The contributions of different uncertainties (Clark et al. 2003, Higgins et al. 2003, Wiegand 
et al. 2004a/b) influencing the variation in the results, have to be separated. I separate three 
components of uncertainty i) the inherent stochasticity included into the model, ii) the environmental 
uncertainty represented by precipitation and iii) the remaining parameter and process uncertainty 
representing mainly the uncertainty of biological processes. 
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Investigation of the three components of uncertainty. — At first, the inherent stochasticity 
implemented into the model had to be considered. The inherent stochasticity is given by several 
processes of the model which include stochastic components, e.g. random selection of tussocks for 
grazing and other processes (compare model description Chapter 2, Appendix I). I tested the inherent 
uncertainty by repeating one parameterisation and one climate several times. In this case parameter 
uncertainty and environmental noise were excluded, because both parameters and the climatic 
sequence were constants. Then I calculated the coefficient of variation (CV) for important variables 
and derived their maximum for a certain number of repetitions.  

Second, the effect of the environmental noise or climatic uncertainty had to be estimated. I did 
this by repeating only one parameterisation with 100 different stochastic climates. So the resulting 
variability of the results is due to both the climatic and the inherent model uncertainty. When the 
inherent uncertainty was known (see step before), the contribution of climatic uncertainty to total 
uncertainty could be estimated.  

Third, the effect of parameter uncertainty on the behaviour of the response variables was 
estimated by using simulation results including one repetition of all accepted model parameterisations 
(see Chapter 4, 4th Calibration step). All these parameterisations produced dynamics in accordance 
with our data on the Festuca steppe. I performed simulations and repeated them with a single climate 
sequence, so the results reflected the effect of the parameter variation and thus the parameter 
uncertainty.  

Finally, a combination of environmental uncertainty and parameter uncertainty provided a 
complete picture. In this analysis the simulations described in Chapter 4 (2nd and 3rd calibration step) 
were used. In total 41 model parameterisations were repeated with 100 stochastic climates for 150 
time steps. Only parameterisations were used which passed the calibration process. These were 9 
model parameterisations. The first 50 time steps were run without grazing, so that the model reached 
its equilibrium which is independent from initial conditions. Initial conditions were chosen 
representing an assumed natural F. pallescens steppe with a high cover of around 55-60% (see 
Chapter 2). Grazing was represented by 8 stocking rate levels between 0 and 2.1 sheep / ha or between 
0 and 210 sheep / km². 21 grazing levels between the same ranges were used for the standard model 
parameterisation (PS), which was estimated from the empirical field ecologists (see Chapters 2-4). 
These grazing levels covered and even surpassed the whole theoretically possible range of mean 
grazing intensities. To my knowledge, stocking rates higher than approx. 1.6 sheep / ha were not 
observed to date (Bertiller 1996, Chapter 3). The response variables were registered at time steps 50, 
75, 100, 125 and 150, from which the first 50 years were discounted. Hence grazing occurred for time 
steps 51 - 150 or 100 years. Three simulations were run for each investigated scenario (see below). 
Each scenario consists of 8 grazing levels x 9 parameterisations x 100 climates = 7.200 simulations. 

Quantitative estimation of a grazing threshold. — After estimating the impact of different 
uncertainties I asked if the grazing impact on vegetation showed threshold behaviour. A quantitative 
analysis to estimate a threshold for the effect of grazing on tussock density was investigated with a 
standard logistic curve with four parameters (see Fig. 5.1 and eqn. 5.1). I performed simulations for 
150 time steps, the 100 last included grazing, with different parameterisations and different numbers 
of stochastic climatic sequences: with  
A) the standard parameterisation (PS) and one stochastic climate (21 grazing levels between 0 

– 2.0 sheep / ha;  
B) PS and 100 stochastic climate sequences (21 levels of grazing);  
C) 9 accepted parameterisations (includes PS, see Chapter 4) and one stochastic climatic 

sequences (8 grazing levels, see above); and finally  
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D) the same parameterisations as in C) but repeating them with 100 stochastic climates (and 
the same 8 grazing levels).  

These simulations represent a gradient of increasing grazing pressure under constant 
conditions. I fitted tussock density to a standard logistic curve (eqn. 5.1) which describes threshold 
behaviour. The threshold behaviour of grazing on tussock density was observed in preliminary 
simulations and was a general characteristic of the remaining accepted parameterisations (see Fig. 4.8 
and Tab. 4.11 Chapter 4).  

The threshold parameter EC50 (eqn. 5.1, Fig. 5.1) estimates the stocking rate at which the 
fitted tussock density (max), which is reached without grazing, is reduced by 50%. The slope indicates 
how strongly tussock density decreases with increasing stocking rate and determines together with the 
threshold, the stocking rate at which tussock density begins to decrease. The analysis was performed 
with SigmaPlot (2001). 
 

 
Fig. 5.1: Graphical scheme for estimating the grazing threshold parameter. 

The grazing threshold (EC50) denotes that stocking rate, which leads to a decrease of tussock density by 
50%. The slope indicates the strength of the decline and that stocking rate at which the initial tussock 
density begins to decline. Further explanations see text and equation 5.1. 
 

 
Estimation of the grazing threshold: 
 

      eqn (5.1) 
 
 

 
TdS fitted  tussock density fitted by the equation 
TdS  simulated tussock density after 100 time steps of grazing (data used for the fit) 
Stock  Applied stocking rate per simulation 
Fitted parameters by nonlinear regression (Standard four parameter logistic curve): 
min  minimum tussock density estimated for maximum stocking rate 
max  maximum tussock density estimated for no grazing 
EC50  parameter estimating the threshold stocking rate, at which tussock density declines to 50% 
slope  parameter estimating the slope of decrease of tussock density 

 
Forage selection. — After the threshold analysis the effect of different grazing scenarios, 

including uncertainty, was simulated. These scenarios analyzed the type of forage selection and the 
seasonality of the grazing regime. A non-selective and a highly selective forage strategy was tested 
(see Fig. 5.2, eqn. 5.2): the non-selective scenario leads to tussock defoliation as a function of mean 
grazing pressure, independently of tussock state or its structure, e.g. the dead biomass fraction (dfrac). 
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On the other hand, the highly selective forage model leads to forage selection as a function of the dead 
biomass fraction (dfrac) for each tussock. I assumed that the highly selective foraging model is the 
more realistic one for situations were sheep are kept in large paddocks with thousands of hectares 
(compare Chapter 2 and 3). 

 
A B 

Fig. 5.2: Applied models of forage selection by sheep at the tussock level. 
A) Non-selective model: probability of a tussock being accepted for grazing (gprob) depends only on 
relative mean grazing intensity (M); B) Highly selective forage model: the probability of a tussock 
being accepted for grazing depends strongly on the tussock structure and hence the dead biomass 
fraction (dfrac). 

 
Probability of a tussock being accepted for grazing, depending on foraging scenario: 
Highly selective forage selection (HS), continuous grazing: 
 
      (1 – dfrac) 1 - M   , if   0 < M ≤ 1  

gprobHS (dfrac, M) =        (5.2a) 

0   , else 

Non-selective forage selection (NS): 
  

gprobNS   = M    , for   0 < M ≤ 1  (5.2b) 

 
gprobHS/NS  Probability of a tussock being accepted for grazing within the High selective forage scenario (HS) or the 

Non-selective forage scenario (NS) 

dfrac  Dead fraction of tussock biomass (tussock structure) 

M  Relative grazing intensity 

 
Note that for each tussock a minimum residual biomass (gbmin) remains which cannot be grazed. For 
scenario HS (high forage selectivity) gbmin is calculated individually for each grazing event (see 
eqn. I.9 Appendix I), whereas for the non-selective scenario it is a fixed amount of biomass. 

Seasonal grazing. — Four scenarios of seasonal grazing were analyzed. They included:  
i) continuous grazing all the year round, and seasonal grazing which is represented by grazing 

during  
ii) only spring grazing,  
iii) grazing during summer and autumn, and finally  
iv) grazing only during winter. 

Since the simulation model acts on a yearly time step, modelling of seasonal grazing is 
implicit (eqn. I.17, see Appendix I): I assumed that forage selection on tussock structure changed with 
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season. In relation to continuous grazing, tussock selectivity is assumed to be higher in spring, i.e. the 
effect of tussock structure is relatively higher compared to the assumed all year mean, which is due to 
the high supply of fresh green biomass (see eqn 5.2 and, eqn. I.24 and eqn. I.32, Appendix I). On the 
other hand I assume that forage selection will be reduced in summer, autumn and mainly in winter, 
when senescence mostly has taken place and a low proportion of green biomass is available. 

 
Seasonal grazing with seasonal altered dfrac (only for High selective grazing, HS): 
 
  dfraci . GR.5  , if dfraci . GR.5 ≤ 1, for GR.5 [ ]3.0,6.0,5.1,0.1∈  
dfracS =          (5.3) 
  1  , if dfraci . GR.5  > 1 
 
dfracS seasonal altered dead fraction of live tussock biomass dfrac by weighted herbivore selectivity, 

only at high selective grazing (HS) 
dfraci Original dead biomass fraction of live tussock i  
GR.5   seasonal grazing acceptance: GR.5 [ ]30605101 .int,.,.,. ====∈ wsumsprcont  
cont   continuous grazing all year round 
spr   all biomass is removed in spring 
sum   all grazed biomass is removed during summer or autumn 
wint   all grazed biomass is removed during winter 

 
Generating a criterion for sustainable management — As the variability in tussock density 

and other variables is high in ecosystems with strongly fluctuating environmental factors, I tested 
different criteria to estimate long-term sustainable stocking rates. The idea was to define a stocking 
rate threshold for a key variable, e.g. tussock density, and to test if this variable did not fall below the 
threshold after long term simulations (100 years) with a probability of say 90%, including parameter 
and climatic uncertainty. Or, in other words, I searched the stocking rate, which with 90% probability 
leads to a long term tussock density higher than the defined threshold. This approach would both 
minimize stocking rates which are allowed on the long-term under a specific climate sequence or 
under a specific parameter combination (i.e. the biological assumptions), and thus represents a 
conservative management approach. 

The derivation of the sustainable stocking rate for a given scenario includes the following 
steps: At first, I defined the threshold, under which tussock density should not fall below with a 
probability of 90%. I decided to take a tussock density (TDS) of 3.3 (is approx. equivalent to a 
F. pallescens cover of 30%) as the threshold value which is regarded as a lower limit for a slightly 
degraded Festuca steppe (Bertiller and Defossé 1993). To derive the correspondent sustainable 
stocking rate, I calculated the 10th percentile for tussock density for each simulated stocking rate for 
each included model parameterisation and its results for 100 repetitions with stochastic climates. Each 
stocking rate is evaluated as a valid stocking rate for long term grazing, from which all the 10th 
percentile-values of tussock density for all parameterisations lead to a higher tussock density than the 
threshold tussock density TdS. Hence, I took the highest stocking rate which lead with at least 90% 
probability for all included parameterisations to a tussock density with higher values than the 
threshold.  

Secondly, I introduced a criterion to avoid unrealistically high sensitivity to grazing. In 
Chapter 4 I introduced a criterion to avoid parameterisations which were unrealistically robust to 
grazing. At this step it was necessary to define a lower limit for sensitivity to grazing, because it was 
possible that model parameterisations were unrealistically sensitive to grazing, leading to erroneous 
ecological recommendations. It is evident that grazing reduces F. pallescens tussock density (Bertiller 
1996), but a model parameterisation which would indicate e.g., a complete loss of F. pallescens cover 
at very low stocking rates of Stock = 0.1 sheep / ha is unrealistic. 
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The only empirical support for defining this criterion is the notion from Bertiller (1996) that 
25 years of grazing with stocking rates of 1.5 sheep / ha might have lead to approx. 50% reduction of 
cover from 60% to 30% in plain uplands. Grazing in this case occurred during 8 months a year, from 
May to December (mid autumn to begin of summer). This is roughly equivalent to 1.0 sheep / ha 
continuous grazing all the year round. Starting from this notion I defined the lower limit for sensitivity 
to grazing as follows: after 25 years of grazing the cover should remain at 30% or higher (or tussock 
density TdS ≥ 3.3) if half of the stocking rate mentioned above is applied (stock = 0.5 sheep / ha). As I 
simulated stocking rates in intervals of 0.3 sheep / ha, I applied this criterion to the stocking rate of 
Stock = 0.6. 

Qualitative Model understanding – To understand the combined effect of grazing and 
stochastic climate on the dynamics of F. pallescens I compared concrete simulations with one specific 
climate and different stocking rates (Non- vs. Highly selective, continuous grazing) and compared the 
change due to precipitation with that due to grazing. This separation is possible if I use always the 
same precipitation time series and vary only one parameter; the stocking rate. The reference model 
parameterisation for this analysis was the model parameterisation estimated by the field experts (PS). I 
used the expert parameterisation because it yielded good accordance between the simulated and the 
observed patterns (compare Chapter 3). 

Additional simulations were run without any variation of precipitation, using only the mean 
annual precipitation (MAP = 375 mm) and different stocking rates. These simulations show the effect 
of grazing alone on the model system. 

 Time series analysis. — An interesting question is how precipitation and the (grazing) history 
of the paddock affect the dynamics of F. pallescens. To investigate this question I studied the temporal 
correlation of some response variables with themselves and with precipitation. To test temporal 
correlation between response variables and precipitation I ran one simulation with the standard 
parameterisation (no grazing) over 1.000 time steps, memorizing the response variables every time 
step. I calculated the Spearman’s rank correlation of precipitation at the actual time step with the 
variables at the actual time step. As primarily simulations showed, the model takes at maximum 20 
years to equilibrate from initial conditions, so their effect is negligible.  

In a next step I ran several simulations for 150 time steps with the standard model 
parameterisation (PS), one with no grazing, and one with heavy grazing (1.5 sheep / ha), using the last 
130 time steps for analysis. For these simulations I calculated for tussock density and for selected 
variables (for no grazing, and stock = 1.5 sheep / ha) the temporal auto- and the cross correlations with 
precipitation and those between grazed and un-grazed tussock density. This to detect effects of 
precipitation history on important response variables. The time series analysis was performed with the 
statistical software R (Version 1.8.1, R Development Core Team 2003). An estimate of the effect of 
the precipitation history is essential if one wants to understand how grazing and stochastic act on the 
long term. 

 

5.3 RESULTS 
5.3.1 Impact of grazing under stochastic climate and parameter uncertainty 

Inherent uncertainty. — The inherent model uncertainty is very low and does not exceed a 
coefficient of variation CV of 0.6 % (CV = standard deviation / mean) for important response 
variables (see Fig. III.1, Appendix III). Thus, for the further presentation of the results the inherent 
uncertainty can be neglected. This result indicates that the chosen grid size is sufficiently large to 
ensure that stochastic effects have no large impact on the results. 
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Fig. 5.3: Effect of climatic variability and grazing on tussock density at different time steps.  

Shown are the median and the 10th/90th percentiles for one model parameterisation, repeated with 100 
different stochastic rainfall sequences, after 25 years (t) of grazing (black dots) and 100 years (white 
dots). The initial value (Stocking rate = 0 (t= 50) acts as a reference, as the model was run 50 time steps 
without grazing). The variability is at highest when the decrease of tussock density due to grazing 
begins to increase (Stocking rate = 0.9 at t = 25 years of grazing and Stocking rate = 1.5 after 100 years 
of grazing). Foraging scenario was the highly selective foraging, continuous grazing all the year round.  
 
Climatic uncertainty. — The variability of important response variables such as tussock 

density TdS or mean tussock annual productivity mean prod have a CV of approx. 20% and are thus of 
the same magnitude as the CV of the long-term precipitation (Fig. III.2, Appendix III). Fig. 5.3 shows 
the effect of stochastic rainfall on the variability of tussock density. The variability is highest when the 
slope of the decrease of tussock density due to grazing is maximal (Stock = 1.5 after 25 years of 
grazing or Stock = 0.9 after 100 years of grazing).  
 
A B 

C 

 

D 

 
 
Fig. 5.4: Effect of climatic and parameter uncertainty on tussock density under grazing.  

Shown are simulation results for the 9 accepted parameterisations for the scenario Highly selective 
continuous grazing and A-B) one stochastic climate repetition, after A) 25 years, and B) 100 years of 
grazing, and C-D) 100 stochastic climate repetitions, after C) 25, and D) 100 years of grazing. Note: 
For all runs the value for time step (t) = 50 is plotted as a reference. 

Stocking rate [n sheep / ha] 

0 (t=50) 0 0.3 0.60 0.90 1.20 1.50 1.80 2.10Tu
ss

oc
k 

de
ns

ity
 (T

d S
) [

n 
/ m

²]

0.0

2.0

4.0

6.0

8.0

10.0
(t =   25) 
(t = 100) 

Stocking rate [n sheep / ha]
0 (t=50) 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Tu
ss

oc
k 

de
ns

ity
 [n

 / 
m

²]

0.0

2.0

4.0

6.0

8.0

10.0
Continuous HS grazing 
(9 p., 100 clim., t = 75) 

Stocking rate [n sheep / ha]
0 (t=50)0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Tu
ss

oc
k 

de
ns

ity
 [n

 / 
m

²]

0.0

2.0

4.0

6.0

8.0

10.0
Continuous HS grazing 
(9 p., 1 clim., t = 75)

Stocking rate [n sheep / ha]
0 (t=50) 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Tu
ss

oc
k 

de
ns

ity
 [n

 / 
m

²]

0.0

2.0

4.0

6.0

8.0

10.0
Continuous HS grazing 
(9 p., 1 clim.,t = 150)

Stocking rate [n sheep / ha]
0 (t=50)0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Tu
ss

oc
k 

de
ns

ity
 [n

 / 
m

²]

0.0

2.0

4.0

6.0

8.0

10.0

Continuous HS grazing 
(9 p., 100 clim., t = 150)



5.3 RESULTS 

 121

Parameter uncertainty. — Parameter uncertainty is considerably higher than climatic 
uncertainty (Fig. 5.4). This result shows that degradation effects can be strongly masked due to the 
remaining uncertainty about biological processes and parameters. Although the median at high 
stocking rates (Stock > 1.5 sheep / ha, after 25 grazing years) indicates increasing or strong reduction 
in tussock density, the variation is high. For 100 years of grazing, a misleading interpretation due to 
the uncertainty could be that a stocking rate of 1.2 sheep / ha leads to a reasonably high tussock 
density of approximately 3 tussocks / m². For a sustainable management a precautious strategy seems 
to be adequate facing such strong uncertainties. 

5.3.2 Quantitative estimation of a grazing threshold 

The quantitative analysis for estimating a threshold for the effect of grazing on tussock density was 
performed with a standard logistic curve with four parameters (see eqn. 5.1). The simulation data used 
for analysis were based on the experts parameter estimation which is used as standard parameterisation 
(PS), run with one (Fig. 5.5 A) and 100 climates (Fig. 5.5 B).  Furthermore I included parameter 
uncertainty by using the 9 accepted parameterisations from Calibration (Chapter 4) combining them 
with one (Fig. 5.5 C) and 100 climates (Fig. 5.5 D).  
 
A B 

 

C 
 

D 

 
Fig. 5.5: Quantitative threshold estimation under climatic and parameter uncertainty. 

A) Nonlinear regression for the standard model parameterisation (PS, expert estimation) and one 
climate, simulation for 150 time steps, grazing during time steps 51-150 and 21 stocking rate intervals; 
B) same as A, but including 100 stochastic climates; C) Same as A, but including the remaining 
parameter uncertainty by including the 9 accepted parameterisations (see Chapter 4), run for eight 
stocking rates with intervals á 0.3 sheep / ha; D) as in B, but showing only remaining parameter 
uncertainty as in C due to a run with only one rainfall scenario. 
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Tab. 5.1: Grazing threshold estimation for four climatic and parameter combinations with logistic fit. 
R²: Quality of fit; Parameters are explained in Fig. 5.1 and eqn. 5.1. 

 
Threshold behaviour for the standard parameterisation. — The simulations using only the 

standard parameterisation and one climate (Fig. 5.5 A) reveal a strong threshold behaviour at Stock = 
1.15 (Tab. 5.1, 3rd column). The estimated threshold coincides with the qualitative estimation derived 
from Fig. 2.6 (Chapter 2). The estimated slope is very high in comparison to the following estimates 
(Tab. 5.1). The interpretation of the slope is as follows: The higher the estimate the narrower is the 
span of stocking rates within the decrease of tussock density between nearly no degradation and nearly 
complete degradation takes place. (tussock density < 1.1, cover < 10%)  
 Repeating the simulations for the standard parameterisation (PS) with 100 stochastic 
precipitation time series of 150 years with 100 years of grazing (Fig. 5.5 B) it becomes evident that 
climatic uncertainty has a strong effect on the slope: it decreases from slope = 46.2 to slope = 5.53 
(Tab. 5.1). However, the grazing threshold and the maximum and minimum estimates for tussock 
density remain nearly unchanged, but the percentage of the variation explained by the logistic function 
is strongly reduced (Tab. 5.1). The interpretation of this result is that with a stocking rate of 1.1 
sheep / ha one might be on the ‘safe side’ without strong degradation. Since future precipitation is an 
unknown factor, we have to be aware that a decrease of tussock density may begin at even lower 
stocking rates (approx. 0.7 sheep / ha). This value can be estimated, considering climatic uncertainty, 
determining the point at which tussock density begins to decrease (Fig. 5.5 B). 

Threshold behaviour under inclusion of parameter uncertainty. — The inclusion of the 
remaining parameter uncertainty into simulations including climatic uncertainty increases the effect 
shown for the inclusion of climatic uncertainty (Fig. 5.5 C, Tab. 5.1): The slope decreases, and 
additionally the tussock density maximum estimate decreases. 

Unexpected change of non-liner to linear behaviour. — Inclusion of parameter and climatic 
uncertainty yields an almost paradoxical result: the distinct threshold behaviour – non-linear behaviour 
– resulting out of the simulation of one parameterisation with one climate (Fig. 5.5 A) is smoothed to a 
nearly linearly behaviour, if both uncertainties are included (Fig. 5.5 C). To some extent, threshold 
behaviour of the model is not surprising, as the tussock mortality parameters due to plant available soil 

Estimated 
parameters Coefficient 1 climate 100 climates 1 climate 100 climates

R² Quality of fit 0.995 0.571 0.707 0.585
Max Parameter estimate 5.9 6.2 5.1 5.4

Std.-error Coeff. 0.1 0.1 0.3 0.0
T-value 93.0 87.5 132.1 17.3
Significance level <0.0001 <0.0001 <0.0001 <0.0001

Min Parameter estimate 0.1 0.0 0.0 0.0
Std.-error Coeff. 0.1 0.2 0.7 0.1
T-value 1.0 0.0 0.0 0.0
Significance level 0.3464 (n.s.) 1.00 1.00 1.00
Parameter estimate 1.1 1.1 1.1 1.1
Std.-error Coeff. 0.0 0.0 0.1 0.0
T-value 179.1 64.0 49.4 10.0
Significance level <0.0001 <0.0001 <0.0001 <0.0001

Slope Parameter estimate 46.2 5.5 4.1 3.2
Std.-error Coeff. 5.9 0.4 1.5 0.2
T-value 7.9 12.9 19.6 2.7
Significance level <0.0001 <0.0001 <0.0001 0.0089

Standard 
parameterisation (PS)

Nine accepted 
parameterisations 

(includes PS)

EC50 (grazing 
threshold)
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water include threshold values. The change from non-linear to linear behaviour, thus getting a 
‘simpler’ solution if we include much more complexity into the output by including climatic and 
parameter uncertainty, seems to be an unexpected result and a paradox, because it returns almost the 
contrary, as one might expect intuitively, i.e. a more complex result, if the data to analyse are more 
complex. 

Finally, if I remove again climatic uncertainty but leave parameter uncertainty (Fig. 5.5 D), the 
threshold behaviour becomes clearer again. At least the logistic fit is slightly better than the linear one 
(R²logistic = 0.707 (Tab. 5.1) > R²linear = 0.694 (data not shown)). Thus, the simultaneous consideration 
of climatic and parameter uncertainty masks the non-linear behaviour observed for individual 
simulation runs. One could name this the ‘uncertainty paradox’. Quantitative threshold behaviour is 
evident for each parameterisation, as seen from the median values out of 100 climate repetitions of 
tussock density for each accepted parameterisation after calibration (Fig. 4.8, Chapter 4). Thus, I 
expected threshold behaviour for almost all parameterisations under all precipitation sequences. As I 
firstly analysed all simulations together the threshold behaviour of tussock density decline becomes 
blurred/indistinct by inclusion of climatic and/or parameter uncertainty. As a next step of analysis, it 
would be interesting to analyse each specific precipitation sequence and each parameterisation alone 
and analyse the distribution of the fitted parameter values. This step could not yet be performed during 
this thesis due to the lack of time capacities. 

 
A 

 

B 

 
 
Fig. 5.6: Accumulated frequency distributions for long-term tussock density thresholds. 

Shown are the accumulated tussock density frequency distributions over the stocking rate gradient for 
the 9 accepted parameterisations and the standard parameterisation.  
A) Probability of tussock density occurrence up to TdS < 2.2 (tussock density below the regeneration 
threshold under constant grazing (Chapter 2), Festuca cover max. 20%); B) idem for TdS < 3.3 (tussock 
density above the regeneration threshold under constant grazing (Chapter 2), Festuca cover max. 30%). 
 
Quantifying degradation risk. — The second important result of inclusion of both parameter 

and climatic uncertainty is that tussock density starts to reduce already at a low stocking rate of 
approx. 0.3 sheep / ha (Fig. 5.5 C, begin of the curve decline). For a risk averse management strategy 
this would imply, to reduce even more the constant stocking rate than if only climatic uncertainty was 
considered (compare with Fig. 5.5 B. To analyse and to quantify the ‘degradation risk’ more 
accurately, I plotted the frequency distributions of the data used for Fig. 5.5 C, including specific 
tussock density thresholds, i.e. Fig. 5.6 shows the frequency of simulations which on the long term 
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ranged below tussock density = 2.2 (Fig. 5.6 A), which is below the regeneration threshold of 2.5 
under constant grazing (Chapter 2), or above this threshold (tussock density 3.3, Fig. 5.6 B). Fig. 5.6 
enables me to quantify the probability that tussock density drops for a specific stocking rate below a 
certain defined threshold. For example, applying a stocking rate of 0.9 sheep / ha, including parameter 
uncertainty, leads to a 20% probability that the system would degrade and reach a tussock density 
below 2.2 (Fig. 5.6 A). For the same situation, the probability to reach a sustainable tussock cover 
(tussock density > 3.3, Fig. 5.6 B) is approx. 70%. The threshold for a potentially sustainable tussock 
density of 3.3 is a rough estimate, including an approx. 30% buffer on the regeneration threshold of 
tussock density = 2.5. Thus, Fig. 5.6 allows to quantify the degradation risk for the complete stocking 
rate gradient and a given tussock density threshold. 

Interpretation of the threshold behaviour. — How can we understand the threshold behaviour? 
This is a prerequisite for interpreting the result described above. I expected threshold behaviour at 
least for the high selective continuous scenario due to two positive feedbacks. These feedback 
mechanisms could explain the grazing impact on vegetation and additionally an interaction of grazing, 
of the dynamics of F. pallescens, and of the rainfall sequence with each other.  

The first positive feedback occurs due to selective grazing: tussocks with increasing fraction 
of dead biomass are rejected with a probability which increases non-linearly. As a consequence, each 
tussock which was once accepted for grazing remains with reduced green biomass. Thus, there is less 
green biomass which can become senescent and will die in the following time step. Therefore the dead 
biomass fraction will be reduced during the next time step. This reduction increases the probability of 
the tussock being accepted for grazing and so on.  

The second feed back is related to recruitment and interacts with the feed back function of 
forage selection. Recruitment declines under reduced tussock density, caused by a high mortality in 
the anterior year. Mortality occurs mainly during dry years, and only for tussocks in the lowest vitality 
class. Grazing can reduce vitality and so weaken the tussocks. Seedling survival during the second and 
third year is linearly related to the mean grazing intensity (M). This rule assumes that seedlings are 
preferred by sheep because they do not yet include any dead material. The same assumption holds for 
young tussocks which recruited at the actual time step. Thus, forage selection and recruitment interact 
at least for three time steps. It is possible that the interaction of tussock life stage, grazing and forage 
selection also impacts the next stage cohorts (2 year old tussocks and so on). 

Grazing and the stochastic rainfall sequence interact with the two feedback processes 
described above. During drier years the realized relative grazing intensity (M real) is higher than for 
humid years, tussocks are reduced in vitality, mortality is higher, seedling and sapling survival is 
reduced. These mechanisms are strongly reinforced when two dry years occur in sequence. If several 
years of high tussock mortality occurred due to a prolonged drought, and are then followed by ‘good’ 
humid years, seedling survival will remain low, due to a reduced germination within a higher 
frequency of larger bare patches. Heavy grazing will reinforce this process and will lead to the 
inhibition of the regeneration process of F. pallescens and thus of the Festuca steppe. 

Though these model assumptions are strong, they are biologically reasonable and plausible. 
The possible feedbacks between forage selection, recruitment, effect of grazing on vitality and 
indirectly on tussock density and the effect of unpredictable droughts make threshold behaviour 
expectable. 

Which are the practical implications of these results? On the one hand, it is evident that range 
management should done with caution. The definition of a ‘sustainable’ threshold on the base of one 
parameterisation and one climate might lead to a misleading expectation of long-term sustainable 
vegetation under a certain stocking rate. A rough estimation could be that a third of the stocking rate, 
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which was calculated as the stocking rate threshold for the presented results, might have some chance 
to lead to a low degradation of the Festuca steppe. 

A further, more detailed quantitative analysis could try to derive a threshold, which determines 
the stocking rate at which tussock density begins to decrease. A threshold criterion for the second 
derivative of the used logistic equation could possibly help to determine this stocking rate.  

 

5.3.4 Time scales of degradation  

Fig. 5.7 shows time scales for the effect of different stocking rates on tussock density (PS, 100 
climates). If I take climatic uncertainty into account, a clear decrease of tussock density is only visible 
after very long time scales of say 100 years although the effect on individual runs with concrete 
rainfall scenarios may become evident earlier (compare with Fig. 2.6). Whereas at the stocking rate 
Stock = 0.6 sheep / ha no degradation trend, at Stock = 0.9 sheep / ha a clear effect on tussock density 
is evident. As the variability due to the climatic stochasticity is strong, the effect is masked. This effect 
might lead to a delay in the detection of degradation in the field, i.e. of a reduction in tussock density. 
Though the stocking rate 1.2 sheep / ha shows clear temporal threshold behaviour, a detection of this 
effect could be masked by climatic uncertainty. Only at a stocking rate of 1.5 sheep / ha the threshold 
effect is significant after 50 years of grazing.  
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Fig. 5.7: Time scales of degradation. 

Shown are simulation results for the standard parameterisation and 100 climate repetitions, comparing 
the results for tussock density (median and 10th/90th percentiles) of no grazing with different stocking 
rates: A) Stock = 0.6; B) Stock = 0.9, C) Stock = 1.2; D) Stock = 1.5. For Stock = 0.6 there is no 
significant difference evident. For Stock = 0.9 a clear linear reduction in tussock density is evident, but 
it is still shaded by climatic stochasticity.  
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5.3.5 Different grazing managements 

Forage selectivity. — One option to improve tussock density under grazing is to adopt 
different grazing management schemes. One option would be to reduce forage selectivity by creating 
smaller paddocks. This would force sheep to use more green biomass within a shorter time scale and 
thus would disrupt the feedback mechanism caused be the high amount of dead biomass. Creating 
smaller paddocks would force sheep to graze less selective. The effect of selectivity is evident 
especially on the long term (Fig. 5.8) for both shown variables, the tussock density (TdS) and mean 
consumed forage per time step during the grazing period (mean C). Tussock density declines linearly 
when grazing is non-selective and relatively higher stocking rates than for high selective continuous 
grazing seem to be viable on the long term. Clearly, decreasing paddock size needs new fences, which 
needs economic input. One interesting option would be to test if fencing might be economically 
successful on the long term. 
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Fig. 5.8: Comparing Non-selective with Highly selective grazing. 

Shown are the results for the 9 accepted parameterisations and 100 climate repetitions. Tussock density 
(TdS): A-D), Mean consumed forage (mean C) per time step t: E-F): A, C) 25 time steps of grazing; B, 
D-F) 100 time steps of grazing. 
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Seasonal grazing: Spring grazing. — Another option to improve the grazing management is to 

restrict grazing to specific seasons and to introduce rotational grazing. I tested the effect of grazing 
during i) spring, during ii) summer and/or autumn, and iii) during winter. For spring grazing I 
expected a stronger negative effect than for the reference scenario (i.e, high selective continuous 
grazing). This expectation is based on the stronger selectivity of sheep due to the relatively higher 
availability of fresh produced biomass; additionally, the negative effect of spring grazing on 
reproductive success might be higher.  

The results, including both parameter and climatic uncertainty, indicated no substantial 
differences between spring and continuous grazing (data not shown). It is not clear why both scenarios 
behave similar since the herbivore selectivity was theoretically 50% higher. One explanation is that 
the selectivity of the continuous grazing is already high, and that a higher selectivity will only lead to 
marginal changes. This finding should be analysed in more detail. A second explanation is that the 
different scenarios have no effect on the reproductive success of F. pallescens. Reproduction is 
indirectly included into the model: the survival of seedlings depending on tussock density. Thus, no 
rules are included into the model that might reflect a potentially stronger negative feedback between 
the high removal of biomass in spring and reproduction. This might be a shortcoming of the actual 
model version. On the other hand, I could not yet develop a hypothesis to explain differences in 
reproductive success between spring and continuous grazing.   
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B  
 

 
Fig. 5.9: Comparing seasonal different grazing: continuous vs. grazing in summer. 

Shown are simulations including both parameter and climatic uncertainty after 100 years of grazing: A) 
Highly selective (HS) continuous grazing, B)  Highly selective grazing in summer. 
 
Summer grazing. — Summer grazing yields only slight differences compared to continuous 

grazing (Fig. 5.9). I do not show the data for the mean consumed forage, because the differences are 
even lower than for tussock density. After 25 years of grazing the median values of tussock density 
differ between both scenarios, but the differences would not be significant, including all uncertainties 
(data not shown). For a specific rain scenario and a specific parameterisation the difference might be 
significant. After the long term simulation (100 years of grazing, Fig. 5.9) the differences are still 
small, only the median values for the stocking rate 1.2 sheep / ha differ qualitatively. Consequently, 
summer grazing seems to offer no alternative. This result was expected. During early summer the 
supply of green biomass remains relatively high, the highest senescence rates occurs during 
fructification in the mid and end of summer. Forage selectivity can be expected to reduce 
consecutively, if the amount of green biomass is significantly reduced and replaced by dry biomass. 
So the implemented low reduction of forage selectivity (GR.5 = 0.6 for summer/autumn grazing vs. 
GR.5 = 1.0 for continuous grazing) leads to no significant change. A shortcoming of the model at this 
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point is the lack of separation between the summer and autumn seasons. Forage selection is probably 
further reduced in late summer after seed dispersal (February / March) and during autumn, when 
senescence has lead to a stronger reduction of green biomass. On the other hand, another peak in 
productivity occurs in autumn which should also be considered. For the actual restricted knowledge of 
how forage selection changes with the season, the applied aggregated approach was justified, but an 
improvement of the hypothesis and notions about these processes is desirable. 
 Winter grazing. — For winter grazing I expected a significant result, at least for the response 
of tussock density. During this scenario, I reduced the forage selectivity strongly (GR.5 = 0.3), so this 
scenario resembles more the non-selective than the high selective continuous grazing scenario. The 
median values clearly differ (Fig. 5.10) after 25 and 100 years of grazing, despite the 10th and 
the 90th percentiles still overlap for both variables and all stocking rates. I consider these differences as 
qualitatively significant. The results for winter grazing are very similar to the ones for the non-
selective grazing (Fig. 5.8), though the long-term decrease of tussock density is evidently higher at 
winter grazing for high stocking rates and seems to follow a non-linear rather than a linear decrease 
(Compare Fig. 5.8 C and Fig. 5.10 B).  
 The results indicate that applying winter grazing would allow higher stocking without 
increasing the effect on vegetation (see Fig. 5.10 B). It is difficult to decide, whether e.g. a stocking 
rate of 1.5 sheep / ha would be sustainable for winter grazing on a longer term than 100 years, because 
variability is considerably high. An economical-ecological trade-off is also evident for winter grazing: 
if one would apply the stocking rate which returns the highest benefit, measured e.g. with the mean 
consumed forage (Fig. 5.10 C), tussock density would decrease strongly to values of TdS ~ 2.0, which 
is equivalent to strong degradation.  
 There are two restrictions I have to take into account regarding these results: First, the forage 
selection rule for winter grazing does not take into account the change of forage quality, which might 
be of higher importance during winter. Dry biomass has a lower quality and this would possibly lead 
to a higher daily intake by sheep during winter. Secondly, parts of the Festuca steppe lie at altitudes 
affected by snowfall during winter and thus are not available during the whole winter for grazing. 
 
A  B  C 
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Fig. 5.10: Comparing highly selective continuous with winter grazing. 

shown are results out of the 9 accepted parameterisations and 100 climate repetitions. A-D) Tussock 
density, D-E) mean consumed forage; A-B) 25 years, and C-F) 100 years of grazing. 
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5.3.6 Generating a criterion for sustainable management 

Fig. 5.11 shows the results for minimizing the risk of long-term degradation, for the scenarios high-
selective continuous grazing and non-selective grazing.  I chose 30% cover of perennial tussock 
grasses of F. pallescens as threshold criterion for a sustainable grazing management. 30% cover is 
equivalent to a tussock density (TdS) of 3.3 tussocks / m². This criterion should be fulfilled with a 
probability of 90%, considering the results of each parameterisation and its 100 repetitions with 
different stochastic climates. One parameterisation was rejected, due to its unrealistically high 
sensitivity to grazing.  
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Fig. 5.11: A criterion for long term sustainable grazing. 

Shown are for A) Highly selective continuous, and for B) Non-selective grazing the stocking rate for 
each parameterisation, at which long term grazing (100 years) is potentially sustainable. A 
stocking rate was potentially sustainable, if it lead with a probability of 90% to at maximum to a slight 
degradation of F. pallescens (cover ≥ 30 %, tussock density TdS ≥ 3.3). The minimum of the stocking 
rate out of the investigated parameterisations is proposed as the potentially sustainable stocking rate. 
Grey shaded area: applied stocking rate range in the field (0.3 sheep / ha for highly selective grazing 
and 0.9 sheep / ha for non-selective grazing). 
 
Regarding the remaining eight parameterisations, the result for the high selective grazing is, 

that a stocking rate of 0.3 sheep / ha would be a long-term sustainable stocking rate, considering 
climatic and the remaining parameter uncertainty. Thus, a stocking rate of 0.6 is the upper limit, where 
the risk is slightly higher than the threshold (or level of risk) I defined. Due to the relatively coarse 
resolution of my simulations I cannot give a more precise estimate of this grazing threshold. The 
interpretation for farmers, who try to maximize their income, would be that a stocking rate below 
0.6 / sheep might be sustainable, e.g. a stocking rate (Stock) of approximately 0.5 sheep / ha; the 
ecological interpretation would recommend not to exceed 0.3 sheep / ha. Simulations with stocking 
rates between both levels would be required to solve the question after the exact sustainable stocking 
rate under the given conditions and the actual available knowledge.  

Non-selective grazing. — The same analysis for the non-selective grazing scenario leads to the 
result that a stocking rate of Stock = 0.9 sheep / ha might be sustainable on a long term. This is nearly 
a two- to threefold higher stocking rate than under the normally applied high selective continuous 
grazing scenario (compare Fig. 5.11 A and B). 

 

Potentially sustainable stocking rate leading with 90% probability to 
at maximum slight degradation of F. pallescens (cover ≥ 30 %) 
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5.3.7 Understanding the combined effect of grazing and stochastic precipitation on 
vegetation 

In this section I present results which will contribute to a general understanding of how 
grazing and the stochastic climate interact and how this interplay affects the dynamics of 
F. pallescens. Improving understanding of these processes is of general interest for semi-arid and arid 
regions. 

During this section 
• I present the effect of grazing on tussock density under constant rainfall.  
• I analyse the temporal correlation of rainfall with selected variables of vegetation 

dynamics. 
• I analyse selected time series to discuss the combined effect of grazing and rainfall on 

important response variables qualitatively. 
• I show the combined effect of grazing and precipitation on the annual change of 

important response variables  
• I show time series, which separate the specific contributions of precipitation and 

grazing to the net change of important response variables.  
 
A  B  

 
Fig. 5.12: Grazing effect on tussock density under constant mean annual precipitation. 

A) Shown are the effect of different stocking rates on tussock density under constant mean annual 
precipitation (MAP = 375 mm rain / year). I used the standard parameterisation (PS) and the standard 
initial conditions. The grazing scenario is the highly selective continuous grazing; B) linear and non-
linear fit (see eqn. 5.1) of the response of tussock density on the grazing gradient under constant MAP 
after 100 years of grazing. The linear fit has a higher quality (linear R² = 0.89 (adjusted) than the non-
linear one R² = 0.69 (adj.). The slope for the linear fit is significant, whereas the slope = 6.00 and 
EC50 = 1.66 (= stocking rate threshold) for the non-linear fit were not significant (Details see Tab. III.1, 
Appendix III). 
 
Grazing under constant climate — The effect of grazing on tussock density, excluding the 

stochasticity of rainfall, can be roughly described as a linear negative one (Fig. 5.12). But the negative 
effect of grazing on tussock density under constant mean annual precipitation for the Media Luna 
Ranch (MAP = 375 mm) is lower than the negative effect of grazing under stochastic climate 
(compare Fig. 5.12 with Fig. 5.10 E, in the latter the median values for tussock density ~ 1.0 for 
Stock = 1.5, vs. TdS ~ 4.0 for constant rain). The conclusion to draw out of this comparison is that the 
combined effect of grazing and stochastic rain is clearly more negative than grazing in isolation.  

Correlations between precipitation and response variables. — An interesting question is how 
precipitation affects the dynamics of F. pallescens. The Spearman’s rank correlation between the 
actual precipitation and the response variables reveals interesting insights (Fig. 5.13). Tussock density 
and tussock recruitment are weakly correlated to rainfall, whereas tussock mortality and seedling 
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survival (1st year) are strongly correlated and respond instantaneously to actual rainfall. This indicates 
that the response of tussock density to rainfall is more complex and may include a memory effect. 
Mean vitality, which is important in order to explain both tussock mortality and productivity, is highly 
correlated to rainfall. This high correlation is probably due to the strong correlation of vitality at dfrac-
class 3 tussocks (40-60% fraction of dead biomass). As expected, annual tussock productivity is 
strongly correlated to rainfall, but tussock biomass after senescence and total standing green biomass 
(before senescence, representing available forage) are weaker correlated with rainfall, which reflects 
the history of tussock density, too. As expected, mean dfrac is negative correlated to rainfall. If rainfall 
is high, productivity is high and the relative dfrac is reduced. Surprising is the result, that the 
proportion of tussocks in dfrac-class 3 and 4 (with 40-60% and 60-80% dead biomass fraction) are 
inversely correlated to rainfall. 

 

 
Fig. 5.13: Correlations between this year’s precipitation with exemplar response variables. 

Shown are the significant correlations (Spearman’s rank correlation coefficient, p < 0.01) between the 
responses variables and this year’s precipitation out of one run of 1.000 time steps with stochastic 
rainfall (standard parameterisation, no grazing).  
 
Temporal autocorrelations. — The temporal autocorrelations (Fig. 5.14) for the variables 

tussock density (TdS), including grazing with Stock = 1.5 sheep / ha, and excluding grazing, mean 
dead biomass fraction (dfrac) and the landscape annual net primary production (ANPP) provide 
interesting insights into the model behaviour. Tussock density TdS (without grazing) is significantly 
autocorrelated 12 years for the given scenario (Fig. 5.14 B). I interpret this result in the way that the 
initial conditions or the state of a paddock would affect the results at least 12 years, if no grazing takes 
place. However, if grazing takes place, the temporal autocorrelation increases and is significant during 
20 years and more (Fig. 5.14 H). This is because the system responds under grazing to a lesser extent 
to differences in rainfall. This result is supported by the lack of autocorrelation of TdS (Stock = 1.5 
sheep / ha) with precipitation, whereas tussock density TdS without grazing is significantly correlated 
to the four years preceding the actual time step (Fig. 5.14 A). 

The significant cross-correlation between tussock density without grazing and the four years of 
preceding precipitation (Fig. 5.14 A) is a highly interesting finding. It proves that the system includes 
a second memory, in addition to the initial conditions of the vegetation mentioned above. An 
interpretation is that the precipitation is the main cause for this memory. Precipitation determines 
seedling survival which takes place three years before tussock recruitment. Somewhat surprising is it 
that the actual precipitation (lag = 0) is not significant, though tussock mortality depends partly on 
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Fig. 5.14: Temporal auto- and cross-correlation for exemplar response variables. 

Shown are exemplar results from simulations over 150 time steps over the whole grazing gradient 
(standard parameterisation, one climate repetition, time step 1-50 without grazing, time steps 51-150 
analysed). Fig. A-F) No grazing; Fig. G) cross-correlation of heavy grazing with no grazing; Fig. H) 
heavy grazing; Fig. A, C, E show the cross-correlation between the response variable and the 
correspondent precipitation time lag; Fig. B, D, F, H show the temporal autocorrelation of each variable 
with itself; A, B): Tussock density; C, D): dead fraction of biomass (dfrac); E, F) landscape-level 
ANPP per year; G, H) Tussock density, heavy grazing. The dashed line indicates the confidence 
interval. 
 

precipitation of the actual year. But it also depends on precipitation of the three years before, because 
precipitation has effects on tussock vitality. Interestingly, precipitation (lag = - 4 years) is significantly 
correlated to TdS (Stock = 0.0 sheep / ha) and the time lag = 5 years correlation is as strong as lag = 0. 
This result indicates that the memory might last longer than one cycle of complete tussock 
recruitment.  

The four years lasting significant cross-correlation between precipitation and tussock density 
indicates that the F. pallescens population ‘memorises’ not only the last recruitment event or vitality 
change, but also the earlier events and that these events may have significant effect on the actual 
tussock density. 

Dead biomass fraction autocorrelation. – The dead biomass fraction dfrac shows a different 
temporal pattern. Its significant autocorrelation lasts only 2 years (Fig. 5.14 D) and it shows a cyclical 
behaviour of alternating negative and positive autocorrelations. This pattern is surprising. I did expect 
significant autocorrelation during more years than the result indicates but without a clear pattern at 
higher time lags. The cyclical dynamics of dfrac-autocorrelation could be related to a precipitation 
pattern or to patterns of tussock recruitment. Tussock recruitment reduces dfrac due to the assumption 
that recently recruited tussocks include only green biomass during their first year. I did not detect any 
autocorrelation within precipitation, though I observed a trend to a significant negative autocorrelation 
at lag = -3 (see Chapter 2). Possibly, this slight pattern in autocorrelation might affect dfrac-dynamics. 
As dfrac-dynamics are assumed to be an important characteristic for forage selection, this aspect is 
worth further investigation.  
 Annual net primary production autocorrelation. – Finally, annual productivity of the 
simulated patch (ANPP) behaves similar as TdS without grazing (Fig. 5.14 E-F). The significant 
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autocorrelation of ANPP lasts nearly 10 years (Fig. 5.14 F), and its cross-correlation with precipitation 
is strong up to lag = - 3 (Fig. 5.14 E), whereas the cross-correlation with lag = 0 is the highest one, as 
expected. Thus, at least four years of rainfall have a relevant effect on ANPP. This results indicates, 
that the memory effect resulting from the seedling survival at lag = - 3 directly affects the history and 
development of annual net primary production ANPP. 

Combined effect of grazing and precipitation on vegetation. — Fig. 5.15 shows the combined 
effect of grazing and stochastic precipitation on tussock density (ungrazed (TdS0.0) and at Stock = 1.5 
sheep / ha, TdS1.5), the net change for TdS between grazed (Stock = 1.5 sheep / ha) and ungrazed per 
time step, and how precipitation and grazing contribute to the change in tussock density, the mean 
vitality (mean vitS), tussock recruitment and tussock mortality. 

The time series comparing the tussock density TdS (grazed and ungrazed, Fig. 5.15 A) shows 
the following: TdS0.0 shows a certain delay in reacting on precipitation, and thus shows certain 
constancy. A single more humid year (e.g. t = 4 or t = 14/15) does not lead to a rapid change in TdS0.0. 
An increase in TdS0.0 occurs after a series of average and/or humid years. Normally, three years 
without a dry year might lead to an increase in TdS0.0  (t = 6 or t = 10), but one dry year in between can 
be compensated by humid years (e.g. t = 16 or t =  21). TdS0.0 reacts more directly to dry years with 
decrease due to mortality, whereas reduction of TdS0.0 can be masked by a high recruitment during the 
same time step (e.g. t = 6).  

TdS reacts similar under grazing (TdS1.5) as TdS0.0, but shows essentially two differences: 
Firstly, the mortality due to drier years might be higher (t = 6, Fig. 5.15 F) and tussock recruitment 
does not compensate mortality during drier years (t = 6, Fig. 5.15 E). A higher negative change of 
tussock density (Fig. 5.15 B) due to grazing can occur due to additional mortality (Fig. 5.15 F) or due 
to the lack of compensation by tussock recruitment (Fig. 5.15 E). Additional tussock mortality due to 
grazing contributes with a certain constancy but with small amounts (Fig. 5.15 F) to the net change 
between no grazing and the heavy grazing scenario. The most catastrophic events for both tussock 
densities occur during a second dry year (see Fig. 5.15 F). But only the non grazed vegetation is on the 
long term able to regenerate with recruitment, responding to a series of average and humid years 
(Fig. 5.15 E). This result is a very important one, because it may explain important characteristics of 
the observed dynamics for F. pallescens. 

 Lack of recruitment causes decrease in density. — The higher reduction of TdS1.5 is mainly 
caused by lower tussock recruitment on the long term. This means that TdS1.5 is not able to regenerate 
as strongly as TdS0.0 after a series of average or good years. Thus, under heavy grazing the ability to 
respond with recruitment to average or good climatic conditions is lacking. When TdS1.5 decreases 
under a certain threshold (TdS = 2.5, compare Chapter 2) TdS1.5 is not able to respond with tussock 
recruitment to average or good conditions any more. The net differences between TdS0.0 and TdS1.5 
(Fig. 5.15 B) reflect these findings: the greatest difference between both variables occurs in years, 
where TdS0.0 increases, but TdS1.5 is unable to follow. Fig 5.15 B shows that the difference between 
TdS0.0 and TdS1.5 may stay constant during five or ten years.  

The contributions of precipitation and grazing to TdS-change depend also on the climatic 
context (Fig. 5.15 C). If TdS decreases strongly due to mortality the dominant contributions comes 
from precipitation (t = 1, t = 13). The contribution of heavy grazing to change in tussock density varies 
over time (Fig. 5.15 F): At the onset of grazing it contributes more to additional mortality (Fig. 5.15 F, 
t = 6), after 16 years the lack of recruitment triggers the increasing tussock density change. From time 
step 16 on TdS1.5 compensates all large tussock recruitment events completely, which demonstrates the 
lack of the ability to respond to favourable conditions.  
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Fig. 5.15: Combined effect of grazing and stochastic rainfall on tussock density 

Shown are the relative contributions of stochastic rainfall and heavy grazing (1.5 sheep / ha) on tussock 
density change. A) First 30 time steps of a simulated time series for tussock density TdS without grazing 
and Stock = 1.5, and the effect of annual precipitation on both (Note for Fig. 5.15 A-C: 100% Festuca 
cover equals to TdS = 11.1); B) Net difference for TdS at time step i between grazed and ungrazed 
simulation; C) contributions of precipitation and grazing to annual changes in tussock density per time 
step. D) Net mean vitality change due to precipitation and grazing; E) Tussock recruitment change [%] 
due to precipitation (without grazing) and due to grazing (1.5 sheep / ha, difference between no grazing 
and grazing); F) Tussock mortality change [%] due to precipitation (without grazing) and due to grazing 
(1.5 sheep / ha, difference between no grazing and grazing). 
 

0

2

4

6

8

10

12

0 5 10 15 20 25 30
Time step

Tu
ss

oc
k 

de
ns

ity
 [n

 / 
m

²]

-100

0

100

200

300

400

500

600

Pr
ec

ip
ita

tio
n[

m
m

/y
ea

r]

0.0 sheep /  ha

1.5 sheep / ha

Precipitation [mm / year]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30Time Step

M
ea

n 
vi

ta
lit

y 
ch

an
ge

-300

-200

-100

0

100

200

300

400

500

600

Pr
ec

ip
ita

tio
n 

[m
m

 /y
ea

r]

Mean vitality change due to precipitation
Mean vitality change due to grazing
Precipitation [mm / year]

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30Time Step

Tu
ss

oc
k 

de
ns

ity
 c

ha
ng

e 

-300

-200

-100

0

100

200

300

400

500

600

Pr
ec

ip
ita

tio
n 

[m
m

 / 
ye

ar
]

Tussock density change due to precipitation

Tussock density change due to grazing

-6

-4

-2

0

2

4

0 5 10 15 20 25 30
Time Step

Tu
ss

oc
k 

de
ns

ity
 c

ha
ng

e:
 

di
ffe

re
nc

e 
gr

az
ed

 - 
un

gr
az

ed

-600

-400

-200

0

200

400

600

Pr
ec

ip
ita

tio
n 

[m
m

 / 
ye

ar
]

Tussock density change due to grazing

Precipitation [mm / year]

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12
14

0 5 10 15 20 25 30
Time Step

Tu
ss

oc
k 

re
cr

ui
tm

en
t c

ha
ng

e[
%

]

-300

-200

-100

0

100

200

300

400

500

600

Pr
ec

ip
ita

tio
n 

[m
m

 /y
ea

r]

Tussock recruitment change [%] due to precipitation 
Tussock recruitment change [%] due to grazing
Precipitation [mm / year] -9

-7

-5

-3

-1

1

3

5

7

9

11

13

15

0 5 10 15 20 25 30
Time Step

Tu
ss

oc
k 

m
or

ta
lit

y 
ch

an
ge

 [%
]

-300

-200

-100

0

100

200

300

400

500

600

Pr
ec

ip
ita

tio
n 

[m
m

 /y
ea

r]

Tussock mortality change [%] due to precipitation 
Tussock mortality change [%] due to grazing
Precipitation [mm / year]



5.4 DISCUSSION 

 135

During some time steps, grazing seems to contribute positively to tussock density change (Fig. 5.15 C, 
D, and F). This might be an artefact, which is caused by the reduced response of TdS1.5 to precipitation. 
The reduced response would be a consequence of the already reduced tussock density and the reduced 
absolute number of dying tussocks relative to TdS0.0 (Fig. 5.15 F). The contributions of precipitation 
and grazing to mean vitality change show a similar pattern as the tussock density changes 
(Fig. 5.15 D). During the first 13 years, grazing does not contribute much to the mean vitality change, 
and then the contributions increase considerably. The virtually positive contributions of grazing are 
interpreted as a lack of response to precipitation, because vitality is already reduced to low values. 
 

5.4 DISCUSSION 
During the discussion I resume how I answered the questions raised at the beginning of 

chapter 5 and I place my results in the context of the following issues: degradation and desertification, 
the interaction between unpredictable rainfall and grazing, state and transition model vs. rangeland 
model, threshold effects in land use, and management. 

I used a spatial explicit, individual based simulation model which was constructed and 
analysed with a pattern oriented approach. The simulation model was calibrated and validated against 
all available field data (see Chapter 4) and the remaining model parameterisations, which represented 
the reasonable range of model dynamics, were used for the simulation experiments. The general aim 
of this chapter was to understand the mechanisms which cause degradation of the Festuca steppe 
under climatic uncertainty, considering the remaining parameter uncertainty. The simulation 
experiments included different scenarios of seasonal or continuous grazing, and a grazing gradient 
ranging from mean stocking rates of 0 to 2.0 sheep / ha. All simulations were repeated for 100 
stochastic climates and run over 150 yearly time steps. The first 50 years were simulated without 
grazing to facilitate adaptation of the simulated steppe to the initial conditions. Additionally, several 
single simulations were run with the standard parameterisation (based on the expert estimation) to 
illustrate the specific development of the vegetation dynamics. I addressed the following questions and 
will shortly resume the most important results. 
 
1) How does grazing affect vegetation under stochastic climate, considering parameter 
uncertainty?  
Grazing affects vegetation negatively on the long-term and tussock density shows threshold behaviour 
in respect to stocking rate. Parameter and climatic uncertainty change the slope of the tussock density 
response to grazing as well as the initial equilibrium value and mask the threshold behaviour to an 
important extent. Because of climatic uncertainty, negative effects of grazing on vegetation may not be 
detectable early in the field. Additionally, parameter uncertainty leads to uncertainties in the 
estimation of a sustainable stocking rate threshold.  
1 b) How does grazing affect vegetation under different time scales, different types of forage 
selection and different grazing regimes?  
The detection of a significant vegetation changes requires often time scales of more than 50 years, due 
to the mentioned uncertainties. If grazing would be non-selective, stocking rates could be higher than 
under continuous grazing all the year round, or grazing only in spring, or summer/autumn. Winter 
grazing also reduces selectivity and allows for higher sustainable stocking rates. 
2) I derived a criterion for long-term sustainable grazing management under stochastic climate 
conditions and parameter uncertainty. 
The proposed criterion for a long-term sustainable grazing management requires that, at a given 
stocking rate, tussock density remains above 30% of the original level with a 90% probability, 
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considering additionally climatic and parameter uncertainty. I found that the sustainable stocking rate 
ranges for continuous highly selective grazing between 0.3 < Stock ≤ 0.9 sheep / ha, and for non-
selective grazing it may reach Stock ≤ 0.9 sheep / ha. 
3) I provide an understanding of how grazing and stochastic climate interact and how this 
interplay affects the dynamics of F. pallescens.  
The time series of several important response variables show significant correlations to the rainfall 
time series (tussock density and annual net primary production at the patch level ANPP). Two memory 
effects were found: the first memory is the memory to the initial condition. The duration of this 
memory increases under grazing. This indicates that the non grazed vegetation is stronger coupled to 
climate than under grazing. This is because without grazing both recruitment and mortality events 
change tussock density, whereas recruitment events are strongly reduced under heavy grazing. The 
second memory effect is a delay in vegetation response to precipitation, which may last for tussock 
density or ANPP up to five years. This finding is explained by the three year development time a 
seedling needs to become a mature tussock. 

Grazing and stochastic climate in combination have stronger effects on vegetation than 
grazing under a constant average climate. Two mechanisms explain this finding. A series of two (or 
more) consecutive dry years can cause higher tussock mortality than would occur under constant 
climate. Grazing leads to additional mortality, but more important is that grazing causes the vegetation 
to loose its ability to produce sufficient recruitment after a series of average and more humid years. 
Additionally, vitality of tussock is reduced during dry years. Thus, the differences in tussock density 
occur between a non-grazed and a heavy grazed patch especially after a large tussock recruitment 
event at the not grazed patch.  

The duration of tussock recruitment and the impact of grazing on two and three year old 
saplings are critical biological assumptions for these results and should be tested in the field. 
Additionally, the conditions for a safe site for seedlings recruitment are unknown and the assumption 
that larger bare patches (≥ 90 x 120 cm) lead to reduced seedling survival should be tested. Further the 
details of tussock mortality are highly uncertain. I assume that grazing affects tussock vitality and 
tussock mortality, a hypothesis which is well founded by general observations (see Chapter 2), but 
should be investigated more in detail. It is important to have these assumptions in mind for later 
discussion. 

 

5.4.1 Understanding the grazing effect in combination with stochastic rainfall 

Understanding how stochastic rainfall and grazing interact together is one of the great challenges in 
modelling grazing in semi-arid regions. Due to the high variability in vegetation dynamics, which is 
caused by rainfall variability, it is difficult to separate long-term effects from short-term effects 
(Pickup 1996). Several studies have dealt with the effect of grazing under stochastic rainfall on 
vegetation (Ellis and Swift 1988, Ellis 1994, Wiegand and Milton 1996, Jeltsch et al. 1997, Stafford 
Smith and McKeon 1998, Stephan et al. 1998, Weber et al. 1998, Weber et al. 2000, Illius and 
O’Connor 2000, Janssen et al. 2004). The novel contribution of the present study is the quantitative 
separation of the contribution from anthropogenic (grazing) and natural effects (rainfall). Simulation 
models offer the option of performing controlled experiments even under stochastically fluctuating 
conditions. Hence I was able to identify the proportion of demographic processes such as tussock 
recruitment or mortality caused by either rainfall or grazing. 

To my knowledge such a separation of grazing and rainfall effects has not yet been done, at 
least for studies the grazing impact on vegetation under stochastic rainfall. None of the simulation 
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studies mentioned above analysed a time series in such detail (but see Wiegand et al. 1995; Jeltsch et 
al. 1999). 

My results confirm the results of a simulation model developed by Stephan et al. (1998), 
which analysed the sustainability of a management strategy based on resting a part of the paddocks 
during wet years. This strategy which was empirically derived by the farmer H.A. Breiting seems to 
work very similar to my finding. The justification of this strategy is that regeneration would be 
impossible during dry years and that therefore resting will be in vain. But in humid years regeneration 
is possible and could be promoted by resting a part of the paddocks. If a paddock is rested during a 
humid year it has the chance to rebuild plant cover by recruitment and to regenerate the vitality of 
existing tussocks. However, substantial differences between the Festuca steppe and the desert 
ecosystem studied by Stephan et al. (1998) may exist. Therefore it is unclear if similar or different 
processes lead to similar results. This would be an interesting point for further investigation.  

Empirical data on the interaction between grazing and stochastic climate are rare. I could find 
some studies which are related to this topic: Kelly and Walker (1976) in Illius and O’Connor (1999), 
Danckwerts and Stuart-Hill (1988), O’Connor (1994), Fynn and O’Connor (2000), Fuhlendorf et al. 
(2001), Teague et al. (2004). Illius and O’Connor (1999) state that during droughts heavy grazing has 
negative effects on vegetation, as do Fuhlendorf et al. (2001). These studies report that higher 
mortality occurs during a dry year under heavy grazing. They hypothesize that higher mortality is due 
to the additional stress which is exerted by grazing on the plants. Fynn and O’Connor (2000) and 
Teague et al. (2004) found significant interactions between grazing and year (i.e. rainfall variability). 
But these studies do not specify how this interaction works. O’Connor (1994) states, that the tussock 
grass Themeda triandra is markedly reduced during drought and heavy grazing. This perennial South 
African tussock grass reproduces strictly from seeds and is comparable to F. pallescens in Patagonia. 
Danckwerts and Stuart-Hill (1988) observed that decreaser species like Themeda triandra do badly 
regenerate under grazing after a drought occurred. This aggregated finding parallels my finding that 
limited recruitment after dry years might be decisive for the fate of a grazed paddock.  

 

5.4.2 State and transition 

In rangeland ecology the equilibrium versus non-equilibrium debate referred to earlier (Chapter 2.5.6) 
is paralleled by a more applied discussion, namely the debate over the Range succession Model versus 
the State and transition model. The range succession model (Clements 1916) assumes that grazing and 
drought act similar on vegetation, and that negative effects of grazing or drought are reversible since 
succession will always compensate for negative effects. Several authors argued that this approach is 
unsuitable for semi-arid grasslands because the response of vegetation to rainfall and grazing is 
discontinuous (e.g., Westoby et al. 1989, Walker 1993). Sutherland (1974) introduced a theoretical 
concept of multiple stable states describing vegetation dynamics as a non-linear set of alternative 
stable states which differ markedly and are separated by abrupt transitions in space or time.  

Though many state-and-transition concepts exist for specific systems (Bertiller and Defossé 
1993, Walker 1997, Milton et al. 1998, Stringham et al. 2003), experimental validation of this concept 
is difficult. Wiegand et al. (1995) pointed with a simulation model for the Karoo shrubland two 
reasons why proving such state transition in the field is fraught with difficulties: recruitment events are 
rare because they depend not only on rainfall conditions, but also on the availability of safe sites for 
germination. Therefore, correct formulation of states and transitions would require observation times 
much larger than usual observation times. Not surprisingly, empirical studies on this topic are rare 
(Oliva et al. 1998) because they require long-term vegetation monitoring.  
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In the following I will interpret my results within the context of the state-and-transition model. 
As discussed above (Fig. 5.15 A and B), tussock density reacts with a temporal delay to precipitation. 
Changes in tussock density occur mostly discontinuously (Fig. 5.15 A and B) and in between tussock 
density remains unchanged for two or more years. These changes do not represent different stable 
states neither for the no grazing nor for the grazing scenario. Interestingly, the differences between a 
not grazed and a grazed patch remain stable for a longer time, often 5 years or even up to 10 years 
(Fig. 5.15 B).  I suggest that for management such ‘transient or medium-term stable states’ are 
relevant and should be included into rangeland monitoring. The reason is that the proposed stable 
states for the Festuca steppes are very coarse (Bertiller and Defossé 1993): They demand for State I 
(optimal condition) a total cover of 60-90% and a Festuca cover of 30-50%, for State II (slight 
degradation) a total cover of 30-60%, with a Festuca cover of 10-40%.  

One problem of the state and transition models is that they are conceptual models and do not 
give time horizons for vegetation change and refer only to clearly visible changes in vegetation. Thus, 
it is difficult to recognize these transient or medium-term stable states and more subtle changes using 
this concept.  

My results show that with a tussock density of approximately TdS = 2.5 (cover ~ 23%) 
regeneration might already be inhibited in an irreversible way under constant grazing. Under the 
assumption that the simulation model works for all palatable tussock grasses of the Festuca steppe in a 
similar way, my estimates for State I would be: 55-85% and for State 2: 15-50%. Thus, there is a real 
danger that a classification into State II (slightly to moderately degraded) is already near or even 
below the limit of the regeneration ability of the tussock grass population. These results show that 
management of relatively complex systems such as the Festuca steppe require a more sophisticated 
approach for range management than provided by the state-and-transition concept.  

Management options related to state and transition monitoring. – I suggest to use the 
‘medium-term stable states’, which are stable during a series of years, for range assessment and to 
monitor the difference e.g. in tussock density between a non-grazed reference and the grazed paddock 
(Fig. 5.15 B). Comparing changes in tussock density between a grazed and a non grazed situation 
showed that the difference changed discontinuously and tended to be stable for 5 to 10 years 
(Fig. 5.15 B). Medium-term time scales are relevant for management (Bertiller and Defossé 1993). 
After critical negative or positive events, e.g. one or more dry years or a series of at least two average 
or humid years, a monitoring comparing tussock density in a grazed and an ungrazed paddock should 
reveal if discontinuous behaviour occurred. And one would detect the cause for the change, if it would 
be caused by grazing. In theory, after the first discontinuous negative change occurred, the farmer 
would be able to react and consider changes in management. Necessary for such a monitoring system 
is the creation of representative exclosures and their continuous monitoring. The costs for exclosures 
should be paid off by the benefit of a better knowledge of vegetation dynamics which could be used 
for appropriate management.  

Obviously there are several problems to be solved before this approach could be applied in 
practice. One problem might be that the Festuca steppe could have evolved under low grazing (M.B. 
Bertiller, pers. comm.). Thus, the optimal reference would be a lightly grazed exclosure, similar to 
sporadically grazing e.g. by guanacos. Thus a not yet quantified amount of grazing might be necessary 
to maintain the Festuca steppe as it evolved.  

Consideration of scale. — Another problem one has to consider for a comparison between a 
reference and a grazed situation is the scale problem. I simulated on a small scale which is 
representative only for homogeneous parts of a larger paddock. As paddocks in Patagonia are 1.000 ha 
and more in size, larger scale patterns due to landscape characteristics (e.g. slope), distance to water 
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places, fences etc. will occur. These larger scale effects on grazing and its effect on vegetation would 
be important to study in a following project.  

A pragmatic approach would be to select referenced plots for grazing and no grazing at areas 
of the paddock which are similar in important landscape characteristics, e.g. altitude, slope, exposition, 
soil and position within the paddock. Another problem which might masks the detection of change is 
the spatial variability of tussock density. In a first rough estimate given in Chapter 3, Fig. 3.9 the 
spatial variability of tussocks density reaches approx. 20% in exclosures. Spatial variability of tussock 
density should be investigated more in detail. Another interesting question is, if a systematic pairwise 
comparison would work for also for patches which are already in a certain state of degradation and 
hence not initiated from the assumed natural state as the simulation results presented here.  

Additional focus variables: dead biomass fraction. — An additional option for a response 
variable which would be suitable to detect grazing effects is the dead biomass fraction dfrac. Dfrac 
has a low temporal autocorrelation and a low cross-correlation with precipitation (Fig. 5.14 C-D). I 
assume that the low autocorrelation in time leads to a faster detection of the grazing impact. The time 
series of dfrac for a grazed and an ungrazed situation revealed a typical pattern for both scenarios (see 
Fig. III.4 A, Appendix III): without grazing dfrac shows a pattern of rapid increase at some years. I 
assume that this is mostly caused by recruitment events, but could also be caused by high mortality 
events. This would be an interesting point for further investigation. Dfrac shows under grazing no 
extreme changes, and when grazing is completely coupled to vegetation, the variability of dfrac is 
strongly reduced (Fig. III. 4 A, time step 19). But this finding would indicate an already degraded state 
with low probability of regeneration (compare with Fig. 5.15 A).  

Conclusion. — The qualitative approach I presented might help to detect early warning signals 
of conditional changes using time series data, which represents one of the outstanding challenges in 
ecosystem studies (see Scheffer and Carpenter 2003). 

 

5.4.3 Threshold behaviour 

The non-linear response of tussock density to stocking rate showed clear threshold behaviour 
(Fig. 5.5) behind grazing under stochastic climate. Threshold behaviour under grazing was detected in 
previous studies for the phenomenon of shrub encroachment in semi-arid savannas in Southern Africa 
(Jeltsch et al. 1997, Weber et al. 1998, Weber et al. 2000), and is a phenomenon which is found and 
discussed widely in ecology (see van de Koppel et al. 1997, Scheffer et al. 2001, Cousins et al. 2003, 
Scheffer and Carpenter 2003, Schwinning et al. 2004). Simulation models about grazing, which 
detected grazing thresholds, are rare (but see Jeltsch et al. 1997, Weber et al. 1998, Weber et al. 2000) 
and have a coarser resolution than the presented model (30 cm x 30 cm vs. 5 m x 5 m). Thus, the 
Festuca model is the first simulation model which includes realistic small-scale processes at the 
individual tuft level which shows threshold behaviour. One of the most important findings of my study 
is that that the slope of the threshold-response curve to grazing depends both on the specific 
precipitation time series and on the biological or parameter uncertainty (see Fig. 5.5).  

This finding has important implications for management. First, in regions with highly variable 
rainfall the threshold value itself is of little use as reference for sustainable grazing management. This 
is because the essential feature of the threshold-response curve in relation to sustainability is the slope, 
not the threshold. Thus, under unpredictable rainfall one should be aware that the slope will depend on 
the specific sequence of rainfall events. A precautionary management recommendation (derived from 
simulation studies) should define a sustainable stocking rate as the stocking rate where the slope of the 
fitted tussock density-stocking curve becomes negative. This finding has important practical 
consequences. For the Festuca steppe, the estimated threshold, which proved to be very robust over 
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the biologically and climatologically uncertainty, lies at approx. 1.0-1.1 sheep / ha (Fig. 5.5). If I 
consider both uncertainties, the point of inflexion is shifted to a stocking rate of approx. 0.3 sheep / ha, 
which is a third or fourth of this threshold. This estimate is in good agreement with the other 
qualitative estimate for a sustainable management (Fig. 5.11 A, for continuous high selective grazing), 
which demands a stocking rate lower than 0.6 sheep / ha to be sustainable.  

Conclusion. — The results presented here are an important advance to quantify a risk level that 
is acceptable for a given time scale, as postulated by Jeltsch et al. (1997).  

 

5.4.4 The criterion for sustainable management and the effect of grazing on biodiversity. 

In Chapter 5.3.6 I proposed a criterion for a long-term sustainable stocking rate for the F. pallescens 
steppe. The criterion uses a cover threshold of 30% F. pallescens cover. This threshold lies at the 
transition between the best state of a F. pallescens steppe and a state where the steppe might show 
slight signs of degradation. Due to the lack of field data the limit cannot be determined sharply (see 
Bertiller and Defossé 1993). The proposed threshold limit is reasonable because I assumed a threshold 
which is above the regeneration threshold for constant grazing (cover ~ 23%, see Chapter 2), including 
a 30% buffer. The proposed 30% cover only for F. pallescens lies within the Festuca state showing 
slight signs of degradation (Bertiller and Defossé 1993), but also at the lower limit for the optimal 
state. Thus, additional variables would define the exact state, as e.g. the total plant cover. One 
shortcoming of the model is that it does not include other species, as other palatable tussock grasses. 
However, most of the plants, which contribute to additional plant cover of the Festuca steppe, are 
tussock grass species, too. Thus, it is reasonable to assume that they are prown to similar processes as 
F. pallescens. Considering this simplifying assumption, the 30% threshold would already be at the 
lower limit of the second state of the F. pallescens, as proposed by Bertiller and Defossé (1993). 
Despite I do not know the exact regeneration threshold for F. pallescens under constant grazing under 
the presence of further species, my result is a reasonable first approximation assuming similar 
dynamics for other tussock grass species integrating the Festuca steppe. The proposed threshold is 
reasonable from a farmers point of view, but would it also the case from an ecological point of view? 
 Sustainable grazing threshold and biodiversity. — From an ecological point of view, one of 
the decisive questions related to grazing management is if biodiversity is conserved sufficiently under 
the proposed grazing threshold. The knowledge about the relation between grazing and its effect on 
biodiversity is scarce for the F. pallescens steppe. Reviewing the available literature concerning this 
topic (León and Aguiar 1985, Facelli and León 1986) suggest that if Festuca cover is reduced to 30% 
a low reduction seems to occur. But this topic requires more detailed investigation.  

Facelli and León (1986) provided the only data and analysis I could find related to this topic. 
They studied 43 paddocks differing in the visible impact of grazing. They ordered the samples after 
their inequality, which is assumed to be correlated with the grazing impact. They derived a linear 
regression function, which indicates that the paddocks in the best states contained 34 species, which 
declines to approx. 20 species at the other end of the axis. León and Aguiar (1985) fitted a curve for F. 
pallescens cover following the same order of paddocks. This curve shows that F. pallescens cover 
declines exponentially along the paddocks order. Transferring this finding on the data given by Facelli 
and León (1986) the species reduction might reach approx. 4 species at average, when F. pallescens is 
reduced to 30% cover. Using this estimation, the suggested cover threshold leads to a low reduction in 
biodiversity. But I do not know if species composition changes occur already at the transition between 
the good and the slightly degraded state. León and Aguiar (1985) list the cover for F. pallescens along 
the ordered gradient and discuss some species which seem to decline along the ‘grazing impact axis’. 
A qualitative assessment of F. pallescens cover and its correlation with the ‘grazing impact axis’ 
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shows neither a clear correlation of the Festuca steppe at 30% cover with the ordering axis nor with 
the species group, which seems to decline along the axis. So a question if a proposed threshold cover 
of 30% for F. pallescens is sufficient for conserving biodiversity at the Festuca steppe is subject to 
further studies and discussions.  

 

5.4.5 Temporal Memory 

As I showed with Fig. 5.14, tussock density TdS and annual net primary productivity ANPP are 
significantly correlated with precipitation 4 and 3 years before the actual time step, respectively. 
Hence the system shows a considerable memory. I explain this memory mainly with the seedling 
dynamics implemented into the model. After seedling survival there are two years of juvenile state. As 
seedling survival is an important parameter for the population dynamics (see Chapter 4.3.2, Tab. 4.6, 
parameters ColWS0 and ColS0p), it is no surprise that precipitation which occurs three years before 
the actual tussock recruitment is significant correlated with tussock density TdS. An additionally 
explanation for the relation of previous precipitation to tussock density could be the effect of 
precipitation on vitality, which will have delayed effects on the actual tussock mortality since only 
tussocks in the lowest vitality class die. A series of good years improves the vitality of tussocks, so 
mortality is reduced when a dry year follows. A future task would be to separate the relative 
contributions of both effects. The critical point considering this finding seems to be the dynamics of 
juveniles. The dynamic of juveniles is highly uncertain. Field data exist only for survival of seedlings 
for a maximum of approx. one year (Defossé et al. 1997a, Defossé et al. 1997b). The majority of 
seedlings emerge in autumn and the following summer is critical for survival.  
 Thus, a seedlings dynamics of at least 2 years is empirically justified. At the end of the 
summer seedlings grow up to one tiller, but its fate from this stage is unknown. Sapling states lasting 
several years has been observed (M.B. Bertiller and J.M. Paruelo, pers. comm.).  Thus we included an 
additional saplings state. It is also reasonable to assume a higher grazing impact on young tussocks 
and saplings. The reproductive contribution by two years old tussocks and their susceptibility to 
drought is not known. These assumptions should be tested carefully in the field or in glasshouse 
experiments.  

There are few studies which report memory effects. Oesterheld et al. (2001) and 
O’Connor et al. (2001) found that the previous year ANPP helped to explain a higher proportion of 
variability of the actual ANPP. Wiegand et al. (2004c) developed a regression model which integrates 
a memory index for precipitation to predict ANPP. They hypothesized that the layer from which 
grasses provide themselves with water accounts for the memory effect. If this is the case for adult 
Festuca tussocks, is actually not known. Wiegand et al. (2004c) discuss further effects which may 
cause a memory of previous precipitation events. In some cases the soil can act as ‘capacitor’, when 
water is transferred from one year to the other. Features of plant population dynamics (e.g. a seed 
bank, establishment of a cohort of perennial plants, initiation of buds, Goward and Prince (1995) in 
Wiegand et al. 2004c) or plant structural factors to changes in biomass, storage organs, or cover (see 
Gibbens and Beck 1988, Anderson and Inouye 2001, both in Wiegand et al. 2004c) may explain 
memory effects within a system. Paruelo et al. (2005, i.e. Chapter 3) discuss different memory time 
scales for different variables. 

For F. pallescens it is probable that several effects contribute to the found memory effect. The 
most important I assume will be the recruitment of cohorts (plant population dynamics effect); a 
structural effect, expressed as the memory incorporated into the vitality change dynamics is relevant. 
Carry over of plant available soil water to the next year, was neglected within this model. We do not 
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know further detail about this topic, but to date there is no evidence that F. pallescens is able to gain 
water from deeper soil levels. 

If memory effects can indeed explain important fractions of actual annual productivity, 
theoretical models of multiple stable states (van de Koppel, et al. 1997, van de Koppel and Rietkerk 
2000) should be revised, because the pathway of attraction starting from an unstable equilibrium will 
be influenced by history.  

 

5.4.6 Grazing scenarios and implications for management. 

My results showed that continuous grazing leads to heavy overgrazing and cover loss if the stocking 
rate exceeds a certain threshold. Continuous, highly selective grazing with high stocking rates is 
similar to an opportunistic, exploitative strategy, a so called ‘trial and error’-strategy (Golluscio and 
Paruelo 1998), which tries to maximize the economic output on a short term. On the long term it will 
lead to a reduction of tussock density and for high stocking rates tussock density will fall below the 
regeneration threshold. A constant stocking rate implies that during dry years, if natural forage supply 
is deficient, supplementary feeding is applied. Such an approach might increase the negative effects of 
grazing in comparison to a natural herbivore dynamics. For a natural herbivore dynamics one can 
expect that after a series of dry years the population is weakened by drought, and there will be a 
certain delay in the recovery of the herbivore population which provides the vegetation a rest. So the 
grazing effects under natural herbivore dynamics should be less severe than under constant grazing at 
or over the threshold limit. Below alterative management scenarios are discussed further. These 
include non-selective grazing, adaptive stocking and precautionary constant low stocking. 

Non-selective grazing management. — My results showed that grazing scenarios, involving 
less selective grazing (winter grazing and non-selective scenarios), lead to a more sustainable use of 
the F. pallescens steppes. The best method to force sheep to graze non-selectively is to create smaller 
paddocks by fencing. Then each small paddock would be grazed for a shorter time, and the resting 
time for each paddock will be longer. The ecological and economic sustainability of this strategy is 
supported by simulation studies (Stephan et al. 1998, Beukes et al. 2002). The question remains 
whether this will hold true in the low productive system of Patagonia where farmers are reluctant to 
investing in additional fencing (Stafford Smith and Foran 1992). 

Adaptive stocking. — Adaptive stocking management is poorly documented and a 
controversial topic (Stafford Smith and Foran 1992, Stafford Smith and McKeon 1998, Weber et al. 
1998, Weber and Jeltsch 2000, Weber et al. 2000, Janssen 2004). Weber et al. (2000) found that 
adaptive stocking rates are more sustainable than constant stocking rates. Stafford Smith and Foran 
(1992) report, that destocking of 20% of livestock, after one dry year, and destocking of 40% for 
longer dry periods, was economically valid. Stafford Smith and McKeon (1998) compare a reactor 
strategy, which aims to graze at a constant relative grazing intensity, with a constant stocking rate 
strategy with a long-term simulation study. The reactor strategy showed a high variability of income, 
but was approximately as valuable as the constant strategy. None of the studies addressed how the 
resource develops on the long-term. Stafford Smith and McKeon (1998) pointed to an important 
economic problem of an adaptive stocking rate: the high variability of income within years. Beukes et 
al. (2002) criticize adaptive stocking rates, because it is probable that the farmer gets low prices if he 
sells parts of his stock during bad years (because all other farmer will do the same), and might pay 
high prises when he wants to restock. The assumption behind this argument is that if many farmers 
start to de-stock, when a drought begins, prises will fall. When those farmers want to restock after 
drought has broken, prises will rise due to the synchronized higher demand. Additionally the decision 
when to destock and to what extent is not an easy one (Stafford Smith and Foran 1992).  
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My results add a biological constraint to these economical problems. As I showed, high 
stocking rates have a negative impact on tussock recruitment, which should occur after a series of 
good years. Higher mortality during dry years caused by high stocking rates occurred only at the 
beginning of a specific grazing history of a patch (Fig. 5.15 F). The failure of regeneration is the more 
important impact on the long term. So restocking after drought might have a similar negative impact 
on recruitment, than a constant high stocking rate and might fail to reach a long-term sustainable 
management. So the topic of adaptive management stays controversial and should be investigated 
further. 

Conservative constant, but low stocking mangement. — The final strategy involves constant 
stocking at very low rates. Janssen et al. (2004) recommend such a cautious management strategy for 
grazing in highly variable environments, where stocking rates should be lower than for a low or 
constant climatic variability. They compared optimal stocking rate strategies under constant and 
highly variable climate. My results suggest that a low constant stocking rate, which should reach only 
approximately a third or a fourth of the stocking rate estimated stocking rate threshold, has a chance to 
be sustainable on the long-term. The advantage of such a strategy would be economically the low cost, 
which is an important factor in low productive systems. A natural herbivore dynamics could be 
allowed to a limited extent, because during a series of dry years, reproduction of sheep might be 
reduced, which lead to a delay in herbivore increase, if a series of average or more humid years 
follow. Natural reproduction would allow the higher forage supply to be exploited to some extend 
during periods of average to humid years. On the other hand, grazing itself may create structural 
changes within vegetation, which may create positive feedbacks between vegetation heterogeneity and 
grazing, which may create patch dynamics consisting out of strongly used and avoided patches 
(Posse et al. 2000). If such feedbacks contribute significantly to vegetation dynamics in the Festuca 
steppe, was not yet investigated. All these aspects and relationships should be tested in detail by 
additional simulations, because the effects will depend on the applied mean grazing intensity relative 
to available forage.  

The main disadvantage of conservative low constant stocking rates is that excess forage 
available during good years is difficult to utilise. Options may exist for using this as dry forage in 
subsequent dry years. The results of the Festuca simulation model suggest a long-term viable 
F. pallescens population requires the following conditions: tussock density should be maintained at a 
high level to avoid permanent degradation, vitality or potential productivity of plants should not 
decrease significantly in comparison to an ungrazed or slightly grazed system and recruitment should 
be possible. Further investigation is necessary to test if a simple strategy can be derived which is 
sustainable on the long term and makes a better use of resources during humid years. From an 
ecological point of view, low constant stocking strategies seem to be feasible. Low stocking rates 
might have a low negative effect on biodiversity and could also improve quality of the products 
Golluscio et al. (1998).  

Golluscio et al. (1998) discuss three factors which might be responsible for ecosystem 
degradation: 1) overestimation of carrying capacity of the rangelands, 2) inadequate distribution of 
animals in very large, heterogeneous paddocks, and 3) year-long continuous grazing. My results show 
that point 2) and 3) could be improved by non-selective grazing and probably even would allow higher 
stocking rates. The overestimation of the carrying capacity could be a consequence of an 
underestimation of forage selection by sheep which might lead to a higher loss of green biomass due 
to senescence as otherwise would be the case or of an underestimation of senescence (see Chapter 4).  

Summary. — The discussion of the most important results leads to the following conclusion: I 
presented a simulation model which integrates an individual-based description of the grazing process 
(as an interaction between the individual plant resource and herbivores) with the development of a 
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framework, where both grazing and climate act upon essential demographic processes such as seedling 
survival, tussock recruitment and mortality, or biomass production and vitality. I provide an 
understanding of how uncertainty about the degradation process is affected by the stochasticity of the 
climate and the remaining biological uncertainties, represented by parameter uncertainty. This 
understanding is directly translated into quantification of risk levels for specific time-scales, which 
might be acceptable on the long-term. I presented two independent methods to estimate long-term 
sustainable stocking rates under the given conditions for Patagonian Ranches (i.e. grazing all-year 
round in paddocks of tenths of km², which leads to high selective grazing). I quantified the effect of a 
management, which would force herbivores to non-selective grazing by creating smaller paddocks. 
This method was shown to be effective by other simulation models. My contribution was to study 
these management methods under biologically more realistic conditions, because the forage selection 
models are based on a biologically plausible foraging hypothesis and not from theoretical models or 
aggregated assumptions.  

I separated the relative effects of stochastic climate and grazing on the demographic processes 
of a dominant forage species for a semi-arid ecosystem; a task which is especially difficult in 
ecosystems with stochastic rainfall (Pickup 1996). I derived a hypothesis how stochastic rainfall and 
grazing interact and provided a quantified understanding of this process. I detected significant 
correlations between the precipitation of the past and essential response variables of F. pallescens 
population dynamics, as tussock density or ANPP. Thus, the investigated systems show an important 
memory component for its own precipitation history. A similar memory was found by 
Wiegand et al. (2004c). Wiegand et al. (2004c) detected the memory effect via regression analysis 
which included an abstract memory parameter, whereas within my model the memory is an emergent 
characteristic of the implemented demographic processes. The remaining biological uncertainties 
should be studied further. I improved the quantitative understanding of the degradation process and 
showed a threshold which leads to a long-term degradation due to the loss of regeneration ability. This 
type of multiple stable states were already predicted by theoretical models (compare van de Koppel 
and Rietkerk 2000), but if one wants to face the global problem of desertification and degradation, one 
has to fill the theoretical models with biology, using concrete stocking rates, time scales of 
degradation and so on, if they should be of more than intellectual and academic use. The finding of 
memory of the F. pallescens for its own history might have important consequences for equilibrium 
models and might be worth of further investigation.  
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6 GENERAL DISCUSSION WITH RESPECT TO UPSCALING  
I will discuss the results of my thesis with respect to the upscaling issue which was raised in 

Chapter 1. Grazing generates heterogeneities on several scales (Golluscio et al. 1998, Parsons and 
Dumont 2003). While individual defoliation event takes place on the scale of individual tussocks, 
herbivores may take grazing decisions at the landscape scale. For example, their decision about the 
next grazing location may depend on the distance from a watering point and on the relative 
attractiveness of one patch relative to the accessible neighbouring patches. Thus, which patch will be 
grazed by an individual sheep or flock, when and at with which average intensity throughout the year, 
will depend on several larger scale factors. These factors may include the size of the paddock, the 
composition of the patch, its actual state and that of the neighbouring patches.  

The model presented and analyzed in this thesis cannot address such larger-scale effects which 
are nevertheless important for an understanding of the degradation process and for management 
(management units comprise typically thousands of hectares). The thesis provided an understanding of 
the small-scale grazing process within the investigated ecosystem and the hypothesized grazing model. 
However, the construction and analysis of the small-scale model was always done with view to the 
next step; an upscaling of the small-scale model to the landscape scale.  A natural continuation of this 
thesis would be therefore a project ‘Impact of Grazing and Drought on the Vegetation Dynamics of the 
semi-arid Steppe in western Patagonia’ that aims to assess the impact of grazing on vegetation at the 
next larger scale, the landscape scale for development of sustainable management strategies.  

Aims and Questions of the general discussion: — In this chapter I will discuss several issues 
which have to be consider before an upscaling procedure can be started. First, it would be necessary to 
develop the model at a landscape scale and to simulate at least entire paddocks with several thousands 
of hectares, as they are used in Patagonia, or, even better, to simulate an entire Ranch with up to 
250.000 hectares (2500 km² = approximately 3 times the area of Berlin/Germany). Because the 
vegetation units are not uniform at this scale, it might be necessary to include other dominant 
ecosystem types such as shrub-grass steppe or humid meadows. However, I will not discuss this issue 
here in detail because it would take one entire chapter. A first basic concept I presented at the IAVS 
conference in Porto Alegre in 2002. 

Second, there are several possibilities to upscale a model and to integrate it into a larger scale 
model. I briefly discuss the advantages and disadvantages of different upscaling methods used in the 
literature and evaluate the results of this thesis with respect to its possibilities to derive an upscaled 
model. Both points are addressed at the end of the chapter.  

The third issue to decide on is about the temporal scale at which the upscaling should be done. 
Finally, it is important to define the objectives and questions to be addressed with a larger-scale model 
because they will determine technical details of the upscaling procedure. The importance of this task is 
illustrated with the discussion on the appropriate temporal scale to be used for upscaling. 

6.1.TEMPORAL SCALING 
A central decision to be taken is definition of the time scale (or time step) of the upscaled 

model. The higher the temporal resolution, the higher the number of state variables and parameters are 
which have to be memorised. If the temporal resolution is one year, which makes sense for a grazing 
model, it would be necessary to track the survival of seedlings, and the different saplings stages, due to 
its susceptibility to stochastic rainfall. Using a temporal resolution of e.g., five years one would not 
need to track seedlings and saplings but use instead a probability distribution (or a functional 
relationship) of recruitment (and mortality) events resulting out of simulations crossing the factors 
precipitation time series, grazing intensity, patch history, and the remaining biological uncertainty. In 
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practice, generation of the probability distribution would require repeated simulations with systematic 
variation of the different factors to derive a probability for each combination of factors which may 
occur. The factors precipitation time series, grazing intensity, patch history, and the remaining 
biological uncertainty are the minimum factors which have to be considered separately for upscaling 
of the F. pallescens simulation model. The results of the thesis, shown in Chapter 2 (Fig. 2.4, Fig 2.5), 
and Chapter 5 (Fig. 5.5, 5.6, 5.14, 5.15) provide information on the relative importance of the different 
factors. 

For a larger time step, e.g. 20 years, it might be possible to separate the ‘parameter’ history of 
the patch into the components ‘initial state of the patch’, which may include grazing history or not, 
and the memory of the grazing history of the last 20 years. As the analysis of the temporal 
autocorrelations and the analysis of the interaction between grazing and precipitation showed, the 
memory of a given patch changes depending on grazing intensity and grazing duration. But these 
effects were detectable only on a longer time scale of approximately 20 years. To upscale the model at 
a larger time scale, it would be necessary to derive a probability distribution (or a functional 
relationship) between time, grazing intensity, grazing duration and structural response of the 
vegetation. A first guess would be a linear increase of the memory (see Fig. 5.14) with increasing 
grazing intensity in comparison to the no grazing scenario. A second guess would be an exponential 
decay of the memory of the patch for itself, as it is generally discussed within this issue (see Wiegand 
et al. 2004c and there for further citations).  

 

6.2 PERSPECTIVES FOR  AN UPSCALING PROCEDURE 
The discussion of the temporal scale shows that an upscaling procedure implies two further 

essential questions: What is the objective of the upscaled model and how aggregated should the 
upscaled model (or its results) be? The approach used for upscaling depends on the aim of the 
upscaled model. If the aim of the upscaled model is to gain a general understanding of the 
development of a patch under different conditions, an aggregated measure (such as a probability 
distributions) could be used to describe the state transitions from one vegetation state to another (see 
Tab. II.1) as a function of time, initial state, included biological uncertainty, grazing intensity and 
grazing duration. A similar approach was performed by Acevedo et al. (2001). However, if the 
upscaled model should be used for more applied questions in management it might be necessary to 
include some detail on the precipitation time series e.g. to investigate what happens after series of dry, 
average, or humid years. This requires more effort because different types of precipitation time series 
need to be considered rather than pooling completely different stochastic time series.  

Upscaling using the state and transition concept. — One coarse upscaling approach is to 
perform repeated simulations to generate a probability distribution for the transition matrix from one 
state to another, similar to the approach performed by Acevedo et al. (2001). This approach neglects 
details of the answer of the vegetation to the short term precipitation regime and generalizes the 
behaviour of the system only at a specific time scale. This approach assumes that specific states of 
vegetation are discernible. For the F. pallescens steppe (Bertiller and Defosse 1993, Bertiller et al. 
1998, Tab. II.1) exists a classification according to the state and transition concept, but the 
classification includes considerably overlaps between states, which complicates a separation of distinct 
degradation states.  

Upscaling by extrapolation by expected value. — An upscaling approach which retains more 
detail of the small-scale model is to produce a “model of the model” which predicts the average 
behaviour of the small-scale model by integrating the outcome of the relevant small-scale spatial 
dynamics of the small-scale simulation model. This approach can be called ’Explicit upscaling by 
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extrapolation by expected value’ (Bugmann et al. 2000) and tries to derive the joint frequency 
distributions of the variables describing landscape heterogeneity. The complete small-scale simulation 
model would be applied for all possible combinations of factors and parameter ranges necessary to 
cover both the small-scale heterogeneities and the heterogeneity imposed by the landscape scale 
model. For example, grazing intensity higher than the average stocking rate, which may temporally 
arise due to an actual higher preference of the simulated patch, need to be included. This approach 
requires a high simulation effort because it uses the whole 30-paraemter model. Bugmann et al. (2000) 
argue that this approach is only feasible if it would be possible to obtain an analytical expression for 
the joint frequency distribution. Since the F. pallescens simulation model reacts in a non-linear way to 
the grazing gradient and since discontinuous structural changes may occur, an analytical approach 
would be difficult for the F. pallescens model. To the knowledge of Bugmann et al. (2000) and mine, 
this approach has not been successfully implemented, at least for an ecosystem with focus on 
vegetation.  

Upscaling by analytical integration. — A similar approach to the extrapolation with expected 
value would be the ‘explicit upscaling by extrapolation with analytical integration’ (Bugmann et al. 
2000). Bugmann et al. (2000) argue that this method is not feasible in most cases because closed 
analytical expressions cannot be found for many ecological models, including all gap models where 
the state transition functions are based on an algorithmic approach rather than on differential or 
difference equations. But there exists at least one example where analytical integration was performed 
successfully. Moorcroft et al. (2001) upscaled an individual based forest gap model and derived a set 
of partial difference equations (PDEs), which represents the upscaled model. They included important 
smaller-scale spatial relations, which are missing in “mean-field” approximation, by additionally 
including the second-moment equations which describe spatial effects in a first approximation. They 
used some simplifying assumptions for the gap-dynamics of one patch and derived a model with a 
reduced number of terms, which essentially contribute to the upscaled dynamics. However, this 
approach has at least two major problems. First, Moorcroft et al. (2001) did not show that the upscaled 
model is indeed simpler than the original individual based gap model. Second, the mathematical 
derivation of the upscaled model is complex and incommunicable to most field ecologist and 
biologists concerned with applied questions.  

Explicit upscaling by model abstraction and extrapolation by expected value. — As an 
alternative to approaches discussed above, I suggest an approach which combines elements of the 
different approaches. My interest is in deriving an upscaled model which is able to predict structural 
changes in more detail than possible with the state and transition concept. My idea is to first simplify 
the original small-scale model based on the results of my sensitivity analysis, retaining only those 
parameters and processes which are essential for generating the small-scale model dynamics and then 
to statistically summarize the simplified model. This combined approach is in accordance with Levin 
(1992), who asked to include only necessary details into a large scale model and it integrates elements 
of the approaches used by Bugmann et al. (2000) and Moorcroft et al. (2001). In practice, the 
upscaling will be done by numerical simulation of the simplified model using the method of the 
extrapolation with an expected value, as proposed by Bugmann et al. (2000), rather than by generating 
an analytical solution as proposed by Moorcroft et al. (2001). The difference to the approach of 
Bugmann et al. (2000) is that a model with reduced complexity is used (instead of the full model) 
which will (hopefully) reduce the former complexity of the initial model. This approach could be 
called ‘Explicit upscaling by model abstraction and extrapolation by expected value’. 
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6.3 DISCUSSION OF THE THESIS’ RESULTS AS A BASIS FOR UPSCALING 
Potential of the Festuca model processes to be abstracted/upscaled.. — I now will evaluate 

the processes and parameters of the F. pallescens model based on the results obtained in my thesis and 
ask if they need to be integrated into an upscaled model. The important task here is to identify the 
essential ingredients and the necessary detail of the small-scale model which should be included into 
an upscaled model (Levin 1992). The discussion follows systematically the order of implemented 
processes (Fig. 2.3). 

Initialisation. — The autocorrelation analysis showed (Fig. 5.14) that the initial distribution 
has an important impact on the dynamic of the steppe. The most simple approach would be to define a 
vector which includes only mean values, e.g. for tussock density, mean tussock vitality, seedlings 
survival memory and e.g. for saplings survival memory. A more sophisticated approach would be to 
use for each state variable would a specific distribution, e.g. a normal distribution of vitality values. 
Another possibility is to start with an artificial initial condition and simulate the model over longer 
time spans until an equilibrium is reached and use simulated “snapshots” which correspond to defined 
conditions. 

Biomass carry over. — This ‘process’ is a technical one which memories the remaining 
biomass from the past simulated time step and thus is not relevant here. 

Global water input. — As precipitation is one of the essential external drivers contributing to 
heterogeneity and variability it is essentially to include it to the upscaled model. The spatial 
distribution of precipitation might be highly heterogeneous on a larger scale. As a consequence, the 
dynamics of the different patches may become desynchronised and thus differentially attractive for 
livestock. As global water input was homogeneous for the small-scale model, no change would be 
necessary here.  

Water redistribution. — An important question for the upscaling procedure is if the effect of 
local heterogeneities of water redistribution needs to be integrated into a upscaled model. Otherwise 
one could use a much simpler non-spatial model of Festuca dynamics, which would probably be 
similar to the classical models of population dynamics (Wissel 1989). To remember, the local water 
redistribution includes a trade-off. On the one hand, a high use of lateral plant available soil water 
helps to compensate grazing effects due to higher productivity of adult tussocks (Fig. 4.6), but on the 
other hand it leads to asymmetric competition (Weiner 1990) and to endogenous limitation of 
recruitment (see Colonization, eqn. I.23-I.25). For example, bare patches may create non-linear 
feedbacks and create localized drought conditions even if global rainfall is sufficient. Such small-scale 
effects would be difficult to describe with classical “mean field” approximation.  

Indeed, the results of the sensitivity analysis (see Tab. 4.6-4.7, Fig. 4.4-4.6) highlighted the 
potential strong overall positive effect of lateral water uptake on F. pallescens. A detailed analysis of 
the effect of water redistribution on recruitment inhibition is still lacking. But, as it is empirically 
indicated (Defossé et al 1997a, b), I argue that it would be necessary to include this small-scale effect 
into the upscaled model. Here one should have in mind, that the empirically estimation of the 
parameter lacks to date. Possibly it might be useful o separate both effects from each other – the 
positive effect on adult tussocks, and the negative on recruitment – and to integrate both separately 
into the upscaled model. This task is interesting enough to devote one complete chapter or publication 
to this topic. An important challenge is the question how to upscale the small-scale water 
redistribution. One feasible option seems to be, to generate the frequency distributions under an 
exemplary range of initial conditions, including tussock vitality distribution, eventually including 
extreme scenarios of spatial configurations of the tussocks, and the whole range of precipitation 
scenarios. That implies that all possible initial distributions which might occur under the complete 
scenario-parameter space (precipitation x grazing intensity x initial distribution x (grazing duration) x 
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parameter uncertainty) are included into this simulation. Thus, a certain discretisation of the central 
state variable, the F. pallescens vegetation structure (here tussock density) is necessary.  

Water induced vitality change. — The state variable 'vitality of a tussock' (vit) strongly 
influenced the ANPP of a tussock (mean prod see Tab. 4.8). The four parameters describing the water 
related vitality dynamics were of different importance, depending on grazing (see Tab. 4.6-4.7) but 
one of them was the most important one. For an upscaled model, the simplest approach would be to 
use one parameter for increasing, and one for decreasing vitality, possible using the same parameter 
and reversing its sign.  

Plant production. — Only the basic parameter for productivity (PG.1/ProdV1) resulted to be 
essential for absolute maximum productivity, and the second parameter for plant productivity might be 
neglected. Additionally the non-linear Michaelis-Menten equation could be reduced to a linear 
relationship, but without abstracting one parameter and this is feasible only, if the temporal resolution 
will be kept. 

Defoliation. — Within the defoliation process the stocking rate is the most importnat 
parameter, and has to be included into an upscaled model. Additionally, as a theoretical interesting 
option, it would be possible to include the grazing shape parameter Gshape/GR.4, which modifies the 
grazing acceptance of a tussock. The analysis of the grazing model for upscaling would be mainly 
related to the probability of grazing acceptance (eqn. I.16). An alternative approach would be to 
estimate the dead biomass fraction (dfrac) as a non spatial average value out of dead and living 
biomass. However, such an approach might miss just the objective for which the simulation model 
was developed and would work only for the non-selective forage selection scenario. A better options 
would be to calculate the average of the dead biomass fraction dfrac out of an biomass frequency 
distribution derived from the multiplication of the productivity parameter with a generated vitality 
frequency distribution. But this approach would also fail because it cannot memorize the grazing 
history. Thus, I assume that it is necessary to derive a frequency distributions for the dead biomass 
fraction (dfrac) under different conditions. As this approach requires the covering all possible 
scenarios of initial conditions x grazing intensities x precipitations x prior dfrac distribution this could 
be a challenging task also. 

Colonization. — The results of Chapter 5 showed that recruitment comprises several aspects, 
which make scaling to the possibly most complicated process. Within this process the interaction 
between grazing and climate is most important and includes a highly relevant memory effect. This 
memory effect is a result from tussock recruitment which lasts several years over with one seedling 
and two sapling stages. Sensitivity analysis showed that the most important parameter was the water 
related germination parameter ColWS0/CO.1. Thus, a simplifying model might be including a 
submodel for saplings survival, which includes mainly the germination parameter plus the effect of 
precipitation and grazing and an exponential decay of saplings survival, triggered by seedlings 
survival and the time lag to tussock recruitment. Such an approach should be tested, if it captures the 
essential characteristics of the interaction between grazing and precipitation, as it was analysed within 
Chapter 5. Otherwise, an explicit scaling of each seedling and sapling stage might be necessary, which 
would complicate the scaling approach considerably.  

Grazing induced vitality change. — As this sub-process includes only one free parameter, the 
others are related to it relatively and apply to different seasonal grazing scenarios, this parameter 
should be left included, as it is reasonable to assume a sub-lethal negative effect of grazing on 
tussocks. 

Senescence and littering. — Both parameters involved in senescence and littering proved to be 
essential antagonists to stocking rate. Therefore they have to be included into an upscaled model. 
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Since they do not contain direct small-scale variability they might be translated directly into the new 
model. Similar to the local water redistribution, this parameters are not yet estimated in the field. 

Mortality. — Mortality is obviously an essential process, and proved also to interact with the 
precipitation time series, but less with grazing. Similarly to vitality dynamics, one mortality parameter 
(Mort.W1/ MortW1) was the most sensitive one (Tab. 4.6 and Tab. III.4). This offers another option 
for simplification. The two grazing related mortality parameters were also less important, due to the 
inherent dynamics of the model system, which was unknown before starting this analysis. 

Conclusion. — As the detailed analysis of the model processes show, there are several options 
for model simplification and upscaling. To find out which of these approaches are most appropriate to 
upscale the small-scale grazing process to patch level vegetation dynamics, accurately averaged under 
grazing and stochastic climate, is a highly interesting challenge and task. Such an upscaled model 
could be integrated into a larger scale model, which incorporates drivers and relevant factors at the 
larger scale (heterogeneous precipitation regime, herbivore large scale site selection, states of 
neighbouring patches, and long distance dispersal). It would also provide a highly interesting tool for 
analysing and learning about grazing impacts on a larger scale under stochastic precipitation. The 
presented simulation model, the model calibration and sensitivity analysis, as well as the gained 
understanding about the interaction and memory effects of grazing and precipitation, were necessary 
steps and will facilitate an upscaling for the presented ecosystem. Thus, the presented thesis, despite 
the numerous single interesting and novel results, contributes to an understanding of the complex and 
challenging problem of crossing different scales, which are regarded as the some of the most important 
challenges in ecology (Levin 1992). 
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7 SUMMARY AND CONCLUSION 
7.1 SUMMARY 

The presented PhD thesis presents a simulation model, which was developed to gain an 
improved understanding for the causes of desertification and degradation of vegetation. Despite 
degradation of drylands has occurred on a global scale, and the problem is discussed since decades, the 
details of the degradation process are poorly understood. It is generally accepted, that grazing and 
highly variable rainfall interact together and may lead to discontinuous shifts in vegetation. But highly 
variable rainfall masks the effect of grazing and makes it difficult to separate the natural from the man-
induced effects which lead to degradation of vegetation. 

The general aim of this thesis is to obtain an understanding of the small-scale processes 
involved in degradation, especially the interaction between grazing and highly variable rainfall. I used 
an individual based, spatially explicit simulation model to separate the natural from the anthropogenic 
effects. The gained new understanding of the degradation process may lead to a further development 
of long term sustainable management strategies. 

Individual and rule based, spatially explicit simulation models are ideal tools to investigate 
such a problem, because they are able to bridge several time and spatial scales. Further, they are able 
to integrate ‘soft knowledge’, for example expert knowledge about the system, as rules into the 
simulation model. 

As study system I used the cold temperate, semi-arid Festuca pallescens grass steppe in North 
West Patagonia, Argentina. The Festuca steppe is suitable to investigate degradation because detailed 
empirical knowledge about the system was available, a biologically plausible grazing model could be 
developed, and the system consists mainly out of the eudominant species F. pallescens, which 
provides at least two third of the vegetation cover and up to 90% of the aerial biomass. Thus, this 
ecosystem can be abstracted in a first approximation to a one species system. 

The general philosophy of the model – integrating both essential drivers, grazing and 
precipitation with the main demographic processes of F. pallescens on the level of individual plants – 
requires the implementation of a medium complex model with 30 parameters, which could not be 
estimated in the field or in the literature.  

The implementation of such a complex simulation model requires considerable efforts of 
model calibration which was done by comparison of the output of the simulation with the available 
field data. Thus, this PhD thesis has additionally a methodically focus, which is represented within the 
investigated questions: 

• What type of vegetation dynamics shows the Festuca steppe in terms of equilibrium vs. non-
equilibrium dynamics? (Chapter 2) 

• How well do the results of the standard parameterisation, estimated by the field ecologists, 
coincide with the available field data? (Chapter 3) 

• Can we validate some basic assumptions of the simulation model with available field data? 
(Chapter 3) 

• Can we calibrate a medium complex simulation model with 30 uncertain parameters despite of 
a strongly limited amount of field data? (Chapter 4) 

• Which biological processes or parameters have a large impact on the results of the calibrated 
simulation model, and determine the remaining biological uncertainty? (Chapter 4) 

• Does the change in vegetation structure show threshold behaviour against a grazing gradient, 
and is that threshold affected by biological and climatic uncertainty? (Chapter 5) 
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• Is it possible to derive management options out of the analysis of the relation between 
vegetation structure change and the grazing gradient, which may lead to long term sustainable 
dynamics of F. pallescens? (Chapter 5) 

• Can we detect memory effects or time lags which affects the vegetation dynamics of F. 
pallescens ? (Chapter 5) 

• How do grazing and highly variable rainfall interact, how do they affect vegetation, and which 
are the relative contributions of both drivers to the specific demographic events of F. 
pallescens and to the total change in the temporal change of vegetation structure? (Chapter 5) 

The main results of the presented PhD thesis are: 
The investigated system shows an event-driven behaviour, which is demonstrated with the 

demographic behaviour of F. pallescens. Grazing modifies the event-driven behaviour both gradually 
and qualitatively (Chapter 2). The medium complex simulation model was calibrated successfully, 
applying and further developing the indirect pattern oriented calibration method, conceptualised by 
Wiegand et al. (2003), despite the low amount of available field data. (Chapter 4) 

The results of the sensitivity analysis highlight that the senescence rate, the littering rate and 
the local soil water redistribution are important processes within the investigated system (Chapter 4). 
The change in vegetation structure shows threshold behaviour against the grazing gradient (Chapter 5). 
I demonstrated that the stocking rate at which vegetation starts to decrease in the model depends on 
remaining biological and climatic uncertainty (Chapter 5). Based on the results characterising the long 
term behaviour of vegetation structure a criterion for a long term sustainable grazing management was 
proposed, which contains a risk level of degradation for each grazing level (Chapter 5). 

Further the modelled system shows memory effects involving its own history and for 
approximately five years that of precipitation history. Finally I demonstrated that a separation of 
natural and anthropogenic effects is possible. I found that that the interaction of grazing and stochastic 
rainfall leads to a lack of regeneration during a series of favourable years of precipitation, and not, as 
conventionally assumed, that higher mortality during drought leads to degradation of the vegetation. 
Finally the results of this PhD thesis are discussed with respect to scaling issues (Chapter 6). 

7.2 CONCLUSION 
The presented PhD-thesis analyses both short-term and long-term effects of grazing on a semi-

arid Festuca pallescens grass steppe over a range of stocking rates and considers the remaining 
biological and climatic uncertainty. The presented analyses of the results demonstrated the non-linear 
behaviour of vegetation structure changes due to grazing, they provide new insights and understanding 
of the interaction of grazing with stochastic rainfall in semi-arid ecosystems, and they provide a 
criterion for a long term sustainable grazing management considering the remaining uncertainties. 
Furthermore the presented indirect multi-criterial pattern oriented calibration method helps to bridge 
the gap between theoretical and empirical ecology as it enables us to gain strong confidence into 
simulation models even if we dispose only over scarce evidence from empirics. This PhD-thesis 
enhances our understanding of the complex dynamics of semi-arid systems significantly and improves 
methods for comparison of results of simulation models with field data. 

Both aspects lead to a better understanding of ecosystems, which are endangered by land use 
and strongly affected by stochastic environmental processes. This helps to understand and to manage 
better such ecosystems with inherent uncertainties over several spatial and temporal scales, and to 
bridge the gaps between theory and empirics. The methodological aspect of this PhD-thesis is of 
general interest for simulation models facing a high degree of uncertainty because the presented 
method allows tying the model closely to the data, i.e. ensuring a biologically reasonable behaviour 
and parameter values. 
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DEUTSCHE ZUSAMMENFASSUNG 

 

DEUTSCHE ZUSAMMENFASSUNG 
Die vorliegende Doktorarbeit untersucht mit Hilfe eines Simulationsmodells für ein konkretes System 

die Ursachen für das globale Problem der Degradation und Desertifikation von semiariden und ariden 
Ökosystem unter dem Einfluss menschlicher Landnutzung und Übernutzung im Zusammenspiel mit komplexen 
natürlichen Einflussfaktoren (Schlesinger 1990). Semiaride und aride Ökosysteme sind häufig unter dem 
Einfluss räumlich und/oder zeitlich zufällig stark schwankenden Umwelteinflüssen vor allem des Klimas 
unterworfen, wie zum Beispiel stark schwankenden jährlichen Niederschlagsmengen. Solche stochastischen 
Effekte erschweren es den Einfluss anthropogener Landnutzung sowohl kurz- als auch langfristig von den 
Effekten stark schwankender natürlicher Umweltfaktoren zu trennen (Pickup 1996).  

Das Hauptziel dieser Doktorarbeit ist es, an diesem Problem anzusetzen und mittels eines 
individuenbasierten, räumlich expliziten regelbasierten Simulationsmodells die anthropogenen und natürlichen 
Einflussfaktoren auf die Vegetation voneinander zu trennen und somit ein tieferes Verständnis der Interaktion 
zwischen menschlich verursachten und natürlichen Einflussfaktoren zu gewinnen. Dieses neu gewonnene 
Verständnis soll dazu beitragen, langfristig nachhaltige Bewirtschaftungsstrategien in semiariden Weidegebieten 
zu entwickeln 

Räumlich explizite, individuenbasierte Simulationsmodelle sind dafür die ideale 
Untersuchungsmethode, da hiermit sowohl die räumliche als auch die zeitlich langfristige Entwicklung des 
Ökosystems untersucht werden kann, wobei sämtliches Wissen über das Ökosystem – auch so genanntes‚ 
weiches Wissen’, wie Expertenwissen – mit Hilfe von Regeln im Simulationsmodell Verwendung findet. 

Das untersuchte Ökosystem ist die kalt temperierte semiaride Festuca pallescens Grassteppe (Golluscio 
1982) in Nord-West Patagonien, Argentinien. Sie stellt ein ideales Untersuchungsobjekt dar, da bereits 
umfangreiche Kenntnisse über das System vorhanden waren, ein biologisch plausibles Beweidungsmodell 
formuliert werden konnte und die eudominante Art Festuca pallescens (St. Yves) Parodi ca. 2/3 der 
Pflanzendecke und bis zu 90% der oberirdischen Biomasse produziert, so dass das Modell in erster Näherung als 
ein Ein-Art System modelliert werden kann. 

Das Grundkonzept dieser Arbeit, nämlich den Einfluss von Beweidung und stochastischem 
Niederschlag auf Individuenebene zu simulieren, erfordert die Implementierung eines komplexen Modells mit 30 
freien, nicht im Feld oder aus der Literatur schätzbaren Parametern. Das Modell ist derart komplex, da jeder 
demographische Prozess explizit modelliert wird und sowohl Parameter enthält, die den Einfluss des 
schwankenden Niederschlags enthalten, als auch Parameter, die den Beweidungseinfluss repräsentieren Diese 
Komplexität stellt hohe methodische Anforderungen an die Kalibrierung des Modells mittels der verfügbarer 
Daten aus dem Freiland. Aus diesem Grund hat diese Arbeit über die inhaltliche Ausrichtung hinaus einen 
starken methodischen Schwerpunkt, der sich in den untersuchten Fragen ausdrückt: 

• Welche Art der Vegetationsdynamik im Sinne einer Gleichgewichts- oder einer ereignisgesteuerten 
Vegetationsdynamik zeigt das entwickelte Simulationsmodell und damit das hiermit untersuchte 
Ökosystem? (Kapitel 2) 

• Wie gut stimmen die simulierten Ergebnisse des Simulationsmodells bei Nutzung des durch Experten 
geschätzten Parametersatzes mit den verfügbaren Felddaten überein? 

• Können einige zentrale Annahmen des Simulationsmodells durch Daten, die im Feld genommen 
wurden, unterstützt werden? (beide Kapitel 3) 

• Kann ein komplexes Simulationsmodell mit 30 freien Parametern mit Hilfe der indirekten 
multivariablen musterorientierten Modellierung anhand einer geringen Menge verfügbarer Felddaten so 
kalibriert werden, dass die kalibrierten Parametersätze ein biologisch plausibles Verhalten zeigen und 
somit ein hohes Vertrauen in das Simulationsmodell gesetzt werden kann? 



  

 

• Welche biologischen Prozesse und/oder Parameter haben innerhalb der kalibrierten Parametersätze 
einen hohen Einfluss auf die Ergebnisse des Simulationsmodells und können damit als besonders 
bedeutsam bewertet werden? (beide Kapitel 4) 

• Zeigt Beweidung unter zufällig schwankendem Niederschlag ein Schwellenwertverhalten bezüglich des 
Verlaufs der Vegetationsstruktur und wird dieser Schwellenwert durch die biologische oder durch die 
klimatische Unsicherheit beeinflusst? 

• Können aus der Analyse des Schwellenwertverhaltens Managementempfehlungen abgeleitet werden, 
die zu langfristig nachhaltiger Beweidung führen könnten? 

• Spielen Gedächtniseffekte eine Rolle für die zeitliche Entwicklung der Vegetationsstruktur? 
• Wie wirken Beweidung und die jährlich zufällig schwankenden Niederschläge zusammen auf die 

Vegetation ein und welche relativen Effekte haben beide Einflussfaktoren jeweils auf die 
demographischen Ereignisse und in ihrer Summe auf die zeitliche Änderung der Vegetationsstruktur? 
(alle Kapitel 5) 
Die wichtigsten Ergebnisse dieser Doktorarbeit sind: Das untersuchte System zeigt in seiner 

Demographie ein von den schwankenden Niederschlägen bestimmtes ereignisgesteuertes Verhalten. Beweidung 
modifiziert dieses Verhalten sowohl graduell als auch qualitativ (Kap.2). Anhand des Vergleichs mit Felddaten 
konnte gezeigt werden, dass sowohl der von Experten geschätzte Parametersatz ein biologisch plausibles 
Verhalten zeigt als auch die zentralen Modellannahmen (Kap.3). Das von Wiegand et al. (2003, 2004a) 
entwickelte und von mir angewandte und weiterentwickelte Verfahren der indirekten multikriteriellen 
musterorientierten Modellkalibrierung konnte erfolgreich auf ein komplexes Modell mit 30 freien Parametern 
bei schwacher Datenlage übertragen werden.  

Die durchgeführte Elastizitätsanalyse zeigte, dass die Seneszenz- und die Dekompositionsrate sowie die 
lokale nachbarschaftliche Bodenwasserverteilung wichtige Teilprozesse innerhalb des Systems darstellen 
(Kapitel 4).  

Es konnte gezeigt werden, dass das Modellsystem ein Schwellenwertverhalten gegenüber dem 
Beweidungsgradienten aufweist, und dass der Beginn der negativen Veränderung der Vegetationsstruktur 
entscheidend von der klimatischen und der verbleibenden biologischen Unsicherheit abhängt. Aus der 
integrierten Analyse des Schwellenwertverhaltens in Kombination mit der Integration der beiden Unsicherheiten 
wurde ein Kriterium für die langfristig nachhaltige Bewirtschaftung eines semiariden Weidesystems bei 
definiertem Risikolevel und stochastisch schwankenden jährlichen Niederschlägen entwickelt.  

Das Modellsystem zeigt signifikante Gedächtniseffekte gegenüber seinem früheren Zustand und seiner 
Niederschlagsgeschichte hinsichtlich bis hin zu fünf Jahre zurückliegender Regenereignissen. Des Weiteren 
konnte gezeigt werden, dass Beweidung diese Gedächtniseffekte qualitativ verändert, namentlich indem das 
Gedächtnis gegenüber seinem früheren Zustand erhöht wird und sich damit von der Niederschlagsgeschichte 
abkoppelt. Schließlich konnte gezeigt werden, dass die Interaktion zwischen Beweidung und schwankenden 
Niederschlägen zu einem Ausbleiben der Regeneration des Systems während einer Serie niederschlagsreicher 
Jahre führt und dies die Hauptursache für die Degradation des Systems ist und nicht wie allgemein angenommen, 
die Beweidung während einer Trockenperiode. 

Zusammenfassend lässt sich feststellen, dass die vorliegende Arbeit sowohl methodisch 
einen entscheidenden Baustein in der Zusammenführung von Theorie und Empirie in der Ökologie 
beiträgt, da sie zeigen konnte, dass selbst komplexe Modelle bei schlechter Datenlage so gut kalibriert 
werden können, dass sie als biologisch vertrauenswürdig angesehen werden können. Zweitens trägt 
diese Arbeit entscheidend zur Verbesserung des Verständnisses der komplexen Zusammenhänge in 
semiariden Gebieten bei, die durch starke Zufallsschwankungen in den natürlichen 
Umweltbedingungen geprägt werden. 
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Populärwissenschaftliche Zusammenfassung 
Langfristige Auswirkungen von Beweidung auf  Vegetation unter stochastisch schwankendem 

Klima: Eine Skalenübergreifende Simulationsstudie  
 

Sandro Pütz 
 
Desertifikation und Landdegradation – die langfristige Zerstörung der fruchtbaren Vegetation durch 
natürliche oder vom Menschen verursachte Prozesse – der empfindlichen halbtrockenen und trockenen 
Ökosystemen gehören zu den globalen und größten ökologischen Bedrohungen unserer Zeit. Etwa ein 
Drittel der kontinentalen Erdoberfläche und ein Fünftel der Erdbevölkerung ist von der Degradation 
dieser Ökosysteme betroffen. Diese Systeme sind in der Regel durch jährlich stark schwankende 
Niederschläge charakterisiert, die natürliche Trockenheiten verursachen können und es verhindern, das 
negative Effekte z.B. die durch menschliche Landnutzung sowohl kurz- als auch langfristig erkannt 
werden können. Es gilt als wissenschaftlich anerkannt, dass die menschliche Landnutzung, wie zum 
Beispiel extensive Beweidung durch Schafe in Patagonien, mit der zufällig schwankenden 
Niederschlagsgeschichte zusammenwirkt. Wie die Prozesse im Einzelnen aufeinander einwirken ist 
weitgehend unbekannt und es ist bislang äußerst schwierig die relativen Beiträge der zur 
Wüstenbildung führenden natürlichen oder menschlichen Faktoren zu bestimmen. 
 
Ziel der vorliegenden Arbeit ist es, mit Hilfe eines individuenbasierten gitterbasierten 
Simulationsmodells ein Verständnis für die Zusammenhänge zu gewinnen, wie menschliche 
Landnutzung und zufällig schwankende Umweltfaktoren zusammenwirken und damit Wüstenbildung 
und Degradation von Vegetation begünstigen. Ein Simulationsmodell ist ein idealer Ansatzpunkt für 
das vorliegende Problem, da hiermit verschiedene räumliche und zeitliche Skalen überbrückt werden 
können, was mit empirischer Arbeit allein nur unter äußerst großem Aufwand zu bewerkstelligen ist. 
Des weiteren können verschiedene Beweidungsmodelle oder Hypothesen über die Zusammenhänge 
innerhalb des Ökosystems getestet werden. Als Modellgrundlage diente die semiaride Festuca 
pallescens Grassteppe, im Nordwesten Patagoniens in Argentinien gelegen, für die bereits zahlreiche 
Untersuchungen, Felddaten und eine gut begründetes Beweidungsmodell vorlagen. 
 
Das Interessante dieses Modellansatzes ergibt sich daraus, dass beide Faktoren, Beweidung und 
Niederschlag, auf jeden Grashorst einzeln in Abhängigkeit seines Zustandes und seiner Geschichte 
ein- und auf die einzelnen biologischen Prozesse wie Etablierung, Wachstum oder Tod direkt 
einwirken und somit die relativen Beiträge beider Faktoren auf die Vegetationsdynamik rekonstruiert 
werden können. Dieser Ansatz erforderte die Entwicklung eines komplexen Simulationsmodells, was 
außergewöhnliche methodische Anforderungen an den Vergleich des Modells mit den Felddaten 
(Kalibrierung) stellte. Durch die Weiterentwicklung der von Wiegand et al. 2003) entwickelten 
Methode der indirekten musterorientierten Modellkalibrierung konnte das Modell trotz einer geringen 
Datenlage, wie es in der Ökologie sehr häufig der Fall ist erfolgreich kalibriert werden.  
 
Wichtige Ergebnisse des Modells sind die Erkenntnis, dass die Vegetation nicht linear auf den 
Beweidungsgradienten reagiert, wobei sowohl die verbleibende biologische Unsicherheit als auch die 
Unsicherheit in der Niederschlagsgeschichte einen hohen Einfluss auf den Effekt der Beweidung 
haben. Weiterhin konnte das Zusammenspiel von zufälliger Niederschlagsabfolge und Beweidung und 
seine Wirkung auf die Vegetationsstruktur aufgeklärt werden und Kriterien für eine langfristig 
nachhaltige Bewirtschaftung mit definiertem Risiko entwickelt werden. 
 
Die vorliegende Arbeit bringt wesentliche Fortschritte für das Verständnis der ökologischen 
Zusammenhänge für halbtrockene Ökosysteme wie Steppen, die durch Landnutzung und jährlich 
zufällig schwankende Niederschläge gekennzeichnet sind. Des Weiteren zeigt sie, dass selbst 
komplexe Modell bei spärlicher Datenlage erfolgreich kalibriert werden können, womit diese Arbeit 
eine wichtige Brücke zwischen empirischer und theoretischer Ökologie schlägt. 
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APPENDIX I 
 
I.I Detailed Model description  

Here I present the detailed description of the rule set for the F. pallescens simulation model. It 
describes how precipitation and grazing affect the dynamics of F. pallescens. The general approach 
used to model the effect of precipitation or grazing on biological processes is the inclusion of 
thresholds, which are combined with probabilities of occurrence. This approach was used for every 
process, where detailed knowledge is lacking on how one driver affects the process. If certain 
hypothesis exists about the relation between F. pallescens and one of both drivers, a correspondent 
rule was used and implemented. The processes and equations follow the order given in Fig. 2.2 and 
Fig. 2.3.  

I.1.1 Initialisation 

A default initial distribution for F. pallescens was used for all simulations presented in this thesis 
(Tab. I.1). I assumed a hypothesized natural Festuca steppe with approx. 58% cover of Festuca 
tussocks and approx. 80% mean dead biomass fraction as the most important characteristic of the 
Festuca steppe. The initial distribution is orientated on field data for exclosure paddocks at the 
Estancia Media Luna in very good compositional state, which are used in this thesis for model 
calibration (see Chapter 3 and Chapter 4). In ungrazed uplands total vegetation cover can reach more 
than 70% (Coronato and Bertiller 1996). Perennial grasses reach 90% of vegetation cover in ungrazed 
uplands (Bertiller and Aloia 1997), and F. pallescens may reach up to 90% of the vegetation cover 
(Defosse et al. 1990) and up to 90% of the aerial biomass (Defossé et al. 1997a). We ignore the natural 
state of the F. pallescens steppe, due to the overall grazing in Patagonia since decades. So the data for 
the oldest exclosure for the F. pallescens seem to be the best reference. The initial distribution was 
generated with the simulation model itself by starting the simulation model with a random distribution 
of tussocks, running it for 20 time steps and saving the distribution if tussock density ranged between 
6.0 and 7.0 (approx. between 54% and 63% Festuca cover) and cover of dead tussocks was between 
3.5 and 8%. 
 
Tab. I.1: Values for selected variables of the F. pallescens-model for default initial conditions (t=1) at 

population level. 
Variables are defined in Tab. 2.2. 

 
 

Variable Abb. Unit Value
Cover live tussocks cov F % 58.2
Tussock density Td S n / m² 6.5
Cover dead tussocks cov D % 8.1
Cover empty cells cov E % 33.7
Mean vitality of tussocks mean vit 2.46
ANPP per grid (t  = 1) ANPP kg DM / ha 930
ANPP per tussock (t  = 1) mean prod g DM / tussock 14.4

Precipitation use efficiency (t  = 1) mean PUE - 0.38

Initial dead biomass db kg DM / ha 4142
Initial dead biomass fraction dfrac % 78.0
initial dead biomass fraction CV dfrac CV % 10.8
Initial % primary forage PF % 30.0
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Tab. I.2: Additional variables of the Festuca pallescens simulation model used within the Rule-Set.  
Variables are listed, which are used only within the detailed Rule-Set in Appendix I. 

 
State variable Explanation Unit Detailed explanation 

Tussock level 
b Total F. pallescens 

tussock biomass 
gb / cell area . 

year  
 (g DM / 0.09 

m² y) 

Total biomass of a live tussock (gbP + db) 

dfracS Seasonal altered 
dfrac 

- Seasonal weighted tussock structure dfrac due to seasonal altered herbivore selectivity 

di Realized local 
defoliation severity 

- Realized relative local defoliation severity is realized through a random variable 

ga Grazing acceptance 
decision 

- grazing acceptance decision for actual tussock 

gprob, 
gprobGR.5 

Probability of a 
tussock to be 
accepted for grazing  

- depends on M, dfraci, and season (GR.5); gprobGR.5∈[0, 1]; At default for GR.5 = 1.0  
continuous grazing (a) it depends only on M and dfraci. 

pC Colonization 
probability 

- Conditional colonization probability from cs = 0 to seedling states Si and finally to a fully 
grown tussock (cs  = 2) 

pE {cs = 0|cs =1} Transition probability to 
empty cell from dead 
tussock 

- Transition probability of a cell with state cs = 1 (dead tussock) to cs = 0 (bare soil cell) 
 

pM{vit = 0|vit = 
1}  

Probability of 
tussock mortality 

- Conditional mortality probability of a tussock; a tussock may die only if it has vit = 1 

pVC{vit = i+ 1 
or vit i -1|vit 
 = i} 

vitality change of 
tussock 

- Probability of vitality change of tussock may depend on soil water w or defoliation severity 
ds 
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Tab. I.2 continued                                                                            Tussock level 
w'(x, y)  Plant available soil 

water after water 
redistribution 

H²O / area 
 (mm / cm²) 

Local plant available soil water w for focus cell after first step of local water redistribution 
step1/ step 2 

wG soil water before 
redistribution 

H²O / area 
(mm / cm²) 

Soil water before local water redistribution, spatially homogeneous; contains a fraction 
defined by WI.1 from annual precipitation 

Patch / Landscape level 
Bm Green consumable 

biomass from all 
species 

kg / ha Green biomass including F. pallescens and / or green biomass from other species  

CVdgC cv of simulated 
degree of 
consumption 

- Cv of Mean relative consumption degree for patch (grid) and time step t 
 

DB Landscape level 
dead biomass 

Kg DM / ha Landscape level of dead biomass (live tussocks only) 

dgC 
 

Simulated degree of 
consumption 

- Mean relative consumption degree for the whole grid (patch) and time step t 

PF Primary forage bm / area 
(kg DM / ha) 

Forage provided by other species, determined in relation to F. pallescens 

R Residual Forage ∑ gb P / area  
(g DM / 1500 

m² t) 

Total residual forage after grazing for total grid 

RS Precipitation, 
simulated 

H²O / area 
 (mm / cm²) 

Spatially homogeneous annual precipitation 

TF Total available 
forage 

bm / area 
(kg DM / ha) 

Total available Forage, including other species, which are consumed with higher priority 
than Festuca pallescens 
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I.1.2 Biomass carry over 
Carry over of resting green tussock biomass: 

gbCo(t) =  gbS(t-1)     , if cs = 2   (I.1) 
 
gbCo(t)  Residual green biomass of live tussock from time step t-1, which is carried over to actual time 

step t  
gbS(t-1)  Resting green biomass of live tussock for time step t-1 after senescence, 

 

I.1.3 Global Water input 

The first of the three steps of water dynamics, ‘Water input’ is modelled as global, equal precipitation 
input for each cell of the grid (compare Chapter 2.2.2). There is no carry-over of plant available soil 
water from one year to another. Precipitation is implemented after Biomass carry over (see Fig. 2.3). 
The chosen reference site was ‘Media Luna Ranch’, because the first exclosure data were provided 
from there. Statistical description of the available precipitation data are presented in Tab. I.3. The 
Media Luna time series consists out of 24 years. As this time series is not enough as a input time series 
for the model, we generated a 10.000 data point precipitation time series, transforming the 68-year 
data set from the Leleque Ranch which has similar characteristics as ‘Media Luna’. We transformed 
the Leleque data set to the mean and approximately to the CV of ‘Media Luna’ and generated the time 
series, using the transformed Leleque precipitation series as the first 68 data points, and then adding to 
them randomly drawn data points out of the first 68 data points (compare Chapter 2.2.2).  
 
Tab. I.3: Statistical characteristics of the available and generated precipitation time series. 

Given are Data from the Ranches Media Luna, Leleque and for the generated time series used as input 
for the simulation model.  

 Leleque Leleque 
partial 

Media Luna 
partial

Media Luna Generated 
time series 

No. of years 67 22 22 24 10.000 
Mean rainfall 459 481 385 385 375 
Std. dev. Rainfall 118 118 69 66 76 
Cv % 26 25 18 17 20 
Min. rainfall 173 292 267 267 211 
Max. rainfall 715 649 529 529 561 
Max. – min. rainfall 542 357 262 262 350 
First year 1931 1975 1975 1975 1931 
Last year 1998 1997 1997 1999 - 
Missing year 1991 1991 1991 1991 - 

 
Fig. I.1 A shows the default precipitation input used for the simulations in this thesis (time steps 1 to 
100). The probability of occurrence for a dry year (one standard deviation below mean annual 
precipitation MAP) is prob.dry = 0.12 and 0.17 for the original 68 data points and the first 100 time 
steps of the default precipitation scenario respectively. The probability for a humid year 
(prob.humid) = 0.18 for both data sets. Fig. I.1 B shows the accumulated frequencies for the first 150 
precipitation data points and for the threshold values for the nine parameters related to precipitation. 
This figure thus illustrates for a given precipitation how many parameters during this time step lie 
above or under their threshold and thus affect vegetation in one or the other direction, according to the 
rules. Thus, approx. 15% of the precipitation data during the first 150 time steps provide optimal 
conditions, because precipitation is higher than all nine parameter thresholds. Note that this figure 
holds only for the standard model parameterisation, because for each parameter variation (see 
  
 



I.I DETAILED MODEL DESCRIPTION  

 V

A 

 

B 

 
Fig. I.1: Default precipitation scenario and frequency distribution of precipitation related thresholds.  

A): Shown are the first 100 years of the transformed Leleque data set to the default ‘Media Luna-like’ 
precipitation scenario used for simulations. Precipitation outside one standard deviation (see lines) is 
assumed to represent dry or humid years respectively. B) shows the accumulated frequencies of annual 
precipitation events during the first 150 time steps of the default precipitation scenario (straight line) 
and the accumulated frequencies for the ‘decision points’ (default threshold values) for the nine 
precipitation parameters implemented into the model (dashed line). The distribution shows, e.g. if 
precipitation lies between 300 and 350 mm, six default values for those parameters lie above such a 
precipitation and thus will show no positive effect on vegetation and three default values for water 
related parameters lie below this precipitation (frequency = 0.33), so more negative effects of 
precipitation will result finally on vegetation. The lines indicate an approximate ecological status of the 
Festuca steppe according to the implementation into the simulation model (accumulated frequency for 
standard model parameterisation and default rain use efficiency).  

Chapters 4 and 5) the threshold accumulated frequency changes. Additionally this illustration only 
holds before local water redistribution. After local water redistribution plant available soil water is 
heterogeneous on a small scale, so patches may occur which are ‘ecologically dry’ and patches which 
might be ‘ecologically medium or even humid’. 
 

Global plant available soil water: 
wG = R . WI.1           (I.2) 
 
wG  Plant available soil water for one time step t [year] before local water redistribution 
R  global annual precipitation [mm] at time step t, 
WI.1 global parameter which defines the relative proportion of precipitation which will be plant 

available 
 

After global precipitation the local plant available soil water is determined. In a first step the 
parameter WI.1 = 0.57 (default value, WI.1 = rain use efficiency per tussock), it is calculated which 
fraction of precipitation is potentially left as plant available soil water. WI.1 summarizes water losses 
due to evaporation, deep percolation or runoff: 

I.1.4 Water redistribution 

Local water redistribution includes all spatial or neighbourhood effects implemented into this 
model. Hence neighbourhood effects are modelled through soil water status exclusively. Live tussocks 
gain plant available soil water by lateral influx from empty and dead tussock cells in the 
neighbourhood (Fig. I.2). This rule assumes lateral root spread, which can be expected especially for 
arid systems (Schenk and Jackson 2002), due to the often relative shallow infiltration of rainfall. Bare 
soil and dead tussock cells loose plant available soil water due to lateral efflux to live tussock cells in 
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the neighbourhood. Direct competition between neighbouring living tussocks is not modelled; they 
behave neutral to each other. 

A second algorithm increases water loss for so called ‘large bare patches’ (Fig. I.3). A large 
bare patch is a patch of bare soil cells, for which we assume higher water losses due to higher 
evaporation and/or runoff due to reduced water retention by the lack of vegetation. The higher loss of 
plant available soil water simulates indirectly the lack of available seeds in ‘interspaces’ or bare 
patches between Festuca tussocks (Bertiller and Coronato 1994). So the higher loss of plant available 
soil water is one hypothesis to explain the lack of reproduction of F. pallescens, as the reason for this 
findings are not yet clear (Bertiller 1996,  Bertiller and Aloia 1997). 

 
1) Local Water redistribution step 1: Water gain or loss respectively due to number of 
neighbouring live tussocks: 

 
 

1.N),( 1G WRyxw ⋅+    , if cs(x, y) = 2 
w’(x, y) =                       (I.3) 

1.N),( 2G WRyxw ⋅−    , if cs(x, y) = 0 or cs(x, y) = 1  
 
 
w(x, y)  Local available soil water w for focal cell before local water redistribution 
w’(x, y)  Local plant available soil water w for focal cell after local water redistribution 
N1  Counter variable: Counts nr. of cells in the Moore neighbourhood which are in the state of live 

tussock cs = 0 or cs = 1. The Moore neighbourhood are the eight cells directly neighbouring 
the focus cell 

N2 Counter variable: Counts nr. of cells in the Moore neighbourhood which are in the state of live 
tussock cs = 2 

WR.1 Fixed amount of lateral soil water w loss of a empty cell or a dead tussock (cs0/1) due to water 
uptake from a neighbouring live tussock (cs2) cell or vice versa 

 
2) Step 2 of local water redistribution: water loss due to a large bare patch: 

 
The Algorithm. — The second step of local water redistribution consists out of two parts: First 

all cells within the grid are scanned, if they are empty cells and if they lost water during 1st step of 
local water redistribution. If not, they are considered as a cell which potentially lies within a “large 
bare patch”. Second, all cells in the Moore neighbourhood of the focus cell, are scanned for water loss 
due to neighbouring live tussocks, using the counter variable N3. The Moore neighbourhood are all 
eight cells lying within the direct neighbourhood of the focal cell. If there is at least one cell in the 
Moore neighbourhood, which did not loose water to a neighbouring live tussock, the focal cell gets 
part of a ‘Large Bare Patch (LBP)’. For each cell in the Moore neighbourhood, which did not loose 
water to a neighbouring live tussock, the water loss of the focal cell is incremented by WR.2 due to 
higher run off or higher evaporation. Thus the smallest LBP consists out of 2 cells, which have 
incremented water loss by – n * WR.2. This minimum sized LBP consists out of empty cells 3 x 4 
empty cells or 90 cm x 120 cm (Fig. I.3). 

 
w(x, y) = 2.N),(' 3 WRyxw ⋅−         (I.4) 
        
w(x, y)  Final local plant available soil water for focal cell at actual time step t after water loss due to 

“large bare patch effect” (2nd step of local water redistribution) 
w’(x, y)  local plant available soil water after 1st step of local water redistribution 
N3  Counter variable: Counts nr. of cells in the Moore neighbourhood which a did not loose plant 

available soil water during first step of water redistribution: w’(x, y) = wG(x, y) 
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WR.2  for empty cells within ‘large bare patches’; fixed amount of soil water loss, for each empty 
neighbouring cell in the Moore neighbourhood unaffected by lateral roots water uptake of a 
live tussock 

 
Definitions of cell state counters in the Moore neighbourhood of a focal cell: 

N1  Counter variable: Counts nr. of cells in the Moore neighbourhood which are in the state of live 
tussock cs = 0 or cs = 1 

N2 Counter variable: Counts nr. of cells in the Moore neighbourhood which are in the state of live 
tussock cs = 2 

N3  Counter variable: Counts nr. of cells in the Moore neighbourhood which a did not loose plant 
available soil water during first step of water redistribution: w’(x, y) = wG(x, y) 

 
 
 
 
 
 
 
 

 
Fig. I.2: Example for water redistribution step 1. 

Empty cells loose water to neighbouring live tussocks and vice versa. Empty cells against each other 
behave neutral, as do neighbouring live tussocks. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. I.3: Example for water redistribution step 2: Minimum sized Large Bare Patch (LBP).  

Both cells of inner boundary of the Large Bare Patch loose additionally plant available soil water w due 
to higher evaporation or runoff caused by the large area of open soil. 

 
Consequences of the ‘large bare patch’ effect. – Consequences for the possible range of the 

‘large bare patch’ effect: The smallest “large bare patch” consists out of two neighbouring cells which 
neighbours all are unaffected by lateral roots. Each of both cells then looses 1*WR.2 mm of plant 
available soil water. Both cells are surrounded by ten empty cells. So the smallest ‘large bare patch’ 
consists out of 3 x 4 cells or 0.9 m x 1.2 m respectively, considering the grid cell size of this 
simulation model.  

The maximum “large bare patch” effect occurs in a cell which is completely surrounded by 
cells lacking effect of lateral roots. Based on the Moore neighbourhood, the minimum bare patch size 
for this maximum effect to occur in its focal cell is a square of five by five empty cells or 
1.5 m * 1.5 m in our case. Sites affected by this maximum effect would loose 8 * WR.2 mm of plant 
available soil water.  

   

   

   

      

      

      

      

      

Empty focal cell loosing water to neighbouring tussocks cell 

Lateral water flux to live tussock due to 1st step of local water redistribution

Live tussock 

Empty cells  

 

 

Focal cell 

Empty cells in the 1st oore neighbourhood of focus cell

Cell within Moore neighbourhood which does not loose water  
to a neighbouring live tussock. Forms part of minimum sized  
‘Large Bare Patch’ (LBP) together with focal cell 

Lateral water flux to live tussock due to 1st step of local  
water redistribution 

Outer boundary of minimum sized „large bare patch“

Live tussock 

Empty cell at larger distance
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Consequences for the spatial pattern of recruitment: 
• Large bare patches are not colonized from central sites, since these are the ecologically most “dry” 

locations. 
• Large bare patches are colonized from their border areas, since these offer better ecological 

conditions. 
• In general, recruitment does not occur at large distances from tussocks. This is an indirect 

implementation of dispersal limitation. 
• Best sites for recruitment are cells which have one live tussock in each direction of the ‘second’ 

Von Neumann neighbourhood that means one bare soil cell has to be between the focal cell and the 
live tussock. Reasons for this pattern of optimal recruitment are the lack of a large bare patch and 
the lack of water loss to a live tussock in the direct neighbourhood. 

I.1.5 Water induced vitality change (vitality dynamics) 

Vitality dynamics. – The concept of vitality was introduced in section 2.2.2. It is necessary to 
integrate sub lethal effects of both precipitation and grazing and to integrate the compositional state of 
the tussock, both the ability to intercept photosynthetic radiation as the capacity to use below-ground 
resources. Both precipitation and grazing show their effects on vitality after the respective processes of 
local water redistribution and defoliation (Fig. 2.3). Vitality changes by water are realised 
deterministically by threshold parameter (eqn. I.5). Two soil water thresholds are defined for 
increasing, and two thresholds for decreasing tussock vitality.  
 
     1 , if w > VD.1 and cs = 2  
pVC {vit + 1|vit = 1}  =       (I.5 a) 
     0 , else 
 
      
     1 , if w > VD.2 and cs = 2 
pVC {vit + 1|vit = 2 or vit = 3} =       (I.5 b) 
     0 , else 
 
Soil water status induced vitality decrement: 
     1 , if w > VD.3 and cs = 2 
pVC {vit - 1| vit = 4}  =       (I.5 c) 
     0 , else 
 
     1 , if w > VD.4 and cs = 2 
pVC{vit - 1|vit = 2 or vit = 3} =       (I.5 d) 
     0 , else 
 
pVC    probability of tussock vitality change 
pVC {vit n+1|vit n}  conditional probability for tussock with vitality state = n to increase by 1 
pVC {vit n-1|vit n}  conditional probability of tussocks with vitality states n to decrease by 1 
w    plant available soil water  
VD.1    soil water at which tussock with vit =1 increases vitality  
VD.2    soil water at which tussock with vit =2 or 3 increases vitality 
VD.3    soil water at which tussock with vit = 4 decreases vitality 
VD.4    soil water at which tussock with vit =2 or 3 decrease vitality 
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I.1.6 Plant production 

Total and for grazing available biomass of the Festuca steppe consists out of green biomass remaining 
from time step t-1 (eqn. I.1) after the occurrence of the processes grazing, senescence, and tussock 
mortality, and the annual net primary production of the actual time step. Biomass carry-over (see 
Fig. I.4) is calculated at the beginning of each time step. The process ‘Plant production’ simulates 
annual net primary production of a tussock (prod, see variable definitions Tab. 2.2). For production 
response to soil water – the only resource considered – we assume Michaelis-Menten kinetics (see 
eqn. I.6 and Fig. I.4). Michaelis-Menten kinetics leads to a saturation of plant growth when the 
resource reaches its maximum. I assume a plant growth saturation at maximum precipitation, which 
might be due to density dependence (reduced productivity of tillers of one tussock, due to shading 
effects of neighbouring tillers, J.M. Paruelo, pers. comm.) or due to inability to use the high offer of 
the resource. The inclusion of saturation into modelling of resource dependent plant growth is 
normally used for resources (Passioura 1982, Richter 1985, Richter and Söndgerath 1990, Crawley 
1997). 

The tussock annual biomass production depends on tussock vitality vit (M.B. Bertiller pers. 
comm.), the local plant available soil water w, the plant productivity parameters PG.1, PG.2, which 
indicate maximum plant productivity per vitality status of the tussock, and the parameter PG.3 
(eqn. I.6), which determines the soil water status, at which the tussock reaches 50% of its productivity. 
The effect of tje productivity increment caused by the tussock vitality increment of vit by +1 on plant 
growth lies within the same range as the productivity increment between minimum and maximum 
precipitation within one vitality class (Fig. I.4).   

 
Tussock annual net primary production: 

3PGw
w2PGvit1PGwvitprod

.
).)1(.(),(

+
⋅⋅−+=   , if cs = 2   (I.6) 

       
prod  simulated ANPP / year per tussock area [0.09 m²], 
vit   vitality class for each tussock vit = {0, 1, 2, 3, 4},  
w   local cell specific plant available soil water 
PG.1   annual production at vitality 1 (see Tab. 2.3),  
PG.2  annual production increment per vitality class > 1, 
PG.3   half maximum soil water constant for production. 
cs(x, y, t) Possible states of a grid cell (30 cm x 30 cm) at location x, y and time step t: cs = 0 for 

empty /bare soil cell; 1 for dead tussock; 2 for live tussock. 
 
Tussock total green biomass at actual time step: 

gbP = prodgb +Co       , if cs = 2   (I.7) 
 

gbP  absolute green biomass of a live tussock after production 
gbCo  carry over of resting gb (t – 1) of a F. pallescens tussock     
prod  simulated ANPP / year per tussock 
cs(x, y, t) Possible states of a grid cell (30 cm x 30 cm) at location x, y and time step t: cs = 0 for 

empty /bare soil cell; 1 for dead tussock; 2 for live tussock. 
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Fig. I.4: Potential tussock productivity.  
Plant production depends on rainfall, tussock vitality and default values for parameters PG1.- PG.3. 
Vertical lines indicate the range and average productivity given by the range of plant available rainfall. 
Note that productivity increment for vitality increment by +1 lies within the same range as the 
productivity increment between minimum and maximum precipitation for one vitality class. 

 
During ‘plant production’ the dead biomass fraction dfraci of total biomass of each tussock is 
calculated (eqn. I.8). Dfraci is assumed to be an essential characteristic of the tussock compositional 
state which decides about forage selection by sheep and thus about defoliation (see eqn. I.10 and I.16-
17).  
 

Dead biomass fraction of total biomass: 

)()1(
)1()(

P
i

tgbtdb
tdbtdfrac
+−
−

=      , if cs = 2  (I.8) 

 
dfraci(t)  dead biomass fraction of total tussock biomass  
db(t-1)  absolute dead biomass of a live tussock for time step t-1 
gbP(t)  absolute green biomass of a live tussock after production 
 
As a precondition a minimal amount of residual green biomass (bgmin) which is not available 

for grazing is calculated during the process plant production. Bgmin is calculated for each tussock and 
time step for the high selective forage selection scenario (HS) only (see Chapter 5). For the non-
selective grazing scenario (NS) the value bgmin is a fixed parameter value. 

 
Minimum residual green phytomass after grazing 

gbminHS   =  )1(P dsmaxgb −⋅   , if cs = 2   (I.9) 
 
gbminHS minimum residual biomass after grazing for high selective foraging scenario (HS) 
gbP    standing green biomass prior to grazing, 
dsmax  maximum defoliation severity a tussock can experience at actual time step  
 

The maximum relative defoliation severity dsmax (Fig. I.5) a tussock can experience during 
one time step depends on the standing dead biomass fraction dfraci and the ‘defoliation shape 
parameter’ (GR.4). Thus, maximum relative grazing intensity is reduced with increasing dfrac of a 
tussock and lower values for the ‘defoliation shape parameter’. As default I assume a moderate 
decrease of maximum relative defoliation with increasing dfraci (‘defoliation shape parameter’ 
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(GR.4) = 0.5). Dsmax is calculated once per time step and tussock prior to the grazing routine, that is, 
dsmax is not altered during the grazing process.  

 
Maximum defoliation severity: 

 4GRdfrac3GR .i).( −  , if dfraci < GR.3 and cs = 2  
dsmax  =          (I.10) 
  0   , if dfraci ≥ GR.3 
 
dsmax   maximum possible defoliation severity at time step t 
GR.3 defoliation threshold parameter: Sets the minimum limit of dfrac, at which tussock is 

rejected obligatory due to high dfrac 
dfraci   dead fraction of live tussock biomass 
GR.4 shape parameter for defoliation intensity: Determines the shape of defoliation severity 

ds as a function of dfrac; defines the dynamics of reduced ds with increasing dfrac.  
 

Fig. I.5: Maximum relative defoliation of a tussock during one time step. 
Dsmax as a function of the dead biomass fraction of a tussock dfraci is additionally influenced by the 
‘defoliation shape parameter (GR.4) given in equation (22). The assumed value for GR.4 = 0.5 (expert 
estimation). For theoretical reasons I included values for GR.4 < 1. These values lead to enforced 
selectivity by herbivores, due to a increased rejection of tussocks with higher dead biomass fractions. 

I.1.7 Defoliation 

Landscape level of grazing. — I distinguish two spatial scales for the grazing process: the 
local, small-scale or tussock level, and the patch or landscape level scale. The last scale covers the 
whole area or simulated grid resp. and may represent e.g. an assumed homogeneous paddock, or 
homogeneous fractions of a paddock. The landscape level mean grazing pressure or “utilization 
intensity” is defined as the total forage need by livestock over theoretical total forage available. 
Theoretical means that there might be available forage but it might be rejected by livestock due to its 
forage selectivity. Total available forage consists out of the living (green) Festuca biomass and the 
Primary Forage (PF). A fixed total annual forage need FN (kg ha-1) results from a fixed forage need 
per capita GR.2 (1 kg sheep-1 day-1) and a fixed stocking rate during one simulation (e.g. 1 sheep / ha, 
GR.1 or Stock).  

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Dead biomass fraction (dfrac )

M
ax

im
um

 re
la

tiv
e 

de
fo

lia
tio

n
se

ve
rit

y 
(d

sm
ax

)

Defoliation shape = 0.25

Defoliation shape = 0.5

Defoliation shape = 2.0



APPENDIX I 

 XII

Landscape level Forage Need / ha-1: 
365.. ⋅⋅= 2GR1GRFN          (I.11) 

 
FN   total forage need per hectare and year by the applied stocking rate  
GR.1   stocking rate / ha 
GR.2   fixed forage need per sheep and day 
   

Primary Forage: 
  30 %    , if cov > 40 %   
PF  =  )10(cov.. −⋅+ 2PF1PF  , if  10 % ≤ cov ≤ 40%            (I.12) 
  PF.1    , if cov < 10 % 
 
PF fraction of F covered by other items which as a function of F. pallescens cover 
cov   actual F. pallescens cover 
PF.1   minimum relative amount of primarily consumed forage 
PF.2   increment of primary forage proportional to F. pallescens cover increment 

 
Primary Forage PF summarizes a component of non – Festuca species which are consumed with 
higher priority than Festuca pallescens (i.e. forbs and small grasses, Bertiller and Defossé 1993). 
Biomass of other species may account for 10% to 50% of total production (Defossé et al. 1997a). 
Primary Forage covers a part of total forage needed by livestock and is not modelled explicitly, but in 
function of Festuca cover. We assumed as a default that AF contributes 30% (the average of 10 to 
50%) of total forage need, when Festuca cover is 40% or more, and its contribution is linearly reduced 
to 5%, when Festuca cover is 10% or less (default values for standard model parameterisation PS).   

I get the Forage amount provided by Festuca by discounting the relative amount of Primary 
Forage from total Forage need:  
 

Total forage need from Festuca: 
F  = )100/( PFFNFN ⋅−         (I.13) 
 
F  total forage need from F. pallescens 
FN  total forage need per hectare and year by the applied stocking rate  
PF  fraction of FN covered by other items which as a function of F. pallescens cover 
 

The total available Festuca forage AF (kg ha-1) is the sum of the standing green biomass gbP 
from all tussocks. 

Total standing forage of actual year: 

AF =  )),,()),,,((),,,((
1 1

P tyxwtyxcsvittyxcsgb
m

x

n

y
∑∑
= =

 , if cs(x, y, t) = 2  (I.14) 

 
AF      Total available forage of actual time step t, 
gbP((cs(x, y, t), vit(cs(x, y, t)), w(x, y, t)) Standing green biomass standing per live tussock at time 

step t and grid coordinates x, y 
cs(x, y, t)     Cell state for cell with grid coordinates x, y 
 

Landscape level necessary mean utilization intensity M to accomplish needs of stock is given as: 
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Landscape level mean utilization intensity: 
     
    AFF /    , if  AF ≥ F   
M  =                  (I.15) 
    1    , if  AF < F 
 
M  landscape level necessary mean utilization intensity 
F  total forage need from F. pallescens 
AF total standing forage of actual time step, if AF < F it is assumed that sheep get additionally 

supply 
 

The necessary mean utilization intensity M indicates the theoretical utilization intensity. The mean 
realized defoliation intensity (Mreal) might differ from expected M. Mreal depends on the realized 
consumption of the standing green biomass per tussock (gbP) by livestock. The consumption is 
realized as a function of forage selectivity depending on the relative amount of dead biomass dfrac per 
tussock (see below). 

Local or tussock level of defoliation. — The grazing process is considered as a sequence of 
local grazing events that continues until the total forage need has been met, no more forage is available 
or no suitable cell has been found over several consecutive trials. Due to off take restrictions, green 
biomass might be present without being available for grazing, e.g. a high proportion of tussocks with 
high fractions of standing dead (high dfrac) allowing only limited defoliation severity (ds). As a 
precondition a minimal amount of residual green biomass (bgmin) which is not available for grazing is 
calculated during the process ‘Plant production’ (eqn. I.9). If the total forage needed from Festuca (F) 
is higher than the available forage (AF) from F. pallescens, it is assumed that livestock is 
supplemented by other sources of food, as population dynamics of herbivores is not modelled 
explicitly.  

Forage selectivity. – The essence of the grazing model is the probability of a tussock to be 
accepted for grazing (gprob), if it is selected by livestock during a random process of tussock 
selection. The grazing probability depends on the compositional state of the tussock, expressed by its 
dead biomass fraction (dfraci) and the expected landscape level mean utilisation intensity (M, see 
eqn. I.16, Fig. I.6). Although, initially cells are selected at random, this algorithm ensures that tussocks 
are not grazed randomly but in a highly selective way. With increasing utilization intensity the grazing 
probability of a tussock with a given composition (dfraci) increases. In addition maximum defoliation 
intensity of a grazing event is determined by tussock composition (eqn. I.10). The grazing probability 
gprob decides not about the grazing intensity a tussock has to tolerate, the defoliation severity (ds) is 
modelled later. The presented grazing probability (eqn. I.16) will be used as the default scenario for 
forage selectivity, which is assumed to apply for continuous grazing all the year round in large, fenced 
paddocks of ca. 1.000 to 5.000 ha size. Livestock has all the year round the option to select the most 
attractive tussocks, due to the size of a paddock, but sheep are fenced, so there is a certain probability 
that a tussock will be regrazed, if forage need increases. I assume that under these conditions livestock 
prefers tussocks with low dead biomass fraction (dfrac, Fig. I.6). Under very low utilization intensity 
(M close to 0), grazing probability gprob shows a close to linear decrease with increasing dead 
biomass fraction. With increasing utilization intensity M, livestock would increasingly accept tussocks 
with higher fractions of standing dead (Fig.I.6).  
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Tussock grazing acceptance probability for ‘high selective forage selectivity’ (HS): 
 

)1(i)1( Mdfrac −−   , if   0 < M  ≤ 1 and cs = 2  
gprobHS =          (I.16) 
  0   , else 
 
gprob   tussock grazing acceptance probability 
dfraci   dead fraction of live tussock biomass 
M   landscape level necessary mean utilization intensity 
 

Fig. I.6: Probability of a tussock to be accepted for grazing during the High selective foraging scenario.   
Illustration of the probability gprob for a live tussock of being accepted for grazing after a random hit 
(eqn. I.16 – 17) for A) high selective continuous grazing (cont) at different relative grazing intensity 
levels (M). B) -  D) grazing probability of a tussock for the different seasonal scenarios and grazing 
levels. Legend: gprob: grazing probability of a tussock; dfrac: dead biomass fraction per tussock; M: 
expected relative mean utilization intensity as total annual forage need from Festuca over total amount 
of available forage of Festuca. 

 
Seasonal altered forage selectivity. – To simulate in a more realistic way different grazing 

regimes, we introduced different grazing scenarios, defined in terms of a seasonality parameter (GR.5, 
see Tab. 2.3 and eqn. I.17). A seasonal different grazing assumes that livestock forage selectivity is 
changed relative to the default continuous grazing differently according to the season. The highest 
selectivity occurs in spring or when the paddock is grazed continuously, i.e. the influence of dead 
fraction is higher than in other seasons. The low availability of forage items of high quality and the 
relatively softer structure of the tussock when the dead material is wet determines the seasonal 
changes in selectivity (Paruelo et al. 1993). In spring selectivity increases, because grasses are in the 
full vegetative growth and nearly no senescence has occurred. During summer and spring selectivity 
might already reduced, because important fractions of the green biomass produced during the actual 
year has already gone senescent, and livestock is forced to forage also on ‘less attractive’ tussocks. 
Finally, winter grazing should be less selective, due to the low offer of live biomass production in 
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winter, and the changed and possible better accessible composition of the dry, recently senescent 
biomass (see Fig. I.6). The parameter GR.5 affects the probability of a tussock of being accepted for 
grazing and qualifies the influence of the dead fraction of each tussock (Fig. I.6 B-D). The seasonal 
altered dfrac (dfracHS(S)) is used in eqn (I.17).  

Seasonal altered dfrac: 
 5.i GRdfrac ⋅  , if 5.i GRdfrac ⋅  ≤ 1 for GR.5 = {1.0, 1.5, 0.6, 0.3} and cs = 2 

dfracHS(S) =                   (I.17) 
  1  , if 5.i GRdfrac ⋅  > 1 and cs = 2  
 
dfracHS(S)  seasonal altered dfrac by weighted herbivore selectivity 
dfraci   dead fraction of a live tussock biomass 
GR.5i seasonal grazing acceptance: GR.5 = 1.0 for cont, 1.5 for spr, 0.6 for sum, 0.3 for 

wint (Tab. 2.3) 
cont   continuous grazing all year round 
spr   all biomass is removed in spring 
sum   all grazed biomass is removed during summer or autumn 
wint   all grazed biomass is removed during winter 

 

The realisation of a discrete grazing event. A grazing event consists of the selection of a 
tussock, and its subsequent defoliation. If a selected tussock has not yet been grazed down to its 
minimum residual green biomass bgmin it is accepted for grazing with the probability gprob (eqn. 
I.16-17). Then the local consumption (lci) of the selected tussock is calculated for each grazing step 
(eqn. I.19). Each tussock can be grazed during one time step several times until the tussock biomass is 
reduced to the minimum residual biomass or the total forage need from Festuca was satisfied before or 
no available biomass is left (eqn. I.21). Up to this decision at the end of grazing during the actual time 
step after each discrete grazing event the local consumption for the actual tussock is calculated 
(eqn. I.19), the remaining living biomass is updated (eqn. I.20 a), the dead biomass fraction is 
determined a new (eqn. I.20 b), and the relative defoliation severity is calculated (eqn. I.22). 

 
Decision algorithm if actual tussock is accepted for grazing: 

    1 , if gbP – lci > gbmin, gprobS > rpi and cs = 2 
gai =          (I.18) 
    0 , else 
 
gai    grazing acceptance decision for actual tussock at grazing event i 
gbP    green biomass of actual tussock before grazing 
gbmin minimum residual green biomass, calculated prior to grazing (eqn I.9) 
gprob    grazing prob. of a tussock 
rpi random probability variable drawn for each tussock to realize grazing 

decision at each grazing step i 
lci    Absolute local defoliation intensity after i-th defoliation  

 

A tussock that has been accepted for grazing is defoliated with a local defoliation intensity di, with di 
denoting a random variable. Local consumption lci in a grazing event is then given by: 
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Local consumption: 

  dii ∑
−

=

−⋅
1

1

iP )(
i

i

lcgb , if  dii ∑
−

=

−⋅
1

1

iP )(
i

i

lcgb >  gbmin, gai = 1 cs = 2  

lci =                     (I.19) 
  0    , else 
      
 
lci    Absolute local defoliation intensity after i-th defoliation  
gbP    local green biomass before grazing 
di  local defoliation intensity drawn from a random variable with equal 

distribution for high selective forage selection scenario 
gbmin    minimum not grazable, green biomass of a tussock 
 

Update local green tussock biomass after each grazing step: 

gbGi = gbP - ∑
=

i

1
i(

i
lc )     , if cs = 2           (I.20 a) 

 
gbG  Green tussock biomass after defoliation process for each live tusscock 
lci  Absolute defoliation intensity for each tussock, grazing event i and time step t 
gbP  Pre-grazing green biomass of distinct tussock 
 

Update of dead fraction of total biomass for each grazing step: 

)()1(
)1()(

Gi
 Gi,

tgbtdb
tdbtgbdfraci
+−
−

=     , if cs = 2          (I.20 b) 

 
dfraci(gbGi, t)  Fraction of dead biomass updated after each grazing hit a tussock receives 
db(t - 1)  Local dead biomass during grazing procedure 
gbGi(t)  Local green biomass per tussock, updated after each grazing hit 

 
Decision rule to finish the grazing algorithm: 

   1  , if C < FF   or   
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GE =                  (I.21) 
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   0  , else 
 
GE     end grazing for actual time step 
C     total Consumption for actual time step and total grid 
x, y     grid coordinates 
F     forage needed from F. pallescens 
R     total residual forage for the whole grid at time step t 
 

Relative local defoliation severity: 

ds  =   ∑
=

i

1

i(
i

lc ) / gbP     , if cs = 2 (I.22) 

ds Realised local relative defoliation severity for each tussock and time step 
lci Absolute defoliation intensity for each tussock, grazing event i and time step 

t 
gbP    Pre-grazing green biomass of distinct tussock 
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Finally, if grazing is finished during the actual time step, consumption related landscape level 
variables are calculated as e.g. total consumed forage, residual forage and realized relative utilisation 
intensity (Mreal).  

I.1.8 Colonization 

F. pallescens reproduces exclusively from seeds (Soriano 1960 in Soriano and Sala 1986, 
Bertiller 1992), and seed distribution is considered to be spatially homogeneous. The latter assumption 
is a simplified assumption derived from the observation that seedling density declines proportional to 
vegetation and Festuca cover in the steppe (Bertiller 1996, Bertiller et al. 1996). Seed production and 
distribution are not modelled explicitly. Seedling emergence and survival of the first year occurs only 
in empty cells, it depends on local plant available water, and Festuca cover. Thus seedling emergence 
depends not directly from grazing, but if Festuca cover is reduced by grazing there is an indirect effect 
of grazing included. Emergence is highest if Festuca cover is as high as in an assumed natural state, 
expressed by parameter CO.5 (see eqn. I.23). Survival of emerged seedlings is stochastic with a 
probability set by parameter CO.2 (default CO.2 = 0.3). The survival probability of emerged seedlings 
pC{S1|cs = 0} declines linearly and proportional to the ratio between actual cover and assumed cover 
of a natural state of the Festuca steppe  (parameter CO.5 = 40% (default)). This rule directly includes 
the findings of Bertiller (1996) and Bertiller et al. (1996) of a linear decrease of seedling density at 
reduced cover. A tussock is recruited after a two years sapling stage (M.B. Bertiller, L. Ghermandi, 
J.M. Paruelo, pers. comm.). Survival probabilities of saplings during the first and the second year 
depend on plant available soil water threshold (CO.3 and CO.4 respectively, see eqns. I.24-25) and on 
the mean realized defoliation severity in the current year (Mreal, see Fig. I.7). The sensitivity of 
saplings to drought is considerably reduced in comparison to seedlings, which is in accordance to 
empirical evidence (Defossé et al. 1997a, Defossé et al. 1997b). They found that one year old 
seedlings begin to root to more profound soil layers so that they profit from deeper soil layers which 
fluctuate less in water saturation that shallow soil layers (Defosse et al. 1997a/b). Fig. I.7 illustrates 
equation I.24. Saplings survival depend on the one hand on plant available soil water, which is 
modelled as deterministic threshold, and on the other hand it depends on grazing, expressed by the 
relative grazing intensity Mreal. 
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Fig. I.7: Sapling survival probability. 
Shown is the survival of one year old saplings as a function of plant available soil water and mean 
realized grazing intensity. 

 
1) Emergence of seedlings (survival of the first year): 
 

   CO.2   , if w > CO.1, cov > CO.5   
pC{S1|cs = 0} =  CO.2 . (cov / CO.5) , if w > CO.2 cov ≤ CO.5    (I.23) 
   0   , else 
 
pC    colonization probability  
pC{S1|cs = 0} survival probability for seedlings S0 emerged from a empty cell cs = 0 into 

state S1:  
Si seedling of state i; i= 0 for recently emerged seedlings; 1 for 1st year 

seedling; 2 for 2nd year seedling. 
cs(x, y, t) possible states of a grid cell (30 cm x 30 cm) at location x, y and time step t: 

cs = 0 for empty /bare soil cell; 1 for dead tussock; 2 for live tussock. 
CO.2    prob. of emergence at cover > 40 % if soil water w > CO.1 
w    plant available soil water 
CO.1    minimum soil water for emergence 
cov    actual F. pallescens cover, 
CO.5    minimum F. pallescens cover for maximum S0 survival prob.  
 

2) Survival of one-year-old saplings into the 3rd year: 
 

    CO.6 . (1 - Mreal) , if w > CO.3   
PC{S2|S1 and cs = 0} =         (I.24) 

    0   , else 
 
PC{S2|S1 and cs = 0}  survival probability of seedlings S1 into 2nd year S2 seedlings 
CO.6    minimum soil water for survival of first year seedlings 
Mreal    realized mean defoliation severity ds over whole grid 
w    plant available soil water 
CO.3    survival prob. for seedling S1 if w > CO.3 
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3) Tussock recruitment or survival of two year old saplings is given as: 
   

CO.6 . (1 - Mreal) , if w > CO.4    
pC{cs = 2|S2 and cs = 0}  =         (I.25) 
     0   , else 
 
pC{cs = 2|S2 and cs = 0} transition probability from seedling S2 to fully grown live tussock (cs =2)

   
CO.6    survival probability for seedling 2nd year if soil water w > CO.4 
Mreal    realized mean defoliation severity ds over whole grid 
w    plant available soil water 
CO.4    minimum soil water for survival of second year seedlings 
 

I.1.9 Grazing induced vitality change (vitality dynamics) 

Grazing induced vitality change combines a threshold and a probability of transition. Water thresholds 
refer to plant available soil water, not to global precipitation. The possible range of plant available soil 
water is from 0 mm to 360 mm in the range of precipitation from 211 mm - 561 mm (for default 
precipitation use efficiency WI.1 = 0.57). Grazing induced vitality change refers to relative defoliation 
severity (ds) in relation to total green biomass of a tussock (Tab. I.4). Vitality change by grazing is 
applied only in vitality classes 2 to 4, where the higher vitality class is more resistant to grazing 
(Tab. I.4). Grazing induced vitality change also includes a seasonal effect of grazing (compare process 
‘defoliation’, see eqn. I.26 and Tab. I.4). Defoliation severity which reduces vitality by defoliation is 
altered depending on season. For example defoliation in severity in winter grazing may be higher than 
if continuous grazing is allowed. I assume that spring grazing reduces vitality less than continuous 
grazing, because resting during summer and autumn leaves longer resting times than continuous 
grazing. The same will occur during summer grazing, but during summer grazing the tussocks will 
profit fully from the best part of the growing season, in spring. 
 
 
a) for continuous grazing: 
    VD.6 , if )1.0)2(.( ⋅−+> vit5VDds ds > VD.5, vit = 2, 3, 
    or 4 and cs = 2    
pVC {vit -1|vit = 2, 3 or 4} =           (I.26 a) 
          0  , else 
 
b) for spring grazing: 
    VD.6 , if )1.0)2(1.0.( ⋅−++> vit5VDds  and vit = 2, 3, or 
    4 and cs = 2     
pVC {vit -1|vit = 2, 3 or 4} =          (I.26 b) 
          0  , else 
 
c) for summer / autumn grazing:   
    VD.6 , if )1.0)2(2.0.( ⋅−++> vit5VDds  and vit = 2, 3, or 
    4 and cs = 2     
pVC {vit -1|vit = 2, 3 or 4} =          (I.26 c) 
          0  , else 
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d) for winter grazing: 
    VD.6 , if )1.0)2(3.0.( ⋅−++> vit5VDds  and   
          vit = 2, 3, or 4 and cs = 2 
pVC {vit -1|vit = 2, 3 or 4} =           (I.26 d) 
 
          0 , else 
 
pVC     probability of tussock vitality change 
pVC{vit -1|vit =2, 3 or 4}  conditional probability vitality decrease by 1 for tussocks with 

vit = 2, 3 or 4 
VD.6 defoliation severity threshold for tussock transition vit = n →  vit  n-

1 for continuous grazing 
ds     defoliation severity 
VD.5 prob. of grazing induced vitality transition: if defoliation severity 

ds > VD.5 + ((vit - 1)*0.1) 
vit     tussock vitality state 
 
Tab. I.4: Relation between seasonal grazing management and grazing induced vitality change. 

Illustration of eqn. I.26. Grazing induced vitality change depending on seasonal grazing management. 
Vitality is decreased if defoliation severity ds exceeds indicated values. 

 Decrease vitality vit by 1 (for vit = 2-4 only), if ds [%] is higher than 

Grazing management vit = 2 vit = 3 vit = 4 

Continuous   50   60   70 

Spring   60   70   80 

Summer / autumn   70   80   90 

Winter   80   90 100 

 

I.1.10 Senescence and littering 

Senescence rate is ‘very low’ during early and mid-spring’ and ‘very high during mid summer’ 
(Bertiller and Defossé 1990a). Bertiller and Defossé 1990b estimated senescence rate on a daily basis 
with a set of differential equations. Integration on yearly time step was not possible, because not all 
correspondent data were published. Senescence and littering are modelled after ‘Defoliation’ and 
change both biomass variables gbG or gbP (if the tussock is not grazed) and db of a tussock and thus 
these processes have impact on the green biomass carry over and grazeable green biomass for the 
following time step. Senescence and littering rate are fixed for each tussock during one simulation and 
expressed by the parameters PG.4 (senescence rate) and PG.5 (littering rate). The default values are 
60% respectively 40%. During model calibration the whole possible parameter range for both 
parameters (senescence and littering) was investigated, due to the lack of information about both rates 
and due to the general relevance of both processes for grazing systems. The senescence rate is higher 
than the littering rate, which leads to a long-term accumulation of above-ground dead material. 
Grazing has also an impact on the absolute biomass which goes senescent, intermediated by 
defoliation severity ds (eqn. I.22) on a tussock. The higher the relative defoliation ds is, the lower is 
the subsequent biomass which goes senescent.  

The indirect effect of grazing on the absolute biomass which goes senescent might lead to the 
assumed positive feedback response between grazing intensity and grazing selectivity, i.e. a tussock 
with a reduced dead biomass fraction dfrac– caused by grazing – is highly preferred for grazing to a 
non-grazed tussock with high fraction of dead biomass.  
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Senescence and littering of a live tussock: 
1) Senescence rate of live biomass and live biomass of live tussock after senescence: 

    
gbS  = ⋅⋅−− ).)1(1( 4PGds gbG     , if cs = 2  (I.27) 
 
gbS  Final green biomass of live tussock for actual time step t after senescence, 
ds  accumulated relative defoliation severity a tussock undergoes per time step t, 
PG.4  relative annual rate of senescence fixed per parameterisation, 
gbG  Green biomass of live tussock for actual time step t after grazing, 
 
 

2) Littering rate of dead biomass for a live tussock: 
        

⋅−⋅+−⋅−= ))(1(.)1()5.1()( tds4PGtdbPGtdb gbG (t)  , if cs = 2  (I.28) 
 
db(t)  dead biomass of live tussock after senescence and littering, 
PG.5  relative annual rate of littering fixed per parameterisation, 
db(t-1)  dead biomass of live tussock before senescence and littering, 
PG.4  relative annual rate of senescence fixed per parameterisation, 
ds(t)  accumulated relative defoliation severity a tussock undergoes per time step, 
gbG(t)  Green biomass of live tussock for actual time step t after grazing. 
 

3) Littering rate of dead tussock: 
 

)1,()5.1(),( −⋅−= tcsdbPGtcsdb      , if cs = 1  (I.29) 
 
db(cs =1, t) dead biomass of a tussock (dead tussock if cell state cs = 1) at time step t, 
PG.5   relative annual rate of littering fixed per parameterisation. 
 

4) Transition of a dead tussock to an empty / bare soil cell: 
 
   1    , if db < PG.6    
pE{cs = 0|cs = 1} =              (I.30) 
   0    , else      
 
pE{cs = 0|cs = 1}  transition probability of  a cell with state cs =1 (dead tussock) to cs = 0 

(empty / bare soil) cell 
db  biomass of tussock (dead tussock if cell state cs = 1) at time step t, 
PG.6  fixed threshold below a dead tussock converts to an empty cell (50 g / m²). 
 
A dead tussock converts to an empty cell if the dead biomass db is lower than the value of the fixed 
parameter ‘Standing dead threshold’ PG.6. 

I.1.11 Mortality 

Mortality occurs for tussocks in lowest vitality class only. Thus, I assume that mortality only occurs 
for tussock which are already or still in a weak state, such as tussock which suffered individual heavy 
grazing for several years, or one or more dry years, or when they recruited just at the actual time step. 
The mortality probability depends on thresholds related to soil water availability w (MO.1, MO.2) and 
defoliation severity, ds (MO.5). But I assume that grazing may have effect on tussock mortality. This 
assumptions assumes, that F. pallescens is a decreaser species (Snyman 1993), i.e. it is a species, 
which is preferred by livestock for grazing and losses cover after long-term grazing, as it assumed e.g. 
for Themedra triandra in Southern Africa (O’Connor 1994). The question if grazing has biological 
feedback on its resource might be an essential one for the debate about the equilibrium dynamics of 
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semi-arid ecosystems and the interaction between the resource (vegetation) and herbivores as 
consumers. If a negative biological feedback between herbivore and resource is assumed, it is a 
grazing system including feedback mechanisms (May 1973, Richter 1985). So one can expect that the 
total behaviour of the system is changed, depending on the biological assumptions included. 

Grazing mortality is realized by a combination of two parameters: one parameter (e.g. 
MO.1 = 200 mm (default) which corresponds to a relative plant available soil water status of 0.4, 
regarding the normalized range between 120 mm to 320 mm of total annual plant available soil water 
at the default annual rain use efficiency per tussock WUE.1 = 0.57 or 57% respectively) represents a 
discrete threshold of plant available soil water status and the second one which defines the probability 
of mortality occurrence (e.g. MO.1 = 0.1 or 10%). I defined two pairs of mortality threshold and 
probability to account for the assumed variability of mortality occurrence. As it is unknown how in 
detail a summer drought may affect a live tussock, I introduced discrete thresholds of mortality rather 
than a linear increase of mortality. An introduction of a discrete threshold seems to be a less strong 
assumption about the relation between annual plant available soil water and tussock mortality than e.g. 
a linear increase of mortality with increasing drought. Additionally this approach is more accessible 
for analysis. Mortality is implemented as a combination of two conditions, which must be fulfilled: A 
threshold for plant available soil water or defoliation severity is combined with a certain probability of 
occurrence. 

 
Mortality rule: 

   MO.3  , if w < MO.1 and  cs = 2 
   MO.4  , if MO.1 ≤ w < MO.2 and  cs = 2  
pM{vit-1|vit = 1}=                           (I.31) 
   MO.6  , if ds > MO.5 and  cs = 2 
   0  , else 
 
pM{vit-1|vit = 1} conditional mortality probability of a tussock; a tussock may die only with 

vit = 1 
MO.3    prob. of tussock mortality for w < MO.1 
w    plant available soil water, 
MO.1    soil water w induced tussock mortality threshold 1 
MO.4    prob. of tussock mortality for MO.1 ≤ w < MO.2 
MO.2    soil water w induced tussock mortality threshold 2 
MO.6    prob. of tussock mortality for ds > MO.5 
ds    defoliation severity, 
MO.5    defoliation severity t
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Appendix II 
 
Additional Information to Section 3.2.8: 
 
Tab. II.1: Classification of Festuca steppe into degradation states. 

Classification was performed after Bertiller and Defossé (1993), with slight modifications. Each number 
within the table indicates one qualitative Festuca steppe state, depending on ANPP and total cover of 
non-woody plants. These Festuca steppe states were used for calibration during calibration step 3. 

 
Additional Information to Section 3.3.1  
 
Fig. II.1: Effect of different combinations of pattern filter criteria on number of accepted 
parameterisations 

Selectivity of the multicriterial filtering procedure is shown for the Example ‘No grazing calibration 
scenario, parameters independent (NGi)’. Illustration of the results shown in Tab. 4.5.  

 
 
 
 
 
 
 
 
 

0 2 4 6 8 10 12 14 16 18 20

P1 (T. Density)

 P1 +P22 (Tussock Biomass)

P1 + P41 (Mean dfrac)

P1 + P5 (Tussock freq./dfrac-class)

P1 + P21 (T. ANPP)+ P22 + P41 + P 43 (Min.
dfrac)

P1 + P21 + P22 + P41 + P43 + P5

% pattern fulfillment of total paramterizations (N = 196307)Pattern filter combination to fulfill

Festuca - steppe state 
classification Cover-states 

Classification by ANPP X Cover 1: 
overoptimal 2: optimal 3: slight 

degraded 4: strong 5: near 
desert 

      Cover [%] 

ANPP-states ANPP[kg/ha] >90 60-90 30-60 10-30 <10 

0 overoptimal >2000 1 7 13 19 25 

1 optimal 1100-2000 2 8 14 20 26 

1.5 slightly 
degraded 750-1100 3 9 15 21 27 

2 moderate 
degraded 365-750 4 10 16 22 28 

3 strong 
degraded 175-350 5 11 17 23 29 

4/5 
near desert 

<175 6 12 18 24 30 
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Additional Information to Section 3.2 Sensitivity analysis 
 
Tab. II.2: Calibration scenario NGi: Sensitivity state variables against less correlated parameters. 

Shown are those parameters with low mean relative correlation strength (rcs). Definition of parameter 
and process abbreviations see Tab. 2.3. Definition of variables are given in Tab. 2.2. Shown are 
significant correlation ± 0.19 (N = 105). 

 

 

 
 
 

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

MO CO VD VD VD WI CO CO PG WR G CO MO MO MO MO PF

MO W CO W VD G VD W VD G - CO W CO D - WR O G T CO D MO W MO W MO G MO G -

MortWp1 ColWS2 VdecGp VdecW1 VdecG WUE ColWS1 ColS0Co
v MMconst WredO Gshape ColS12p MortW2 MortWp2 MortG MortGp PFmax

Variables MO.3 CO.4 VD.6 VD.3 VD.5 WI.1 CO.3 CO.5 PG.3 WR.2 GR.4 CO.6 MO.2 MO.4 MO.5 MO.6 PF.1

Td S(t = 100) -0.06 -0.12 -0.02 0.17 -0.05 0.09 0.09 -0.08 0.03 0.09 -0.10 0.12 -0.06 -0.10 0.08 0.01 0.01
TB P 0.16 0.19 0.03 0.21 0.12 0.04 0.03 0.07 -0.22 -0.03 -0.12 -0.05 0.12 0.16 -0.03 0.05 -0.04
TB S -0.18 0.03 0.15 -0.04 0.22 0.14 -0.02 -0.06 -0.01 0.06 -0.06 -0.10 0.06 -0.06 -0.06 0.04 -0.06

dfrac S 0.01 0.06 0.00 0.05 -0.11 0.04 -0.19 0.00 0.12 0.09 -0.08 -0.06 0.05 0.09 0.11 -0.12 -0.14
f TSdfrac1 -0.03 0.05 -0.01 -0.13 0.05 -0.05 0.23 0.01 0.00 -0.13 0.13 0.05 0.06 0.07 -0.04 0.07 0.02
f TSdfrac2 0.01 -0.10 0.00 0.12 0.06 0.05 -0.06 -0.15 0.01 -0.03 0.07 0.09 -0.01 0.01 -0.07 -0.01 0.07
f TSdfrac3 -0.02 -0.09 0.13 0.08 0.09 0.06 -0.08 0.11 -0.10 0.14 -0.17 -0.08 -0.13 -0.07 0.02 0.05 -0.05
f TSdfrac4 0.00 0.08 -0.10 -0.05 -0.11 0.00 -0.02 0.04 0.09 -0.03 0.09 0.06 0.13 0.02 0.08 -0.08 -0.01
f TSdfrac5 -0.01 0.00 -0.02 0.09 -0.10 0.03 -0.05 -0.11 -0.07 -0.04 -0.01 0.01 0.06 0.11 -0.07 -0.07 0.00

mean vit S 0.28 0.28 0.18 0.12 -0.07 0.10 0.01 0.18 -0.11 0.01 -0.04 -0.06 0.03 0.10 -0.04 -0.01 0.02
mean vit dfrac1 -0.06 0.07 0.12 0.11 -0.03 0.19 -0.09 0.12 0.10 -0.09 -0.03 0.04 -0.02 0.10 -0.02 0.07 0.11
mean vit dfrac2 0.15 0.12 0.24 0.25 -0.01 0.08 -0.01 -0.03 -0.06 -0.03 0.00 -0.02 0.15 -0.13 -0.02 0.01 0.03
mean vit dfrac3 0.23 0.19 0.26 0.14 0.00 0.08 -0.04 0.22 -0.20 0.02 -0.04 -0.04 -0.05 0.08 0.00 -0.05 0.03
mean vit dfrac4 0.23 0.24 0.17 0.09 -0.06 0.08 0.03 0.12 -0.09 0.04 -0.02 -0.05 0.03 0.12 -0.02 0.01 0.02
mean vit dfrac5 -0.02 0.06 0.05 0.09 -0.09 0.04 -0.09 -0.15 -0.01 0.00 0.03 0.00 0.04 0.13 -0.10 -0.09 -0.04

mean prod 0.10 0.03 -0.14 0.00 -0.02 0.19 0.12 0.17 -0.12 0.05 -0.16 0.10 -0.01 0.11 0.05 0.05 0.02
min prod -0.14 -0.13 -0.04 0.16 0.08 -0.02 -0.02 -0.01 -0.09 0.19 -0.17 0.00 0.13 0.00 -0.03 0.05 -0.14
max B -0.13 -0.01 0.09 -0.11 0.20 0.23 0.06 0.01 -0.01 0.01 -0.08 -0.02 -0.02 -0.07 -0.03 0.05 -0.01

relative orrelation stre 0.26 0.25 0.25 0.23 0.21 0.24 0.23 0.22 0.21 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P a r a m e te r s

Calibration 
scenario No 

Grazing, 
parameters 
independent 

(Ngi), N = 105, 
Filter: P1 P2 P4 

P5
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Tab. II.3: Sensitivity analysis of calibration scenario No grazing, grouped parameters 
Shown are descriptive statistics and significant correlations between independent parameters and model 
variables of the calibration scenario No grazing, parameters grouped (NGg). Definition of parameter and 
process abbreviations see Tab. 2.3. Definition of variables are given in Tab. 2.2. Shown are significant 
correlation ± 0.179 (N = 122). Parameter groups are ranked after relative correlation strength (rcs). 

 

Tab. II.3: continued: 
Process and sub-

process CO    CO W GR GR T PG PG 
W

WR WR 
O PF VD   

VD D
MO MO 

D

ColWS0, ColS0p, 
ColWS1, ColWS2 Gshape MMconst WredO Pfmax, 

Pfinc
VdecG, 
VdecGp

MortG. 
MortGp

Variables CO.1 CO.2 CO.3 
CO.4 GR.4 PG.3 WR.2 PF.1 

PF.2
VD.5 
VD.6

MO.5 
MO.6

Td S -0.13 0.03 0.11 0.04 0.19 -0.11

Min cov F -0.06 0.12 0.04 -0.03 0.17 -0.12 -0.01

Mean prod 0.20 -0.19 -0.27 0.03 -0.14 0.13 0.05

Mean gb S 0.01 -0.15 0.03 -0.14 0.09 -0.05 -0.01

Mean gb P 0.05 -0.16 -0.05 -0.12 0.05 -0.02 0.00

dfrac -0.02 0.04 -0.01 0.07 0.03 0.02 -0.01

f Tdfrac 1 -0.12 -0.01 -0.06 -0.07 0.05 -0.02 0.13

f Tdfrac 2 0.10 -0.02 0.07 0.21 -0.06 0.10 0.03

f Tdfra c3 0.06 -0.07 0.05 -0.17 -0.03 -0.05 -0.15

f Tdfra c4 0.03 0.13 -0.07 0.11 0.06 0.05 0.07

f Tdfra c5 -0.17 -0.03 -0.06 0.04 0.01 0.02 0.08

mean vit 0.02 -0.21 0.01 0.07 -0.01 -0.11 -0.04

mean vit dfrac 1 0.00 -0.16 0.02 -0.02 0.09 -0.08 0.00

mean vit dfrac 2 -0.04 -0.13 -0.07 -0.06 0.10 -0.16 0.03

mean vit dfrac 3 0.03 -0.18 -0.03 0.01 0.00 -0.08 -0.08

mean vit dfrac 4 0.02 -0.21 0.01 0.09 -0.01 -0.09 -0.07

mean vit dfrac 5 -0.16 -0.04 -0.06 0.05 0.01 0.02 0.09

mean ANPP 0.21 -0.08 -0.13 0.04 0.03 0.07 0.01
min ANPP 0.00 0.06 -0.05 -0.01 0.12 -0.06 0.01
max ANPP 0.28 -0.12 -0.18 0.09 -0.06 0.16 0.03

ANPP -0.02 0.00 -0.05 0.06 0.09 0.01 0.03

B S -0.06 -0.10 0.06 -0.10 0.17 -0.08 -0.03

max B 0.12 -0.14 0.04 -0.13 0.12 -0.02 -0.02
rcs 0.04 0.02 0.02 0.01 0.01 0.00 0.00

Included parameters

SEN/L
IT 

SEN

SEN/LI
T LIT

MO 
MO W

PG PG 
V

WR 
WR L

VD    
VD W

CO    
CO D WI       -

SEN LIT

MortW1, 
MortW2, 
Mortp1, 
Mortp2,

ProdV1, 
PodincV2-

4
WredT

VincW1, 
VincW2, 
VdecW1, 
VdecW2

ColS0Cov, 
ColS12p PUE

Variables Min
lower  

confide
nce

Median
upper 

confide
nce

Max Mean SD CV PG.4 PG.5

MO.1 
MO.2 
MO.3 
MO.4

PG.1 
PG.2 WR.1

VD.1 
VD.2 
VD.3 
VD.4 

CO.5  
CO.6 WI.1

Td S 0.70 1.28 3.56 4.77 5.12 3.29 1.31 40 -0.02 0.01 0.01 -0.02 0.09 -0.05 -0.04 0.19

Min cov F 0.39 0.61 1.12 2.46 3.51 1.33 0.74 55 -0.25 -0.06 -0.34 -0.11 0.10 0.10 0.20 -0.07

Mean prod 6.74 8.60 11.24 15.34 17.75 11.61 2.65 23 0.00 -0.01 0.45 0.80 0.09 -0.13 -0.03 0.31

Mean gb S 2.68 5.50 16.27 42.21 58.99 19.92 14.45 73 -0.94 -0.75 0.04 0.12 0.25 -0.08 0.26 0.06

Mean gb P 9.77 16.12 28.92 56.19 79.25 32.47 15.47 48 -0.86 -0.68 0.12 0.27 0.26 -0.09 0.24 0.09

dfrac 0.39 0.44 0.50 0.54 0.61 0.49 0.05 9 0.13 -0.04 0.04 0.04 0.26 0.16 0.01 -0.09

f Tdfrac 1 0.00 0.09 0.13 0.26 0.34 0.15 0.07 49 -0.31 -0.40 -0.11 -0.05 -0.18 -0.13 -0.05 0.03

f Tdfrac 2 0.04 0.07 0.15 0.22 0.31 0.15 0.06 42 0.41 0.21 0.14 0.12 -0.16 0.08 -0.37 0.15

f Tdfra c3 0.04 0.13 0.22 0.37 0.62 0.24 0.11 45 -0.25 0.15 -0.15 -0.13 0.09 0.01 0.26 -0.06

f Tdfra c4 0.10 0.33 0.49 0.58 0.60 0.46 0.11 23 0.24 0.05 0.16 0.07 0.09 0.08 0.03 0.02

f Tdfra c5 0.00 0.00 0.00 0.00 0.08 0.00 0.02 366 0.04 -0.29 -0.09 0.12 0.08 0.19 -0.30 -0.12

mean vit 1.00 1.00 1.60 1.90 2.67 1.47 0.45 30 -0.16 -0.02 0.74 -0.13 0.28 -0.58 0.10 0.10

mean vit dfrac 1 1.00 1.00 1.00 1.00 1.14 1.00 0.02 2 -0.29 -0.18 0.33 -0.20 0.22 -0.21 0.03 0.04

mean vit dfrac 2 1.00 1.00 1.00 1.43 3.00 1.18 0.47 40 -0.54 -0.39 0.22 -0.23 0.27 -0.31 0.09 -0.04

mean vit dfrac 3 1.00 1.00 1.58 2.45 3.00 1.63 0.64 39 -0.23 -0.07 0.67 -0.19 0.24 -0.61 0.09 0.09

mean vit dfrac 4 1.00 1.00 1.87 2.05 3.00 1.62 0.57 35 -0.11 -0.03 0.74 -0.12 0.22 -0.63 0.03 0.13

mean vit dfrac 5 0.00 0.00 0.00 0.00 2.00 0.11 0.35 317 0.04 -0.28 -0.09 0.12 0.08 0.20 -0.30 -0.10

mean ANPP 198 319 482 741 1006 518 179 35 0.02 0.12 0.18 0.56 -0.16 -0.19 0.07 0.41
min ANPP 45 83 145 268 502 171 95 55 -0.16 0.00 -0.14 0.23 0.13 0.06 0.13 0.08
max ANPP 629 784 1141 1636 2459 1220 394 32 0.08 0.10 0.28 0.68 -0.31 -0.26 0.02 0.49

ANPP 65 164 439 682 912 430 200 46 0.15 0.14 0.18 0.38 0.10 0.03 -0.09 0.33

B S 40 132 473 1434 2751 656 573 87 -0.77 -0.60 0.03 0.09 0.27 -0.07 0.20 0.13

max B 309 561 1495 3235 5764 1793 1194 67 -0.86 -0.67 0.01 0.20 0.00 -0.16 0.26 0.24
Relative rank correlation (rcs , not all variables listed) 0.25 0.19 0.17 0.15 0.14 0.13 0.11 0.10

Median, upper and 
lower median 

confidence (99%) level

Included parameters

Calibration scenario No Grazing, 15 parameter groups 
(NGg): N = 122, Filter: P1 p2 p4 p5

Process and 
sub-process

Descriptive statistics 
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Tab. II.4: Sensitivity analysis of calibration scenario Grazing, independent parameters, less correlated 
parameters. 
Shown are those parameters with low mean relative correlation strength (rcs). Definition of parameter 
and process abbreviations see Tab. 2.3. Definition of variables are given in Tab. 2.2. Shown are 
significant correlation ± 0.12 (N = 250). 

 

Scenario Gi 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Process MO PF VD CO GR MO VD CO PF MO CO CO CO PG VD WR CO VD MO MO MO

Sub-process MO W - VD D CO W GR T MO W VD W CO W - MO D CO D CO W CO W PG V VD D WR O CO D VD W MO W MO W MO D

MortW1 PFmax VdecG ColWS0 Gshape MortWp
1

VdecW
1 ColS0p PFinc MortGp ColS0C

ov ColWS2 ColWS1 MMcon
st VdecGp WredO ColS12

p VIncW1 MortW2 MortWp
2 MortG

Variables MO.1 PF.1 VD.5 CO.1 GR.4 MO.3 VD.3 CO.2 PF.2 MO.6 CO.5 CO.4 CO.3 PG.3 VD.6 WR.2 CO.6 VD.1 MO.2 MO.4 MO.5

Td S

Min cov F 0.13 -0.12
Mean prod 0.17 -0.13 -0.14
Mean gb S -0.13
Mean gb P -0.14

dfrac
f Tdfrac 1 -0.17 -0.14
f Tdfrac 2

f Tdfra c3

f Tdfra c4 -0.14 -0.12
f Tdfra c5

mean vit 0.22 -0.20 -0.19 0.15 0.12
mean vit dfrac 1 0.20 -0.21 -0.25 0.15 0.12 0.12
mean vit dfrac 2 0.20 -0.21 -0.24 0.16 0.14
mean vit dfrac 3 0.23 -0.15 0.13
mean vit dfrac 4 -0.14
mean vit dfrac 5

mean ANPP -0.15 -0.16 -0.13 0.14
min ANPP -0.13 -0.18 0.14

max ANPP -0.20

ANPP -0.13 -0.12
B S -0.15

max B 0.12
Relative correlation 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

f TG -0.14 0.36
cov EL 0.17
cov ES 0.13

mean PUE
C -0.14 -0.12 -0.18

Mean C -0.15 -0.12 -0.18
Mreal -0.13 -0.13

P a r a m e t e r s (1st row: names of Chapter 4, 2nd row: as in other chapters)
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Tab. II. 5 Sensitivity analysis of calibration scenario Grazing grouped parameters. 
Shown are descriptive statistics and significant correlations between independent parameters and model 
variables of the calibration scenario Grazing, parameters grouped (Gg). Definition of parameter and 
process abbreviations see Tab. 2.3. Definition of variables are given in Tab. 2.2. Shown are significant 
correlation ± 0.089 (N = 527). Parameter groups are ranked after relative correlation strength (rcs). 

 
Tab. II.5 continued 
 

Proces
s, sub-
proces

s

GR 
GR M

PG PG 
V

SEN/
LIT 

SEN

WR 
WR L

VD    VD 
W

MO MO 
W

WI   
-

SEN/
LIT 
LIT

CO    
CO W

Stock
ProdV1, 

PodincV2-
4

SEN WredT

VincW1, 
VincW2, 
VdecW1, 
VdecW2

MortW1, 
MortW2, 
Mortp1, 
Mortp2,

PUE LIT

ColWS0, 
ColS0p, 
ColWS1, 
ColWS2

Variables Min
lower  

confide
nce

Median
upper 

confide
nce

Max Mean SD CV GR.1 PG.1 
PG.2 PG.4 WR.1 VD.1 VD.2 

VD.3 VD.4 
MO.1 MO.2 
MO.3 MO.4 WI.1 PG.5

CO.1 
CO.2 
CO.3 
CO.4 

Td S 0.46 1.93 3.72 4.47 4.59 3.49 0.85 24.4 0.57 -0.13 0.03 0.20 -0.11 -0.17 0.11 0.06 -0.07

Mean gb P 10.85 13.11 17.87 21.90 22.64 17.71 2.88 16.3 0.50 0.61 0.35 0.24 -0.16 0.15 -0.12 0.01 0.02

Mean gb S 10.80 11.14 13.59 19.63 22.68 14.29 2.75 19.3 0.09 0.27 -0.50 0.12 0.01 0.09 -0.02 0.12 -0.04

dfrac 0.29 0.32 0.36 0.40 0.49 0.36 0.03 7.6 0.00 0.19 0.42 0.01 0.12 -0.04 0.04 -0.07 -0.05

f Tdfrac 1 0.03 0.03 0.06 0.18 0.43 0.08 0.05 65.2 0.00 0.03 0.13 -0.12 -0.14 0.17 0.10 -0.02 -0.08

f Tdfrac 2 0.10 0.33 0.52 0.71 0.74 0.52 0.13 24.6 0.06 -0.28 -0.58 0.14 -0.06 -0.09 -0.15 0.06 0.15

f Tdfra c3 0.10 0.21 0.41 0.57 0.60 0.40 0.12 29.4 -0.05 0.24 0.51 -0.07 0.10 0.00 0.09 0.00 -0.08

f Tdfra c4 0.00 0.00 0.00 0.00 0.29 0.01 0.04 613.2 -0.10 0.13 0.11 -0.16 0.07 0.14 0.17 -0.34 -0.19

mean vit 1.00 1.55 2.78 3.27 3.66 2.62 0.54 20.5 0.36 -0.30 0.13 0.20 -0.53 0.42 -0.20 0.08 0.16

mean vit dfrac 1 1.00 1.02 2.54 3.25 3.55 2.35 0.69 29.3 0.33 -0.30 0.06 0.24 -0.49 0.32 -0.25 0.15 0.20

mean vit dfrac 2 1.00 1.31 2.77 3.29 3.68 2.60 0.58 22.4 0.37 -0.30 0.10 0.18 -0.52 0.42 -0.19 0.07 0.14

mean vit dfrac 3 1.00 1.63 2.85 3.28 3.99 2.71 0.52 19.2 0.35 -0.28 0.17 0.17 -0.53 0.45 -0.16 0.03 0.14

mean vit dfrac 4 0.00 0.00 0.00 2.00 3.00 0.19 0.66 355.0 0.01 0.13 0.11 -0.10 0.05 0.10 0.13 -0.39 -0.16

mean prod 243 479 800 1086 1720 802 193.5 24.1 0.74 0.38 0.23 0.08 -0.31 -0.08 0.12 0.03 -0.03

min prod 59 230 548 793 922 535 172.6 32.3 0.79 0.18 0.21 0.38 -0.27 -0.04 -0.09 0.10 0.02

max B 496 698 932 1484 3274 994 299.2 30.1 0.07 0.36 -0.55 -0.38 -0.11 -0.05 0.30 -0.21 -0.11
Relative correlation strength (rcs , not all variables listed) 0.30 0.26 0.22 0.20 0.17 0.14 0.12 0.09 0.08

Median, upper and lower 
median confidence (99%) 

level

Calibration scenario Grazing 16 parameter groups (Gg), N = 542 
Filter: P1 P3 P4 P5

Included parametersDescriptive statistics

Process, sub-
process

VD   VD 
D

GR GR 
T

PG PG 
W PF CO    CO 

D
MO MO 

D
WR 

WR O

VdecG, 
VdecGp Gshape MMconst Pfmax, 

Pfinc
ColS0Cov, 
ColS12p

MortG. 
MortGp WredO

Variables VD.5 VD.6 GR.4 PG.3 PF.1 PF.2 CO.5  CO.6 MO.5 
MO.6 WR.2

TdS(t = 100) 0.10 0.05 0.05 -0.11 -0.07 -0.05 0.01

TB P 0.07 -0.10 0.00 -0.02 -0.06 -0.03 0.02

TB S 0.01 0.05 0.06 0.02 -0.05 -0.01 0.07

dfracS -0.15 -0.07 -0.02 -0.03 0.00 -0.04 -0.01

f T Sdfrac1 0.16 -0.08 0.00 -0.01 -0.03 0.06 0.00

f T Sdfrac2 0.07 0.11 0.02 0.05 0.02 0.02 -0.02

f T Sdfrac3 -0.13 -0.11 -0.02 -0.04 0.00 -0.05 0.03

f T Sdfrac4 0.03 0.09 0.01 -0.02 0.00 0.04 -0.07

mean vitS -0.06 0.05 0.10 -0.06 -0.05 0.00 0.07

mean vitdfrac1 -0.12 -0.12 0.09 -0.04 -0.09 0.00 0.08

mean vitdfrac2 -0.08 0.05 0.10 -0.07 -0.05 0.01 0.07

mean vitdfrac3 0.01 0.16 0.10 -0.05 -0.01 0.02 0.05

mean vitdfrac4 0.00 0.06 0.00 -0.03 0.04 0.05 -0.03

mean prod 0.16 -0.03 0.05 -0.10 -0.08 -0.10 0.04

min prod 0.17 -0.05 0.05 -0.08 -0.10 -0.08 0.02

max B 0.09 0.00 0.04 -0.01 -0.01 -0.05 0.01

rcs 0.06 0.04 0.02 0.02 0.01 0.00 0.00

Included parameters
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Tab. II. 6: Correlations of parameters for all calibration scenarios. 
Shown are all correlations between the independent parameters of the simulation model for all four 
calibration scenarios: A) No grazing, parameters independent (NGi), N = 105, significance level 
(p<0.05) = ±0.19; B); No grazing, parameters grouped (NGg), N = 122, significance level 
(p<0.05) = ±0.179; C) Grazing, parameters independent (Gi), N = 250, significance level 
(p<0.05) = ±0.12; D) Grazing, parameters grouped (Gg), N = 527, significance level (p<0.05) = ±0.089. 
Definition of parameter and process abbreviations see Tab. 2.3. Definition of variables are given in 
Tab. 2.2. Shown are significant correlation ± 0.179 (N = 122).  

Tab. II.6 A 

 
 

PUE WredT WredO ProdV1 Prodinc
V2-4

MMcon
st SEN LIT Gshape ColWS0 ColS0p ColWS1 ColWS2 ColS0C

ov ColS12p

WI.1 WR.1 WR.2 PG.1 PG.2 PG.3 PG.4 PG.5 GR.4 CO.1 CO.2 CO.3 CO.4 CO.5 CO.6
PUE WI.1 1.00 -0.31 -0.03 -0.03 -0.01 0.13 -0.11 -0.12 -0.03 0.38 -0.07 0.17 0.14 0.17 0.03
WredT WR.1 -0.31 1.00 0.03 0.06 0.04 -0.12 0.07 0.16 -0.03 -0.05 -0.04 -0.16 -0.03 -0.17 -0.08
WredO WR.2 -0.03 0.03 1.00 -0.05 0.15 0.04 -0.05 -0.01 -0.08 0.14 0.00 -0.02 0.21 0.08 -0.02
ProdV1 PG.1 -0.03 0.06 -0.05 1.00 0.16 0.02 0.10 0.12 -0.16 0.09 0.04 0.09 0.07 -0.03 -0.06
ProdincV2-4 PG.2 -0.01 0.04 0.15 0.16 1.00 0.12 -0.03 -0.02 0.12 0.02 -0.08 -0.01 0.07 0.04 -0.01
MMconst PG.3 0.13 -0.12 0.04 0.02 0.12 1.00 -0.05 -0.13 -0.10 0.16 0.08 0.00 0.11 -0.09 -0.01
SEN PG.4 -0.11 0.07 -0.05 0.10 -0.03 -0.05 1.00 0.86 0.05 -0.18 -0.03 0.03 0.07 0.12 0.06
LIT PG.5 -0.12 0.16 -0.01 0.12 -0.02 -0.13 0.86 1.00 0.02 -0.06 -0.25 0.03 0.03 0.20 0.03
Gshape GR.4 -0.03 -0.03 -0.08 -0.16 0.12 -0.10 0.05 0.02 1.00 -0.15 -0.02 -0.02 -0.07 0.04 0.05
ColWS0 CO.1 0.38 -0.05 0.14 0.09 0.02 0.16 -0.18 -0.06 -0.15 1.00 -0.04 -0.01 0.06 0.09 0.00
ColS0p CO.2 -0.07 -0.04 0.00 0.04 -0.08 0.08 -0.03 -0.25 -0.02 -0.04 1.00 0.04 0.05 0.06 -0.26
ColWS1 CO.3 0.17 -0.16 -0.02 0.09 -0.01 0.00 0.03 0.03 -0.02 -0.01 0.04 1.00 0.17 0.01 0.08
ColWS2 CO.4 0.14 -0.03 0.21 0.07 0.07 0.11 0.07 0.03 -0.07 0.06 0.05 0.17 1.00 0.07 -0.14
ColS0Cov CO.5 0.17 -0.17 0.08 -0.03 0.04 -0.09 0.12 0.20 0.04 0.09 0.06 0.01 0.07 1.00 0.01
ColS12p CO.6 0.03 -0.08 -0.02 -0.06 -0.01 -0.01 0.06 0.03 0.05 0.00 -0.26 0.08 -0.14 0.01 1.00
VIncW1 VD.1 0.02 -0.13 0.07 0.09 0.08 0.01 0.00 -0.08 0.05 0.00 0.02 0.19 -0.12 -0.04 0.05
VincW2 VD.2 0.25 0.02 -0.08 -0.17 0.00 0.07 -0.18 -0.27 0.08 0.10 -0.05 -0.13 -0.10 -0.18 -0.02
VdecW2 VD.4 0.05 -0.03 0.09 0.10 0.01 0.11 0.02 0.09 -0.23 0.08 -0.20 0.02 -0.07 -0.14 0.06
VdecW1 VD.3 0.30 0.31 -0.09 0.10 -0.11 -0.06 0.09 0.07 0.03 -0.01 -0.03 -0.02 0.06 -0.06 0.07
VdecG VD.5 0.06 -0.01 0.02 0.22 -0.06 0.13 -0.20 -0.18 -0.09 0.18 0.04 0.06 0.12 -0.11 0.03
VdecGp VD.6 0.13 0.18 0.19 -0.16 -0.11 0.04 -0.15 -0.11 0.04 0.10 0.03 0.01 0.15 -0.12 -0.04
MortW1 MO.1 0.18 0.26 -0.13 -0.13 0.01 0.02 0.19 0.21 0.06 -0.04 0.05 0.03 -0.06 0.10 -0.05
MortW2 MO.2 0.08 -0.03 -0.10 0.05 -0.07 -0.11 -0.04 -0.10 0.07 -0.05 0.08 -0.09 0.03 -0.16 0.06
MortWp1 MO.3 0.15 0.08 -0.19 0.06 -0.16 -0.10 0.26 0.28 0.09 -0.16 -0.08 0.01 -0.01 0.17 0.06
MortWp2 MO.4 0.12 -0.07 -0.09 0.10 0.01 -0.02 0.11 0.02 0.00 0.16 0.00 -0.06 0.10 0.01 0.01
MortG MO.5 -0.03 -0.02 0.08 -0.05 0.06 -0.07 0.06 0.04 0.07 -0.06 0.05 0.03 -0.08 0.18 -0.02
MortGp MO.6 -0.05 -0.06 0.00 0.08 -0.03 0.04 -0.04 -0.01 0.05 0.04 -0.06 0.16 0.10 0.07 0.09
PFinc PF.2 -0.08 0.10 0.07 0.17 0.01 0.01 0.12 0.15 -0.02 -0.05 0.02 -0.02 0.00 0.04 -0.15
PFmax PF.1 0.20 -0.03 -0.17 -0.04 0.09 0.09 0.05 0.11 0.15 0.02 0.00 0.04 0.01 0.01 -0.07

Parameter 
correlations 
(calibration scenario 
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Tab. II.6 A continued 
 

 
Tab. II.6 B 

 
 
 

VIncW1 VincW2 VdecW2 VdecW1 VdecG VdecGp MortW1 MortW2 MortWp
1

MortWp
2 MortG MortGp PFinc PFmax

VD.1 VD.2 VD.4 VD.3 VD.5 VD.6 MO.1 MO.2 MO.3 MO.4 MO.5 MO.6 PF.2 PF.1
PUE WI.1 0.02 0.25 0.05 0.30 0.06 0.13 0.18 0.08 0.15 0.12 -0.03 -0.05 -0.08 0.20
WredT WR.1 -0.13 0.02 -0.03 0.31 -0.01 0.18 0.26 -0.03 0.08 -0.07 -0.02 -0.06 0.10 -0.03
WredO WR.2 0.07 -0.08 0.09 -0.09 0.02 0.19 -0.13 -0.10 -0.19 -0.09 0.08 0.00 0.07 -0.17
ProdV1 PG.1 0.09 -0.17 0.10 0.10 0.22 -0.16 -0.13 0.05 0.06 0.10 -0.05 0.08 0.17 -0.04
ProdincV2-4 PG.2 0.08 0.00 0.01 -0.11 -0.06 -0.11 0.01 -0.07 -0.16 0.01 0.06 -0.03 0.01 0.09
MMconst PG.3 0.01 0.07 0.11 -0.06 0.13 0.04 0.02 -0.11 -0.10 -0.02 -0.07 0.04 0.01 0.09
SEN PG.4 0.00 -0.18 0.02 0.09 -0.20 -0.15 0.19 -0.04 0.26 0.11 0.06 -0.04 0.12 0.05
LIT PG.5 -0.08 -0.27 0.09 0.07 -0.18 -0.11 0.21 -0.10 0.28 0.02 0.04 -0.01 0.15 0.11
Gshape GR.4 0.05 0.08 -0.23 0.03 -0.09 0.04 0.06 0.07 0.09 0.00 0.07 0.05 -0.02 0.15
ColWS0 CO.1 0.00 0.10 0.08 -0.01 0.18 0.10 -0.04 -0.05 -0.16 0.16 -0.06 0.04 -0.05 0.02
ColS0p CO.2 0.02 -0.05 -0.20 -0.03 0.04 0.03 0.05 0.08 -0.08 0.00 0.05 -0.06 0.02 0.00
ColWS1 CO.3 0.19 -0.13 0.02 -0.02 0.06 0.01 0.03 -0.09 0.01 -0.06 0.03 0.16 -0.02 0.04
ColWS2 CO.4 -0.12 -0.10 -0.07 0.06 0.12 0.15 -0.06 0.03 -0.01 0.10 -0.08 0.10 0.00 0.01
ColS0Cov CO.5 -0.04 -0.18 -0.14 -0.06 -0.11 -0.12 0.10 -0.16 0.17 0.01 0.18 0.07 0.04 0.01
ColS12p CO.6 0.05 -0.02 0.06 0.07 0.03 -0.04 -0.05 0.06 0.06 0.01 -0.02 0.09 -0.15 -0.07
VIncW1 VD.1 1.00 -0.08 0.14 -0.24 -0.04 -0.19 -0.06 -0.04 -0.01 0.05 0.03 -0.03 0.10 -0.13
VincW2 VD.2 -0.08 1.00 0.08 0.04 0.11 0.03 -0.13 0.11 -0.16 0.01 0.07 -0.03 -0.29 0.03
VdecW2 VD.4 0.14 0.08 1.00 -0.01 -0.03 -0.09 -0.18 -0.10 -0.06 -0.03 -0.08 -0.11 -0.08 -0.07
VdecW1 VD.3 -0.24 0.04 -0.01 1.00 0.06 0.36 0.05 0.08 0.02 0.06 -0.09 -0.06 0.05 0.24
VdecG VD.5 -0.04 0.11 -0.03 0.06 1.00 0.03 -0.04 0.09 -0.22 0.06 -0.02 0.03 -0.01 -0.10
VdecGp VD.6 -0.19 0.03 -0.09 0.36 0.03 1.00 0.06 -0.09 -0.09 0.16 -0.01 -0.03 0.00 0.11
MortW1 MO.1 -0.06 -0.13 -0.18 0.05 -0.04 0.06 1.00 -0.27 0.12 -0.25 0.07 0.00 0.27 0.00
MortW2 MO.2 -0.04 0.11 -0.10 0.08 0.09 -0.09 -0.27 1.00 0.04 0.10 -0.14 -0.06 -0.10 -0.02
MortWp1 MO.3 -0.01 -0.16 -0.06 0.02 -0.22 -0.09 0.12 0.04 1.00 -0.13 -0.09 -0.13 -0.09 0.17
MortWp2 MO.4 0.05 0.01 -0.03 0.06 0.06 0.16 -0.25 0.10 -0.13 1.00 -0.05 0.03 0.02 0.04
MortG MO.5 0.03 0.07 -0.08 -0.09 -0.02 -0.01 0.07 -0.14 -0.09 -0.05 1.00 0.06 0.07 -0.07
MortGp MO.6 -0.03 -0.03 -0.11 -0.06 0.03 -0.03 0.00 -0.06 -0.13 0.03 0.06 1.00 0.12 -0.03
PFinc PF.2 0.10 -0.29 -0.08 0.05 -0.01 0.00 0.27 -0.10 -0.09 0.02 0.07 0.12 1.00 -0.09
PFmax PF.1 -0.13 0.03 -0.07 0.24 -0.10 0.11 0.00 -0.02 0.17 0.04 -0.07 -0.03 -0.09 1.00

Parameter 
correlations 
(calibration scenario 

Process 
and sub-
process

WI       - WR WR 
L

WR WR 
O PG PG V PG PG 

W
SEN/LIT 

SEN
G        G 

T
CO    CO 

W
CO    CO 

G
VD    VD 

W
VD   VD 

D
MO MO 

W
MO MO 

G PF SEN/LIT 
LIT

Calibration 
scanario NGg

WUE WredT WredO
ProdV1, 

PodincV2-
4

MMconst SEN Gshape

ColWS0, 
ColS0p, 
ColWS1, 
ColWS2

ColS0Co
v, 

ColS12p

VincW1, 
VincW2, 
VdecW1, 
VdecW2

VdecG, 
VdecGp

MortW1, 
MortW2, 
Mortp1, 
Mortp2,

MortG. 
MortGp

Pfmax, 
Pfinc LIT

Process and 
sub-process WI.1 WR.1 WR.2 PG.1 

PG.2 PG.3 PG.4 GR.4

CO.1 
CO.2 
CO.3 
CO.4 

CO.5  
CO.6

VD.1 
VD.2 
VD.3 
VD.4 

VD.5 
VD.6

MO.1 
MO.2 
MO.3 
MO.4

MO.5 
MO.6

PF.1 
PF.2 PG.5

WI
WUE WI.1 1.00 -0.23 0.10 0.27 0.05 0.04 -0.12 0.54 0.02 0.27 0.13 0.33 0.04 0.04 0.00

WR L
WredT WR.1 -0.23 1.00 -0.06 -0.13 0.00 -0.20 -0.15 -0.29 -0.07 0.24 -0.07 0.40 0.01 -0.03 -0.13

WR O
WredO WR.2 0.10 -0.06 1.00 -0.03 0.02 0.18 0.01 0.02 -0.16 -0.07 -0.14 0.13 -0.02 0.11 0.10

PG V
ProdV1, PodincV2-
4 PG.1 PG.2 0.27 -0.13 -0.03 1.00 -0.12 0.09 -0.04 0.21 -0.08 0.19 0.18 0.02 0.07 -0.11 0.02

PG W
MMconst PG.3 0.05 0.00 0.02 -0.12 1.00 -0.10 0.13 0.06 0.00 0.06 -0.04 -0.02 0.05 0.11 -0.08

SEN/LIT SEN
SEN PG.4 0.04 -0.20 0.18 0.09 -0.10 1.00 0.10 0.06 -0.26 0.00 0.08 0.15 0.02 -0.11 0.82

G T
Gshape GR.4 -0.12 -0.15 0.01 -0.04 0.13 0.10 1.00 -0.02 0.00 0.05 -0.08 -0.19 -0.14 0.07 0.06

CO W
ColWS0, ColS0p, 
ColWS1, ColWS2

CO.1 CO.2 
CO.3 CO.4 0.54 -0.29 0.02 0.21 0.06 0.06 -0.02 1.00 -0.09 0.14 0.17 0.10 -0.12 0.06 0.15

CO G
ColS0Cov, ColS12p CO.5  CO.6 0.02 -0.07 -0.16 -0.08 0.00 -0.26 0.00 -0.09 1.00 -0.11 0.11 -0.12 0.05 -0.13 0.02

VD W
VincW1, VincW2, 
VdecW1, VdecW2

VD.1 VD.2 
VD.3 VD.4 0.27 0.24 -0.07 0.19 0.06 0.00 0.05 0.14 -0.11 1.00 0.08 -0.20 0.08 -0.04 -0.09

VD D
VdecG, VdecGp VD.5 VD.6 0.13 -0.07 -0.14 0.18 -0.04 0.08 -0.08 0.17 0.11 0.08 1.00 0.03 -0.13 0.03 0.04

MO W
MortW1, MortW2, 
Mortp1, Mortp2,

MO.1 MO.2 
MO.3 MO.4 0.33 0.40 0.13 0.02 -0.02 0.15 -0.19 0.10 -0.12 -0.20 0.03 1.00 -0.02 -0.08 0.17

MO G
MortG. MortGp MO.5 MO.6 0.04 0.01 -0.02 0.07 0.05 0.02 -0.14 -0.12 0.05 0.08 -0.13 -0.02 1.00 -0.13 -0.01

PF
Pfmax, Pfinc PF.1 PF.2 0.04 -0.03 0.11 -0.11 0.11 -0.11 0.07 0.06 -0.13 -0.04 0.03 -0.08 -0.13 1.00 -0.13

SEN/LIT LIT
LIT PG.5 0.00 -0.13 0.10 0.02 -0.08 0.82 0.06 0.15 0.02 -0.09 0.04 0.17 -0.01 -0.13 1.00

Included parameters

Correlation of parameters
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Tab. II.6 C 

 
Tab. II.6 C continued 

 
 

Stock PUE WredT WredO ProdV1 Prodinc
V2-4

MMcon
st SEN LIT Gshape ColWS0 ColS0p ColWS1 ColWS2 ColS0C

ov
GR.1 WI.1 WR.1 WR.2 PG.1 PG.2 PG.3 PG.4 PG.5 GR.4 CO.1 CO.2 CO.3 CO.4 CO.5

Stock GR.1 1.00 0.14 0.28 -0.06 0.12 -0.02 0.01 -0.15 -0.55 -0.12 0.03 -0.05 0.03 -0.12 0.02
PUE WI.1 0.14 1.00 -0.38 0.08 -0.08 0.07 -0.05 -0.15 -0.21 0.03 0.08 -0.18 -0.01 0.00 0.08
WredT WR.1 0.28 -0.38 1.00 -0.12 -0.06 -0.04 0.09 0.26 0.12 -0.11 -0.04 0.11 0.06 0.01 -0.09
WredO WR.2 -0.06 0.08 -0.12 1.00 -0.11 0.13 -0.07 -0.04 0.05 0.04 -0.08 0.04 -0.05 0.00 0.11
ProdV1 PG.1 0.12 -0.08 -0.06 -0.11 1.00 -0.20 0.05 0.12 0.02 -0.06 -0.03 -0.06 -0.03 0.02 0.06
ProdincV2-4 PG.2 -0.02 0.07 -0.04 0.13 -0.20 1.00 0.17 0.12 -0.01 0.01 -0.04 -0.10 0.01 0.00 -0.02
MMconst PG.3 0.01 -0.05 0.09 -0.07 0.05 0.17 1.00 -0.06 -0.06 -0.05 0.04 -0.03 0.07 0.00 -0.02
SEN PG.4 -0.15 -0.15 0.26 -0.04 0.12 0.12 -0.06 1.00 0.63 0.17 0.06 -0.04 0.00 0.05 -0.09
LIT PG.5 -0.55 -0.21 0.12 0.05 0.02 -0.01 -0.06 0.63 1.00 0.08 0.07 -0.01 -0.03 0.12 -0.08
Gshape GR.4 -0.12 0.03 -0.11 0.04 -0.06 0.01 -0.05 0.17 0.08 1.00 -0.10 0.03 0.08 0.03 0.03
ColWS0 CO.1 0.03 0.08 -0.04 -0.08 -0.03 -0.04 0.04 0.06 0.07 -0.10 1.00 -0.01 -0.09 0.01 0.06
ColS0p CO.2 -0.05 -0.18 0.11 0.04 -0.06 -0.10 -0.03 -0.04 -0.01 0.03 -0.01 1.00 0.04 -0.04 0.04
ColWS1 CO.3 0.03 -0.01 0.06 -0.05 -0.03 0.01 0.07 0.00 -0.03 0.08 -0.09 0.04 1.00 0.01 0.00
ColWS2 CO.4 -0.12 0.00 0.01 0.00 0.02 0.00 0.00 0.05 0.12 0.03 0.01 -0.04 0.01 1.00 0.13
ColS0Cov CO.5 0.02 0.08 -0.09 0.11 0.06 -0.02 -0.02 -0.09 -0.08 0.03 0.06 0.04 0.00 0.13 1.00
ColS12p CO.6 -0.01 -0.03 0.12 -0.06 -0.03 0.08 -0.06 -0.04 0.02 -0.02 0.11 -0.08 -0.02 0.05 -0.04
VIncW1 VD.1 -0.05 0.01 0.00 -0.02 0.04 0.00 0.02 0.04 0.03 -0.05 -0.03 -0.06 -0.02 0.00 -0.04
VincW2 VD.2 0.02 0.25 0.29 0.05 0.03 0.18 0.07 0.03 -0.09 0.04 -0.05 0.05 -0.07 0.02 0.00
VdecW2 VD.4 -0.01 0.12 0.06 0.02 0.01 0.03 0.06 -0.07 -0.05 0.05 -0.05 0.02 0.01 0.03 0.05
VdecW1 VD.3 -0.16 0.14 0.14 0.03 -0.03 0.07 0.02 0.04 0.12 0.16 -0.06 0.00 0.06 0.04 -0.06
VdecG VD.5 0.04 0.12 0.14 0.03 0.01 0.04 0.09 0.02 0.02 0.10 0.00 0.05 -0.03 0.00 0.05
VdecGp VD.6 0.00 -0.05 0.11 0.00 -0.02 0.00 -0.07 0.10 0.08 0.04 -0.05 0.11 0.02 -0.03 -0.07
MortW1 MO.1 0.07 0.02 0.07 -0.06 -0.01 -0.03 -0.01 0.09 0.02 0.05 0.00 -0.04 -0.02 -0.08 0.09
MortW2 MO.2 -0.03 0.17 0.05 0.03 -0.08 0.09 -0.02 0.08 0.01 0.02 0.04 -0.04 0.09 -0.02 -0.14
MortWp1 MO.3 -0.06 0.06 -0.05 0.14 -0.10 0.11 0.12 0.05 0.00 -0.02 0.08 0.05 -0.01 0.01 0.05
MortWp2 MO.4 -0.05 -0.03 0.02 -0.06 0.01 0.04 0.05 0.05 -0.06 0.09 -0.05 -0.02 0.03 -0.01 0.08
MortG MO.5 -0.01 -0.07 -0.06 0.06 0.14 0.03 0.03 0.01 -0.03 0.08 -0.05 -0.02 0.00 -0.09 -0.02
MortGp MO.6 0.06 0.07 0.02 0.04 -0.01 0.01 0.00 -0.01 -0.01 -0.06 -0.02 0.07 0.09 -0.01 -0.02
PFinc PF.2 0.20 0.01 -0.01 0.16 -0.05 -0.03 0.05 -0.06 -0.02 -0.06 0.02 -0.02 0.02 -0.01 -0.01

Parameter correlations 
(calibration scenario 
Gi)

ColS12p VIncW1 VincW2 VdecW2 VdecW1 VdecG VdecGp MortW1 MortW2 MortWp
1

MortWp
2 MortG MortGp PFinc

CO.6 VD.1 VD.2 VD.4 VD.3 VD.5 VD.6 MO.1 MO.2 MO.3 MO.4 MO.5 MO.6 PF.2
Stock GR.1 -0.01 -0.05 0.02 -0.01 -0.16 0.04 0.00 0.07 -0.03 -0.06 -0.05 -0.01 0.06 0.20
PUE WI.1 -0.03 0.01 0.25 0.12 0.14 0.12 -0.05 0.02 0.17 0.06 -0.03 -0.07 0.07 0.01
WredT WR.1 0.12 0.00 0.29 0.06 0.14 0.14 0.11 0.07 0.05 -0.05 0.02 -0.06 0.02 -0.01
WredO WR.2 -0.06 -0.02 0.05 0.02 0.03 0.03 0.00 -0.06 0.03 0.14 -0.06 0.06 0.04 0.16
ProdV1 PG.1 -0.03 0.04 0.03 0.01 -0.03 0.01 -0.02 -0.01 -0.08 -0.10 0.01 0.14 -0.01 -0.05
ProdincV2-4 PG.2 0.08 0.00 0.18 0.03 0.07 0.04 0.00 -0.03 0.09 0.11 0.04 0.03 0.01 -0.03
MMconst PG.3 -0.06 0.02 0.07 0.06 0.02 0.09 -0.07 -0.01 -0.02 0.12 0.05 0.03 0.00 0.05
SEN PG.4 -0.04 0.04 0.03 -0.07 0.04 0.02 0.10 0.09 0.08 0.05 0.05 0.01 -0.01 -0.06
LIT PG.5 0.02 0.03 -0.09 -0.05 0.12 0.02 0.08 0.02 0.01 0.00 -0.06 -0.03 -0.01 -0.02
Gshape GR.4 -0.02 -0.05 0.04 0.05 0.16 0.10 0.04 0.05 0.02 -0.02 0.09 0.08 -0.06 -0.06
ColWS0 CO.1 0.11 -0.03 -0.05 -0.05 -0.06 0.00 -0.05 0.00 0.04 0.08 -0.05 -0.05 -0.02 0.02
ColS0p CO.2 -0.08 -0.06 0.05 0.02 0.00 0.05 0.11 -0.04 -0.04 0.05 -0.02 -0.02 0.07 -0.02
ColWS1 CO.3 -0.02 -0.02 -0.07 0.01 0.06 -0.03 0.02 -0.02 0.09 -0.01 0.03 0.00 0.09 0.02
ColWS2 CO.4 0.05 0.00 0.02 0.03 0.04 0.00 -0.03 -0.08 -0.02 0.01 -0.01 -0.09 -0.01 -0.01
ColS0Cov CO.5 -0.04 -0.04 0.00 0.05 -0.06 0.05 -0.07 0.09 -0.14 0.05 0.08 -0.02 -0.02 -0.01
ColS12p CO.6 1.00 -0.02 0.09 -0.02 0.13 -0.08 -0.08 -0.01 0.04 0.01 0.08 0.00 0.01 0.01
VIncW1 VD.1 -0.02 1.00 -0.05 0.13 -0.09 -0.06 0.01 -0.04 0.00 0.07 0.01 0.12 0.06 0.03
VincW2 VD.2 0.09 -0.05 1.00 0.01 -0.03 0.03 -0.02 -0.01 0.04 0.06 0.00 -0.02 -0.12 -0.12
VdecW2 VD.4 -0.02 0.13 0.01 1.00 0.04 -0.12 -0.06 0.00 -0.01 0.01 -0.03 0.09 -0.03 0.02
VdecW1 VD.3 0.13 -0.09 -0.03 0.04 1.00 -0.06 -0.04 -0.10 0.15 -0.01 -0.01 -0.06 0.01 0.11
VdecG VD.5 -0.08 -0.06 0.03 -0.12 -0.06 1.00 0.06 -0.12 0.02 -0.01 -0.05 -0.03 0.14 -0.03
VdecGp VD.6 -0.08 0.01 -0.02 -0.06 -0.04 0.06 1.00 0.11 0.02 -0.09 0.01 0.04 0.01 0.00
MortW1 MO.1 -0.01 -0.04 -0.01 0.00 -0.10 -0.12 0.11 1.00 -0.24 -0.11 -0.15 -0.02 -0.02 -0.06
MortW2 MO.2 0.04 0.00 0.04 -0.01 0.15 0.02 0.02 -0.24 1.00 -0.02 0.07 0.08 -0.02 -0.01
MortWp1 MO.3 0.01 0.07 0.06 0.01 -0.01 -0.01 -0.09 -0.11 -0.02 1.00 -0.07 0.04 -0.08 -0.02
MortWp2 MO.4 0.08 0.01 0.00 -0.03 -0.01 -0.05 0.01 -0.15 0.07 -0.07 1.00 0.07 -0.13 0.06
MortG MO.5 0.00 0.12 -0.02 0.09 -0.06 -0.03 0.04 -0.02 0.08 0.04 0.07 1.00 -0.07 0.02
MortGp MO.6 0.01 0.06 -0.12 -0.03 0.01 0.14 0.01 -0.02 -0.02 -0.08 -0.13 -0.07 1.00 0.03
PFinc PF.2 0.01 0.03 -0.12 0.02 0.11 -0.03 0.00 -0.06 -0.01 -0.02 0.06 0.02 0.03 1.00

Parameter correlations 
(calibration scenario 
Gi)
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Tab. II.6 D 

 
 

Process and 
sub-process GR WI       - WR WR 

L
WR WR 

O PG PG V PG PG 
W

SEN/LIT 
SEN

G        G 
T

CO    CO 
W

CO    CO 
G

VD    VD 
W

VD   VD 
D

MO MO 
W

MO MO 
G PF SEN/LIT 

LIT

Calibration 
scanario Gg

Stock WUE WredT WredO
ProdV1, 

PodincV2-
4

MMconst SEN Gshape

ColWS0, 
ColS0p, 
ColWS1, 
ColWS2

ColS0Co
v, 

ColS12p

VincW1, 
VincW2, 
VdecW1, 
VdecW2

VdecG, 
VdecGp

MortW1, 
MortW2, 
Mortp1, 
Mortp2,

MortG. 
MortGp

Pfmax, 
Pfinc LIT

Process and 
sub-process GR.1 WI.1 WR.1 WR.2 PG.1 

PG.2 PG.3 PG.4 GR.4

CO.1 
CO.2 
CO.3 
CO.4 

CO.5  
CO.6

VD.1 VD.2 
VD.3 VD.4 

VD.5 
VD.6

MO.1 
MO.2 
MO.3 
MO.4

MO.5 
MO.6 PF.1 PF.2 PG.5

GR
Stock GR.1 1.00 0.00 0.25 -0.03 0.16 0.06 0.12 0.07 0.01 -0.02 -0.20 0.07 -0.09 -0.07 0.18 -0.26

WI
WUE WI.1 0.00 1.00 -0.30 0.04 -0.04 -0.01 -0.02 0.05 0.11 0.08 0.33 0.11 0.22 -0.09 -0.06 -0.16

WR L
WredT WR.1 0.25 -0.30 1.00 0.02 -0.11 0.05 0.03 -0.07 -0.01 -0.04 0.42 0.04 0.06 -0.03 0.03 0.12

WR O
WredO WR.2 -0.03 0.04 0.02 1.00 -0.03 0.02 -0.01 -0.03 0.02 -0.02 0.02 -0.04 0.05 -0.03 -0.04 0.05

PG V
ProdV1, PodincV2-4 PG.1 PG.2 0.16 -0.04 -0.11 -0.03 1.00 0.15 0.22 -0.03 -0.16 -0.03 0.14 -0.10 -0.16 0.02 -0.05 -0.03

PG W
MMconst PG.3 0.06 -0.01 0.05 0.02 0.15 1.00 -0.05 0.00 -0.05 0.05 -0.05 -0.03 0.05 0.02 -0.05 0.00

SEN/LIT SEN
SEN PG.4 0.12 -0.02 0.03 -0.01 0.22 -0.05 1.00 0.18 0.03 0.01 -0.07 0.01 0.06 -0.01 -0.01 0.25

G T
Gshape GR.4 0.07 0.05 -0.07 -0.03 -0.03 0.00 0.18 1.00 -0.04 0.14 0.04 -0.01 0.11 0.00 0.01 -0.12

CO W
ColWS0, ColS0p, 
ColWS1, ColWS2

CO.1 CO.2 
CO.3 CO.4 0.01 0.11 -0.01 0.02 -0.16 -0.05 0.03 -0.04 1.00 -0.07 -0.05 -0.05 -0.08 0.01 0.07 0.13

CO G
ColS0Cov, ColS12p CO.5  CO.6 -0.02 0.08 -0.04 -0.02 -0.03 0.05 0.01 0.14 -0.07 1.00 0.07 -0.04 0.08 0.01 0.04 -0.04

VD W
VincW1, VincW2, 
VdecW1, VdecW2

VD.1 VD.2 
VD.3 VD.4 -0.20 0.33 0.42 0.02 0.14 -0.05 -0.07 0.04 -0.05 0.07 1.00 -0.20 -0.04 -0.05 0.05 -0.03

VD D
VdecG, VdecGp VD.5 VD.6 0.07 0.11 0.04 -0.04 -0.10 -0.03 0.01 -0.01 -0.05 -0.04 -0.20 1.00 0.04 -0.02 0.05 0.02

MO W
MortW1, MortW2, 
Mortp1, Mortp2,

MO.1 MO.2 
MO.3 MO.4 -0.09 0.22 0.06 0.05 -0.16 0.05 0.06 0.11 -0.08 0.08 -0.04 0.04 1.00 0.19 -0.04 -0.10

MO G
MortG. MortGp MO.5 MO.6 -0.07 -0.09 -0.03 -0.03 0.02 0.02 -0.01 0.00 0.01 0.01 -0.05 -0.02 0.19 1.00 -0.02 0.00

PF
Pfmax, Pfinc PF.1 PF.2 0.18 -0.06 0.03 -0.04 -0.05 -0.05 -0.01 0.01 0.07 0.04 0.05 0.05 -0.04 -0.02 1.00 0.07

SEN/LIT LIT LIT PG.5 -0.26 -0.16 0.12 0.05 -0.03 0.00 0.25 -0.12 0.13 -0.04 -0.03 0.02 -0.10 0.00 0.07 1.00

Correlation of parameters

Included parameters
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Appendix III 
A)      B) 
 

C)      D) 
 

Fig. III.1: Inherent model uncertainty. 
Shown are the CV for some important variables for 20 repetitions of the standard parameterisation and 
one climate: A) Tussock density; B) Mean tussock productivity; C) Mean tussock vitality; D) Mean 
dead biomass fraction. 

 
A)      B) 
Fig. III.2: Effect of 100 different stochastic climate on Cv of response variables. 

I used the standard parameterisation and 100 different stochastic annual rainfalls: A) CV of tussock 
density, B) CV of Mean annual tussock annual productivity. As mean tussock productivity (B) 
increased up to 100 repetitions, it is necessary to include 100 climatic repetitions to estimate the effect 
of climatological uncertainty. 

 
Tab. III.1: Grazing under constant precipitation: Results for the linear and the non-linear fit 
Non linear fit: 

R = 0.96032876 R-sqr. = 0.92223132 Adj. R-sqr. = 0.68892528 
 
Parameter Coefficient Std. Error T P  
min 0.0000 14.8577 0.0000 1.0000  
max 5.7733 0.8313 6.9453 0.0910  
EC50 1.6588 1.7094 0.9704 0.5096  
slope            6.0082 22.1276  0.2715  0.8312 
 
Linear fit: 

R = 0.95955729  R-sqr. = 0.92075019 Adj. R-sqr. = 0.89433358 
 
Parameter Coefficient  Std. Error T P  
y0 6.8672 0.5054 13.5881 0.0009  
a     -2.4676           0.4180  -5.9038  0.0097 
A)     B)    C) 
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Fig. III.3: Correlation between precipitation and tussock distribution over dfrac-classes. 

Shown are correlations between the tussock distribution over dfrac-classes with precipitation for one 
simulation with the standard parameterisation over 100 time steps: A) dfrac-class 1; B) dfrac-class 3; C) 
dfrac-class 4. 

A)      B) 

 
Fig. III.4: Time series for standard parameterisation and additional variables. 

A) Dead biomass fraction dfrac; B) Simulated annual net primary production ANPP. 
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F3 over Precipitation y = 0.003x - 0.6261
R2 = 0.4046
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