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Chapter 1

Introduction

1.1 General background

Analyzing environmental problems, developing sustainable solutions, and providing ap-

propriate aids for management support and policy advice: all these tasks are central

objectives of environmental research. Undoubtedly, modelling and system analysis are

powerful approaches in this field. Models allow environmental effects to be quantified and

predicted, the relative importance of factors to be determined, alternative scenarios to be

simulated, assessed and ranked according to their effect, and so management prioritizing

to be supported. However, there are still some methodological challenges to be mastered:

Firstly, it is neither possible nor useful to start a new research project (e.g. record of

empirical data, experiments, model analyses) for each new case study. Therefore, guide-

lines are needed for solving a certain environmental problem at arbitrary sites. This indi-

cates the urgent need to obtain a comprehensive mechanistic understanding of the factors,

processes and interactions driving the environmental problem and to search for general

principles and other transferable findings. Hence, generalization and theory building are

required. Both, however, are hampered by complexity that is typical for environmental

problems. Therefore, special methods of model building and model analysis are needed

which support generalization and theory building under complexity.

Secondly, decision-makers can only benefit from the advantages of models if they have

1



2 CHAPTER 1. INTRODUCTION

access to an implemented version of the model (e.g. in form of computer programs) or

to any other tool which allows the same conclusions to be drawn as the original model.

Such alternative tools exist (e.g. special indices or rules of thumb). However, a systematic

methodology for the derivation of model-based tools for decision-support is missing.

To develop a universal methodology for using models for theory building and deriving

model-based tools for decision-support is almost impossible. The sources of complexity as

well as the demands from theory and management are specific for the environmental prob-

lem addressed. Therefore, it is useful to follow an alternative problem-oriented approach.

The idea is to start with a particular environmental problem, to develop model-based

methods for supporting theory building and management in this context, and then to

extend what we have learned to other fields. This idea markedly motivated the thesis.

1.2 Subject and aim of the thesis

The thesis addresses the subject of stochastic (1-species) metapopulation persistence in

spatially heterogeneous landscapes. A matter of particular interest is the interplay be-

tween landscape structure, species’ ecology and stochasticity and its effect on metapopula-

tion persistence. The thesis aims at (a) contributing to theory building and management

support in this context by the mean of modeling, (b) developing appropriate methods of

model building and analysis where necessary, and (c) making the methodological experi-

ence gained in the course of the studies applicable to other fields of environmental research.

The concept “metapopulation” was introduced by Levins (1969). He defined a meta-

population to be a set of local populations living in isolated habitat islands (so-called

patches) with a certain risk of extinction. After local extinction, dispersing individuals

can recolonize an empty patch and establish a new population. Hence, recolonization can

partly compensate the effect of local extinction and stabilize the overall metapopulation.

To address the subject of metapopulation persistence and to analyze its dependence

on landscape structure, species’ ecology, and stochasticity is relevant in several respects:

1. The interrelation between spatial patterns and ecological processes in general and
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between landscape structure and metapopulation persistence in particular are core

topics of spatial ecology (e.g. Lefkovitch and Fahrig 1985; Levin 1992; Doak et

al. 1992; Adler and Nuernberger 1994; Durrett and Levin 1994; Hanski 1994; Day

and Possingham 1995; Bascompte and Solé 1998; Frank and Wissel 1998; Hanski

and Ovaskainen 2000). Evidently, the essential processes of every metapopulation

dynamics (extinction, recolonization) depend on several spatial factors such as patch

size, patch distance, number and location of corridors or barriers but also on certain

species-ecological attributes such as the species’ dispersal range. This indicates that

the dynamics and persistence of metapopulations can only be fully understood if

the interaction between the different components of the landscape structure (e.g.

patch number; patch configuration; patch size distribution; arrangement of corri-

dors/barriers) and the species’ ecology are taken into account.

2. In the last few decades, a worldwide loss of species has been reported. Habitat loss

and fragmentation belong to the drivers of this environmental problem (e.g. Nee

1994; Moilanen and Hanski 1995; Bascompte and Solé 1996; Fahrig 1997, 2001,

2002; With and King 1999; Wiegand et al. 2005). Hence, it is not surprising that

both are subject of recent research in population, community and landscape ecology

where they are addressed from a theoretical as well as conservational point of view.

Emphasis is placed on (a) obtaining a comprehensive mechanistic understanding

of the consequences of habitat loss and fragmentation for the structure, dynamics

and stability of ecological systems and for species’ survival, (b) identifying critical

patterns of habitat loss and fragmentation, (c) determining factors which amplify

or compensate caused negative effects, and (d) revealing ways of mitigating these

effects. A sound understanding of the relationship between landscape structure and

metapopulation persistence would contribute to a better understanding of habitat

loss and fragmentation and their effects on metapopulations. Moreover, note that

stochasticity is always a key factor of species’ survival. Thus, it is indispensable to

take all relevant sources of stochasticity into account.

3. Evidently, it is urgently needed to develop strategies for both effectively counteract-
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ing the negative effects of habitat loss and fragmentation on species’ survival and

preventing such impacts from the beginning. A comprehensive understanding of the

(landscape-structural and species-ecological) preconditions of metapopulation per-

sistence would strengthen the scientific basis for the development of such strategies.

It would indicate under which conditions a certain strategy is actually effective,

which species benefit, and how can positive effects be maximized.

All these arguments show that the subject of metapopulation persistence is closely related

to recent research questions of both ecological theory and conservation management.

Below, we explain in more detail which research questions we want to address:

A lot of modeling work has been done in the context of metapopulations, in the realm of

specific case studies as well as more theoretical analyses (for a review, see Ovaskainen and

Hanski (2004); cf. references in Chapters 3 to 6). Important effects have been disclosed in

this way. However, some snags still exist: Firstly, there are different models in use which

vary in the spatial or temporal structure, or in the level of detail. Secondly, in most studies,

certain parameters are fixed, just in order to avoid a too high degree of complexity. In the

result, however, certain interactions remain unexplored. Evidently, the two effects cause

an incomparability of the model results and impede a comprehensive understanding. This

hampers generalization and indicates the need of unification. The wish to contribute to

unification and generalization markedly motivated the work in the thesis. Our strategy

to meet this objective is based on the following idea: We start with the development

of a modeling framework which combines closeness to biological realism with tractability

(management of complexity). This modeling framework is later used for all the analyses of

metapopulation persistence carried out in the thesis to the benefit of comparability. The

decisive feature of the modeling framework is its tractability. It opens the possibility to

perform more systematic analyses of the interplay between landscape structure, species’

ecology, and stochasticity and its effect on metapopulation persistence. In any case, the

results of these analyses contribute a better understanding of metapopulation persistence:

they either provide insight into interrelations which have so far not been investigated or

they provide information about the robustness of known effects to the choice of models.
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Mechanistic understanding of the interplay between landscape structure, species’ ecol-

ogy, and stochasticity and its effect on metapopulation persistence is also a key element

of our strategy to derive model-based tools for decision-support in metapopulation man-

agement. We follow a context-based approach. This means that we start with particular

questions of metapopulation management. In the context of these questions, we search

for key effects of the landscape structure and analyze their dependence on species’ ecology

and stochasticity. Finally, we describe the found effects by the mean of simple verbal rules

of thumb. These rules can be characterized as “ecologically differentiated” because they

address effects of the landscape structure by taking the influence of species’ ecology and

stochasticity into account. This is progress in view of the fact that most of the existing

rules of thumb for landscape management are ecologically neutral. To ignore the species’

ecology, however, is a shortcoming because it can lead to counter-productive decisions. In

addition to the derivation of (qualitative) ecologically differentiated rules of thumb, we

seek for possibilities to derive tools which allow quantitative analyses in the context of

the considered question to be supported. In the thesis, we address the following questions

of metapopulation management: “What preconditions have to be met to allow long-term

metapopulation persistence?”, “Which species can benefit at all?”, “Which patch configu-

ration / patch size distribution is optimum?”, and “When is using the stochastic approach

to metapopulation persistence vital to avoid counter-productive conclusions?”.

Generalization and unification as well as all the types of management questions ad-

dressed above are also relevant in other fields of environmental research. Therefore, it

is useful to reflect our work in the context of metapopulation persistence (especially

regarding generalization/unification and the derivation of model-based tools for decision-

support) and to make the attained methodological experience applicable to other fields.

To conclude, the subject of metapopulation persistence is not only worth to be con-

sidered from the point of view of ecological theory and conservation management. It is

also a useful starting point for contributions to the methodology of using models for the-

ory building and management support in environmental research and for some reflections

about the potential and limitations of the suggested problem-oriented approach.
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Figure 1.1: The conception of the thesis
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1.3 Structure of the thesis

The structure of the thesis reflects the dual aim of the thesis (contributions to theory buil-

ding and management support in the field of metapopulation persistence; methodological

development work to the benefit of additional fields). The thesis consists of four parts:

Part I: The modeling framework

Chapter 2: Development of the stochastic modeling framework

Part II: Analyses of metapopulation persistence

Chapter 3: An approximation formula for the mean lifetime Tm

Chapter 4: Minimum conditions for long-term metapopulation persistence

Chapter 5: Optimum patch size distribution

Chapter 6: Unifying stochastic and deterministic metapopulation persistence

Part III: Beyond metapopulation persistence

Chapter 7: Towards generalization and unification under biocomplexity

Chapter 8: Towards ecologically differentiated rules of thumb

Chapter 9: Towards (meta)population dynamical landscape indices

Part IV: Lessons learnt

Chapter 10: The thesis at a glance

Part I (Chapter 2) is dedicated to the development of the modeling framework underly-

ing all the analyses of metapopulation persistence presented in Part II of the thesis. A

common modeling framework guarantees comparability between the different studies that

is favorable in view of the synthesis and generalization work needed. The chapter starts

with a brief introduction into the concept of metapopulations, a derivation of demands on

the modeling framework and, the presentation of the modeling approach followed. Em-

phasis is placed on the development of the actual model system as well as of the measures

of stochastic metapopulation persistence used. The chapter finishes with some remarks
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on the relation of the modeling framework to other metapopulation models.

Part II (Chapters 3 to 6) is dedicated to the analysis of various aspects of stochastic

metapopulation persistence with the aim to support theory building and management in

this field. This includes the development of methods of model analysis where necessary.

In Chapter 3, an approximation formula for the central measure of metapopulation persis-

tence - the mean lifetime Tm - is derived in order to make more structural persistence anal-

yses possible. Chapters 4 and 5 address minimum and optimum conditions for long-term

metapopulation persistence and Chapter 6 the interrelation between deterministic and

stochastic metapopulation persistence. Various aspects of landscape structure, species’

ecology and stochasticity are systematically varied and analyzed in terms of their effect on

metapopulation persistence. In all studies, special model-based tools for decision-support

are derived which condense the attained scientific results.

Part III (Chapters 7 to 9) has the aim to make the experience gained in the course of the

metapopulation studies applicable to other fields of environmental research. Therefore,

Chapters 7 to 9 are primarily dedicated to methodological reflection, review and synthesis

on the basis of the thesis (Parts I and II) and the literature. The methodological work

addresses three topics: (a) the use of models for generalization and unification under

biocomplexity, (b) the derivation of ecologically differentiated rules of thumb for landscape

management, and (c) the derivation of (meta)population dynamical landscape indices. In

each case, some implications of the results for different fields of environmental research

and for various interdisciplinary aspects of landscape management are discussed as well.

Part IV (Chapter 10) is dedicated to the presentation of “the thesis at a glance” to allow

a better orientation. This includes the description of subject and aim of the thesis, its rele-

vance, the conception of the different studies, and - of course - an overview over the central

results of the thesis (“lessons learnt”). The results of the individual studies (Chapters 3

to 9) are thematically grouped to support a better understanding of the overall effects.

The chapter finishes with some concluding remarks on the development of a methodology

of using models for theory building and management support in environmental research

and on the potential and limitations of a problem-oriented approach.
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Chapter 2

The modeling framework

2.1 The concept “metapopulation”

The concept “metapopulation” was introduced by Levins (1969). He defined a meta-

population to be a set of local populations living in isolated habitat islands (so-called

patches) with a certain risk of extinction. After local extinction, dispersing individuals

can recolonize an empty patch and establish a new population. Hence, recolonization can

partly compensate the effect of local extinction and stabilize the overall metapopulation.

2.2 Demands on the modeling framework

The aim of this thesis is the analysis of important aspects of (1-species) metapopulation

persistence. A matter of particular interest is the interplay between landscape structure,

species’ ecology, and stochasticity in this context. Both theory building and conservation

management are to be supported. The development of general concepts and strategies,

however, requires a comprehensive mechanistic understanding and the disclosure of prin-

ciples or other general results. This leads to special demands on the modeling framework:

Firstly, the model has to be structurally realistic in the sense that essential characteris-

tics of the effect of the landscape structure and the species’ ecology on the metapopulation

dynamics are correctly reproduced. There are several aspects of the spatial structure of

the habitat network underlying any metapopulation which have to be taken into account:

13
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(a) The attributes of the patches such as size, shape, or habitat quality may influence the

risk of local extinction, but also the amount of emigrants leaving a patch or the chance

of establishing a new local population. (b) The patch configuration in general and the

distances between the patches in particular influence the chance of dispersing individuals

of successfully reaching a certain patch. They also can have an effect on the likelihood

of simultaneous extinction of local populations. This may occur if critical environmental

factors fluctuate in a spatially correlated way on a certain spatial scale. (c) The pres-

ence of corridors or barriers can alter the chance of recolonization. The final effect of the

habitat network on the metapopulation dynamics, however, is determined by two things:

the variety of spatial factors relevant and the individuals’ specific response to them. The

multitude of landscape-structural and species-ecological factors and interactions which are

relevant in the context of metapopulations causes a certain degree of model complexity.

Secondly, the model has to take stochasticity into account. It is well-known from the

viability analysis of the local populations that every sort of stochasticity (e.g. demographic

or environmental stochasticity, catastrophes) is a key factor for populations which are

vulnerable to extinction (e.g. Goodman 1987; Mangel and Tier 1993; Foley 1994; Wissel et

al. 1994). On the level of metapopulations, two sorts of stochasticity can be distinguished

which are equivalents to demographic and environmental stochasticity on the level of the

local populations (Hanski and Gilpin 1991): (a) stochasticity in the sequence of extinction

and colonization events, and (b) regional stochasticity. The latter addresses situations

where environmental factors fluctuate in a spatially correlated way (such as temperature

and rainfall), and affect the dynamics of several local populations in the same manner.

This can result in synchronization or even simultaneous extinction of local populations

(Hanski 1989; den Boer 1991). There are a few models which take the resulting correlation

of the extinction processes into account (e.g. Harrison and Quinn 1989, Gilpin 1990;

Ovaskainen 2002). Most of these models deal with spatial homogeneity, i.e. assume a

constant degree of correlation ρ. Sometimes, however, the correlation acts over a certain

distance and disappears on a larger spatial scale. Akçakaya and Ginzburg (1991) took

this effect into consideration and worked with patch-specific, distance-dependent degrees

of correlation ρij. Their model, however, was only applied to metapopulations with two
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and three patches. In any case, there is no standard method of incorporating spatial

correlation and regional stochasticity in metapopulation models.

Thirdly, the need to obtain a comprehensive mechanistic understanding and to disclose

principles requires generalization work. This is only possible if the model is tractable.

In the following, we present the modeling framework which underlies all the studies

in this thesis (Chapters 3 to 6). A common modeling framework ensures comparability

between the different studies that is favorable in view of the synthesis and generalization

work needed. In order to reconcile structural realism and tractability and to manage the

inherent complexity, we follow a hierarchical approach. We start with the development of

the stochastic main model that focuses on the essential processes of every metapopulation

dynamics (e.g. extinction, recolonization). Special efforts are invested in the incorporation

of the spatial correlation of the extinction processes and the specification of the measures

of metapopulation persistence used in this thesis. We continue with the presentation of a

collection of submodels which allow the landscape structure and the species’ ecology to be

integrated. The main model and some of the submodels are taken from Frank and Wissel

(1998). The other submodels are taken from the literature in order to cover a wide range

of ecologically reasonable situations. In addition to the mathematical definition, we give

an ecological justification/interpretation of the individual models. This is done in order to

support a better understanding of the later model results. We finalize with an important

special case, some remarks on the implementation of the spatial correlation, and the

relation of the modeling framework to other spatially realistic metapopulation models.

2.3 The main model

We consider finite metapopulations with N patches each being either empty or occupied

by a local population. In the following, we develop a continuous time Markov chain model

that allows the main processes of metapopulation dynamics to be described in a patch-

specific way. This is a precondition for integrating the effects of the landscape structure at

a later stage. As is known from Markov theory (Keilson 1979), such models are determined

by (a) the state space, and (b) the matrix of short-term transition probabilities.
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2.3.1 The state space

The individual patches i of the metapopulation are assumed to be either empty (xi = 0)

or occupied by a local population (xi = 1). The state of the overall metapopulation

is described by the vector x = (x1, ..., xN) of the occupancy states xi of its patches.

Evidently, 2N metapopulation states x can be distinguished.

2.3.2 The short-term transition probabilities

The main model aims at taking all those processes into account which are essential for

every metapopulation. These are obviously extinction and recolonization of patches.

However, regional stochasticity (Moran 1953; Ranta et al. 1995; Haydon and Steen 1997)

as well as dispersal (Holmes et al. 1994; Bascompte and Solé 1998; Kendall et al. 2000)

can synchronize the dynamics within the individual patches. In consequence, several

populations can go extinct simultaneously. Therefore, it is useful to distinguish two kinds

of extinction: (a) local extinction of single populations caused by certain local drivers,

and (b) correlated extinction of several populations caused by certain regional drivers.

In the following, we assume that changes in the metapopulation states x can only be

the result of local extinction, correlated extinction or recolonization. Within a very short

time interval ∆t, at most one of these processes can occur. The processes themselves are

described by the corresponding short-term transition probabilities defined as follows:

1. Short-term probabilities of local extinction w−(i,∆t)

A currently occupied patch i goes extinct within a time ∆t with a short-term prob-

ability w−(i,∆t) = νi ·∆t. The related quantity, Ti = ∆t
w−(i,∆t)

= 1
νi

, is nothing else

than the mean lifetime of local population i measured in units of ∆t.

2. Short-term probabilities of correlated extinction w−(i, j,∆t)

Whenever two patches i and j are currently occupied, they have some chance of

simultaneously going extinct within time ∆t. If the corresponding local extinction

processes are uncorrelated then a simultaneous extinction occurs with the product

of the single short-term probabilities w−(i,∆t) ·w−(j,∆t) = νi νj ·(∆t)2 that is close
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to zero. If both extinction processes are completely correlated then simultaneous ex-

tinction occurs with a short-term probability w−(i, j,∆t) =
√
w−(i,∆t)

√
w−(j,∆t)

given by the geometric mean of the local quantities. Hence, in the general case,

w−(i, j,∆t) is given by ρij ·
√
νi
√
νj ·∆t with ρij being the actual degree of correla-

tion between the local extinction processes within patch i and patch j.

3. The short-term probabilities of recolonization w+(i,∆t)

A currently empty patch i can be recolonized within time ∆t by individuals of all

patches currently occupied. If cji ·∆t denotes the short-term probability that patch

i is colonized from patch j then the total short-term probability of recolonization

w+(i,∆t) equals the sum
∑

xj=1 cji ·∆t taken over all patches j currently occupied.

The three kinds of short-term transition probabilities determine the dynamics of the

metapopulation. They are completely expressed in terms of three kinds of parameters:

the local extinction rates νi, the colonization rates cij, and the degrees of correlation ρij.

2.3.3 Implementation of the transition matrix

The “heart” of any Markov chain model is the transition matrix A = (akn). Determining

the transition matrix, however, requires that all the states are numbered and changes are

described as transitions between state numbers. Then the matrix entries akn result from

the short-term probabilities akn ·∆t that state n goes over to state k within a time ∆t.

In order to find a suitable rule for numbering in our case, every metapopulation state

x = (x1, .., xN) is interpreted as binary code of a certain integer between 0 and 2N − 1.

Then the state number n(x) belonging to a certain metapopulation state x is given by

n(x) =
N∑
i=1

xi · 2i−1. (2.1)

Following this rule, state x = (1, 0, 1, 0, 1) gets state number n(x)=1+4+16=21. On the

other hand, every integer n can be uniquely expressed as a binary code x(n) that can be
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determined by repeatedly applying the following rules:

x(n)1 =

 0 for n even

1 for n odd
(2.2)

x(n)i =

 0 even

1
for

1

2i−1
· (n−

i−1∑
k=1

x(n)k · 2k−1)
odd

for all i>1

Due to these rules, the integer 11 stands for the state (1,1,0,1,0). The two procedures

(2.1) and (2.2) enable us to calculate the number n(x) of a given metapopulation state

x, but also to reconstruct the metapopulation state x(n) that belongs to a given number

n. Now the basis is provided for determining the transition matrix A = (akn) for the

“state number dynamics” which are given by the short-term probabilities akn∆t that the

metapopulation goes over from state number n to state number k within time ∆t.

As a basis, we have to reveal how a change in a certain metapopulation state x is

reflected in a change in the corresponding state number n(x). Relation (2.1) shows that

any transition of a certain component xi from 1 to 0 (or from 0 to 1) results in a transition

of the state number from n(x) to n(x)−2i−1 (or from n(x) to n(x)+2i−1). What changes

are permissible depends on x and the sets of its 1- and its 0-positions defined by

I(x) = {i : xi = 1} , J(x) = {j : xj = 0}. (2.3)

Table 2.I shows the complete list of all permissible x- and n(x)-transitions whose proba-

bilities are well-known (Sec. 2.1.2). This enables us to give an algorithm for determining

all permissible successors k of a certain integer n together with the matrix entries akn.

1. Determine x(n) by using (2.2)

2. Determine I(x(n)) and J(x(n)) by using (2.3).

3. Determine akn by applying the scheme in Tab. 2.I to the state x(n):

• For all i ∈ I(x(n)): an−2i−1,n = w−(i,∆t)
∆t

= νi

• For all i, j ∈ I(x(n)): an−2i−1−2j−1,n = w−(i,j,∆t)
∆t

= ρij
√
νi
√
νj

• For all j ∈ J(x(n)) : an+2j−1,n = w+(j,∆t)
∆t

=
∑

i∈I(x(n)) cij

• For all other k(6= n): akn = 0
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4. All diagonal entries of a transition matrix A meet ann = −
∑

k( 6=n) akn so that

• ann = −(
∑

i∈I(x(n))

νi +
∑

i,j∈I(x(n))

ρij
√
νi
√
νj +

∑
j∈J(x(n))

∑
i∈I(x(n))

cij)

By applying this algorithm to all integers between 0 and 2N − 1, the transition matrix

A = (akn) can be derived. This matrix summarizes all model parameters (νi, cij, ρij) and

may be interpreted as a (patch-specific) generalization of the transition matrix of an usual

birth and death process (Nisbet and Gurney 1982; Goodman 1987; Wissel et al. 1994).

Instead of transitions (n→ n± 1) we get transitions (n→ n± 2i−1) for certain integers i.

2.3.4 The dynamic equation and its solution

Due to Markov chain theory (e.g. Keilson 1979), the state number dynamics of every

metapopulation are given by the following system of linear differential equations

dPnn0(t)

dt
=

2N−1∑
l=0

anl · Pln0(t) for all n0, n ∈ {0, ..., 2N − 1}, (2.4)

where Pnn0(t) is the probability that the metapopulation which is initially in state n0

is in state n at time t and A = (anl) is the transition matrix derived by the algorithm

described above (Sec. 2.1.3). As is well-known from Markov theory (Keilson 1979, Wissel

and Stöcker 1991), system (2.4) can be analytically solved as follows:

Pnn0(t) =
2N∑
i=1

rin · lin0
· eωi·t for all n0, n ∈ {0, ..., 2N − 1}, (2.5)

where ωi is the i-th eigenvalue, and li = (li0, ..., l
i
2N−1) and ri = (ri0, ..., r

i
2N−1) the corre-

sponding left and right eigenvectors of transition matrix A. Since (0, .., 0) is an absorbing

state, we have ω1 = 0, l1 = (1, 1.., 1), and r1 = (1, 0, .., 0). All the other left and right

eigenvectors, li and ri, are normalized in such a way that
∑

j>0 r
i
j = 1 and

∑
j r

i
j · lij = 1.

These algebraic terms, {ωi, li, ri}, summarize all the effects of the main model parameters

(νk, ckj, ρkj) which are relevant for the dynamic behavior of the entire metapopulation.

The actual probabilities of interest Px x0(t) that the metapopulation goes over from its

initial state x0 to a certain state x in time t are given by Pn(x)n(x0)(t). These quantities

describe the stochastic development of the metapopulation in the course of time.
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Table 2.I

The complete list of all state transitions permissible for a given metapopulation state x =

(x1, .., xN ). For the definition of n(x) see (2.1), for those of I(x) and J(x) see (2.3).

Process x–transition n(x)− transition

Local extinction (.., 1, ..) → (.., 0, ..)

i ∈ I(x) i i
n(x) → n(x)− 2i−1

Correlated extinction (.., 1, .., 1, ..) → (.., 0, .., 0, ..)

i, j ∈ I(x) i j i j
n(x) → n(x)− 2i−1 − 2j−1

Recolonization (.., 0, ..) → (.., 1, ..)

j ∈ J(x) j j
n(x) → n(x) + 2j−1

Nothing occurs (x1, .., xN ) → (x1, .., xN ) n(x) → n(x)

2.3.5 Quasi-stationarity and metapopulation persistence

A quantity of particular importance in connection with metapopulation persistence is the

survival chance Sx0(t), i.e. the probability that a metapopulation with initial state x0

is not extinct at time t. Evidently, Sx0(t) =
∑

x6=(0,..,0) Pxx0(t) =
∑

n>0 Pnn(x0)(t). The

functional structure of Sx0(t) can be further specified:

Sx0(t) =
∑
n>0

Pnn(x0)(t) = (
∑
n>0

r1
n)︸ ︷︷ ︸

=0

·l1n(x0) · eω1·t +
2N∑
i=2

(
∑
n>0

rin)︸ ︷︷ ︸
=1

·lin(x0) · eωi·t

=
2N∑
i=2

lin(x0) · eωi·t. (2.6)

Moreover, it is well-known that Markov chain models show a typical dynamic behavior in

most cases (e.g. Darroch and Senata 1965; Keilson 1979; Wissel and Stöcker 1991; Pollett

1997; Grimm and Wissel 2004): If the metapopulation is initially in state x0 then a certain

percentage of the runs indicates rapid extinction, while the remaining runs indicate rapid

approach to quasi-stationarity. Quasi-stationarity means that the metapopulation shows

typical fluctuations in the occupancy patterns before extinction, while extinction occurs

with a constant probability per time. Mathematically spoken, the short transition phase
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mentioned is equivalent to the condition ω3 << ω2. Then relation (2.6) indicates that

Sx0(t) ≈ cx0 · e−t/Tm with cx0 := l2n(x0) and Tm := −1/ω2 (2.7)

for larger values of t. Evidently, the survival chance of a metapopulation with initial state

x0 at time t is determined by two quantities: cx0 and e−t/Tm . The term cx0 is the probabil-

ity that the metapopulation successfully approaches quasi-stationarity. It summarizes all

the effects of the initial state x0 relevant for persistence. The term S∗(t) := e−t/Tm is the

survival chance of the metapopulation after reaching quasi-stationarity. It is completely

determined by Tm, the mean lifetime of the (quasi-stationary) metapopulation. Tm is

given by the reciprocal value −1/ω2 of the mentioned rate of metapopulation extinction,

−ω2. It summarizes all the effects of the quasi-stationary phase of the metapopulation dy-

namics relevant for persistence. Tm is independent of the initial state x0. Both cx0 = l2n(x0)

and Tm = −1/ω2 can be determined by eigensystem analysis of the transition matrix A.

Relation (2.7) has an important implication. If quasi-stationary metapopulations are

considered (as is done in Chapters 3 to 5) then the mean lifetime Tm provides an adequate

measure of metapopulation persistence. In all other cases, the initial states have to be

included in the persistence analysis (via cx0) as well. One major advantage of relation

(2.7) is that it allows us to distinguish between initial and quasi-stationary effects on

(stochastic) metapopulation persistence (see also Grimm and Wissel (2004)).

2.3.6 Some remarks on the main model

The presented main model belongs to the class of Levins-type (synonymously winking /

presence-absence / patch occupancy / 0-1-) models which are widely used in the field of

metapopulation modeling (e.g. Quinn and Hastings 1987; Verboom et al. 1991; Hanski

1994). These models do not explicitly take within-patch dynamics into account. But

according to Drechsler and Wissel (1997), this is actually unnecessary in most cases (ex-

cept under extremely strong environmental fluctuations), at least as long Allee or rescue

effects are of no bearing. All the effects of the local factors (including population size)

with relevance for metapopulation persistence are summarized and implicitly included in
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the parameters describing the resulting patch dynamics, i.e. the changes between “occu-

pied” and “empty” (here: νi, cij, ρij). For a more detailed discussion of the chances and

limitations of separating local and regional dynamics, see Chapter 7 (Section 7.2.1)

Because of its implementation as a continuous time, finite Markov chain, the main

model reflects the discreteness of the patches and takes the stochasticity in the sequence

of extinction and colonization events into account. The way in which this sort of metapop-

ulation stochasticity is modeled is consistent with the “birth and death process”-based

implementation of demographic stochasticity (e.g. Goel and Richter-Dyn 1974; Goodman

1987; Wissel et al. 1994) on the level of the dynamics of single population.

The main model is patch-specific, i.e. the complete occupancy vector x = (x1, ..., xN) is

used to describe the metapopulation dynamics, instead of the number n or the percentage

p of occupied patches as is done by the classical metapopulation models (e.g. Levins 1969,

Nisbet and Gurney 1982). All the relevant process parameters (e.g. νi, ρij, cij) are patch-

specific as well. This allows us to distinguish between the individual patches, that is the

precondition for integrating landscape structure and species’ ecology.

2.4 The submodels to integrate landscape structure

and species ecology

So far, we exclusively discussed about the main model that merely focuses on the main

processes of metapopulation dynamics (local extinction, correlated extinction, coloniza-

tion). In the following, we present submodels which allow the main model parameters

(νi, ρij, cij) to be linked to the relevant spatial aspects of the habitat network underlying

the metapopulation and the species’ response to them. But as required in the context of

the main model, the submodels have to be as simple as possible too, in order to support

generalization work. As a pre-condition, each parameter has to be analyzed in terms of

what aspects of the spatial structure of the habitat network are typically relevant.

As was already mentioned, the spatial structure of the habitat network underlying a

metapopulation is characterized by various factors such as the number, size, shape and
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habitat quality of the patches, the configuration of the patches, and - if relevant - the

number and relative arrangement of corridors or barriers. In order to avoid an overloading

of the studies in this thesis with too many spatial effects, we make the following simplifying

assumptions: (a) all patches have circular shapes; (b) all patches have the same habitat

quality; (c) the distance dij between two patches i and j is measured from centre-to-centre.

2.4.1 A submodel for the local extinction rate νi

According to numerous stochastic population models (e.g. Goel and Richter-Dyn 1974;

Goodman 1987; Lande 1993; Foley 1994; Wissel et al. 1994; Wissel and Zaschke 1994),

the extinction rate νi of the local population in patch i depends on the carrying capacity

Ki and so the size Ai of patch i. The smaller the patch, the higher the risk of local

extinction. Many models show a power-like relationship between νi and Ai, i.e.

νi = ε · Ai−x, (2.8)

where ε and x are two species-specific parameters. The power x strongly depends on

the strength of environmental noise in the local populations which summarizes both the

strength of the relevant environmental fluctuations and the species’ response to them. The

stronger the environmental noise, the smaller the value of x. The extinction parameter ε

summarizes all the other demographic details relevant for local extinction. Relation (2.8)

is used as standard submodel for the local extinction rate νi in this thesis.

Usually, both x and ε depend on habitat quality and are therefore species- and patch-

specific. In this study, however, we assume that all the patches have the same quality,

just in order to avoid an overloading with too many spatial aspects in the first step. In

consequence, x and ε can assumed to be constant, i.e. independent of the patch numbers i.

Submodel (2.8) indicates that the local extinction rate νi is completely determined

by the local (within-patch) settings and independent of all other patches. This implicitly

assumes that rescue effects (Brown and Kodric-Brown 1977) are of no bearing. Note that

this is equivalent to the simultaneous occurrence of the following two conditions: (a) dis-

persal is such strong that the metapopulation reaches quasi-stationarity, and (b) dispersal

does not affect the risk of local extinction through its effect on the population size.



24 CHAPTER 2. THE MODELING FRAMEWORK

2.4.2 A submodel for the degree of correlation ρij

The degree of correlation ρij of the extinction processes (Hanski 1989; Harrison and Quinn

1989; Gilpin 1990) may decrease with the distance dij between the patches (Baars and

van Dijk 1984; Hanski and Woiwod 1993; Myers and Rothman 1995; Steen et al. 1996;

Sutcliffe et al. 1996; Ranta et al. 1997; Moilanen et al. 1998; Bjørnstad et al. 1999). In

order to incorporate this effect in a simple way, we assume an exponential decline that

has also been found in nature (Moloney 1993; Akçakaya and Atwood 1997) such that

ρij = e−dij/dρ (2.9)

(Akçakaya and Ginzburg 1991; Frank and Wissel 1998; Frank et al. 2003), where dρ is the

correlation length, i.e. the mean distance over which the correlation acts. The description

of ρij as a negative exponential function of dij ensures that the matrix of the ρij-values is

positive definite (Burgman et al. 1993), as is required for correlation matrices. Relation

(2.9) provides the most simple submodel that allows us to incorporate spatial aspects of

the correlation of extinction and to analyze their effects on the metapopulation dynamics

at all. However, one also should have in mind that the submodel only covers a particular

but important range of situations, as the following arguments indicate:

Firstly, the submodel implicitly assumes that the critical, synchronizing environmen-

tal factors are located in the patches themselves and radiate into the neighborhood in

a concentric, distance-dependent way. This is the case if extinction is caused by the in-

vasion of predators or the spread of a disease. The assumption is also valid if dispersal

synchronizes the dynamics of the local populations as is known from several theoretical

studies (Holmes et al. 1994; Bascompte and Solé 1998; Kendall et al. 2000).

Secondly, the submodel is not valid anymore if extinction is caused by hazards with

a fixed or randomly varying origin. In this case, the degree of correlation ρij of the

extinction processes does not depend on the distance dij between the patches i and j

but on the distances di,H and dj,H to the origin of the hazard, H. For this situation,

Ovaskainen (2002) developed an alternative, algorithmic submodel for the correlation.

Thirdly, the distance between the patches is not the only spatial factor that may

influence the correlation of extinction. Different micro-climatic conditions due to different
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topographic exposures of the individual patches (e.g., north or south slope), for instance,

can asynchronize the within-patch dynamics even if the relevant environmental factors

(e.g., temperature or moisture) fluctuate in a correlated way. Such habitat-quality-induced

asynchronization effects are known for insect populations (e.g., Harrison et al. 1988) but

also for populations of small mammals (e.g. Grimm et al. 2003). Unfortunately, there are

no standard models describing the functional relationship between habitat quality pattern

and the resulting correlation of extinction.

2.4.3 A submodel for the colonization rate cij

A successful colonization of a certain patch is the result of different local and regional

processes: (a) emigration from a certain start patch, (b) dispersal through the landscape,

and (c) immigration and establishment of a new local population in the target patch.

Therefore, the colonization rate cij can be subdivided into a local and a regional part, i.e.

cij = γ · Ei · aij, (2.10)

where Ei is the mean number of emigrants leaving the local population in patch i per time

and aij the arrival probability, i.e. the probability of a disperser from patch i successfully

reaching patch j. If ∆t denotes a short time-interval then the product Ei · aij ·∆t gives

the mean number of dispersers of patch i immigrating into patch j within time ∆t. How

successful these immigrants are depends on the parameter γ. It denotes the probability

that a single immigrant initiates a successful establishment. This parameter is “adopted”

from Island Theory (MacArthur and Wilson 1967). In this theory, the probability pe(I)

that I immigrants successfully establish a new population in an empty patch is described

by pe(I) = 1 − e−γ·I . By inserting the number of immigrants I = Ei · aij · ∆t into this

function, we get pe(Ei · aij ·∆t) = 1− e−γ·Ei·aij ·∆t ≈ γ ·Ei · aij ·∆t, as long as ∆t is small

enough. The overall colonization rate cij results from cij =
pe(Ei·aij ·∆t)

∆t
= γ · Ei · aij.

2.4.3.1 The number of emigrants Ei

The local part of colonization rate cij, i.e. the mean number of emigrants Ei leaving patch

i per time, is related to the mean population size and, hence, to the area size Ai of the
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patch. We assume a power-like relationship between Ei and Ai, i.e.

Ei = δ · Aib. (2.11)

This approach is flexible enough to cover both density-independent emigration where

a certain proportion of the population leaves the patch (b = 1) and situations where

individuals at the edge of the patch have a higher probability of leaving than individuals

in the core. For a wide range of inner-habitat movement, b = 0.5 has been found to

be a good estimate, as is indicated by Moilanen’s Virtual Migration Model (Hanski et

al. 2000). The parameter δ can be interpreted as species-specific emigration parameter.

2.4.3.2 The arrival probability aij

The regional part of cij, i.e. the arrival probability aij, usually depends on several factors:

the patch configuration, the structure of the matrix between the patches, and the species’

dispersal strategy. It makes difference whether the individuals are passively dispersed (e.g.

by wind) or actively move through the landscape. Since we are interested in obtaining a

comprehensive mechanistic understanding of the role of landscape structure and dispersal

behavior and dispersal is always a crucial process in spatial population ecology, we do not

provide only one particular submodel for the arrival probability aij. In order to cover a

wide range of ecologically reasonable situations, we provide two submodels for “passive

dispersal” and two submodels for “active dispersal”, each widely used in literature.

Passive dispersal (The “Simple exponential model”)

In this case, the dispersers are assumed to be transported by a certain medium (e.g.

wind). In consequence, the transport behavior of the medium determines the position of

the dispersers at a given time. The most simple transport model assumes a 1-dimensional

diffusion towards patch j with a constant rate with which the emigrants settle down. In

this case, the probability of arrival aij coincides with the probability that the final position

of the disperser is inside patch j. As is well-known from diffusion theory, this probability

is given by a negative exponential function of the distance dij, i.e.

aij = e−dij/da (2.12)
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(see also equation (6.4) in Turchin (1998)), where da is the mean distance from release

point at which the dispersers settle down. In this study, this parameter is referred to as

“mean dispersal range”. Although a 1-dimensional diffusion model seems to be unrealistic

for describing dispersal processes in a (2-dimensional) landscape, the simple negative

exponential function has been found to be able to appropriately fit dispersal data of large

number of species (Wolfenbarger 1946). This is certainly the main reason why this model

is so extensively used (e.g., Fahrig 1992; Hanski 1994; Adler and Nuernberger 1994; Vos

et al. 2001) for incorporating the effect of dispersal in metapopulation models.

Passive dispersal (The “Pie-slice model”)

A more realistic transport model is the so-called “Pie slice model” (e.g. Etienne and

Heesterbeek 2000) that assumes a 2-dimensional diffusion with a constant rate of settling

down. This model takes into account that a single disperser only successfully arrives at a

certain patch if it is transported over the correct distance, but also in the correct direction.

The directionality effect is incorporated in the following manner: Transport of dispersers

starts in the centre of patch i. Then all those directions are defined to be suitable which

lie in the segment of a circle of radius dij around patch i that is determined by the two

tangents to patch j. The portion of suitable directions is therefore given by the relative

size of this segment measured as portion of the size of the whole circle. The size of the

segment coincides with the diameter Dj of patch j that is given by
2·
√
Aj

π1/2 . To see this,

remember that all patches are assumed to have circular shapes. In this case, there is a

clear relationship between diameter D and area A, namely D = 2·
√
A

π1/2 . The perimeter

of the whole circle is given by 2πdij. Hence, the portion of suitable directions can be

approximated by the ratio (
2·
√
Aj

π1/2 )/(2πdij). The final arrival probability aij results from

multiplying this portion with the probability of settling down at distance dij. Hence,

aij =

√
Aj

π3/2
· 1

dij
· e−dij/da . (2.13)

In this case, the arrival probability aij depends on both the distance dij between the

patches i and j as in the simple exponential model (2.12) and on the size Aj of patch j.

Active dispersal (The “Corridor-attraction model”)

So far, we considered situations where the dispersers are transported by a certain medium.
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Now we shift the focus of attention to situations where the dispersers actively move

through the landscape. In this case, the individuals make decisions concerning where to

go or whether to stay or not. Frequently, they respond to certain landscape elements which

effectively “guide” the individuals through the landscape. We start with a situation where

some patches in the habitat network are connected by corridors and where the dispersers

respond to the corridors which are adjacent to their start patch i. We assume that all

the corridors have the same attractiveness. In this case, each disperser randomly chooses

one of the ni adjacent corridors. Since the probability that it really reaches the patch j

at the other end of the corridor is given by e−dij/da , we obtain

aij =

 1
ni
· e−dij/da if i and j are connected by a corridor

0 else
(2.14)

(e.g. Henein and Merriam 1990; Frank 1998, 2004; Frank et al. 2003). Evidently, the

arrival probability aij depends on several spatial factors: the distance dij between patches

i and j, the presence of a corridor between these two patches, and the total number

of corridors ni adjacent to patch i. Hence, the arrival probability aij can only be cor-

rectly specified if the entire pattern of connectedness (number and relative arrangement

of corridors) in the habitat network is taken into account. In the special case of com-

plete connectedness (all patches are connected with each other by a corridor), we get the

following simplified submodel:

aij =
1

N − 1
· e−dij/da (2.15)

(Frank and Wissel 1998, 2002). The assumption of complete connectedness is certainly

unrealistic in most situations and rather hypothetical. Nevertheless it provides an impor-

tant reference case for analyzing the effect of active movement in patchy landscapes.

Active dispersal (The “Patch-attraction model”)

Now we consider a completely different situations: patchy landscapes without any cor-

ridors or barriers but spatially homogeneous matrix habitat between the patches. The

dispersers are assumed to move through the landscape according to random and more

systematic rules. Additionally, they are assumed to be able to perceive patches within a
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certain critical distance (perceptual range; see e.g. Zollner and Lima (1999); Conradt et

al. (2000); Heinz et al. (2004) and references therein), to go straight to a patch perceived

and to stay there. Such a situation was analyzed by Heinz et al. (2004) using an individual-

based simulation model. Heinz et al. found that the resulting arrival probability aij can

be approximated by the following relation:

aij =
R(dij)

N−1∑
k( 6=i) R(dik)N−1

·R(dij) with R(d) = 1− e−a·e−b·d . (2.16)

This relation indicates that aij is proportional to R(dij) being a sigmoidal function of

the distance dij. It describes the dispersers’ potential ability to reach patches in distance

dij. This term is an equivalent to the exponential terms in the preceding submodels. A

sigmoidal function was found to be more appropriate to describe the effect of the variety

of movement behaviors considered than a simple exponential function. The factor of

proportionality in submodel (2.16),
R(dij)

N−1
P
k( 6=i) R(dik)N−1 , is a special weight of the potential

arrival probability R(dij)
N−1 of patch j over the potential arrival probabilities R(dik)

N−1

of all patches k. This weight reflects the rule that the dispersers stay at the first patch

they reach (attraction by the patches). It is an equivalent to the pre-factors 1
ni

and 1
N−1

in

submodels (2.14) and (2.15), respectively. In the present case, the arrival probability aij

depends on the distance dij between patch i and patch j but on the distances dik between

patch i and all other patches k as well. The two function parameters a and b summarize

the effect of the dispersers’ species-specific movement behavior. Heinz et al. showed that

submodel (2.16) is appropriate for a wide range of active movement behaviors.

In the case of larger numbers of patches N , submodel (2.16) further simplifies. If

Rmax = max(R(dik) : i, k) denotes the maximum potential arrival probability then we get

aij =

 1
ñi
·R(dij) if R(dij) ≈ Rmax

0 else
. (2.17)

where ñi denotes the number of patches k for which R(dik) ≈ Rmax, i.e. which be-

long to the “nearest neighbors” of patch i. To understand this statement, note that

(R(dik)
Rmax

)N−1≈ 1 if R(dik) ≈ Rmax and (R(dik)
Rmax

)N−1≈ 0 if R(dik) < Rmax for larger values of

N . Consequently,
R(dij)

N−1
P
k( 6=i) R(dik)N−1 =

(R(dij)/Rmax)N−1
P
k( 6=i)(R(dik)/Rmax)N−1 ≈ 1

ñi
or 0. In this case, only the

nearest neighbors of the individual patches i are relevant for the arrival probabilities aij.
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2.4.4 Some remarks on the submodels

A comparison between the “passive” and the “active” dispersal models presented (2.12

to 2.17) reveals an important effect. In the two “passive” submodels (2.12; 2.13), the

arrival probability aij exclusively depends on attributes of the two patches i and j. In

the two “active” submodels (2.14; 2.16), however, aij is influenced by additional patches:

in the corridor-attraction case, by all those patches k which are connected with patch

i by a corridor, and in the patch-attraction case, by all other patches k or at least the

nearest neighbors of patch i. This reflects a certain “competition between the patches

for dispersers” caused by the fact that the actively moving dispersers are guided to or

attracted by certain patches and, in this way, prevented from moving to other patches.

All the submodels presented allow an analysis of the relationship between landscape

structure and metapopulation persistence through the eyes of the species’ ecological profile

(species-ecological attributes such as x, δ, ε, da, or dρ, or the dispersal type). By comparing

these submodels, the robustness of certain metapopulation effects against a change in

the species’ ecological profile can be tested. This especially gives some idea about what

metapopulation effects are generally valid and what are dependent on the species’ ecology.

2.5 General remarks on the modeling framework

2.5.1 A special case: spatial homogeneity

In the following, an important special case of the patch-specific Markov chain model

presented in Section 2.1 is discussed. If we assume spatial homogeneity, i.e. all the model

parameters νi = ν, cij = c, ρij = ρ are independent of the patch numbers i, then the

original model is equivalent to a special generalized birth and death process. Here, the

number n of occupied patches is taken as state of the metapopulation, and the dynamics

of the metapopulation is described by the following system of linear differential equations:

dPn,k
dt

= bn−1 · Pn−1,k − (bn + dn + sn) · Pn,k + dn+1 · Pn+1,k + sn+2 · Pn+2,k (2.18)

The corresponding “birth” rate bn is given by the probability per time that n occupied

patches colonize any empty patch. Since ctot = c · (N − 1) gives the probability that
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a single occupied patch colonizes any of the other (N − 1) patches and (1 − n−1
N−1

) the

probability that this patch was empty, we obtain

bn = ctot · n ·
(

1− n− 1

N − 1

)
. (2.19)

The term ctot is referred as total colonization rate. Since ν · n gives the probability per

time that one of the n occupied patches goes extinct, the “death” rate dn results from

dn = ν · n. (2.20)

Finally, the “simultaneous death” rate sn is given by is given by

sn = ρ · ν · n · (n− 1)

2
. (2.21)

This can be seen by taking into consideration that there are
(
n
2

)
= n·(n−1)

2
pairs of occupied

patches which simultaneously go extinct with probability per time ρ · ν.

In contrast to the original model, the state space is much smaller now (N + 1 instead

of 2N states). Moreover, if the degree of correlation ρ = 0 (uncorrelated case), then

the model completely coincides with a usual birth and death process. This model was

extensively analyzed by Wissel and Stöcker (1991) and Drechsler and Wissel (1997).

The spatially homogeneous version of the original, patch-specific Markov model is

rather conceptual. Because of its simplicity (only four parameters: N, ν, c, ρ), however, it

allows important effects on stochastic metapopulation persistence to be derived. It is used

as a reference for the analysis of the effects of spatial heterogeneity (Chapters 3 and 4).

2.5.2 On the implementation of the spatial correlation

One important “special feature” of the presented modeling framework is the incorpora-

tion of patch-specific degrees of correlation ρij of the extinction events in the individual

local populations. In this way, simultaneous extinction of several local populations can

be simulated that is a first step towards modeling the effect of regional stochasticity.

Note that there is no standard method of incorporating spatial correlation and regional

stochasticity in metapopulation models. Therefore, it is useful to discuss some aspects of

the implementation of the correlation presented in this thesis in more detail.
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At a first glance, it may be surprising that the main model merely takes the pairwise

correlations ρij but not the correlations of higher order into account. But note that this is

consistent with the theory of continuous time Markov processes (e.g., Feller 1970; Karlin

and Taylor 1981). To consider merely pairwise correlations is sufficient in this case, as the

following argumentation demonstrates. As is well-known, there are two equivalent ways

of modeling N -dimensional, continuous time Markov processes x(t) = (x1(t), .., xN(t)).

The first way is using a stochastic differential equation

dx(t)

dt
= f(x(t)) + ξ(t), (2.22)

where the stochastic part ξ(t) of this so-called Langevin equation is given by a special

N -dimensional Normal (Gaussian) distribution. As is known, such a distribution is com-

pletely determined by the means µi (here =0), variances σ2
i , and pairwise correlations

ρij. All the correlations ρklm... between more than two components are either zero or com-

pletely expressed in terms of all the variances σ2
i and pairwise correlations ρij. The picture

becomes even more clear if we shift the focus of observation from the Langevin equation to

the equivalent Fokker-Planck equation given by the following partial differential equation

∂P (x, t)

∂t
= −

N∑
i=1

∂

∂xi
[Ai(x, t) · P (x, t)] +

1

2
·

N∑
i,j=1

∂2

∂xi∂xj
[Bij(x, t) · P (x, t)]. (2.23)

Here, the dynamics of the resulting probability density function P (x, t) is modelled instead

of the stochastic process x(t) itself. The so-called “shift-functions” Ai(x, t) and “diffusion-

functions” Bij(x, t) are completely determined by the deterministic part (f(x(t)) and the

variances and covariances (pairwise correlations) of the stochastic part (ξ(t)) of the un-

derlying stochastic process. This shows that all the correlations between more than two

components are simply not relevant for the dynamics of P (x, t). This confirms again

that considering the pairwise correlations is sufficient. But note that all these results are

strongly dependent on the assumption that a continuous time Markov process is consid-

ered. The chance of incorporating all important effects of a N -dimensional stochastic

process in a simple way (without having to consider any correlation between more than

two components) was the reason for developing a continuous time Markov chain model.

There is another important aspect related to the issue of correlation that should be
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noted. An increase in a certain degree of correlation ρij leads to an increase in the so-

called total local extinction rate νtoti of a currently patch i. This quantity is defined to be

the sum of the local extinction rate νi and all the correlated extinction rates ρij
√
νi
√
νj

taken over all the other patches j which are currently occupied, i.e.

νtoti = νi +
∑

j( 6=i;xj=1)

ρij
√
νi
√
νj. (2.24)

This results from our assumption that a local population can go extinct for two reasons:

local (within-patch dynamic) effects or regional (correlation-induced) effects. The subdivi-

sion into local and correlated extinction has the advantage that within-patch and regional

drivers of local extinction can be separately analyzed in terms of their effect on the entire

metapopulation dynamics. This is to the benefit of a better understanding. Moreover,

all the standard submodels for single population dynamics (e.g. Goel and Richter-Dyn

1974; Leigh 1981; Nisbet and Gurney 1984; Goodman 1987; Lande 1993; Foley 1994;

Wissel and Zaschke 1994; Wissel et al. 1994) can be used for parameterizing νi (note

that these models exclusively address local factors of extinction). But there is also a clear

disadvantage of the approach: in the field, only the total local extinction rate νtoti can be

observed and measured, but never the model parameter “local extinction rate” νi. But

this is as usual: every approach has methodological pros and cons.

Equation (2.24) for the total local extinction rate νtoti also brings another effect to light.

Evidently, νtoti depends on the number of occupied patches (note that the sum is taken

over all patches j (6= i) which are currently occupied). This is strongly consistent with

a standard way of modeling environmental stochasticity on the level of local dynamics.

In order to see this, we assume that the (deterministic) dynamics of the local population

under consideration are characterized by linear growth with a population growth rate

(λ − µ) · n and ceiling at the carrying capacity K, where λ and µ are per capita birth

and death rates. If environmental stochasticity of strength σ2 is added and the resulting

(stochastic) population dynamics are modelled as a birth and death process then the

probability per time dn that one of n individuals dies is usually modelled as dn = µ · n+

σ2

2
·n2 (e.g. Goodman 1987; Wissel et al. 1994). The quadratic term σ2

2
·n2 indicates that

all the n individuals of the population percept the environmental fluctuations in the same
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way. This is the typical characteristic of environmental stochasticity. If we determine the

resulting total per capita death rate µtot by calculating dn/n, we obtain

µtot = dn/n = µ+ σ2

2
· n. (2.25)

This shows that µtot linearly depends on the current number of individuals n in the pop-

ulation, where the factor of proportionality is given by the strength of the environmental

stochasticity σ2. This indicates that there is a certain structural similarity between equa-

tion µtot = µ+ σ2

2
·n and equation νtot = ν+ρ ν ·n in the case that n occupied patches and

patch-independent parameters (νi = ν; ρij = ρ) are assumed. In this sense, the implemen-

tation of the correlation of local extinction on the level of the metapopulation dynamics

is consistent with the implementation of environmental stochasticity on the level of the

local populations dynamics. But note that we only took correlation in the context of

the extinction events into account. Additional correlation in the colonization events was

ignored because a certain degree of correlation is already implicitly given. To see this,

note that patches in the close neighborhood of an occupied patch have a higher chance of

recolonization than more distant patches - just because of a higher dispersal success.

To summarize, all these arguments indicate that the implementation of the spatial corre-

lation of the extinction processes is in accordance with the theory of stochastic processes

and shows similarities to the implementation of the effect of environmental stochasticity

and its effect on the per capita death rates on the level of the local populations.
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2.5.3 Relation to other stochastic, spatially realistic, Levins-

type metapopulation models

There is a huge variety of metapopulation models addressing infinite/finite numbers of

patches, with/without spatial heterogeneity, with/without stochasticity, with/without

spatial correlation, with/without explicit local dynamics, with/without Allee or rescue ef-

fect. There are three approaches to model stochastic metapopulation dynamics: stochastic

differential equations, Monte Carlo simulations, and (continuous or discrete time) Markov

chain models. The present modeling framework can be characterized as follows: stochas-

tic, finite, spatially realistic, Levins-type, continuous time Markov chain. It has certain

similarities to other stochastic, spatially realistic Levins type metapopulation models:

The modeling framework is similar to the Incidence Function Model (IFM) by Hanski

(1994) widely discussed in the metapopulation literature. This model is discrete time.

Although the original IFM is Levins type, it allows Allee and rescue effects to be included.

The model does not take spatial correlation in the extinction processes into account.

The presented main model has similarities to the model by Akçakaya and Ginzburg

(1991), a discrete time, finite Markov chain model. The model separates two phases - an

extinction phase and a recolonization phase - and takes the correlation in the extinction

processes into account. It has merely been applied to systems with 2 and 3 patches.

Day and Possingham (1995) adopted the idea of separating extinction and recoloniza-

tion phase and developed a general, discrete time Markov chain model that is applicable

to systems with arbitrary (but not too large) numbers of patches. Their model, however,

ignores the spatial correlation. Day and Possingham analyzed the behavior of quasi-

stationary metapopulations. They used the mean degree of patch occupancy and the

survival chance S∗(t) of the metapopulation as measure for metapopulation persistence.

Ovaskainen (2002) made another interesting step. He took the continuous time Markov

chain model presented in this Chapter as a basis and calculated a certain weighted average

pw(t) =
∑

iwi · xi(t) over the patch occupancy states xi(t). He showed that the resulting

stochastic dynamics in pw(t) can be approximated by a diffusion process, i.e. can be

interpreted as a solution of a certain stochastic differential equation. In this sense, pw(t)
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bridges between the two different approaches of stochastic metapopulation modeling. But

note that the diffusion approximation only works in case of large numbers of patches N .
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In Part I of this thesis, we have developed an appropriate modeling framework for the

analysis of stochastic metapopulation persistence. This framework follows a hierarchical

approach, i.e. it consists of a generic main model and a cascade of spatial submodels.

While the main model focuses on the main processes of metapopulation dynamics (ex-

tinction, colonization), the submodels allow the relevant effects of the landscape structure

and the species’ ecology to be integrated. Mathematically spoken, the main model is a

continuous time Markov chain model. Ecologically spoken, it is of the Levins-type because

it does neither take Allee not rescue effects into account and includes the effects of the

local dynamics merely implicitly. By using standard results from Markov chain theory, we

determined adequate measures for stochastic metapopulation persistence (cx0 , Tm). This

modeling framework provides the basis for all the analyses carried out in this thesis.

Now we pass on to the main goal of this thesis. In the following four chapters, we

address important aspects of metapopulation persistence. Special emphasis is placed on ob-

taining a comprehensive mechanistic understanding of the functional relationship between

metapopulation persistence, the landscape structure and the species’ ecology. In Chapter

4, we determine minimum conditions on species and patch configuration which have to be

met to allow long-term metapopulation persistence. The information is crucial for under-

standing the ecological requirements under which management measures such as habitat

connecting can have noticeable effects on metapopulation persistence at all. In Chapter

5, we address various aspects of habitat network design. Special emphasis is placed on the

determination and analysis of the optimum patch size distribution in habitat networks with

given patch configuration. One aspect of particular interest is the functional dependence

of the optimum patch size distribution on both the other spatial aspects of the network

structure (e.g. patch configuration, pattern of connectedness) and the species’ ecology.

In Chapter 6, we compare the stochastic approach to metapopulation persistence followed

in this thesis with the traditional deterministic approach widely used in ecological theory

and conservation management. We search for common effects and principle differences in

the definitions and measures of persistence used and in the (absolute and relative) results

obtained with the two approaches. We reveal conditions under which the two approaches

are equivalent to each other and conditions under which taking the stochastic approach is
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vital to avoid counter-productive conclusions. Such comparisons contribute to a unified

theory of metapopulation persistence urgently needed given the diversity of models in use.

In all chapters, we aim at contributing to both a further development of metapopulation

theory and the condensation of the scientific results in tools for decision-support in conser-

vational landscape management. Both aims require generalization work. This leads to an

additional task to be mastered in the run-up to all the analyses mentioned. In Chapter

3, we start with the deduction of an approximation formula T am for the mean lifetime Tm

of metapopulations in heterogeneous landscapes produced by the model underlying this

thesis. This formula reveals how data from species and landscape have to be combined to

predict metapopulation persistence. Formulas open the possibility to analyze their func-

tional structure and to attain insight into functional interrelations and important effects

on metapopulation persistence in this way. This particularly supports the generalization

work required. By using the formula T am for the persistence analyses in Chapters 4 to 6,

we demonstrate its potential for theory building and management support.

Chapters 3 to 6 first of all aim at answering the ecological questions mentioned. If nec-

essary, however, special methods will be developed to master the challenges arising in the

course of the analysis work. In all chapters, we supplement the model analyses with (a)

a discussion of the implications of the model results for metapopulation theory and con-

servational landscape management, (b) general remarks on the methods and approaches

used for the analyses (where relevant), and (c) some prospects for further research.

All the chapters in Part II widely correspond with published papers of the candidate.

“Widely” means that the Introductions are slightly modified to the benefit of a better

integration of the individual chapters in the overall thesis. Since all the model analyses are

based on the same model, namely that described in Chapter 2, we modified the Methods

parts of the chapters as well. Whenever possible, we refer to Chapter 2. In the chapters

themselves, we give a brief overview over those modeling aspects which are relevant in the

context of the chapter. The Results and Discussion parts are nearly unchanged. There

is one exception. In Chapter 5, the original study (optimum patch size distribution for

one particular dispersal strategy) is supplemented by the analysis of additional dispersal

strategies. The comparison gives rise to insights which go beyond the original results.



Chapter 3

A formula for the mean lifetime of

metapopulations in heterogeneous

landscapes

This chapter is mainly based on the following publication:

Frank, K. & Wissel, C. 2002. A formula for the mean lifetime of metapopulations in

heterogeneous landscapes. The American Naturalist 159: 530–552

As was already mentioned, Part II of this thesis first of all aims at the analysis of im-

portant aspects of metapopulation persistence (e.g. minimum conditions for long-term

persistence, aspects of optimum habitat network design, comparison between determinis-

tic and stochastic approaches to metapopulation persistence). To support theory building

and conservation management is one particular objective of Part II. This, however, re-

quires generalization work. In any case, a comprehensive mechanistic understanding of

the interplay between the landscape structure and the species’ ecology and its effect on

metapopulation persistence is crucial. This leads to a particular challenge that requires

our attention and has to be mastered before we can pass on to the actual analysis:

In the context of metapopulations, there are at least three sources of spatial hetero-

geneity with influence on the main processes (extinction, colonization): (a) the patches

themselves that can differ in size, shape, or habitat quality, (b) the configuration of the

45
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patches, and (c) the pattern of connectedness (e.g. arrangement of corridors or barriers,

if relevant). Hence, the effect of the landscape structure on metapopulation persistence

can only be fully understood if the interplay between the different spatial characteris-

tics of the underlying habitat networks and the species’ response to them are taken into

account. This requires systematic variation work. This, however, is impeded by the com-

plexity resulting from the multitude of relevant spatial factors. In the case of stochastic

metapopulation dynamics, the situation is even more complex. Stochastic, spatially re-

alistic metapopulation models are usually based on Monte Carlo simulations (e.g. Boyce

1992; Burgman et al. 1993; Hanski 1994; Possingham et al. 1994; Stelter et al. 1997; Vos et

al. 2001), stochastic differential equations (e.g. Ovaskainen 2002), or on high-dimensional

Markov chains (Akçakaya and Ferson 1990; Anderson 1991; Day and Possingham 1995;

Frank and Wissel 1998; Etienne and Heesterbeek 2001; Ovaskainen 2002; Ovaskainen and

Hanski 2004). In all cases, the decisive persistence measures (Tm, cx0) can only numeri-

cally be determined (by statistical methods or eigensystem analysis). This dependence on

numerical work further limits the possibilities of systematic variations.

This drawback, however, can be partly overcome. One way is to search for approxi-

mation formulas for the persistence measures of interest. Surely, approximation formulas

have the disadvantage that they are less precise than the numerically determined values.

But they also have a clear advantage: Their functional structure provides explicit insight

into the interplay between the different factors and the effect on the persistence measure

studied. In the result, important effects can simply be “read off”, without any numerical

analyses. For the mean lifetime Tm as important persistence measure, approximation for-

mulas mereky existed for single populations and spatially homogeneous metapopulations

(e.g. Goel and Richter-Dyn 1974; Leigh 1981; Nisbet and Gurney 1982; Lande 1993; Foley

1994; Wissel and Zaschke 1994; Middleton and Nisbet 1997). For spatially heterogeneous

metapopulations, however, there was a complete dearth of approximation formulas for

the mean lifetime Tm. The wish to fill this gap motivated the present chapter.

In the following, we deduce an approximation formula T am for the mean lifetime Tm of

metapopulations in heterogeneous landscapes by taking the stochastic, spatially realistic

model presented in Chapter 2 as a basis. In order to achieve this goal, we develop a
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special method that allows the complexity of the model to be reduced and the functional

structure of Tm to be disclosed. Its main idea is to look for a spatially homogeneous

metapopulation with the same mean lifetime as the heterogeneous one considered. This

is the same idea as that underlying the concept of the effective population size (e.g.,

Wright 1938; Lande and Barrowclough 1987; Gilpin 1991), widely used in population

genetics, where a non-structured population exhibiting the same loss of heterozygosity

as a considered structured population is sought. The method presented is based on

aggregation techniques that are common in physics, but only rarely used in ecology. The

resulting approximation formula T am reveals how data from species and landscape have

to be combined to estimate the mean lifetime. To demonstrate the applicability of this

formula to real systems, we apply it to several sub-networks of the Glanville Fritillary

butterfly (Melitaea cinxia) system on Åland, SW Finland (Hanski et al. 1996). By taking

formula T am as a basis, we derive several landscape measures for ranking habitat networks

according to their effect on metapopulation persistence, some of them providing a quite

good insight into the interplay between the spatial structure of habitat networks and the

species’ ecology. As a conlusion, we discuss the practical value of approximation formulas

and the potential of using aggregation techniques as a bridge between complex realistic

and simple models. We finalize with some prospects for further research.

3.1 Methods

The aim of this study is the deduction of an approximation formula for the mean lifetime

Tm of metapopulations produced by the spatially realistic metapopulation model described

in Chapter 2. In order to support a better understanding of both the deduction and the

implications of the formula, we give a brief overview over all those aspects of the model

and the mean lifetime Tm which are relevant in the context of the present study.

Remember that the model follows a hierarchical approach, i.e. it consists of a main

model focusing on the main processes of any metapopulation dynamics (extinction, colo-

nization) and a set of submodels for integrating landscape structure and species’ ecology.
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3.1.1 The main model

The main model under consideration is a continuous time Markov chain model for finite

metapopulations of N patches. The model is of the Levins-type, i.e. the patches are

assumed to be “empty” (xi = 0) or “occupied” (xi = 1). The state of the metapopulation

is given by x = (x1, ..., xN) and determined by the occupancy states xi of the patches.

The dynamics of the metapopulation are the result of changes in the occupancy states

of the patches: local extinction, correlated extinction, and recolonization. Local extinction

is assumed to occur with a probability per time νi, correlated extinction with ρij
√
νi
√
νj,

and recolonization with
∑

j(xj=1) cji, where the sum is taken over all patches j currently

occupied. The νis are the local extinction rates, the ρijs the degrees of correlation, and

the cijs the colonization rates. These parameters determine the transition matrix A of

the Markov model (see Chapter 2) and so the stochastic dynamics of the metapopulation.

Evidently, the model does not explicitly take the within-patch dynamics into account.

Instead of, all the effects of the local details that are relevant for the dynamics of the

metapopulation are implicitly included and summarized in the local extinction and the

colonization rates. The model does not take Allee or rescue effects into account.

The main model is close to Hanski’s Incidence Function Model (IFM; Hanski 1994).

The only difference is that our model is (a) continuous time, (b) does not assume a

particular submodel for the extinction and colonization rates, νi and cij, and (c) allows

the correlation between the extinction processes ρij to be taken into account. However,

by taking our model as a basis and specifying its parameters by setting (νi = eA−xi ,

cij = δ Ai
b e−dij/da , ρij = 0), we obtain a time-continuous version of the IFM, provided

Hanski’s sigmoidal formula for the yearly colonization probability Ci =
S2
i

S2
i +1

is replaced

with an exponential formula Ci = 1− e−Si , where Si =
∑

xj=1 δ Aj
b e−dji/da .

3.1.2 The submodels to include landscape structure and species’

ecology

The idea to search for an approximation formula for the mean lifetime Tm of metapop-

ulations was largely motivated by the wish to provide a tool for assessing spatially het-
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erogeneous habitat networks in terms of their effect on metapopulation persistence. The

term “habitat network” means the ensemble of the relevant patches, that is characterized

by (a) the attributes of the individual patches, and (b) their spatial configuration.

In our modeling framework, any submodels can be used which relate the main model

parameters {νi, ρij, cij} to the spatial characteristics of the habitat network and the

species’ response to them. In Chapter 2, a whole collection of possible submodels is

presented. In the present study, we use the following submodels as an example:

Local extinction rate: νi = e · A−xi ; (3.1)

Degree of correlation: ρij = e−dij/dρ ; (3.2)

Colonization rate: cij =
Ei

N − 1
· aij (3.3)

with

Number of emigrants: Ei = δ · Abi and (3.4)

Arrival probability: aij = e−dij/da . (3.5)

where e is a species-specific extinction parameter, x an inverse measure for the strength of

the environmental noise in the local populations, dρ the correlation length, i.e. the mean

distance over which the correlation of extinction acts, δ the emigration rate per unit area,

b an emigration parameter, and da the dispersal range, i.e. the mean distance a migrant

is able to cover. For details or an ecological justification of these models, see Chapter 2.

3.1.3 The mean lifetime Tm as measure of persistence

In the context of the analysis of metapopulation persistence, the survival chance S(t), i.e.

the probability that the metapopulation is still alive at time t, is an important quantity.

In this study, we focus on quasi-stationary metapopulations which are characterized by

typical fluctuations in the occupancy pattern and a constant rate of overall extinction.

The survival chance S(t) of such metapopulations has the following structure:

S(t) = e−t/Tm , (3.6)

where Tm is the mean lifetime of the metapopulation. This relation indicates that all

effects which are relevant for the extinction process of the metapopulation are summarized
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in the mean lifetime Tm. Therefore, Tm as an adequate measure for the persistence of

quasi-stationary metapopulations. The value of Tm is given by the negative inverse −1/ω

of the subdominant eigenvalue of the transition matrix A of the Markov model. It is

determined by the main model parameters {νi, ρij, cij} (for details, see Chapter 2).

3.2 Results

To deduce an approximation formula T am for the mean lifetime Tm of (quasi-stationary)

metapopulations in heterogeneous landscapes is the main goal of this study. This requires

to reveal the functional relationship between Tm and the model parameters (νi, Ei, aij, ρij).

3.2.1 The mean lifetime in the spatially homogeneous case

For two reasons, we start our investigations with the homogeneous (non-spatial) version of

our model. Firstly, this allows the problem of deducing an approximation formula for the

mean lifetime Tm to be approached from the simplest side. Secondly, the corresponding

results can be used as a reference for the spatially heterogeneous case considered later. A

metapopulation is said to be homogeneous if the following two assumptions are fulfilled:

1. The configuration is equidistant (dij =d) with the consequence that (aij =a, ρij =ρ).

2. All patches are identical, i.e. the attributes of the corresponding local populations

coincide, i.e. (νi = ν, Ei = E).

Thus, all the relevant parameters (νi, Ei, aij, ρij) are independent of the patch numbers i

in the homogeneous case. Furthermore, relation (3.3) shows that cij = c = E
N−1
·a. Hence,

all main model parameters (νi, cij, ρij) and so the mean lifetime T hm of a quasi-stationary

metapopulation (“h” stands for homogeneous) only depend on (N, ν, c = E·a
N−1

, ρ). In

order to deduce an appropriate approximation formula T h,am for T hm, a special non-linear

regression analysis of the numerically determined values of T hm will be performed.
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3.2.1.1 Deducing a formula T h,u,am for the uncorrelated homogeneous case

To get some idea about what type of non-linear regression is most promising, we start our

investigations with the special case of uncorrelated extinction processes (ρ = 0). Under

these conditions, the homogeneous version of our metapopulation model (Chapter 2) is

equivalent to the finite Markov chain version of the classical Levins model (Levins 1969).

Here, the state of the metapopulation is given by the number n of occupied patches, and

the dynamics of the metapopulation is described as a special birth and death process

d
dt
Pn = bn−1Pn−1 + dn+1Pn+1 − (bn + dn)Pn. The corresponding “birth” rate bn results

from summarizing all the colonization processes that may occur if n patches are occupied.

In our case, we therefore obtain bn = (N − n) · n · cij = (N − n) · n · c. When doing

the same with the extinction processes, we obtain a “death” rate dn = n · νi = n · ν

(see also the model of Wissel and Stöcker (1991); Drechsler and Wissel (1997)). In the

context of birth and death processes, however, there exists an exact formula for the mean

lifetime of metapopulations that are initially completely occupied (i.e. n = N), namely

TGoRim =
∑N

i=1

∑N
k=i

1
dk

∏k−1
m=i

bm
dm

(Goel and Richter-Dyn 1974). This formula can be used

for drawing conclusions about the mean lifetime of quasi-stationary metapopulations.

Utilizing the Goel and Richter-Dyn formula as a starting point

It is well-known that an initially completely occupied metapopulation always and very

quickly reaches quasi-stationarity. Thus, the mean lifetimes of an initially completely

occupied metapopulation and a quasi-stationary metapopulation nearly coincide. By

applying the Goel and Richter-Dyn formula TGoRim to our model, we therefore obtain

T h,um ≈ TGoRim =
1

ν
·
N∑
i=1

N∑
k=i

1
k
· (N−i)!

(N−k)!
· 1

(N−1)k−i
·
(ctot
ν

)k−i
(3.7)

with ctot=(N − 1) · c being the probability per time that a local population colonizes any

other patch. The ratio ctot
ν

gives the total mean number of colonizations a local population

induces during its lifespan Tl = 1
ν
. It may be interpreted as the potential colonization

ability of the local populations. In our particular case c = E·a
N−1

, we get ctot
ν

= E·a
ν

.
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Further simplification of TGoRim by analytical approximation

Formula (3.7) is still too complex to fully understand the functional structure of T h,um .

By analytically approximating TGoRim for larger values of ctot
ν

, the following much simpler

approximation formula T h,u,am for the mean lifetime T h,um of an uncorrelated homogeneous

metapopulation can be deduced (see the calculation and relation (3.25) in the Appendix):

T h,um ≈ T h,u,am =
1

ν
· e

N
ctot/ν · (N−1)!

N ·(N−1)N−1 ·
(ctot
ν

)N−1

(3.8)

for ctot
ν

> 2.5 and N ≥ 5. This condition does not really restrict the applicability of

approximation formula T h,u,am . Below these threshold values, the mean lifetime Tm is

extremely low (stochastic equivalent to the Levins condition (Levins 1969)). Therefore,

formula (3.8) is able to cover the whole range of ecologically relevant parameters.

The functional structure of approximation formula T h,u,am can be characterized as follows:

(a) T h,u,am is proportional to the mean lifetime Tl = 1
ν

of the local populations. (b) There

is some coefficient, e
N

ctot/ν , that approaches 1 when ctot
ν

increases. This indicates that the

metapopulation approaches some asymptotic formula T h,u,am = 1
ν
· (N−1)!
N ·(N−1)N−1 · ( ctotν )N−1

that is characterized by some power-like relationship between T h,u,am and ctot
ν

.

Because of the central importance of formula (3.8) for the further analysis, it is useful to

compare it with the approximation formula TNiGum of Nisbet and Gurney (1982) widely

used in metapopulation research. This gives a better understanding about what parts of

the formula T h,u,am are robust against a change in the model structure and what are the

consequences of different model structures for assessing metapopulation viability.

Comparison with the Nisbet and Gurney formula

Nisbet and Gurney (1982) developed a stochastic version of the classical Levins model

(Levins 1969) which is based on a stochastic differential equation. The mean lifetime

TNiGum of their model is given by

TNiGum =
1

ν
· e

N/2
ctot/ν · e−N · e

N
2
· ctot
ν (3.9)

(see formula (6.8.10) in Nisbet and Gurney 1982). By analytically comparing the func-

tional structures of TNiGum (see (3.9)) and our approximation formula T h,u,am (see (3.8)),
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certain similarities, but also some differences can be detected. (a) TNiGum is also propor-

tional to the mean lifetime Tl = 1
ν

of the local populations. (b) TNiGum also contains some

coefficient, e
N/2
ctot/ν , that approaches 1 when ctot

ν
becomes larger and that indicates the ex-

istence of some asymptotic formula TNiGum = 1
ν
· e−N · eN2 ·

ctot
ν . (c) The major difference

between TNiGum and T h,u,am concerns the asymptotic formulas themselves. TNiGum exhibits

an exponential dependence on ctot
ν

(see the factor e
N
2
· ctot
ν ), instead of a power-like depen-

dence as detected for T h,u,am (see the factor ( ctot
ν

)N−1). As a consequence, TNiGum shows a

more rapid increase with ctot
ν

and predicts higher values for the mean lifetime than T h,u,am .

This effect is due to the fact that Nisbet and Gurney (1982) approximate the discrete

numbers of occupied patches by continuous real numbers. This difference becomes crucial

when small numbers of occupied patches occur, as is the case in extinction processes.

This means that Nisbet and Gurney’s formula TNiGum over-estimates the persistence of

metapopulations that are vulnerable to extinction and, hence, of conservation concern.

To summarize, T h,u,am and TNiGum show the same qualitative behavior and have both a quite

simple functional structure. The advantage of T h,u,am is that it overcomes the problem of

overestimating the persistence of a metapopulation because it takes the discreteness of

the number of occupied patches into account. All these arguments justify to take formula

(3.8) as a basis for the deduction of approximation formulas for more complex situations.

3.2.1.2 Deducing a formula T h,am for the general homogeneous case

In the following, approximation formula T h,u,am (3.8) for the uncorrelated homogeneous

case is used as a basis for finding a formula for the correlated homogeneous case.

Relation (3.8) indicates a power-like relationship between (T h,um · ν · e−
N

ctot/ν ) and ctot
ν

in

the uncorrelated case. Thus, we investigate whether this type of functional dependence

can also be found in the correlated case. This is done by a non-linear regression analysis

of the numerically determined values of T hm (note that the colonization probability c can

be expressed in terms of ctot
ν

because c= ctot
N−1

= 1
N−1

ctot
ν
ν). As Figures 3.1A-B show, this

analysis reveals a linear relationship between ln(T hm · ν · e
− N
ctot/ν ) and ln( ctot

ν
) for values of

ctot
ν
> 2.5, each patch number N , and each correlation degree ρ. Hence, the mean lifetime
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Figure 3.1: ln(T hm ·ν ·e−
N
x ) with x = ctot

ν versus ln( ctotν ) for the numerically determined values of

the mean lifetime T hm of a homogeneous metapopulation with (A) ρ = 0.1 and different numbers

of patches N and (B) N = 10 and different degrees of correlation ρ (full lines). In each case, a

linear relationship can be detected, provided ln( ctotν ) > 1. This indicates that T hm · ν · e
− N
ctot/ν ≈

a(N, ρ) ·( ctotν )b(N,ρ) where the power b(N, ρ) is given by the slope and pre-factor a(N, ρ) = ey(N,ρ)

by the cross-point y(N, ρ) with the y-axis of the corresponding fitting line (dashed lines). (C)

Power b(N, ρ) versus (N − 1) for different values of ρ. The obvious linearity indicates that

b(N, ρ) ≈ g(ρ) · (N − 1) with a coefficient g(ρ) given by the slopes of the lines. (D) Coefficient

g(ρ) versus ρ (full line). The dashed line reveals that g(ρ) ≈ 1−0.57 ρ0.2. (E) ln(a(N, 0)) versus

ln( (N−1)!
N(N−1)N−1 ) indicating an identity. (F) Ratio a(N, ρ)/a(N, 0) versus degree of correlation ρ

for different values of N . The dashed lines are given by (1 + ρ)(1 + 0.03 ·N3.6 · ρ0.03 · e−ρ·N ).
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T hm of an established homogeneous metapopulation always has the following structure:

T hm ≈ T h,am =
1

ν
· e

N
ctot/ν · a(N, ρ) ·

(ctot
ν

)b(N,ρ)

for
ctot
ν

> 2.5 (3.10)

with a(N, ρ) and b(N, ρ) resulting from the regression analysis of the (dashed) fitting lines.

Power b(N, ρ) is given by the slopes of the fitting lines in Figures 3.1A-B. This quantity

characteristically depends on both patch number N and correlation degree ρ. In the

uncorrelated case, b(N, 0) = N − 1, as is indicated by relation (3.8). The model analysis

in Figure 3.1C reveals that a linear relationship between b(N, ρ) and (N − 1) can also be

found in the correlated case. Hence, b(N, ρ) can be written as (N − 1) · g(ρ) with some

coefficient g(ρ) being the slope of the corresponding line. The fitting curve in Figure 3.1D

indicates that g(ρ) ≈ 1− 0.57 ρ0.2. Thus, the functional structure of b(N, ρ) is given by

b(N, ρ) ≈ (N − 1) · (1− 0.57 ρ0.2). (3.11)

Pre-factor a(N, ρ) in (3.10) is given by ey(N,ρ) with y(N, ρ) being the interception point of

the corresponding fitting line in Figures 3.1A-B with the y-axis. Figure 3.1E corroborates

what we know from relation (3.8), namely that a(N, 0) = (N−1)!
N ·(N−1)N−1 in the uncorrelated

case. In order to determine the functional structure of a(N, ρ) in the correlated case, we

analyze the relative ratio a(N, ρ)/a(N, 0) in terms of its dependence on patch number N

and correlation degree ρ. Figure 3.1F reveals that there is some critical value ρcrit up to

which a(N, ρ)/a(N, 0) sharply increases with ρ. Above this value, an exponential decrease

can be detected. The larger N , the stronger these effects. This qualitative description

gives some idea about the structure of the underlying functional relationship. The dashed

lines in Fig. 3.1F indicate that (1+ρ) ·(1+0.03 ·N3.6 ·ρ0.03N ·e−ρ·N) provides a satisfactory

fit of a(N, ρ)/a(N, 0). Hence, the final functional structure of a(N, ρ) can be described as

a(N, ρ) ≈ (N − 1)!

N · (N − 1)N−1
· (1 + ρ) · (1 + 0.03 ·N3.6 · ρ0.03N · e−ρ·N) (3.12)

To summarize, relation (3.8) together with the relations for power b(N, ρ) (3.11) and pre-

factor a(N, ρ) (3.12) gives the desired approximation formula T h,am for the general homoge-

neous case. In Figs. 3.2A-B, formula T h,am (dashed lines) is compared with the numerically

determined values of T hm (full lines). Evidently, T h,am gives a satisfactory approximation

of T hm for various parameter values ( ctot
ν
, N, ρ). This of course does not mean that T h,am is

the only appropriate approximation formula. Other suitable formulas may exist.
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Figure 3.2: Ratio T hm/Tl versus ctot
ν for the numerically determined values of the mean lifetime

T hm of a homogeneous metapopulation with (A) N = 9 and different degrees of correlation ρ and

(B) ρ = 0.25 and different numbers of patches N (full lines). The dashed lines give the results

for the corresponding values calculated with formula T h,am in (3.10).

3.2.2 The mean lifetime in the spatially heterogeneous case

Now the basis is provided for turning to the main topic of this study: the deduction of a

formula T am for the mean lifetime of heterogeneous metapopulations. We present a hierar-

chical approach. In the first step, we show that, for every heterogeneous metapopulation,

a corresponding homogeneous metapopulation of equal mean lifetime can be found. This

allows us, in the second step, to extend the presented formula T h,am for the mean lifetime

of homogeneous metapopulations to a formula T am for the heterogeneous case.

3.2.2.1 Aggregation as a method for reducing model complexity

The main barrier to achieving the desired formula is model complexity caused by spatial

heterogeneity. Hence, we have to look for a way of reducing this complexity first.

Two assumptions of spatial homogeneity (equidistant configurations; identical patches)

turned the original, spatially realistic model into the much simpler non-spatial model an-

alyzed in Section 3.2.1. Therefore, it is useful to abandon one of these assumptions after

the other and to analyze in each stage how the resulting effects on the mean lifetime of a

quasi-stationary metapopulation can be adequately reflected by the non-spatial model.

In the following, we focus on metapopulations with a fixed number of patches N . In this
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case, the non-spatial model is completely described by four parameters (ν, E, r, ρ). When

abandoning the assumptions of homogeneity, i.e. turning to heterogeneous configurations

or non-identical patches, an “individualization” of the parameters (νi, Ei, aij, ρij) occurs

that now depend on the individual patch numbers i and j. These findings give rise to

the following method of reducing the complex spatially realistic model to the simpler

non-spatial one. The main idea underlying this method is to look for opportunities to

aggregate all individual parameters pi (pi stands for νi, Ei, aij or ρij) such that the non-

spatial model together with the resulting aggregated parameter p = pagg produces nearly

the same mean lifetime as the original spatially realistic one, i.e. T hm(pagg) ≈ Tm(pi).

Several standard aggregations (e.g. taking arithmetic, geometric, harmonic or weighted

means of pi, or mixtures thereof) will be tested to reveal which is best for fitting Tm. Ex-

actly the same idea underlies the concept of the effective population size, Ne, widely used

in population genetics (Wright 1938; Lande and Barrowclough 1987; Gilpin 1991). In this

case, one is interested in the population size Ne of the ideal (non-structured) population

which shows the same loss of heterozygosity as a considered structured population.

Abandoning the assumption of equidistant configurations

In the following, we turn from equidistant to heterogeneous configurations and look for

opportunities to aggregate the parameters affected (aij, ρij). To cover a large range of

natural configurations, extreme examples are considered: the one-dimensional “chain”

(Fig. 3.3A) and the two-dimensional “array” (Fig. 3.3B). Both configurations are scaled

by the distance d between the central patch and its nearest neighbors. This allows each

configuration to be characterized by its scale and its relative topology. The dashed lines in

Figures 3.3C-D reveal for each configuration type that a quasi-stationary metapopulation

of identical patches with parameters (ν, E, aij, ρij) has nearly the same mean lifetime as a

quasi-stationary homogeneous metapopulation with parameters (ν, E, aagg, ρagg), where

the aggregated parameters aagg and ρagg for the probabilities of arrival aij and the degrees

of correlation cij are given by the following characteristic means:

aagg =
N∏
i=1

( 1
N−1

∑
j( 6=i)

aij)
1
N

, ρagg = 1
N(N−1)

N∑
i=1

∑
j( 6=i)

ρij. (3.13)
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Figure 3.3: (A) One-dimensional “chain” and (B) two-dimensional “array”. (C-F) Ratio Tm/Tl
versus patch distance d/dρ for the numerically determined mean lifetime Tm of a metapopulation

living in chain (C, E) and array (D, F) for different values of E/ν and long-distance dispersal

(da/dρ = 4) (full lines; all distances are measured in units of the correlation length dρ). The

dashed lines belong to a homogeneous metapopulation with parameters (ν, E, aagg, ρagg) where

ρagg is the aggregated degree of correlation given in (3.13). The aggregated arrival probability

aagg used in (C, D) results from aggregation rule (3.13), while in (E, F) a geometric (“g”), an

arithmetic (“a”) and a self-weighted arithmetic mean (“sw”) have been used for aggregation.
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Other standard aggregations have also been tested. The results for aggregating the prob-

abilities of arrival aij are displayed in Figures 3.3E-F. It can be seen that the usual

geometric mean (“g”; (
∏∏

aij)
1

N(N−1) ) under-estimates the mean lifetime Tm, while both

the usual arithmetic (“a”, 1
N(N−1)

∑∑
aij) and the self-weighted arithmetic mean (“sw”,∑ a(i)P

a(k)
a(i) with a(i) = 1

N−1

∑
j( 6=i) aij) over-estimate Tm. These effects are the stronger,

the more heterogeneous the configuration is (compare chain (Fig. 3.3E) with array (Fig.

3.3F)). The result on the self-weighted mean is of particular importance because this ag-

gregation is widely used in the theory of infectious diseases (Anderson and May 1991)

and in the context of persistence of metapopulations with identical patches (Adler and

Nuernberger 1994; Hanski and Ovaskainen 2000). In both fields, however, deterministic

models have been taken as a basis. The over-estimation of the mean lifetime Tm docu-

mented in Figures 3.3E-F reveals that the self-weighted mean does not correctly reflect

the effects of spatial configuration if stochasticity is taken into account. The aggregation

rules presented here (relation (3.13)) are found to be best for fitting Tm.

Abandoning the assumption of identical patches

We turn from identical to non-identical patches and look for aggregations of the local

population parameters (νi, Ei). A first attempt in this direction was already made in a

previous study (Frank and Wissel 1998). Here, a usual geometric mean was taken to

aggregate the numbers of emigrants, Ei, and the extinction rates, νi. It came out that the

aggregation rule Eagg only fitted well if the variation in the numbers of emigrants Ei was

not too high. Hence, a more sophisticated aggregation rule is needed to cover the range

of high variation as well. We demonstrate how an appropriately modified formula can be

derived by utilizing the knowledge of the qualitative behavior of the mean lifetime Tm.

In order to clarify the behavior of the mean lifetime Tm in the case of high variation in the

numbers of emigrants Ei, we perform the following model experiment. We increase the

value for a single patch (say E1) while keeping the values for all other patches constant.

The effect on Tm is shown in Fig. 3.4A where different sets of parameter values for the

Eis as in Table 3.I are analyzed and the configuration “chain” considered before is taken

as a basis. In each case, the mean lifetime Tm reaches a certain saturation value T satm

when E1 becomes sufficiently large. This saturation behavior is a reflection of the fact
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that the metapopulation cannot take any additional benefit from a further enlargement

of E1. The number of emigrants E1 is already so high that the recolonization of all other

patches is safe, but only as long as patch 1 is occupied. In this situation, the mean lifetime

Tm much more depends on what happens if patch 1 becomes empty than on E1. Thus,

the result in Fig. 3.4B is not surprising, indicating that the saturation value T satm for the

mean lifetime is essentially proportional to some power of (IN(1) ·
∏

i( 6=1) Ei) with IN(1)

being the total recolonization chance IN(1) =
∑

j( 6=1) cj1 of patch 1, i.e. the sum over the

colonization rates cj1 =
Ej
N−1
· aj1 from all other patches j. Such a saturation behavior,

however, cannot on principle be reflected by a geometric mean Eagg =
∏M

i=1 E
1
N
i over the

numbers of emigrants Ei, because it shows unlimited growth with E1.

To obtain an idea about how to modify Eagg, we look for standard aggregations that allow

any sort of saturation to be reflected. The harmonic mean H(x, y) = (1
2
( 1
x

+ 1
y
))−1 = 2xy

x+y

of two numbers x and y provides an aggregation of the desired type (note that H(x, y)

converges to 2y if x becomes very large). This roughly explains why it is useful to take

Eagg =
N∏
i=1

√√√√(1

2

(
1

Ei
2 +

1

(
∑

j( 6=i) w
i
j Ej)

2

))−1
1
N

(3.14)

as a candidate for aggregating the numbers of emigrants Ei. The weights wij are given by

wij =
aji∑

n( 6=i) ani
. (3.15)

Table 3.I:

Different sets of numbers of emigrants Ei for the local populations 2 to 5 of the metapopulation

living in the “chain” (Fig. 3.3A). These parameter sets underly the study in Figure 3.4.

A B C D E F

E2 10 5 64 20 20 5

E3 11 10 6 21 40 100

E4 12 50 20 22 5 50

E5 13 20 8 23 50 20
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Figure 3.4: (A) Ratio Tm/Tl for the numerically determined mean lifetime Tm of the metapop-

ulation versus the number of emigrants E1 for the “chain” with d/dρ = 4, different sets of

the numbers of emigrants Ei of all other patches as in Table 3.I, and a local extinction rate

ν = 0.1. The convergence to a saturation value T satm /Tl is obvious. (B) lg10(T satm /Tl) versus

lg10(IN(1)E2E3E4E5) for the parameter sets analyzed in Fig. 3.4A with IN(1) being the total

recolonization chance of patch 1 given by IN(1) =
∑

j( 6=1) = Ej
N−1 ·aj1. The relationship between

the two quantities can be characterized as nearly linear. This means that the saturation value

T satm /Tl is essentially proportional to a certain power of (IN(1)E2E3E4E5).

The only thing we have to do is to show that aggregation rule Eagg (5.3) really does provide

a good qualitative and quantitative fit of the mean lifetime Tm. The calculation in the

Appendix 3.5.2 reveals that Eagg converges to
√

2 ·( N−1P
n( 6=1) an1

)
1
N ·(IN(1) ·

∏
i( 6=1) Ei)

1
N if the

value for E1 becomes very large. When applying the mean lifetime T hm of the non-spatial

model to the aggregated parameter Eagg, we see that T hm converges to a limit value that is

proportional to (IN(1) ·
∏

i( 6=1) Ei)
b(N,ρ)
N (remember the power-like dependence of T hm(Eagg)

on Eagg; see (3.10)). This is exactly the effect we have seen in Figure 3.4. Hence, Eagg

qualitatively correctly reflects the saturation behavior of the mean lifetime Tm.

Figures 3.5A-D finally reveal that the modified aggregation rule Eagg also provides a

very good quantitative fit of the mean lifetime Tm. The dashed lines indicate for each

of the considered configurations and different sets of local settings (νi, Ei) showing a

high variation as in Table 3.II that a metapopulation with parameters (νi, Ei, aij, ρij)

has nearly the same mean lifetime as a homogeneous metapopulation with parameters

(νagg, Eagg, aagg, ρagg) where aagg, ρagg and Eagg are as in relation (3.13) and (5.3), while
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the aggregation νagg of the extinction probabilities νi is given by the usual geometric mean

νagg =
N∏
i=1

νi
1
N . (3.16)

The presented formulas (3.13; 5.3; 3.16) cover a wide range of metapopulations, including

those with high variation in their characteristics (νi, Ei, aij, ρij).

A first conclusion

The preceding results give rise to a first conclusion that provides a better understanding

of both the next steps in our study and metapopulation persistence in heterogeneous land-

scapes in general. As the non-spatial model indicates, there is one quantity of particular

importance for metapopulation persistence, the potential colonization ability ctot
ν

= E·a
ν

of the local populations, that summarizes all the effects of the turnover dynamics. Its

spatial pendant is ( ctot
ν

)agg = Eagg ·aagg
νagg

that can simply be determined by the aggregation

rules presented (3.13; 5.3; 3.16). The calculation in Appendix 5.3.3 shows that

(ctot
ν

)
agg

=
N∏
i=1

√√√√√ 1

1
2
·
((

OUT(i)
νi

)−2

+
(

IN(i)
νi

)−2
) 1

N

, (3.17)

where the quantities OUT(i) and IN(i) in the product have the following structure:

OUT(i) =
∑
j( 6=i)

cij and IN(i) =
∑
j( 6=i)

cji, (3.18)

Table 3.II

The specific local characteristics {(νi, Ei)} of the metapopulation analyzed in Figure 3.5.

G H I J K L

Ei νi Ei νi Ei νi Ei νi Ei νi Ei νi

5 0.1 5 0.15 5 0.5 12 0.1 40 0.1 10 0.1

6 0.2 6 0.05 6 0.01 620 0.2 20 0.2 20 0.2

7 0.3 7 0.1 7 0.2 6 0.3 30 0.3 1000 0.3

8 0.4 8 0.08 8 0.3 20 0.4 50 0.4 5 0.4

9 0.05 9 0.2 9 0.1 8 0.05 10 0.05 100 0.05
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Figure 3.5: Ratio Tm/Tagg with Tagg = 1/νagg versus patch distance d/dρ for the numerically

determined mean lifetime Tm of a metapopulation in chain (A, C) and array (B, D), long-distance

dispersal and local settings as in Table 3.II (full lines; for the configurations see Figure 3.3). The

dashed lines belong to a homogeneous metapopulation with parameters (νagg, Eagg, aagg, ρagg)

resulting from the aggregation rules given in (3.13; 5.3; 3.16).

where cij are the colonization rates from the main model. This shows that, although

the aggregation formulas for the components νagg, Eagg, and aagg are sophisticated, the

resulting ratio ( ctot
ν

)agg = Eagg ·aagg
νagg

is quite simple: a geometric mean over the harmonic

means (term under the square root) of two ratios, (OUT(i)
νi

)2 and ( IN(i)
νi

)2, that can be

determined by taking sums over the rows (OUT(i)) and columns (IN(i)) of the matrix

(cij) of the colonization rates and dividing them by the extinction rates νi.

The aggregated quantity ( ctot
ν

)agg is very intuitive. Ratio OUT(i)
νi

equals the total mean

number of colonizations local population i is able to induce during its lifespan Ti = 1
νi

. It

may be interpreted as its potential colonization ability. Ratio IN(i)
νi

may be interpreted as a

measure for “being in the play” that can result from both a high chance of recolonization
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after an extinction (IN(i)) or a long mean lifetime ( 1
νi

). This allows us to interpret ( ctot
ν

)agg

as the effective colonization ability of the local populations. This quantity covers both

aspects of the colonization process: “colonizing” and “becoming recolonized”.

The ratios IN(i)
νi

and OUT(i)
νi

can also be used to formulate the limits of applicability of

the aggregation rules (3.13; 5.3; 3.16; 3.17). We found in a more detailed model analysis

that these rules are only valid if the harmonic mean zi = (1
2
((OUT(i)

νi
)−2 + ( IN(i)

νi
)−2))−1/2 is

greater or equal than
√

2 for every patch i. If this condition is not met by certain patches

j because they are too rarely occupied ( IN(j)
νj

is low) or too weak for colonization (OUT(j)
νj

is

low), then aggregation rule (3.17) has to be replaced by ( ctot
ν

)agg =
∏N

i=1 max(
√

2, zi)
1/N .

In this modified rule, only patches i with values zi ≥
√

2 contribute to ( ctot
ν

)agg reflecting

that the metapopulation does not markedly benefit from the critical patches.

Finally, since formula (3.17) is completely formulated in the “language” of the main model

parameters (νi, cij), it gives some idea of how to aggregate the parameters in situations

which differ from the particular case (cij = Ei
N−1
· aij; see (3.3)) considered here.

Evidence for the ecological plausibility of the aggregation rules

Because of the central importance for further analysis of the aggregated parameters pre-

sented (νagg, ρagg, ( ctot
ν

)agg), we look for arguments which ecologically underpin the math-

ematically deduced findings. (a) Most of the aggregations presented show a multiplicative

structure. This multiplicativity is a reflection of the inherent feedback between the local

populations (each local population influences the chance of all other local populations

of being involved and contributing to metapopulation persistence). (b) The presented

aggregation rules νagg and ρagg for the characteristics of extinction are independent of the

parameters of colonization (cij, Ei, aij). This finding is a consequence of our assumption

that rescue effects do not play a perceptible role (Chapter 2), indicating that the exchange

of individuals is of no bearing as far as the extinction of local populations is concerned.

(c) The plausibility of ( ctot
ν

)agg has already been discussed. (d) Evidence for the rea-

sonableness of the aggregations found is also provided by the fact that whole functional

relationships between the mean lifetime Tm and certain model parameters are qualita-

tively correctly and quantitatively sufficiently reflected (e.g. the relationship between Tm
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and patch distance d/dρ; saturation behavior of Tm when the number of emigrants Ek of

a single patch k increases). This is extremely important for understanding the dynamics.

To summarize, our model results reveal that it really is possible to aggregate all relevant

parameters pi (pi stands for (νi, Ei, aij, ρij)) such that the non-spatial model applied to

the aggregated parameters pagg produces nearly the same mean lifetime as the original,

spatially realistic one, i.e. T hm(pagg) ≈ Tm(pi). These aggregated parameters pagg are

comparable with the effective population size Ne well-known from population genetics.

Compared to the quite elegant classical formulas for the effective population size (e.g.

Ne = 2 (1
2
( 1
Nf

+ 1
Nm

))−1 with Nf and Nm being the number of females and males (Wright

1938)), the aggregation rules for the metapopulation parameters presented here (3.13;

5.3; 3.16; 3.17) are rather complex. This is due to the fact that there a different sorts of

spatial factors interacting with each other and influencing all metapopulation processes.

3.2.2.2 The approximation formula T am for the heterogeneous case

Now the basis is provided for addressing the deduction of an approximation formula T am

for the mean lifetime Tm of a quasi-stationary metapopulation. As we have seen, a quasi-

stationary metapopulation with parameters (νi, Ei, aij, ρij) has the same survival chance

as a quasi-stationary homogeneous metapopulation with parameters (νagg, Eagg, aagg, ρagg).

Hence, we have an equality between the corresponding mean lifetimes Tm and T hm:

Tm (N, νi, Ei, aij, , ρij) ≈ T hm (N, νagg, Eagg, aagg, ρagg). (3.19)

For the mean lifetime T hm of homogeneous metapopulations, however, an approximation

formula T h,am already exists (see (3.10)). By applying T h,am to the aggregated parameters

(νagg, (
ctot
ν

)agg = Eagg ·aagg
νagg

, ρagg), an approximation formula T am for the mean lifetime Tm of

any (homogeneous or heterogeneous) metapopulations results:

T am := T h,am

(
N, νagg, ( ctot

ν
)agg, ρagg

)
provided ( ctot

ν
)agg > 2.5 , N ≥ 5. (3.20)

For an overview over the exact functional structure of T am and its “ingredients” see Table

3.III. Despite the latter conditions, formula T am covers a large range of the ecologically

interesting situations for the same arguments as in the non-spatial case (Sec. 3.2.1.1).
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Table 3.III

Overview over the “ingredients” of the approximation formula T am presented

The approximation formula T am for the mean lifetime Tm of a metapopulation

T am(N, νi, cij , ρij) := T h,am (N, νagg, ( ctotν )agg, ρagg)

consisting of two major components:

the approximation formula T h,am for the homogeneous case

T h,am (N, ν, ctotν , ρ) := 1
ν · e

N
ctot/ν · a(N, ρ) ·

(
ctot
ν

)b(N,ρ)

with

a(N, ρ) = (N−1)!
N ·(N−1)N−1 · (1 + ρ) · (1 + 0.03 ·N3.6 · ρ0.03N · e−ρ·N ),

b(N, ρ) = (N − 1) · (1− 0.57 ρ0.2)

and all the relevant aggregated parameters

νagg =
N∏
i=1

νi
1
N ,

(ctot
ν

)
agg

=
N∏
i=1

max

√2,

√√√√(1
2

(
(

∑
j( 6=i) cij

νi
)−2 + (

∑
j( 6=i) cji

νi
)−2

))−1


1
N

,

ρagg = 1
N(N−1) ·

N∑
i=1

∑
j( 6=i)

ρij

Testing the “correctness” of the deduced approximation formula T am

Before we start to analyze the functional structure of formula (3.20), we check its ability

to approximate the mean lifetime Tm produced by the model and to reproduce well-known

qualitative effects on metapopulation persistence.

In Figures 3.6A-B, values calculated with formula (3.20) are compared to the numerically

determined values for the mean lifetime Tm, where the configurations and parameter sets

analyzed in Figures 3.3C-D and 3.5A-D are taken as a basis and different patch distances

d/dρ are considered. Evidently, T am provides a satisfactory quantitative fit of Tm.

In order to demonstrate that formula T am also works in situations with larger numbers

of patches N and more realistic configurations, we applied it to 72 sub-networks of the

Glanville Fritillary (Melitaea cinxia) system on the Åland islands, SW Finland (Hanski

et al. 1996). These sub-networks show a high variation in patch number (2 to 10), patch
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Figure 3.6: (A-B) The numerically determined values for the mean lifetime Tm of a metapop-

ulation versus the values predicted with the approximation formula T am (3.20) for all situations

described Figs. 3.3C-D and 3.5A-D and patch distances d/dρ {0.5, 2, 4}, where (A) shows the

absolute values and (B) the double-logarithmic plot. The lines indicate an identity. (C-D) Ap-

plication of formula T am to 72 sub-networks of the Glanville Fritillary butterfly (Melitaea cinxia)

system (Hanski et al. 1996) on the Åland islands, SW Finland, where (C) shows a particular

sub-network and (D) the result of the comparison between numerically determined and predicted

values of the mean lifetime for all 72 sub-networks. In this study, the time-continuous version

of the Incidence Function Model was taken as a basis (νi = 0.1Ai−1; ρij = 0; cij = 10Ai e−dij ).

area (0.002 to 3.8 ha) as well as configuration (for an example, see Fig. 3.6C). In this

particular study, a time-continuous version of the Incidence Function Model (see the end

of Sec. 3.1.1) was taken as a basis. The result of the comparison between numerically

determined and predicted values for the mean lifetime Tm is shown in Fig. 3.6D. The

high correspondence between both values corroborates that T am approximates Tm very

well. There is also certain evidence for the qualitative reasonableness of formula T am. The
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functional structure of the aggregated parameters (νagg, (
ctot
ν

)agg, ρagg) reveals that any de-

crease in the extinction rate νi of a certain patch i or the degree of correlation ρij of two

patches i and j results in a decrease of the corresponding aggregated parameter νagg (see

(3.16)) and ρagg (see (3.13)) respectively. Furthermore, any increase in the colonization

rates cij from a certain patch i to a certain patch j leads to an increase in OUT(i)
νi

and IN(j)
νj

,

while the OUT
ν

- and IN
ν

-values of all the other patches remain constant (see (3.18)), with

the result that ( ctot
ν

)agg becomes larger (see (3.17)). All these effects induce an increase in

T am = T h,am (N, νagg, (
ctot
ν

)agg, ρagg) because of the functional behavior of T h,am . This shows

that the formula for the mean lifetime presented (3.20) allows a number of well-known

qualitative effects on metapopulation survival to be correctly reflected.

To summarize, the ability of formula (3.20) to approximate the mean lifetime Tm pro-

duced by the model was tested for a wide range of hypothetical as well as real situations

with a high variation in the spatial structure of the underlying habitat networks. Dif-

ferent types of dispersal have also been considered (remember the “oriented movement”

in the hypothetical studies and the “purely random walk” in the case study). In each

case, the results were promising. Moreover, the functional structure of formula T am has

been found to reproduce a number of well-known qualitative effects on metapopulation

survival. Last but not least, the predictive power of the components of formula (3.20) –

the approximation formula T h,am for the homogeneous case and the aggregated parame-

ters pagg – was separately tested, with the result that whole functional relationships were

qualitatively correctly and quantitatively sufficiently reproduced (Figs. 3.2, 3.3, 3.5). All

these arguments indicate that approximation formula T am is really working.

A first analysis of the functional structure of formula T am

The functional structure of approximation formula (3.20) together with formula (3.10)

gives rise to numerous consequences for assessing the mean lifetime Tm of quasi-stationary

metapopulations: (a) The mean lifetime Tm is always proportional to the aggregated mean

lifetime Tagg = 1
νagg

of its local populations. This allows Tagg to be chosen as the basic

time scale of any metapopulation dynamics. The corresponding lifetime ratio Tm/Tagg

may be used as a quantifier for the survival advantage of the metapopulation over its
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local populations. This quantity, however, only depends on (N, ( ctot
ν

)agg, ρagg). (b) If

metapopulations of a certain fixed number of patches N without any correlation between

the extinction processes (ρagg = 0) are considered, then formula (3.20) together with

(3.10; 3.11; 3.12) shows that T am/Tagg ≈
(N−1)!

N ·(N−1)N−1 ·(( ctotν )agg)
N−1. This means that there is

exactly one quantity summarizing all the effects relevant to the survival advantage Tm/Tagg

of a metapopulation: the effective colonization ability ( ctot
ν

)agg of its local populations.

3.3 An implication: formulas for evaluating habitat

networks regarding metapopulation persistence

The approximation formula T am presented also partly answers the question of how to eval-

uate and compare habitat networks regarding their effect on metapopulation survival. So

far, the effect of the habitat network on the survival chance of a given metapopulation

was difficult to assess. Even if the effect of the habitat network on the main processes

(extinction/recolonization) is well-known, its effect on the long-term dynamics of the

metapopulation is hard to predict because of the randomness in the individual processes.

This especially impedes a comprehensive understanding of the interaction between all the

characteristics of a species and habitat network relevant for metapopulation survival. Yet

such an understanding is needed to directly predict the survival chance of a metapopula-

tion on the basis of species and landscape data. The presented formula T am for the mean

lifetime of a metapopulation provides a way of overcoming this problem.

Formulas for estimating the survival chance of quasi-stationary metapopulations

The survival chance S(t) of a quasi-stationary metapopulation, i.e. the probability that

it is still alive at time t, is given by S(t) = e−t/Tm and so completely determined by

the corresponding mean lifetime Tm, as we know from relation (3.6). Since Tm can be

approximated by T am (see (3.20)), the following approximation formula for S(t) results:

S(t)a := e−t / T
a
m . (3.21)

This relation together with formula T am (3.20) and the aggregation rules (3.13; 3.16; 5.3)
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reveals how all the relevant data of the species and habitat network have to be combined

to estimate the resulting survival chance. This can be achieved by the following procedure:

1. Analyze the habitat network and determine patch size Ai and patch distances dij .

2. Determine the probability of extinction νi and the mean number of emigrants Ei for each

local population by statistical analysis or using submodels (e.g., νi = e ·Ai−x, Ei = δ ·Aib).

3. Determine the dispersal range da and the correlation length dρ of the extinction processes.

4. Calculate the degree of correlation ρij and the probability of arrival aij by using (3.2;3.5).

5. Calculate the aggregated parameters (νagg, Eagg, aagg, ρagg) by using (3.13; 5.3; 3.16).

6. Calculate the approximated lifetime T am by using (3.20) with ( ctotν )agg = Eagg ·aagg
νagg

.

7. Calculate the approximated survival chance S(t)a by using (3.21). If one is merely in-

terested in the relative survival advantage Tm/Tagg of a metapopulation over its local

populations (Sec. 3.2.2), calculate T am/Tagg instead of S(t)a by using (3.16; 3.20).

All the data concerning the spatial structure of the habitat network needed (e.g., Ai,

dij) can be extracted from landscape maps or Geographical Information Systems (G.I.S.).

The determination of the species’ ecological parameters (e.g., e, x, δ, b, da, dρ) is much

more difficult. However, there are different ways of attaining a parameterization. Certain

parameters can be directly determined in the field or taken from the literature. Another

possibility is indirect determination by using parameter estimation techniques (see Hanski

1994; Moilanen 1999). If one is only interested in the relative importance of a certain

factor for metapopulation survival, it suffices to have rough estimations for the relevant

parameters (worst case - best case; lower limit - upper limit).

Currencies for ranking habitat networks according to their effect on persistence

All formulas T am, T am/Tagg, and S(t)a give a single scalar value as a result of the habitat net-

work evaluation. Hence, they provide an ecological “currency” for evaluating, comparing

and ranking all habitat networks according to their effect on metapopulation persistence,

even if these networks are structurally dissimilar. These currencies take both the spatial
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structure of a habitat network and the species’ specific response to it into account. This

fact is one of the most important consequences of the presented formula T am.

If all the habitat networks under consideration have the same number of patches N and

a negligible correlation between the extinction processes (ρagg ≈ 0), and one is only in-

terested in the survival advantage Tm/Tagg of the corresponding metapopulations over

their local populations, a much simpler currency for ranking these networks can be pro-

vided. Remember that the effective colonization ability ( ctot
ν

)agg of the local populations

has been found to summarize all the important effects on Tm/Tagg (end of Sec. 3.2.2.2).

Therefore, it suffices to analyze ( ctot
ν

)agg in order to rank the habitat networks according

to their effect on Tm/Tagg (the resulting ranking orders will be the same). To demonstrate

the advantage of using ( ctot
ν

)agg instead of T am/Tagg itself, we take the same submodels

(νi = e·Ai−x; Ei = δ·Aib) for including patch area Ai as in the Incidence Function Model

(Hanski 1994) as the basis and show how ( ctot
ν

)agg looks like in this particular case. When

inserting the specified parameters (νi, Ei) in the formula (3.17) for ( ctot
ν

)agg, we get

(ctot
ν

)
agg

=
√

2 · δ
e
·
M∏
i=1

√
Ai

2x

(
∑

j( 6=i) Ai
b · e−dij/da)−2 + (

∑
j( 6=i) Aj

b · e−dji/da)−2

1
N

. (3.22)

This formula is much simpler than the formula T am/Tagg for the survival advantage Tm/Tagg

itself. This provides an extra benefit: insight into the interplay between spatial structure

(Ai, dij) and species’ ecology (e, x, δ, da) and the effect on metapopulation persistence.

To summarize, by taking the presented approximation formula T am as a basis, a set of for-

mulas (S(t)a, T am/Tagg, ( ctot
ν

)agg) was extracted for estimating the persistence of a metapop-

ulation as well as evaluating and comparing habitat networks from different perspectives of

metapopulation survival. This mainly resulted from the fact that T am includes aggregated

parameters that summarize the whole spatial complexity of established metapopulations.

But note that all these formulas can only be as good as the underlying model regarding

the effects on metapopulation survival that can be reflected. This means that the findings

may change if additional aspects (e.g. rescue effects) are taken into account by the model.
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3.4 Discussion

3.4.1 Two reasons for the successful deduction of an approxi-

mation formula for the mean lifetime of metapopulations

Although the considered spatially realistic metapopulation model (Chapter 2) is complex

due to heterogeneity, an approximation formula T am for the mean lifetime Tm of (quasi-

stationary) metapopulations in heterogeneous landscapes was deduced. This success can

be mainly attributed to the following two facts:

3.4.1.1 A non-spatial model was found to reproduce the behavior of the

considered spatially realistic one

One of the most important results of the present paper is the finding that the parameters

pi (pi stands for νi, Ei, aij, ρij) of the underlying model can be aggregated such that

the homogeneous version of this model applied to the aggregated parameters pagg gives

nearly the same mean lifetime Tm of a quasi-stationary metapopulation as the original

one, i.e. T hm(pagg) ≈ Tm(pi). This means that a simple non-spatial model already allows

all the effects on the mean lifetime Tm covered by the spatially realistic model to be

reproduced, provided its parameters p are appropriately specified (p = pagg). The whole

spatial complexity is summarized in the aggregated parameters pagg. This underlines

the outstanding importance of knowing the right aggregation rules. The aggregation

rules presented (3.13; 5.3; 3.16; 3.17) therefore provide some “instructions” for correctly

applying the non-spatial model to heterogeneous landscapes.

3.4.1.2 An approximation formula T h,am was deduced for the non-spatial model

This deduction was only possible because, in the special case of uncorrelated circum-

stances, an exact formula TGoRim (see (3.7)) for the mean lifetime of initially completely

occupied metapopulations was available, that approximates the mean lifetime T h,um of

quasi-stationary metapopulations. When turning from the exact formula TGoRim to its an-

alytically determined approximation (see (3.8)), the essential functional structure of T h,um
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came to light (here: a power-like relationship between (ν · T h,um · e−
N

ctot/ν ) and ctot
ν

). This

structure gave some idea of how to proceed with the mean lifetime T hm in the general ho-

mogeneous case where T hm can only be numerically determined. By non-linear regression,

the same power-like relationship was found and the corresponding power and pre-factor

were determined. Hence, by combining analytical and numerical techniques, the essential

functional structure of T hm could be uncovered.

The desired approximation formula T am for the heterogeneous case finally resulted

from applying approximation formula T h,am to the aggregated parameters pagg, i.e. T am :=

T h,am (pagg). This shows that the knowledge of both components, T h,am and pagg, is essential.

Whenever the functional structure of one component would have been unknown, the whole

project of deriving an approximation formula for the mean lifetime Tm would have failed.

But note that the formula T am presented is only valid for quasi-stationary metapopulations.

In the case of transient metapopulations, the functional structure of Tm may be different.

The presented formula T am provides a number of features which are helpful for assessing

metapopulation persistence (Sec. 3.4.2). Its main advantage, however, is the disclosure of

the complete functional relationship between mean lifetime Tm and the model parameters.

It can now be simply “read off” how landscape and species ecological factors interact and

influence each other in their effect on the metapopulation level. Merely by analyzing the

functional structure of T am, we were able to derive formulas for comparing dissimilar habi-

tat networks regarding their ecological effect (Sec. 3.3). This opens up new perspectives

for analyzing the role of spatial heterogeneity in interplay with stochasticity for metapop-

ulation persistence. But note that the functional structure of T am is a reflection of the

structure of the underlying model. This means that a change in the model structure (e.g.

by including additional mechanisms) may result in an altered structure of T am.

3.4.2 The practical value of approximation formula T am

The approximation formula T am for the mean lifetime of metapopulations presented also

has some practical value, especially for the field of metapopulation conservation.

It is well-known that mathematical models can multifariously support decision-making
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in conservation management. PVA models, for instance, allow the persistence of a pop-

ulation to be estimated (Akçakaya and Ferson 1990). Alternative management activities

can be simulated as special parameter changes (Lankester et al. 1991; Stelter et al. 1997)

and compared in terms of their effect on the persistence of the target population. The

only problem is that a decision-maker will seldom have the possibility to develop PVA

models himself. Moreover, models will only have some practical value for him if an im-

plementation, i.e. an appropriate computer program, is available as well. Last but not

least, helpful results can only be attained if the right model experiments are performed,

i.e. the right quantities are related to each other. This requires plenty of experience in

working with models, running and evaluating simulations or solving model equations.

As the present study demonstrates, there is an alternative to utilizing computer pro-

grams for metapopulation viability analysis, such as Ramas (Akçakaya and Ferson 1990),

Vortex (Lacy 1993), Alex (Possingham and Davies 1995; Lindenmayer et al. 1995), or

Meta-X (Frank et al. 2002). If formulas for the mean lifetime Tm or the probability of

extinction P0(t) are available, then a complete population viability analysis can be per-

formed without having to run any simulation. Since the approximation formula T am for the

mean lifetime presented, for instance, is based on the same model as Meta-X, formula

and software predict the same values for Tm and, hence, give rise to the same conclusions

for metapopulation management. The advantage of formulas is that, once disclosed, they

can immediately be used for the viability analysis. Hence, the decision-maker is no longer

dependent on the availability of a computer program. The extraction of such formulas

undoubtedly requires much model analysis work. But this work can be kept away from

the user and undertaken by the modeler himself, who anyway knows the model best.

3.4.3 Aggregation as bridging technique between complex spa-

tially realistic and simple models

One of the main topics of recent Theoretical Ecology is the methodology of modeling

spatiotemporal dynamics in ecological systems (e.g., Durrett and Levin 1994; Bascompte

and Solé 1998). Two questions are of particular importance: “What degree of detail is
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needed to reflect all the important effects of space?”, and “Are there any ways of reducing

the complexity of spatially realistic models and finding a bridge to simpler models?”.

Techniques such as pair approximation (Matsuda et al. 1992; Sato et al. 1994) and moment

closure (Bolker and Pacala 1997; Law and Dieckmann 1998) are widely discussed in this

context. The present study shows that aggregation also provides a promising technique of

model simplification. Aggregation-based methods are very common in physics, especially

in the fields of thermodynamics and statistical physics (e.g., Dickman 1986; Uzunov 1993;

Pitaevskii 1999) as well as condensed matter physics and magnetism (e.g., Fujimoto 1997;

Schroeder 2000; Majlis 2001). But these methods have so far only rarely been used in

ecology (e.g., Bascompte 2001). We therefore take our model results as the basis and draw

some conclusions concerning both the benefits of using aggregation techniques in the field

of (meta-)population modeling and the possibility of extending the methods presented

to other ecological situations. Finally, the potential of aggregation for the derivation of

measures for landscape evaluation through the eyes of a certain species is discussed.

3.4.3.1 The benefits of aggregation techniques

As we have seen, a simple non-spatial model is able to give the same mean lifetime

of an quasi-stationary metapopulation as the spatially realistic model considered (i.e.

T hm ≈ Tm), provided it is applied to appropriate aggregations pagg of the parameters pi

of the original model. To answer a certain question concerning metapopulation persis-

tence, it therefore suffices to analyze the non-spatial model and to extend the results

to spatially realistic situations by using the aggregated parameters pagg. This was pre-

cisely what was done when deducing the approximation formula T am for the mean lifetime

(T am(pi) := T h,am (pagg)). The aggregation formulas reveal how the interplay between the

local populations influences the persistence of the whole metapopulation. This shows that

aggregation-based model simplifications allow spatial realism and simplicity to be com-

bined to the benefit of better understanding. This advantage especially comes to fruition

when the model takes the interplay between species and landscape into account.
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3.4.3.2 Aggregation as an approach to ecologically scaled landscape indices

In the case that aggregation techniques are successfully used for deriving an approximation

formula Qa for a certain target quantity Q of a certain spatial (meta-)population model,

an extra-benefit can be provided. The resulting approximation formula Qa reveals how

data from species and landscape have to be combined to estimate the value for the target

quantity Q of interest. Therefore, Qa(landscape, species) provides a measure that allows

a given landscape to be evaluated through the eyes of a certain species. This aggregation-

based approach towards ecologically scaled landscape indices goes in the same direction

as the approaches of Wiegand et al. (1999) and Vos et al. (2001), each utilizing a spatially

realistic (meta-)population model to link landscape structure with population dynamical

processes. A comparative analysis of the different approaches concerning their range of

applicability, benefits and limitations will be presented in Chapter 9 of this thesis.

3.4.4 Prospects for further research

In this study, we developed a method for deducing a formula for the mean lifetime Tm

of metapopulations in heterogeneous landscapes. To demonstrate its potential, it was

applied to a model which belongs to the widely used class of Levins-type metapopulation

models. The simplifying assumptions underlying this study indicate some prospects for

further research. (a) The applicability of both the presented aggregation rules (3.13; 3.16;

3.17) and the final approximation formula (3.20) ought to be tested in situations where

the rescue effect is taken into account or the functional forms for arrival probability and

correlation are more sophisticated. (b) Approximation formulas ought also to be deduced

for other target quantities of interest in the metapopulation context such as the mean

lifetime Tm(x0) of a transient metapopulation or the probability R(x0) that a metapop-

ulation successfully approaches quasi-stationarity (Goel and Richter-Dyn 1974; Wissel et

al. 1994) where x0 denotes the initial state. Both quantities are important for questions

concerning the recovery or foundation of metapopulations. (c) As we already mentioned

in Sec. 4, there is a strong structural relationship between the effective colonization ability

of the local populations ( ctot
ν

)agg given in relation (3.22) and the metapopulation capacity
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λM defined by Hanski and Ovaskainen (2000). Both quantities provide a landscape mea-

sure for metapopulation persistence - the first a stochastic and the second a deterministic

one. In a forthcoming paper, both measures will be compared to the benefit of a better

understanding of the effect of stochasticity on metapopulation survival.

3.5 Appendix

3.5.1 Analytical approximation of the Goel and Richter-Dyn

formula TGoRim

In the following, the exact formula TGoRim (see (3.7)) for the mean lifetime of an initially

completely occupied, uncorrelated, homogeneous metapopulation is analytically approxi-

mated for values of ctot
ν
> 5. By setting x = ctot

ν
, formula (3.7) is transformed into

TGoRim = 1
ν
·
N∑
i=1

N∑
k=i

1
k
· (N−i)!

(N−k)!
· 1

(N−1)k−i
· xk−i

m=N−k
= 1

ν
·
N∑
i=1

N−i∑
m=0

1
N−m ·

(N−i)!
m!
· 1

(N−1)N−i−m
· xN−i−m (3.23)

= 1
ν
·
N∑
i=1

(
N−i∑
m=0

1
N−m ·

1
m!
· (N−1

x
)m

)
· (N−i)!

(N−1)N−i
· xN−i

This relation reveals that TGoRim is a polynomial in x of degree N − 1. For larger values

of x, TGoRim can be approximated by its dominant part given by the summand related to

xN−1 that can be found at position i = 1 of the last sum in relation (3.23). Therefore

dominant part of TGoRim = 1
ν
·

(
N−1∑
m=0

1
N−m ·

1
m!
· (N−1

x
)m

)
· (N−1)!

(N−1)N−1 · xN−1

= 1
ν
·

(
N−1∑
m=0

N
N−m ·

1
m!
· (N−1

x
)m

)
· (N−1)!
N ·(N−1)N−1 · xN−1. (3.24)

Figure 3.7 indicates that the term in parentheses can be approximated by eN/x as long as

x > 2.5 and N ≥ 5. This results in the following approximation for TGoRim :

TGoRim ≈ 1
ν
· eN/x · (N−1)!

N ·(N−1)N−1 · xN−1 (3.25)

provided x > 2.5 and N ≥ 5. Finally, if the term x in (3.25) is replaced by the expression

ctot
ν

, then we get the same functional relationship as mentioned in relation (3.8).
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Figure 3.7: Ratio fN (x)/ exp(N/x) of the functions fN (x) :=
∑N−1

m=0
N

N−m ·
1
m! · (

N−1
x )m and

exp(N/x) versus x for different natural numbers N . The ratio is found to be ≈ 1 for x > 2.5

and N ≥ 5 (see arrow). Hence, exp(N/x) gives a good approximation of fN (x) in this region.

3.5.2 Calculations indicating a saturation behavior of Eagg

In the following, we show that the aggregation Eagg of the numbers of emigrants Ei given

in (5.3) converges to the limit value
√

2 · ( N−1P
n( 6=1) an1

)
1
N · (IN(1) ·

∏
i( 6=1) Ei)

1
N if the value

E1 for patch 1 becomes very large, where IN(1) denotes the total recolonization chance

of patch 1,
∑

j( 6=1)
Ej
N−1

aj1. Since ( 1
x

+ 1
a
)−1 converges to a if x becomes large, we get:

Eagg =
N∏
i=1

√√√√(1

2

(
1

Ei
2 +

1

(
∑

j( 6=i) w
i
j Ej)

2

))−1
1
N

(3.26)

=
√
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√√√√( 1
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1
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2
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√
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1
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i
j Ej)

2
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√
Ei
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N
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Since the weights wij in (3.26) are defined to be aji/
∑

n( 6=i) ani (see (3.15)), we obtain

lim
E1→∞

Eagg =
√

2 · ( N−1P
n( 6=1) an1

)
1
N · (

∑
j( 6=1)

Ej
N−1

aj1︸ ︷︷ ︸
IN(1)

)
1
N ·

∏
i( 6=1)

Ei
1
N (3.27)

This shows that the aggregated parameter Eagg converges to the limit value mentioned.

3.5.3 Analysis of the functional structure of (ctotν )agg

To finalize, we calculate the term ( ctot
ν

)agg = Eagg ·aagg
νagg

by using the presented formulas

(3.13; 5.3; 3.16) for the aggregated parameters (νagg, Eagg, aagg). It is obvious that

Eagg · aagg
νagg

=
N∏
i=1

 1

νi
·

√√√√(1

2

(
1

Ei
2 +

1

(
∑
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i
j Ej)

2

))−1

· 1
N−1

∑
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ani


1
N
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 1
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·
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+

1
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Ej
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N
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 1
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·
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(
1

(
∑

n( 6=i) cin)2
+

1

(
∑
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1
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. (3.28)

This shows that ( ctot
ν

)agg =
∏N

i=1

√
2/
(

(OUT(i)
νi

)−2 + ( IN(i)
νi

)−2
) 1
N

as stated in relation (3.17).
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Akçakaya, H. R., and S. Ferson. 1990. RAMAS - Spatially Structured Population Models

for Conservation Biology. Applied Biomathematics. Setauket, New York



80 CHAPTER 3. A FORMULA FOR THE MEAN LIFETIME TM
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Burgman, M.A., Ferson, S., and Akçakaya, H.R. 1993. Risk assessment in conservation

biology. Chapman and Hall, London

Day, J. R., and H. P. Possingham. 1995. A stochastic metapopulation model with

variability in patch size and position. Theoretical Population Biology 48: 333-360

Dickman, R. (1986). Kinetic phase transitions in a surface-reaction model: mean-field

theory. Physical Reviews A 34: 4246–4250

Doak, D. F., P. C. Marino, and P. M. Kareiva. 1992. Spatial scale mediates the influ-

ence of habitat fragmentation on dispersal success: implications for conservation.

Theoretical Population Biology 41: 315–336

Durrett, R., and S. Levin. 1994. Stochastic spatial models: a user’s guide to ecological

applications. Philosophical Transactions of the Royal Society London B 343: 329–

350

Drechsler, M., and C. Wissel. 1997. Separability of local and regional dynamics in

metapopulations. Theoretical Population Biology 51: 9–21



3.6. REFERENCES 81

Etienne, R.S., and Heesterbeek, J.A.P. 2001. Rules of thumb for conservation of metapop-

ulations based on a stochastic winking-patch model. The American Naturalist 158:

389-407

Fahrig, L. 1992. Relative importance of spatial and temporal scales in a patchy environ-

ment. Theoretical Population Biology 41: 300–314

Fahse, L., C. Wissel, and V. Grimm. 1998. Reconciling classical and individual-based

approaches of theoretical population ecology: a protocol to extract population pa-

rameters from individual-based models. The American Naturalist 152: 838–852

Foley, P. 1994. Predicting extinction times from environmental stochasticity and carrying

capacity. Conservation Biology 8: 124-137

Frank, K., and C. Wissel. 1994. Ein Modell über den Einfluß räumlicher Aspekte auf
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Chapter 4

Minimum conditions for long-term

metapopulation persistence

This chapter is mainly based on the following publication:

Frank, K. & Wissel, C. 1998. Spatial aspects of metapopulation survival: from model

results to rules of thumb for landscape management. Landscape Ecology 13: 363–379

In the preceding two chapters, a stochastic modeling framework for analyses of metapopu-

lation persistence has been developed and an approximation formula for the mean lifetime

T am for supplementary, more structural analyses as well. Now the basis is provided for

passing on to answering the ecological questions we are interested in.

The main object of research in this thesis is the functional relationship between

metapopulation persistence, the landscape structure and the species’ ecology. There are

numerous spatial factors influencing the metapopulation processes. Some of them are

related to the spatial structure of the underlying habitat network such as the number,

size, shape and quality of the patches or the scale and relative arrangement of the patch

configuration. Other spatial factors are related to the species’ ecology such as the corre-

lation length of the extinction processes or the dispersal range. Therefore, it is worth to

analyze the relative importance of the individual spatial factors and its dependence on

the other factors. From the theoretical point of view, this is interesting because it clarifies

the complex spatial effects on metapopulation persistence. From the conservational point

87
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of view, this is even more urgent. To have information about the relative importance of

a certain spatial factor enables to decision maker to answer the following question: “Is it

possible to obtain long-term metapopulation persistence through a controlled change in

the factor considered or is it better to change another factor?”. This is an indispensable

basis for setting correct management priorities and obtaining efficiency. A topic of par-

ticular relevance is the relative importance of the patch configuration because this topic

is closely related to the efficiency of reserve network design and habitat connecting.

The relative importance of the patch configuration for metapopulation persistence has

been analyzed in several studies. Some studies, however, do not take stochasticity into

account (e.g. Doak et al. 1992; Adler and Nuernberger 1994; Hanski and Ovaskainen 2000;

Ovaskainen and Hanski 2001). Others ignore the correlation of the extinction processes

(e.g. Lefkovitch and Fahrig 1985; Fahrig and Merriam 1985; Hanski 1994). Most studies

which take the correlation into account (e.g. Harrison and Quinn 1989; Gilpin 1990;

Etienne 2002; Ovaskainen 2003) deal with spatial homogeneity. Sometimes, however, the

correlation has a limited range and disappears on a larger scale (Moloney 1993). Akçakaya

and Ginzburg (1991) used distance-dependent correlations but considered only systems

with two and three patches. Usually, the dispersal strategy was fixed.

In this chapter, we assess the relative importance of the patch configuration for

metapopulation persistence, by taking the spatial correlation of the extinction processes

into account. We determine species-ecological and landscape-structural conditions which

have to be met before the patch configuration can become an actual key factor of metapop-

ulation persistence. Additionally, we provide conditions to be met by the patch configu-

rations themselves to allow long-term metapopulation persistence. We show that (a) the

species’ dispersal range da has to exceed the correlation length dρ before a metapopulation

can benefit from changes in the patch configuration at all, (b) long-term persistence can

only be obtained if no patch is inside the correlation range of another one, and (c) there

is a hierarchy of importance in the characteristics of a patch configuration (scale and

relative arrangement) and, hence, in the scopes of landscape management. By taking the

scientific results as a basis, we derive rules of thumb for landscape management. These

rules qualify and modify the well-known rules for reserve network design by Wilson and
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Willis (1975). We finish with remarks on the limitations of supporting species survival by

landscape management and draw some conclusions for ecological research.

4.1 Methods

The present study aims at the determination of minimum conditions to be met by species

and habitat network to allow long-term metapopulation persistence. This requires sys-

tematic analyses of the functional relationship between metapopulation persistence, the

species’ ecology and the spatial structure of habitat networks (local attribtes, patch con-

figuration). A subdivision in local and regional effects on metapopulation persistence is

important in this context and a separate analysis of these effects as well.

The necessary analysis work in this study is based on the stochastic, spatially realistic

metapopulation model presented in Chapter 2. This model consists of a generic main

model and spatial submodels for integrating the landscape structure and the species’

ecology. In the following, we (a) give a rough overview over central assumptions underlying

the model and the current analysis, (b) specify the spatial submodels used, and (c) give

a definition of and provide a measure for long-term metapopulation used in this study.

4.1.1 The main model and its central assumptions

We consider finite metapopulations of N patches, take the stochasticity in the sequence

of extinction and colonization events in to account, but ignore Allee and rescue effects.

In this case, stochastic Levins-type models such as the model in Chapter 2 are applicable.

The model assumes that the dynamics of the metapopulation are the result of local

extinction, correlated extinction, and recolonization of the individual patches. Local ex-

tinction is assumed to occur with a probability per time νi, correlated extinction with

ρij
√
νi
√
νj, and recolonization with

∑
j(xj=1) cji, where the sum is taken over all patches j

currently occupied. The νis are the local extinction rates, the ρijs the degrees of correla-

tion, and the cijs the colonization rates. These parameters are the main model parameters.

We focus on metapopulations which successfully approached quasi-stationarity before
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extinction, i.e. show typical fluctuations in the occupancy and go extinct with a constant

rate. In this case, the mean lifetime Tm is known to summarize all the effects of the local

and regional dynamics which are relevant for metapopulation persistence. Therefore, Tm

is an adequate measure for metapopulation persistence in this case (remember Chapter 2).

4.1.2 The submodels to include landscape structure and species

ecology

In Chapter 2, various submodels are presented which relate the main model parameters to

landscape structure and species’ ecology. In the present study, it is particularly important

that local and regional effects on metapopulation persistence can be separately analyzed.

4.1.2.1 The submodel for the colonization rate

We use the following submodel for the colonization rate from patch i to patch j:

cij = Ei · aij. (4.1)

where Ei denotes the number of emigrants local population i emits per time on average and

aij the arrival probability, i.e. the probability that a disperser from patch i successfully

reaches patch j. To integrate species’ dispersal and the spatial structure of the habitat

network, we use the simplest submodel for the arrival probability aij:

aij =
1

N − 1
·DISP(dij), (4.2)

where DISP is a certain dispersal function and dij is the distance between patches i

and j. The shape of the dispersal function, DISP, depends on the species’ movement

characteristics (movement pattern, dispersal mortality), which may differ between habitat

types (Kareiva and Shigesada 1983; Tischendorf and Wissel 1997; Heinz et al. 2005). The

critical distance da above which DISP(d) ≈ 0 is no other than the specific dispersal range

defined to be the maximum distance which can be covered by an individual disperser.

Submodel (4.2) implies that the arrival probability is symmetric (aij = aji) between

two patches i and j. It is completely determined by the distance dij between the two
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patches. This indicates that we implicitly assumed the simplest dispersal strategy with

competition between the patches for emigrants, namely corridor-oriented dispersal, and a

complete pattern of connectedness. This was done to avoid an overloading of the study

with too many interactions between the patches.

4.1.2.2 The submodel for the degree of correlation

The degree of correlation ρij of the extinction processes in two patches i and j may decrease

with the distance dij between them. We use the following submodel to cover this effect:

ρij = CORR(dij), (4.3)

where CORR is a certain correlation function. Its shape depends on both the varying

environmental factors and their species-specific effect on the local population dynamics.

The critical distance dρ above which CORR(d) ≈ 0 is the species-specific correlation

length defined to be the maximum distance over which the correlation acts.

To summarize, the presented submodels (4.1; 4.2; 4.3) relate the metapopulation dynam-

ics to both the habitat network (local attributes (νi, Ei), patch configuration (dij)) and

the species’ ecology ((DISP, da), (CORR, dρ)). They provide the basis for a separate

investigation of local and regional effects on metapopulation persistence. While all the

local effects are summarized in (νi, Ei), all the regional effects are summarized in (aij, ρij).

4.1.3 The formula for the mean lifetime T am for supplementary

persistence analyses

All the analyses of metapopulation persistence in the present study are based on the values

of the mean lifetime Tm numerically determined from the underlying model. Sometimes,

however, it is useful to supplement the numerical work with analyses of the functional

structure of the mean lifetime Tm. To meet the latter goal, we use of the approximation

formula T am deduced in Chapter 3. As we have shown, the mean lifetime Tm of a metapop-

ulation in heterogeneous landscapes can be approximated by the following formula:

Tm ≈ T am :=
1

νagg
· e

N
(ctot/ν)agg · a(N, ρagg) ·

(
(
ctot
ν

)agg

)b(N,ρagg)

(4.4)
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with the functions for the pre-factor a(N, ρ) and the power b(N, ρ) given in Table 3.III

and the effective parameters νagg, ρagg, and ( ctot
ν

)agg given by

νagg =
N∏
i=1

νi
1
N ; (4.5)

ρagg =
1

N(N − 1)
·
N∑
i=1

∑
j( 6=i)

ρij; (4.6)

(
ctot
ν

)agg =
N∏
i=1

max

√2,

√[
1
2

{
(
∑

j( 6=i) cij)
−2 + (

∑
j( 6=i) cji)

−2
}]−1

νi︸ ︷︷ ︸
=:zi


1
N

. (4.7)

The most complex term is the formula for ( ctot
ν

)agg. This term is determined by the local

extinction rate νi and two sums of the colonization rates,
∑

j( 6=i) cij and
∑

j( 6=i) cji, of the

individual patches. The first sum equals the total number of colonizations patch i can

induce per time when occupied. The second sum equals the total probability that patch i

becomes recolonized after an extinction and can be interpreted as a measure of “actually

being in the play”. Therefore, the term under the square root can be interpreted as

the effective colonization rate of patch i. However, as the max-function in the formula

indicates, all these factors only contribute to ( ctot
ν

)agg and so to Tm if zi >
√

2, i.e. if patch

i is at least so strong that its effective colonization rate exceeds its local extinction rate

νi by a factor of
√

2. Otherwise, this patch does not significantly contribute to Tm. In

this study, we assume that all the patches are strong enough, i.e. zi >
√

2. Relation (4.4)

has serious implications for the analysis of long-term metapopulation persistence.

4.1.3.1 Definition and measure of long-term metapopulation persistence

Relation (4.4) indicates that the mean lifetime Tm of the metapopulation is proportional

to the effective mean lifetime Tagg = 1
νagg

of its local populations. This fact allows Tagg to

be chosen as a time scale for the metapopulation dynamics. The relative ratio Tm/Tagg

quantifies the survival advantage of the metapopulation over its local populations. Long-

term metapopulation persistence is said to be obtained if Tm/Tagg is significantly large.
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4.1.3.2 Measures for the local and regional effects on persistence

Relation (4.4) indicates that all the effects which are relevant for the survival advantage

Tm/Tagg of a metapopulation are summarized in N , ρagg, and ( ctot
ν

)agg. With our settings

for the colonization rates cij = Ei
N−1
· aij (see (4.1)), we see that ( ctot

ν
)agg = Eagg

νagg
· aagg with

the effective number of emigrants Eagg and the effective arrival probability aagg given by

aagg =
N∏
i=1

(
∑
j( 6=i)

aij)
1
N and (4.8)

Eagg =
N∏
i=1

√√√√ Ei
2 · (
∑

j( 6=i)Ej · wji)2

1
2

(
Ei

2 + (
∑

j( 6=i) Ej · wji)2
)

1
N

. (4.9)

The weights wji are given by wji =
ajiP

k( 6=i) aki
(note that aij = aji in our case).

In the present study, we assume that the variance in the local attributes (νi, Ei) is at

most moderate, in order to avoid an overloading with too many details (for a detailed

analysis of the role of the local factors, see Chapter 5). In the result, the formula for Egg

further simplifies to a geometric mean, i.e. Eagg ≈
∏N

i=1 Ei
1
N , as the calculation in the

Appendix shows. This quantity is independent of the aijs and so the spatial configuration.

All these arguments give rise to the following conclusions: Firstly, all the local effects

which are relevant for the survival advantage Tm/Tagg of a metapopulation are summa-

rized in the ratio Eagg
νagg

. This ratio gives the (effective) total number of emigrants a local

population emits during its (effective) lifespan 1
νagg

and can be interpreted as effective col-

onization potential of the local populations. Secondly, all the relevant regional effects are

summarized in the effective degree of correlation ρagg and the effective arrival aagg. These

three measures (Eagg
νagg

, ρagg, aagg) can be used to distinguish between local and regional key

factors of long-term metapopulation persistence in heterogeneous landscapes.

4.2 Results

The present study aims at answering the following questions: “What minimum conditions

have to be met by the species’ ecology and the spatial structure of the habitat network

(esp. scale and type of the patch configuration) before a metapopulation can benefit from
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landscape changes and persist over a long term?”, “Is it possible to condense the scientific

results of this study in verbal rules of thumb for conservational landscape management?

Do these rules correspond with the existing rules of thumb?”

The individuals’ specific perception of the landscape determines the effect on metapop-

ulation persistence which can be obtained at all by changing the landscape structure.

Therefore, rules of thumb for landscape management can only be deduced when both the

concrete species and the concrete landscape are taken into account. However, because of

the multitude of species-ecological and landscape-structural factors to be considered it is

almost impossible to directly determine the real key factors of metapopulation persistence.

This dilemma can be avoided by using a hierarchical approach for the model analysis.

In a first step, all metapopulation factors are assumed to be spatially homogeneous. This

allows their relative importance for metapopulation persistence to be simply analyzed. In

a second step, all factors which have been found to be limiting for metapopulation per-

sistence are specified in a spatially heterogeneous way. In particular, both the landscape

structure and the species’ ecology are taken into account in this phase. Based on this,

landscape-structural and species-ecological conditions can be revealed which have to be

met before long-term metapopulation persistence can genuinely be attained.

4.2.1 The spatially homogeneous reference case

We start with assuming spatial homogeneity, i.e. all patches are identical with equal

parameters (νi=ν, Ei=E, aij =a, ρij =ρ). This allows the topic of long-term metapop-

ulation persistence to be tackled from a simple side. Moreover, the corresponding results

can be used as a reference for the spatially heterogeneous case considered later (Sec. 4.2.2).

Figure 4.1 shows the survival advantage Tm/Tagg of a homogeneous metapopulation

with N = 5 patches in relation to degree of correlation ρ and arrival probability a for

different levels of the colonization potential E
ν

of the local populations. Figure 4.1A

indicates that, whenever the degree of correlation ρ exceeds the critical value of 0.2, the

metapopulation only has a low survival advantage T hm/Tl, even if the colonization potential

of the local populations E
ν

is high and every emigrant arrives (a = 1). Figure 4.1B, on the
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Figure 4.1: The survival advantage T hm/Tagg of a homogeneous metapopulation with 5 patches

and parameters (ν, E, a, ρ). (a) T hm/Tagg versus the degree of correlation ρ for a = 1 and different

levels of the colonization potential E/ν of the local populations. (b) T hm/Tagg versus the arrival

probability a for ρ = 0 and different levels of E/ν. The broken lines in (a) and (b) mark the

regions where is no chance of long-term persistence.

other hand, reveals that, as long as the arrival probability a is below the critical value of

0.2, really high values of T hm/Tl cannot be obtained, even if the local populations have a

relatively high colonization potential E
ν

and the correlation completely disappears (ρ = 0).

Last but not least, both figures show that the metapopulation has no chance of persisting

in the long term as long as the colonization potential E
ν

of the local populations is below

a certain minimum, regardless of the values of both ρ and a (see Figs. 4.1A-B).

To summarize, a homogeneous metapopulation can only persist in the long term if the

following three conditions are met: (1) a minimum colonization potential E
ν

of the local

populations, (2) a low degree of correlation ρ, and (3) a minimum arrival probability a.

4.2.2 The spatially heterogeneous case

Now we pass on to the main part of this study – the determination of minimum conditions

to be met by the species and the habitat network to allow long-term metapopulation

persistence. In order to meet this goal, we abandon the assumption of having identical

model parameters. We allow individuality in the local attributes {Ei, νi} and relate both

the arrival probability aij and the degree of correlation ρij to the patch configuration and
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the species’ ecology by using the submodels () specified in Section 4.1.2.

In a first model experiment, we determine some species-ecological conditions (DISP,

CORR) under which metapopulation persistence is actually sensitive to a change in the

landscape structure. This results in a characterization of the species which can perceptibly

benefit from metapopulation management. In a second model experiment, we analyze the

role of the spatial structure of the habitat networks for metapopulation persistence and

give a characterization of favorable patch configurations.

4.2.2.1 Conditions governing the species’ ecology

To analyze the role of the species’ ecology, we assume a certain correlation type (CORR,

dρ) and consider two dispersal types (DISP, da), namely short-distance dispersal (da < dρ)

and long-distance dispersal (da > dρ). We assume patch-specific attributes of the local

populations (νi, Ei). In order to avoid an overloading of the study with too many spatial

details, we start with “Equi”, a hypothetical equidistant configuration (dij = d).

We analyze the extent to which species’ dispersal influences the chance of obtaining

long-term metapopulation persistence through a change in the local (Eagg
νagg

) or the spatial

(d) settings. Figures 4.2A-B show the result for short-distance dispersal. In this case, the

dispersal range da is below the correlation length dρ such that DISP(dc)≈0 (see Fig. 4.2A).

Table 4.I

The sets of the specific subpopulation features {(νi, Ei)} for the metapopulations analyzed in

Figs. 4.2C and 4.2D and in Figs. 4.3C-D respectively.

A B C D E F

νi Ei νi Ei νi Ei νi Ei νi Ei νi Ei

0.2 6 0.3 6 0.2 10 0.3 10 0.2 2 0.2 2.4

0.4 12 0.8 12 0.4 5 0.8 5 0.4 8 0.4 4.8

0.6 20 0.7 20 0.6 7 0.7 7 0.6 18 0.6 16.2

0.8 24 0.6 24 0.8 25 0.6 25 0.8 32 0.8 9.6

1 40 0.85 40 1 15 0.85 15 1 50 1 12
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Figure 4.2: The distance dependence of degree of correlation ρ(d) = CORR(d) = e−4d/dρ

and arrival probability a(d) = DISP(d) = e−4d/da for short-distance dispersal (da = 0.5dρ;

(A)) and long-distance dispersal (da = 8dρ; (C)). (B) and (D): Mean lifetime Tm/Tagg for a

metapopulation with 5 equidistant patches (dij = d) versus patch distance d (scaled by dρ) for the

local attributes {Ei, νi} given in A-D of Tab. 4.I. The broken lines correspond to a homogeneous

metapopulation with identical parameters (νagg, Eagg) defined in (4.8;4.9). The values in the

parentheses denote the resulting effective colonization potential of the local populations Eagg
νagg

.

Figure 4.2B indicates that the survival advantage Tm/Tagg of the metapopulation goes up

when the patch distance d decreases. Nevertheless, the metapopulation has no chance of

persisting over a long term, even if its patches are close to each other and the effective

colonization potential Eagg
νagg

of its local populations increases. A totally different picture

emerges in the case of long-distance dispersal where the dispersal range da exceeds the

correlation length dρ. Here, the individuals have a real chance of escaping the range of

correlation (DISP(dc) > 0; see Fig. 4.2C). In this case, there is a critical patch distance
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do ≈ dρ that is optimum for survival, namely where the correlation ρ becomes very low

(compare the bullets in Fig. 4.2D with the arrow in Fig. 4.2C). Markedly below or above

the optimum do, the metapopulation only has a low survival advantage Tm/Tagg, regardless

of the effective colonization potential Eagg
νagg

of its local populations. However, as long as

Eagg
νagg

is below a certain minimum, the metapopulation has no chance either of persisting

over a long term, even if patch distance d is optimum.

To summarize, only if the species under discussion exhibits long-distance dispersal

(da > dρ), there is a real chance of inducing any noticeable effect on metapopulation per-

sistence through local and/or spatial landscape management. Long-term metapopulation

persistence, however, can only be obtained if landscape management is able to ensure

both (a) an effective colonization potential Eagg
νagg

of the local populations that exceeds a

certain minimum and (b) a patch distance d that is near the optimum distance do ≈ dρ.

Both conditions, the long-distance dispersal and the optimum patch distance, result from

the necessity to implement both a low degree of correlation ρ and a minimum arrival

probability a, i.e. the persistence conditions found in the homogeneous case.

4.2.2.2 Conditions governing the patch configuration

In the following, we consider species which exhibit long-distance dispersal. Only these

species have been found to perceptibly benefit from landscape management. We focus on

the analysis of the effect of the patch configuration (a detailed analysis of the effect of

the local settings is carried out in the next chapter of this thesis). After revealing how

the patch configuration influences metapopulation persistence at all, we finalize with a

characterization of those configurations which are favorable for long-term persistence.

We consider metapopulations with patch-specific local populations. Additionally, we

abandon the assumption of an equidistant configuration. To cover a large range of reason-

able patch configurations, we analyze its extreme examples, the one-dimensional “Chain”

(Fig. 4.3Aa) and the two-dimensional “Array” (Fig. 4.3B). To attain comparability, both

configurations are scaled by the distance d between central patch 3 and its direct neigh-

bors (2 and 4). Now the basis is given for analyzing the way metapopulation persistence

is influenced by the scale (d) and type (relative form) of the patch configuration.
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Figure 4.3: Two configurations of 5 patches are considered: the one-dimensional “Chain” (A)

and the two-dimensional “Array” (B). Both configurations are scaled by the distance d between

the central patch and its nearest neighbors. (C) and (D): The survival advantage Tm/Tagg of a

metapopulation living in an “Array”, a “Chain” or an equidistant configuration “Equi” versus

the patch distance d for the local attributes given by E and F of Tab. 4.I. In both cases, long-

distance dispersal with settings as in Fig. 4.2D is assumed. The broken lines correspond to a

homogeneous metapopulation with identical parameters (νagg,
Eagg
νagg

, aagg, ρagg) defined in (4.8;

4.9). The values in parentheses are the resulting values of Eagg
νagg

. The effective ρagg (E) and the

effective aagg (F) versus the patch distance d for the configuration types under discussion.
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Figures 4.3C-D show the survival advantage Tm/Tagg of the metapopulation in relation

to the patch distance d for the patch configurations under consideration and various sets

of local attributes. Evidently, for every configuration type, there is an optimum patch

distance do (Figs. 4.3C-D), namely where the corresponding effective degree of correlation

ρagg becomes very low (cf. the arrows in Fig. 4.3E). All these optimum distances do

roughly coincide with the correlation length dρ. This corresponds with the results in the

equidistant case and corroborates that both the existence and magnitude of the optimum

distance do ≈ dρ are common effects and not artifacts of a concrete configuration.

Our results (Figs. 4.3C-D) also indicate that deciding in general which configuration

type is most favorable for metapopulation persistence is impossible. As long as the patch

distance d is above the optimum do ≈ dρ, the configuration type is decisive for the survival

advantage Tm/Tagg. The “Array” has a clear advantage over the “Chain”. Since all

configurations are almost free of correlation (see Fig. 4.3E), the effective arrival probability

aagg becomes limiting. The “Array” produces the higher aagg (Fig. 4.3F) because its

peripheral patches (1 and 5) are closer to the central patch than those of the “Chain”.

Moreover, the comparison with the equidistant configuration (“Equi”) shows that there is

a hierarchy of importance among the configuration types (“Equi” . “Array” . “Chain”).

This means that the more balanced the distances between the patches are, the longer can

the metapopulation persist. A totally different picture emerges if the patch distance d is

markedly below the optimum do ≈ dρ. In this case, the hierarchy of importance among

the configuration types completely changes (“Chain” . “Array” . “Equi”). This effect

can be traced to the effective degree of correlation ρagg that is now high enough to become

dominating. The top position of the “Chain”, for instance, is due to its peripheral patches

(1 and 5) which are more distant to the central patch than those of the “Array” and the

equidistant configuration “Equi”. The “Chain” produces the lowest ρagg (see Fig. 4.3E)

and, therefore, the highest chance of survival. But Figures 4.3C-D also show that the

magnitude of Tm/Tagg is rather low, regardless of the configuration type.

To summarize, the answer to the question about which configuration type is more

favorable for metapopulation persistence closely depends on the patch distance d and

its relationship to the optimum do ≈ dρ. Long-term metapopulation persistence can
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only be obtained if d > dρ, i.e. if no patch is inside the range of correlation of another

one. Hence, we get as a landscape-structural equivalent to the persistence conditions in

the homogeneous reference case: “First optimize the patch distance, then optimize the

configuration type.” This demonstrates the importance of a correct patch choice in the

run-up to configuration design. For all these results (optimum patch distance, optimum

configuration type, and persistence conditions to be met by spatial configurations), the

specific local population features (Ei, νi) are of no bearing (cf. Figs. 4.3C and 4.3D).

4.3 Discussion

The results of this study indicate that certain minimum conditions on both the species’

ecology (CORR, DISP) and the spatial structure of the habitat network (e.g. local at-

tributes, scale and type of patch configurations) must be met before a metapopulation

can persist over a long term. The species-ecological conditions indicate which species

can benefit from landscape changes at all. The landscape-structural conditions deter-

mine the scope a concrete measure ought to target to support species’ survival most

efficiently. The attained model results have serious implications for both metapopulation

theory and conservation management. They provide new insights into the requirements

of landscape analyses from the perspective of metapopulation persistence, allow a quali-

fication/modification of existing rules of thumb for landscape management, disclose some

principle limitations of supporting species survival by conservational landscape manage-

ment, and give rise to some consequences for empirical and theoretical research.

4.3.1 Implications for the landscape analysis

4.3.1.1 Correlation length as spatial scale for metapopulations

The results presented merely depend on the relationship between the dispersal range da

(or patch distance d) and the correlation length dρ. Thus dρ defines a spatial scale for any

metapopulation dynamics and provides a yardstick for estimating the survival advantage

from both the species-ecological (da) and the landscape-structural (dij) point of view.

Whenever dρ is neglected, a totally distorted picture of metapopulation persistence occurs.
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4.3.1.2 A hierarchy of importance among the different spatial factors

One important result of this study is the finding that the different factors ((CORR, dρ),

(DISP, da), local attributes, scale/type of patch configuration) are not of the same value for

metapopulation persistence: As long as the species’ dispersal fails the condition required

(da > dρ), there is no chance of obtaining long-term metapopulation persistence through

a change in the spatial structure of the habitat network. Furthermore, an appropriate

configuration scale is needed (do > dρ) before the configuration type becomes limiting.

This leads to the following hierarchy of importance among the spatial factors analyzed:

dispersal range . configuration scale . configuration type.

This hierarchy is valid as long as rescue effects do not play a perceptible role. In this case,

all the local attributes and, hence, all the details of the local dynamics have been found

to be of no bearing (Sec. 4.2.2). This fact has serious consequences for the management:

The hierarchy indicates that a change in a certain factor is useless as long as not all

persistence conditions governing factors “higher” in the hierarchy are really met. In this

case, the scope of management ought to be changed or a certain preparatory management

ought to implement the conditions required. The knowledge of all these relationships

increases the chance of investing scarce resources with higher effects on survival.

4.3.2 Rules of thumb for landscape management

The following rules of thumb for landscape management reflect the hierarchy of impor-

tance found. Some of them qualify the well-known rules for reserve network design by

Wilson and Willis (1975; see also Figure 4.4) and indicate needs of their modification.

4.3.2.1 In the run-up to metapopulation management

As seen above, as long as the species’ dispersal range da is lower than the correlation

length dρ, the survival advantage Tm/Tagg of the metapopulation over its local populations

is in principle low. In this situation, metapopulation management (choose, arrange and

connect patches) is not yet the right approach to support the species in persisting over
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Figure 4.4: Some ”island biogeographic” rules for reserve design (after Wilson and Willis

1975). In each case, the design in the A-row is seen as superior to the alternative in the B-row.

a long term. Alternative forms of management are needed. However, it is necessary to

draw a distinction between a natural and a man-made discordance between da and dρ.

A natural discordance between da and dρ

There is a hypothesis (Hanski 1991) that species which are naturally adapted to a cor-

related environment have other life history strategies than “dispersal”. In this case, the

dispersal range da is below the correlation length dρ such that the species cannot in prin-

ciple benefit from a metapopulation. There is no alternative to the long-term persistence

of the local populations. Thus, local habitat management is needed which supports the

individuals in handling environmental effects within the local populations themselves.

A man-made discordance between da and dρ

A totally different situation occurs if the discordance between the species’ dispersal range

da and the correlation length dρ is man-made. As the model results indicate, these negative

effects cannot be offset by metapopulation management alone. Thus, in the run-up,

preparatory management is needed which must be focused on restoring the accordance

between da and dρ. As a rule of thumb we can formulate:

“Restore the accordance between da and dρ first.”

Increase da and/or diminish dρ.

To illustrate this, two examples are given which show how changing land use can destroy
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and restore the accordance between the dispersal range da and the correlation length dρ:

During their study of a transhumant flock of sheep, Fischer et al. (1995) identified

27 animal species (grasshoppers and snails) spread by sheep. Experiments showed that

grasshoppers can be dispersed over more than 100 m when sheep are grazing and over more

than 500 m when sheep are roaming. Hence, shepherding (especially transhumance) is a

key factor for long-distance dispersal and is crucial for species with a low radius of activity.

However, the dispersal system of tending grazing herbivores has almost totally vanished

(Poschlod et al. 1996). Therefore, it is important to retain low-intensity farming systems

as vehicles for transport and key factors for long-term metapopulation persistence.

As Settele and Geißler (1988) show, the extensive decline of the Dusky Large Blue

butterfly (Maculinea nausithous) can be related to a change in the mowing regime for

meadows. Maculinea nausithous is highly specialized to its host plant Sanguisorba of-

finalis. Thus the species is very sensitive to mowing. Cutting before September exter-

minates the host plants and all inhabited stages of the butterflies (eggs, larvae) such

that local populations inside the whole range of mowing will go extinct simultaneously.

In this case, small-scale mowing (different parts in different years) which leads to the

de-synchronization of the extinction processes and, hence, the shortening of the critical

correlation length dρ, becomes a key factor of metapopulation persistence.

4.3.2.2 Rules for choosing the right patches for linking

Whenever the species’ dispersal range da exceeds the correlation length dρ, there is a

potential chance of obtaining long-term metapopulation persistence. The optimum patch

distance do ≈ dρ found gives rise to a rule for choosing the right patches for linking:

“As near as possible, but as far away as necessary.”

Only integrate patches which are outside the range of correlation

into the metapopulation network.

This contrasts with the well-known rule for reserve network design (Wilson and Willis

1975; Wilcove et al. 1986; cf. Rule 2 in Fig. 4.4) that clumping, i.e. the integration of

those patches which are “as near as possible”, produces the maximum effect on survival.
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Our rule results from the trade-off (see also Hanski 1991) between an increasing arrival

probability (aij) and an increasing spatial correlation of extinction (ρij). This effect,

however, only appears if the distance-dependence of the correlation is taken into account.

Whenever choosing patches for linking outside the range of correlation is impossible,

management ought to be concentrated on supporting the local populations. But every

planner ought to have in mind that, in this case, “chains are more favourable than arrays”

as a rule. This contrasts with another well-known rule for reserve design (Wilson and

Willis 1975; Rule 3 in Fig. 4.4), namely that “arrays are always better than chains”. As

before, our rule results from the effects of the distance-dependent correlation.

4.3.2.3 Rules for designing optimum patch configurations

Whenever the patch distance d is above the optimum do ≈ dρ such that no patch is

inside the range of correlation of another, the configuration type becomes important for

metapopulation persistence. As a rule for designing optimum configurations we obtain:

“As homogeneous as possible.”

Arrays are more favourable than linear chains.

Exactly ensuring optimum circumstances in all situations is doubtless impossible. How-

ever, knowing the optimum enables the planner to decide out of a variety of possible

management alternatives which variant is best. This increases the chance of investing

management effort with maximum effect on species survival.

4.3.3 Limitations of supporting species survival by management

4.3.3.1 There is no general recipe for species conservation management

It is impossible to deduce general rules of thumb for management which are valid for

all species and all landscapes. The life history of the species determines what kind of

management is suitable for survival support at all. Thus only for classes of species with

a common ecological profile (Grimm et al. 1996; see also the resilience profile in Weaver

et al. 1996) can common rules of thumb for conservation management be deduced.
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4.3.3.2 No management measure is efficient for species survival per se

Every management measure requires some species-ecological and landscape-structural set-

up before it can become efficient at all. This fact has serious consequences: (1) To deal

with the landscape-structural conditions found, certain preparatory measures in the run-

up to the planned measure are needed. This means that there is a clear order concerning

the measures to be applied. (2) Regardless of the preparation, only those species which

fulfill the species-ecological conditions encountered have a real chance of benefiting from

the planned measure at all. Knowledge of both the preparatory management needed and

the benefiting species allows the effects of the planned measure to be estimated beforehand.

4.3.4 Consequences for empirical and theoretical research

The model results indicate the ecological factors which are to be primarily targeted in the

realm of empirical and theoretical research: the species’ dispersal behavior (summarized

in DISP, da) and the correlation of the extinction processes (summarized in CORR, dρ).

If detailed submodels are used to determine the concrete forms of the functions DISP and

CORR then the resulting relationships are much closer to reality than ad hoc assump-

tions such as the often used exponential decrease (Harrison et al. 1988; Gyllenberg and

Silvestrov 1994; Hanski 1994; Frank and Wissel 1998, 2002; Grimm et al. 1996).

4.3.4.1 Determination of the species’ dispersal range

Direct determinations of the species’ dispersal range da are very difficult (Doak and Mills

1994). Moreover, da does not only depend on the (habitat-specific) movement pattern

(Marsh and Jones 1988; Kareiva and Shigesada 1993) or the dispersal mortalities, but also

on the spatial structure of the landscape used. Hence, individual-based simulation models

are needed to integrate movement behavior and landscape structure (Tischendorf and

Wissel 1997; Wiegand et al. 1999; Tischendorf and Fahrig xxx; Schadt et al. xxx). With

the help of such models, the species’ dispersal range da or even the entire dispersal function

DISP can be determined and analyzed (e.g. Moilanen and Hanski (xxx); Ovaskainen 2004;

Heinz et al. 2005; Pe’er et al. 2005).
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4.3.4.2 Studies on correlation length and de-synchronizing mechanisms

Whenever the correlation length dρ ought to be reduced, we need to know some mecha-

nisms which support the desychronization of the local population dynamics. The following

examples demonstrate how such a desynchronization can be obtained through habitat di-

versity. (1) Studies of the Bay Checkerspot butterfly Euphydryas editha bayensis show

(Harrison et al. 1988) that habitats of different slopes have different microclimatic con-

ditions implying different resource dynamics and so desynchronized local extinction pro-

cesses. (2) For the Grey Bush cricket Platycleis albopunctata it has been found (Gottschalk

1996) that habitats of different successional stages lead to different microclimatic condi-

tions, different reproduction rates and hence to desynchronized local extinction processes.

In both cases local factors are able to counteract regional impacts.

4.3.4.3 Some prospects for further research

In the present study, we used a simple distance-dependent submodel for the arrival proba-

bility aij = 1
N−1
·DISP(dij). This means that we implicitly assumed a particular dispersal

strategy (corridor-oriented dispersal in the special case of a complete pattern of connect-

edness (cf. submodel (2.15) in Section 2.2.3.2)). The species’ dispersal strategy, however,

has been found to be crucial for the effect of the patch configuration on metapopulation

persistence (see Heinz et al. (submitted)). Therefore, it is worth to repeat the present

study for other dispersal strategies. It can be expected that the results concerning whether

an “Array” or a “Chain” is better for metapopulation persistence alter. However, also in

this case, the explanation for the ranking order among the patch configurations is expected

to be the same: in the case with correlation, the configuration with the lower ρagg-value

is better and, in the uncorrelated case, the configuration with the higher aagg-value.

4.4 Appendix

In the following, we demonstrate that the effective number of patches Eagg given by

relation (4.9) simplifies to a geometric mean
∏N

i=1 Ei
1
N in the case that the variance in
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the numbers of emigrants Ei is at most moderate. Evidently,

Eagg =
N∏
i=1

√√√√ Ei
2 · (
∑

j( 6=i) Ej · wji)2

1
2

(
Ei

2 + (
∑

j( 6=i) Ej · wji)2
)

1
N

=
N∏
i=1

√√√√ 1

1
2

(
( EiP

j( 6=i) Ej ·wji
)2 + 1

) 1
N

︸ ︷︷ ︸
∈
�

2/(Emax
Emin

+1), 2/(
Emin
Emax

+1)
�

·
N∏
i=1

Ei
1
N

≈
N∏
i=1

Ei
1
N , (4.10)

where wji are weights given by wji =
ajiP

k( 6=i) aki
(note that aij = aji in our case). The

underlined pre-factor is ≈ 1 in the case of moderate variation in the Eis (Emax
Emin

not too

large). Hence, Eagg nearly coincides with a geometric mean of the Eis.
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Chapter 5

Optimum patch size distribution in

metapopulations

This chapter is mainly based on the following publication:

Frank, K. 2004. Ecologically differentiated rules of thumb for habitat network design –

lessons from a formula. Biodiversity and Conservation 13: 189–206

In Chapter 4, we were primarily interested in the relative importance of the patch config-

uration, {(xi, yi) : 1 ≤ i ≤ N}, for metapopulation persistence and the role of the species’

ecology in this context. We searched for minimum conditions on configuration and species

that have to be met to allow long-term persistence. We also revealed which configurations

are optimum and condensed all the scientific results in verbal rules of thumb.

Now we shift the focus of attention to another spatial aspect of habitat networks: the

patch size distribution {A1, .., AN}, that depends on both the total amount of habitat Atot

in the network and its distribution pi over the individual patches, i.e. Ai = pi · Atot. To

understand the role of the patch size distribution for metapopulation persistence and to

know the optimum is important for both ecological theory and landscape management.

It provides further insight into the interplay between spatial structure and ecological

processes that is of general interest in ecology. It also supports a better understanding

of the relative importance of the individual patches for the persistence of the overall

metapopulation. This is crucial for setting correct management priorities in the reserve

113
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network design. However, there are two particular challenges in this context. Firstly,

the effect of the patch size distribution on metapopulation persistence can only be fully

understood if its interplay with the other spatial aspects of the habitat network and

the species’ ecology is taken into account. Hence, a combination of optimization and

systematic variation work is needed. Secondly, it is neither possible nor useful to perform

a detailed optimization analysis for each new species or each new landscape. Hence, rules

of thumb are needed which give at least a rough orientation about the optimum.

Optimum patch size distributions are addressed in various studies with various degrees

of detail: There are specific case studies of optimum reserve selection or reserve network

design where the problem of patch size is discussed (e.g. van Langevelde et al. 2000,

2002; Haight et al. 2001; Andelman and Willig 2002; Westphal et al. 2003). In most

of these cases, however, special numerical optimization algorithms such as the simulated

annealing algorithm (e.g. Metropolis et al. 1953; Kirkpatrick et al. 1983) are used to

determine the optimum. To combine these algorithms with systematic variations of the

underlying landscape structure and of the species’ ecology is almost impossible. This

would require tremendous simulation work. This indicates that alternative approaches

are needed to attain a comprehensive mechanistic understanding of the optimum and to

derive appropriate rules of thumb as required. There are also theoretical studies on the

effect of the patch size distribution on metapopulation persistence (Anderson 1991; Doak

et al. 1992; Hanski and Gyllenberg 1993; Hanski 1994; Frank and Wissel 2002; Hanski

and Ovaskainen 2000; Ovaskainen and Hanski 2003; Frank 2004). These studies usually

assume hypothetical species in hypothetical landscapes. Etienne (2002), for instance,

addressed the question of which patch in a given habitat network ought to be enlarged to

maximize metapopulation persistence. He varied the landscape structure and numerous

species-ecological attributes, determined and characterized the “most promising” patch,

and summarized his results in simple rules of thumb. The only shortcoming of his study is

that the effect of a single patch is considered without taking the interplay with the other

patches into account. Day and Possingham (1995) considered the patch size distribution

as entirety. They addressed the question of whether equal-sized or variable-sized patches

are better for metapopulation persistence. They varied the landscape structure, compared
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systems with and without migration but fixed the species’ ecology, and derived rules of

thumb. In neither study was the dispersal strategy varied.

All these examples indicate that they markedly contribute to a better understanding

of the optimum patch size distribution but lack in the variation of important elements.

This is not surprising because, in the past, studies of metapopulation persistence were

dependent on numerical analyses of persistence measures. This of course limits the pos-

sibilities of systematic variation. Nowadays, however, we have an alternative. There

are approximation formulas for the metapopulation capacity λM (Hanski and Ovaskainen

2000) and the mean lifetime Tm (Frank and Wissel 2002) - the measures for deterministic

and stochastic metapopulation persistence. Formulas allow an analysis of their functional

structure. In this way, important effects can be simply “read off”, without numerical

analysis work. The major advantage of the two formulas is that they provide insight into

the interplay between landscape-structural and species-ecological attributes and its effect

on metapopulation persistence. This gives rise to the hope that these possibilities can

help to overcome the drawbacks in connection with the optimum patch size distribution.

In the following, we address the question of what patch size distribution is optimum for

metapopulation persistence in a habitat network with a given number and configuration of

patches. We present a systematic approach for the determination and analysis of optimum

patch size distributions and the derivation of rules of thumb that is based on the formula

T am for the mean lifetime of metapopulations developed in Chapter 3 (Table 3.III). We

reveal that the optimum patch size distribution can be determined by solving a simple

system of linear equations. We give formulas for the optimum and uncover its functional

dependence on the landscape structure (pattern of connectedness, patch configuration)

and the species’ ecology (various species-specific attributes, various dispersal strategies).

On this basis, we derive rules of thumb and a “Principle of Optimality” which provide

new insights into the optimum patch size distribution and the role of the species’ dispersal

strategy in this context. Finally, we draw some general conclusions on (a) the need to

deduce simple, but ecologically differentiated rules of thumb and principles, and (b) the

potential of using formulas such as T am as tools for persistence analyses, theory building

and management support. We finalize with some prospects for further research.



116 CHAPTER 5. OPTIMUM PATCH SIZE DISTRIBUTION

5.1 Methods

The present study has two objectives: Firstly, it aims at the determination and analysis

of the optimum patch size distribution in a habitat network with a given patch configura-

tion. Special emphasis is placed on a systematic investigation of the functional relationship

between the optimum, the other spatial aspects of the habitat network (e.g. patch con-

figuration, pattern of connectedness), and the species’ ecology. Secondly, the study shall

serve as a test of the formula for the mean lifetime of metapopulations, T am, derived in

Chapter 3. The formula ought to be tested regarding its ability to support metapopula-

tion viability analyses and the derivation of tools for decision-support in habitat network

design as well. This indicates which ingredients are needed for the study: the formula T am,

and appropriate submodels to integrate the landscape structure and the species’ ecology.

Before we can turn to the formula and its submodels, however, we have to stress

another point. Note that the formula for the mean lifetime T am is based on the continuous

time Markov chain model presented in Chapter 2. Hence, we have to specify a number of

assumptions for the study in order to ensure that model and formula are really applicable.

5.1.1 Central assumptions

We consider finite metapopulations of N patches, take the stochasticity in the sequence

of extinction and colonization events in to account, but ignore Allee and rescue effects.

In this case, stochastic Levins-type models such as the model in Chapter 2 are applicable.

We focus on metapopulations which successfully approached quasi-stationarity before

extinction, i.e. show typical fluctuations in the occupancy and go extinct with a constant

rate. In this case, the mean lifetime Tm is known to summarize all the effects of the local

and regional dynamics which are relevant for metapopulation persistence. This justifies

to take Tm as currency in metapopulation viability analyses (remember Chapter 2).

We assume that the metapopulation does not consist of multiple, isolated subnetworks.

In this case, the mean lifetime Tm is given by the negative reciprocal, −1/ω, of the

subdominant eigenvalue ω of the transition matrix A of the Markov model used (remember

Chapter 2). This value is approximated by the formula T am developed in Chapter 3.
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To summarize, only if all these assumptions are met, the formula for the mean lifetime

T am is applicable and can be used for metapopulation viability analyses. In order to avoid

an overloading of the present study with too many details, we additionally assume that the

spatial correlation in the extinction events is negligible (ρij = 0). For this case, a further

simplified version of the lifetime formula T am is available that is completely determined by

the local extinction rates νi and the colonization rates cij.

5.1.2 The (simplified) formula for the mean lifetime T am

In the uncorrelated case (ρij = 0), the original formula T am for the mean lifetime Tm of a

metapopulation (see Chapter 3, Equation (3.20) and Table 3.III) simplifies to:

T am =
1

νagg
· (N − 1)!

N · (N − 1)N−1
· e

N
(ctot/ν)agg · ((ctot

ν
)agg)

N−1 (5.1)

with

νagg =
N∏
i=1

νi
1
N and (

ctot
ν

)agg =
N∏
i=1

max(
√

2, zi)
1
N (5.1a)

where

zi =
1

νi
·
√(

1
2

(
(
∑

j( 6=i) cij)
−2 + (

∑
j( 6=i) cji)

−2
))−1

. (5.1b)

Formula (5.1) essentially depends on the complex term zi given by relation (5.1b). This

term zi is determined by the extinction rate νi of patch i and by two sums:
∑

j( 6=i) cij and∑
j( 6=i) cji. The first sum equals the total number of colonizations patch i can induce per

time when occupied. The second sum equals the total probability that patch i becomes

recolonized after an extinction and can be interpreted as a measure of “actually being in

the play”. Therefore, the term under the square root can be interpreted as the effective

colonization rate of patch i. However, as the max-function in relation (5.1a) indicates,

all these factors only contribute to ( ctot
ν

)agg and, hence, to Tm if zi >
√

2, i.e. if patch

i is at least so strong that its effective colonization rate exceeds its local extinction rate

by a factor of
√

2. Otherwise, this patch does not significantly contribute to Tm. This

means that, as far as the persistence is concerned, the metapopulation effectively behaves
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as a metapopulation where all the ineffective patches are cancelled. In this study, all the

analyses of metapopulation persistence will be carried out by using formula T am (5.1).

In order to avoid a critical misuse of T am, we should note that equation (5.1) reaches a

limit of applicability if some of the patches become too small compared to other patches.

In this case, the geometric mean νagg of the extinction rates overestimates the effect of the

small patches and underestimates the resulting mean lifetime Tm of the metapopulation.

5.1.3 The submodels for including the landscape structure and

the species’ ecology

Last but not least, submodels are needed which relate the extinction rates νi and the

colonization rates cij to the spatial structure of the habitat network and the to species’

ecology. A habitat network is characterized by the patch locations (xi, yi), the patch sizes

Ai, and the pattern of connectedness. Two patches i and j are said to be connected

(short: i ∼ j) if there is a corridor and some other linkage (e.g. visibility) between them.

5.1.3.1 Extinction rate

We use the following standard submodels for the local extinction rate:

νi = ε · A−xi (5.2)

(Goodman 1987; Foley 1994; Hanski 1994; Wissel et al. 1994; see also Chapter 2), where

Ai is the size of patch i, ε a species-specific extinction parameter, and the power x a

measure for the strength of environmental noise in the local population that summarizes

both the strength of the fluctuations in essential environmental factors and the species’

sensitivity to them. The stronger the environmental noise, the smaller the value of x.

5.1.3.2 Colonization rate

We use the following submodel for the colonization rate cij from patch i to patch j:

cij = δ · Ai · aij, (5.3)
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where Ai is the size of patch i, δ the species-specific emigration rate per area unit, and

aij the arrival probability, i.e. the probability that a disperser from patch i successfully

reaches patch j (for a detailed ecological justification of the submodel, see Chapter 2). To

integrate species dispersal, we use a variety of submodels for the arrival probability aij

that cover a wide range of biologically reasonable dispersal strategies in patchy landscapes:

“Simple exponential” model aij = e−α·dij ; (5.3a)

“Pie-slice” model aij =

√
Aj

π3/2
· 1

dij
· e−α·dij ; (5.3b)

“Patch-oriented” model aij =
R(dij)

N−1∑
k( 6=i) R(dik)N−1

·R(dij), (5.3c)

where R(d) = 1− e−a·e−b·d ;

“Corridor-oriented” model aij =

 1
ni
· e−α·dij if i ∼ j

0 else
. (5.3d)

The term dij denotes the distance between two patches i and j and α−1 the species-specific

dispersal range, i.e. the mean distance a disperser is able to cover. The function R(d) is

the so-called potential patch accessibility function (Heinz et al. 2004). Its two parameters

a and b summarize the effects of the individuals’ dispersal behavior that are relevant in

the context of the arrival probability. Last but not least, term ni denotes the total number

of corridors adjacent to a certain patch i. The two first submodels are usually used to

describe the effect of passive dispersal, whereas the latter two are relevant in connection

with active dispersal (normal/correlated random walk or systematic search with the rule

to stay at the first patch reached (5.3c); dispersal along corridors (5.3d)). All submodels

depend on the patch configuration (patch-distances dik). Some additionally depend on

the patch size Aj (see (5.3b)), or the pattern of connectedness (corridor configuration

(i ∼ j, ni); see (5.3d)). For a detailed explanation of the four submodels, see Chapter 2.
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5.1.3.3 Patch size distribution

To analyze the effect of the patch size distribution, we assume that a certain total habitat

area Atot is allocated over the patches according to a certain “allocation key” (p1, ..., pN),

where pi is the proportion of habitat allocated to patch i. Then patch area Ai results from

Ai = pi · Atot. (5.4)

Although the submodels (5.2; 5.3; 5.4) take all the mentioned spatial aspects of habitat

networks into account, they are still quite simple. There are only four species-ecological

parameters (ε, x, δ, α) that must be considered. These submodels together with the equa-

tion for the mean lifetime (5.1) allow the effect of the patch size distribution on metapop-

ulation viability to be analyzed, without having to run any simulation.

5.2 Results

The present study aims at determining the patch size distribution that is optimum for

metapopulation persistence if a habitat network with a given number and configuration of

patches is considered. A matter of particular interest is the extent to which the optimum

depends on factors such as the patch configuration, the pattern of connectedness or the

species’ ecological attributes. We exclusively use the formula T am (5.1) for the mean

lifetime of metapopulations as tool for performing metapopulation viability analyses.

To derive general results regarding the effect of the landscape structure on metapop-

ulation persistence is always a challenge because there is a lot of interaction between the

patches that produces complexity. Hence, it seems to be almost impossible to solve the

problem of determining the optimum patch size distribution in one step.

We use a hierarchical approach in order to enter this problem from the most simple

side. In a first step, we perform a start-up analysis. The only aim of this step is to attain

some hypotheses concerning the optimum allocation key. In a second step, we perform

a systematic analysis of the functional structure of the formula T am for the mean lifetime

Tm in order to test the validity of the hypotheses concluded from the start-up analysis.
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5.2.1 A start-up analysis

We consider a hypothetical habitat network with a certain number and a certain configu-

ration of patches (see Table 5.I). We assume a species with “Corridor-oriented” dispersal,

i.e. we use submodel (5.3d) for the arrival probability aij. We start with this dispersal

strategy because it shows a medium degree of complexity (dependence of aij on patch

configuration (dij) and pattern of connectedness (ı ∼ j)). Three random allocation keys

(R1, R2, R3; see Table 5.I) are considered, each being determined by taking a random

number from a uniform distribution between 0 and 1 for each component of the allocation

key and normalizing them. These keys will be compared with three more systematic ones:

“Uniform” : pi = 1
N

(5.5)

“Uneven” : p1 = 1
2
, pi = 1

2(N−1)
for all i > 1 (5.6)

“According to the degree of connectedness” : pi = ni
n1+...+nN

(5.7)

The effect on metapopulation persistence is assessed by applying the submodels (5.2;

5.3; 5.4), inserting the outcome in formula (5.1), and calculating the value for the mean

lifetime Tm. By comparing the resulting Tm-values for the different allocation keys under

consideration, the most favorable one can be determined. This gives a rough idea about

possible “candidates” for the optimum patch size distribution. In order to get an initial

impression about the sensitivity of the optimum to factors such as the pattern of

Table 5.I:

Positions (x, y) of the patches in the configuration shown in Figure 1 and three randomly gener-

ated allocation keys (p1, ..., p8) denoted by “R1”, “R2”, “R3” for distributing the total habitat

area Atot over the patches, with pi being the proportion of habitat allocated to patch i.

1 2 3 4 5 6 7 8

x-coord -1 0 0 0 0.5 1.5 3 3

y-coord 0 1 0 -2 -1 0.5 2.5 1

“R1” 0.17 0.13 0.21 0.09 0.06 0.19 0.04 0.11

“R2” 0.09 0.08 0.09 0.01 0.19 0.10 0.16 0.28

“R3” 0.04 0.13 0.27 0.26 0.04 0.10 0.12 0.04
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connectedness or the species’ ecology, we consider two patterns of connectedness (Figs.

5.1A-B) and compare the outcome for “weak” and for “strong” environmental noise. The

results of this comparative analysis are displayed in Figures 5.1C-F. As can be seen,

the question over what allocation key is best cannot be answered in general; the answer

strongly depends on the total habitat area Atot available. The larger the value of Atot,

the more the Tm-values for the various allocation keys differ. This again underlines the

importance of knowing what sort of allocation is optimum. However, it can also be seen

that, whenever Atot is above a certain threshold value, a clear pattern can be identified.

In the case of weak environmental noise (Figs. 5.1C-D), the “uniform” allocation key is

found to be best, regardless of the pattern of connectedness. A totally different picture

emerges if the environmental noise is strong (Figs. 5.1E-F). In this case, the allocation

“according to the pattern of connectedness” is best. To summarize, the results of the

start-up analysis give rise to the hypothesis that the optimum patch size distribution in a

metapopulation depends on both the spatial structure of the pattern of connectedness and

the strength of the environmental noise in the local populations (represented by parameter

x) that depends on the environmental conditions and the species’ response to them. But

how reliable are these results? Do they show a certain generality or are they an effect of

the particular landscape and the species considered in the start-up analysis?

5.2.2 How general are the results?

In the following, two main questions will be addressed: (a) Are the findings concerning the

optimum patch size distribution robust against a change in the patch configuration or in

the pattern of connectedness? (b) To what extent are the results affected by uncertainty

in the species’ ecological attributes summarized in the model parameters (x, ε, δ) and (α

or a, b)? (c) What is happening if a species with another dispersal type is considered?

To answer these questions, we again make use of formula T am. This formula gives

insight into the interplay between the different factors and the effect on the mean lifetime

Tm. Thus, we analyze its functional structure in the hope of obtaining an idea about the

optimum patch size distribution in the general case and the effect of ecological uncertainty.
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Figure 5.1: (A-B) The patch configuration and the patterns of connectedness considered in the

start-up analysis (for the exact positions of the patches, see Table 5.I). (C-F) Mean lifetime of

the metapopulation Tm calculated with equation (5.1) vs. total habitat area Atot for the different

allocation keys considered (“Uniform”, “Uneven”, “According to the pattern of connectedness”,

and “R1”, “R2”, “R3” given in Table 5.I) for weak environmental noise (x = 2.5; C-D) and strong

environmental noise (x = 0.5; E-F). All the other parameters used are: ε = 1, δ = 1, α = 1.
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For the following analysis, however, we assume that the total habitat area Atot is so

large that the following two conditions are met: (a) Each patch in the considered habitat

network really contributes to metapopulation persistence. This condition means that

zi >
√

2, i.e. the ratio zi between the effective colonization rate and the local extinction

rate for each patch i (see relation (5.1b)) exceeds the critical value of
√

2. This simplifies

the aggregated term ( ctot
ν

)agg =
∏N

i=1 z
1/N
i that is now given by a usual geometric mean of

the zi’s (see relation (5.1a)). (b) Atot is so large that ( ctot
ν

)agg > N−1 with the consequence

that e
N−1

(ctot/ν)agg ≈ 1. If both conditions are met then formula (5.1) can be further simplified

and expressed as a product of three components:

T am ≈

(
N∏
i=1

1

νi

1
N

)N

· (N − 1)!

N(N − 1)N−1

×


N∏
i=1

√√√√√
1

2

(
∑
j( 6=i)

cij)−2 + (
∑
j( 6=i)

cji)−2

−1
1
N


N−1

(5.8)

5.2.2.1 Analyzing the first part

The first part of equation (5.8) is given by the mean lifetimes Ti = 1/νi of the local

populations and is summarizing all the extinction effects on metapopulation persistence.

By inserting the submodel for the extinction rates νi = εAi
−x into this term, we get

N∏
i=1

1

νi

1
N

=
1

ε
·

(
N∏
i=1

Ai
1
N

)x

(5.9)

that mainly consists of a usual geometric mean of the patch areas Ai. It is well-known

from mathematics that a geometric mean takes its maximum at a uniform distribution.

Therefore, we can conclude that relation (5.9) maximizes if the total habitat area Atot is

uniformly distributed over the N patches, i.e. Ai = 1
N
· Atot.

5.2.2.2 Analyzing the second part

The second part of equation (5.8) only depends on the number of patches N in the

metapopulation under consideration. Therefore, it only gives a pre-factor that does not

influence the optimum patch size distribution.
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5.2.2.3 Analyzing the third part

The third part of equation (5.8) is completely determined by the colonization rates cij.

It summarizes all the colonization effects on metapopulation persistence. Two terms are

found to be of special importance: the total rate of colonizing any other patch,
∑

j( 6=i) cij,

and the total rate of becoming recolonized after an extinction,
∑

j( 6=i) cji. Relation (5.8)

indicates that a quadratic harmonic mean of the two terms is decisive for Tm. As is known

from mathematics, a quadratic harmonic mean
√

(1
2
(x−2 + y−2))−1 of two numbers x and

y maximizes if x = y. Therefore, the third part of equation (5.8) maximizes if∑
j( 6=i)

cij =
∑
j( 6=i)

cji for all i ∈ {1, ..., N}, (5.10)

i.e. there is a balance between “colonizing” and “becoming recolonized”. By inserting the

submodel cij = δ ·Ai ·aij for the colonization rates cij (5.3), we find that balance condition

(5.10) is only met if the patch areas Ai solve the following system of linear equations:

δ · Ai · (
∑
j( 6=i)

aij) = δ ·
∑
j( 6=i)

Aj · aji for all i ∈ {1, ..., N}. (5.11)

Evidently, this relation can be re-written in matrix form:
−(
∑

j( 6=1) a1j) a21 · · · aN1

a12 −(
∑

j( 6=2) a2j) · · ·
...

...
...

. . .
...

a1N · · · · · · −(
∑

j( 6=N) aNj)

 ·


A1

...

...

AN

 =


0
...
...

0

 . (5.12)

Note that the non-diagonal entries of the matrix M are non-negative (since mij = aji ≥ 0)

and the sum over the entries mji of each column i is zero (since mii = −
∑

j( 6=i) mji).

Hence, matrix M is a stochastic generator and the vector of the patch areas (A1, .., AN)

has to be its zero-solution. It is well-known from Perron-Frobenius theory (Minc 1988)

that stochastic generator matrices have a uniquely determined (up to scaling factors),

positive zero-solution q = (q1, .., qN) > 0, provided the matrix is irreducible. This can be

assumed in our case because reducibility would result if the habitat network would consist

of isolated subnetworks, that is excluded. Hence, relations (5.10; 5.11; 5.12) are solved if

Ai =
qi∑N
k=1 qk

· Atot for all i ∈ {1, ..., N}, (5.13)
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i.e. the patch areas Ai are allocated according to the components qi of the zero-solution

q of matrix M . This solution is completely determined by the arrival probabilities aij.

Its existence and uniqueness are independent of the details of the underlying dispersal

processes. Hence, the question over when the third part of equation (5.8) maximizes can

always be answered in a unique manner. Once the the arrival probabilities aij are specified

by the mean of empirical data or any appropriate submodel, standard algorithms allow

the zero-solution q of the corresponding matrix M and so the allocation key (5.13) to be

determined (e.g. using algebraic calculation programs such as Mathematica or MathLab).

Now we pass on to the submodel for aij used in the start-up analysis. We assumed

“Corridor-oriented” dispersal, i.e. we used submodel (5.3d). Hence, the system to be

solved is Ai
ni
· (
∑

j(∼i) e
−α·dij) =

∑
j(∼i)

Aj
nj
· e−α·dji . It is solved if Ai = ni

n1+...+nN
· Atot, i.e.

the total habitat area Atot is distributed according to the number of corridors ni adjacent

to the individual patches i, regardless of the patch configuration (note that dij = dji).

5.2.2.4 Consequences for the behavior of the entire formula T am

Evidently, the different parts of equation (5.8) maximize at different allocation keys.

Whereas the first part becomes maximum if pi = 1
N

, the third part maximizes if pi =

ni
n1+...+nN

. But what does this mean for the entire equation (5.8)? In order to answer this

question, we can make use of another effect. As the relations (5.9) and (5.11) indicate,

the first part is proportional to Atot
x, whereas the third part is proportional to Atot. This

allows us to conclude the following: If the environmental noise in the local populations

is weak (i.e. x is markedly > 1) then the first part dominates equation (5.8). Hence,

T am maximizes if Ai = 1
N
· Atot. But if the environmental noise in the local population is

strong (i.e. x is markedly < 1) then the third part is decisive. Therefore, T am maximizes

if Ai = ni
n1+...+nN

· Atot. These findings confirm the results of the start-up analysis.

5.2.2.5 Robustness of the results against ecological uncertainty

So far, we have only analyzed the effect of the strength of the environmental noise in

the local populations (parameter x) on the optimum patch size distribution. But what

about the effect of the other species’ parameters, in particular (ε, δ)? What is happening
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if another dispersal type is considered? In order to answer these questions, we completely

express the lifetime formula T am in terms of the patch areas (Ai), the arrival probabilities

(aij) and the species’ ecological attributes (x, ε, δ). By inserting our submodels for the

extinction rates νi (5.2) and for the colonization rates cij (5.3) in relation (5.8), we get

T am =
1

ε

(
δ

ε

)N−1

· (N − 1)!

N(N − 1)N−1
·

(
N∏
i=1

Ai

)x

×

 N∏
i=1

√√√√(1

2

(
(
∑
j 6=i

Ai · aij)−2 + (
∑
j 6=i

Aj · aji)−2

))−1


N−1
N

(5.14)

This relation indicates that the parameters ε and δ only determine a pre-factor of formula

T am which actually influences the value of the mean lifetime Tm, but does not have any

effect on the relative results. This means that uncertainty in ε or δ is uncritical because

it does not affect the ranking orders among the alternative scenarios considered. Hence,

the only critical source of uncertainty in the species-ecological attributes is the strength

of environmental noise in the local populations (parameter x). It is certainly almost

impossible to determine the exact value of x. But as we have seen, a high “precision”

is anyway not needed. It is sufficient to know whether the environmental noise in the

local populations under consideration is weak (x > 1) or strong (x < 1). By using the

structural information that x = 2r
σ2 − 1 (Goodman 1987; Foley 1994; Wissel et al. 1994)

with r being the mean and σ2 the variance of the local populations’ reproduction rates,

this rough estimation is certainly easier to obtain than hard data.

In order to avoid a misunderstanding about the role of the parameters (ε, δ), we

should note the following: The whole study was based on the assumption that the total

habitat area Atot is large enough to ensure that all patches can significantly contribute

to metapopulation persistence (zi >
√

2). What value of Atot is needed to meet this

condition depends on ε, and δ (see relations (5.1b, 5.2, 5.3)).

To clarify the role of the dispersal type, we take the other submodels for the arrival

probabilities aij (“Simple exponential” (5.3a), “Pie-slice” (5.3b), and “Patch-oriented”

(5.3c)), determine the zero-solutions q for the corresponding matrices M (see (5.12)),

and calculate the resulting allocation keys using (5.13). The calculations for the different
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dispersal types are done in the Appendix. They lead to the following results:

Dispersal model Optimum patch size distribution

“Simple exponential” Ai = 1
N
· Atot

“Pie-slice” Ai = 1
N
· Atot

“Corridor-oriented” Ai = ni
n1+..+nN

· Atot
“Patch-oriented” Ai =

P
k( 6=i) R(dik)N−1

P
j

P
k( 6=j) R(djk)N−1 · Atot,

where R(d) = 1− e−a·e−b·d is the potential patch accessibility function. The list highlights

an important effect. It indicates that the optimum patch size distribution depends on

the dispersal model used. In the first two cases (“Simple exponential” and “Pie-slice”), a

uniform distribution is found to be optimum, whereas in the other two cases, the optimum

is found to depend on the landscape structure. In the “Corridor-oriented” case, the

pattern of connectedness (ni) is decisive, whereas the patch configuration (dij) and the

concrete dispersal behavior do not matter. In the “Patch-oriented” case, however, the

total potential accessibility
∑

j( 6=i) R(dij)
N−1 of the individual patches i and, hence, the

number (N) and configuration (dij) of the patches as well as the individuals’ movement

behavior (condensed in a and b) are crucial. In the case of larger patch numbers N , the

latter allocation key can be further simplified. If Rmax = max(R(dik) : i, k) denotes the

maximum potential patch accessibility attainable in the habitat network then we obtain

∑
k( 6=i) R(dik)

N−1∑
j

∑
k( 6=j)R(djk)N−1

=

∑
k( 6=i)

(
R(dik)
Rmax

)N−1

∑
j

∑
k( 6=j)

(
R(djk)

Rmax

)N−1
≈ ñi

ñ1 + ..+ ñN
, (5.15)

where ñi denotes the number of patches k for which R(dik) ≈ Rmax, i.e. which belong to

the “nearest neighbors” of patch i. To understand the latter step, note that
(
R(dik)
Rmax

)N−1

≈

1 if R(dik) ≈ Rmax and
(
R(dik)
Rmax

)N−1

≈ 0 if R(dik) < Rmax for larger values of N . This

indicates that the allocation key approaches the rule “Allocate according to the number ñi

of the nearest neighbors”. Note the similarity to the rule for the “Corridor-oriented” case.

How can this mathematical result be interpreted in ecological terms? Note that the

first two dispersal models (“Simple exponential”, “Pie-slice”) are characterized by a lack of

any “competition” between the patches for dispersers (arrival probability aij at patch j is
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not influenced by any other patch k). In the latter two cases (“Corridor-oriented”, “Patch-

oriented”), however, the situation is completely different. The corresponding models

assume a certain total number of emigrants per patch which are “influenced” in their

decision to start towards one or another patch. In the Corridor-oriented case, the decision

is influenced by the corridors adjacent to start patch i. Hence, all the patches j with

corridor-connection to patch i out-compete all the patches k without such a connection.

In the other case, the dispersers stay at the first patch they reach. This prevents them

from continuing to any other patch. Both mechanisms result in a competition effect. Our

results indicate that the optimum patch size distribution strongly depends on whether or

not the species’ dispersal strategy causes a competition effect and on the nature of this

effect as well (which landscape elements have an attracting influence on the dispersers

(e.g. adjacent corridors, nearest neighbor patches)?). Once the dispersal strategy of a

given species is characterized in this sense, the optimum allocation key can be concluded.

To summarize, just by analyzing the functional structure of formula T am (equation (5.8)),

we were able to confirm the results of the start-up analysis. Moreover, we could simply

“read-off” all the critical sources of ecological uncertainty.

5.2.3 Derivation of tools for habitat network design

The presented analysis reveals a clear pattern regarding the optimum patch size distri-

bution in the case that the total habitat area Atot is large enough to ensure that all

the patches in the habitat network under consideration can significantly contribute to

metapopulation persistence. By taking the findings as a basis, we can go a step further

and derive tools which provide a rough orientation for habitat network design.

5.2.3.1 Rules of thumb for optimum patch size distribution

As we have seen, the optimum patch size distribution strongly depends on two factors: (a)

the strength of environmental noise in the local populations (parameter x) that summa-

rizes the environmental conditions and the species’ response to them, and (b) the species’

dispersal strategy. The following rules of thumb can be formulated:
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Rule 1: If the environmental noise in the local populations is weak (x < 1) then metapopu-

lation persistence is maximum if all patches are nearly of the same size, i.e. Ai ≈ Aj,

irrespective of the species’ dispersal strategy.

Rule 2: If the environmental noise in the local populations is strong (x > 1) then metapop-

ulation persistence is maximum if the size of the patches Ai corresponds to their

“competitiveness” DCi (competition for dispersers), i.e. Ai
Aj
≈ DCi

DCj
. The competi-

tiveness DCi depends on the landscape structure and the species’ dispersal strategy:

• Passive dispersal: DCi = const = 1 (equal competitiveness);

• Corridor-oriented dispersal: DCi = ni (number of adjacent corridors);

• Patch-oriented dispersal (large N): DCi = ñi (number of nearest neighbors);

• Patch-oriented dispersal (small N): DCi=
∑

k R(dik)
N−1 (total accessibility).

Both rules recommend supporting the entire habitat network instead of supporting a

particular patch. These recommendations, however, depend on our assumption that the

total habitat area Atot is so large that a certain minimum exchange between the patches is

ensured. It is known that, in this case, the habitat network has an advantage over a single

large patch (e.g. Day and Possingham 1995; Stacey et al. 1997; Drechsler and Wissel

1998). If Atot is smaller than required then the rules of thumb presented lose their validity.

The finding in the case of “weak noise” that the optimum patch size distribution is

independent of both patch configuration and pattern of connectedness is a reflection of

the fact that the metapopulation first of all benefits from its long-term persistent local

populations. This also agrees with the rule of thumb of Etienne and Heesterbeek (2001).

With “strong noise”, the situation is slightly different. Here, the local populations

are short-term persistent and the metapopulation depends on successful recolonizations.

Hence, factors relevant for colonization become increasingly important. The optimum

patch size distribution indicates that, in this case, it is best for metapopulation persistence

if the patch size distribution tallies with the pattern of competitiveness that depends on

landscape structure (pattern of connectedness/patch configuration) and dispersal strategy.
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The two rules presented correspond with the rule of thumb by Day and Possingham

(1995). Day and Possingham showed that a habitat network with equal-sized patches is

better for metapopulation persistence than a habitat network with variable-sized patches,

irrespective of the strength of environmental noise in the local populations. Their analysis

was based on a dispersal model without any competition term.

At first sight, it appears surprising that the optimum patch size distribution is in-

dependent of the patch configuration in case of passive or corridor-oriented dispersal.

Undoubtedly, patches with an above-average closeness to their neighbors can contribute

to metapopulation persistence with above-average effectiveness and so need to be enlarged

first. But note that there is also a need to make an “investment” in all the other patches.

Patches with below-average closeness to their neighbors must be enlarged in order to en-

sure that these patches can significantly contribute to metapopulation persistence at all.

The need to support the habitat network as a whole is a consequence of the fact that the

stochasticity in the sequence of extinction and colonization events is taken into account.

The larger the number of strong patches in the habitat network, the better the negative

effect of this stochasticity can be counteracted (see also Frank (2005) and Chapter 6).

5.2.3.2 A “Principle of Optimality”

In the case of strong environmental noise, the local populations are only short-term persis-

tent, and so the metapopulation strongly depends on successful colonization events. This

well-known effect is reflected by the fact that the mean lifetime Tm is dominated by the

third part of relation (5.8). As our study reveals, this part (and, hence, Tm) maximizes if∑
j( 6=i)

cij =
∑
j( 6=i)

cji for all i ∈ {1, ..., N}, (5.16)

i.e. a certain balance between “colonizing” and “becoming recolonized” is ensured. This

balance condition can be interpreted as “Principle of Optimality” for metapopulation

persistence for the case of strong environmental noise. This principle reveals that a

certain management measure can only effectively support metapopulation persistence if

both sides of the “colonization coin” are supported. A frequently colonized sink patch is

thus as ecologically ineffective as a too rarely recolonized source patch.
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As relation (5.16) indicates, the Principle of Optimality is exclusively formulated in

the language of the colonization rates cij. This shows that the optimum patch size distri-

bution can simply be determined by solving the system of equations (5.16) in the general

case, even if the functional relationship between the rate of colonization cij and patch

area Ai is different from that given by submodels (5.3 and 5.3a-d) used here.

To summarize, neither the two rules of thumb nor the Principle of Optimality provide a

detailed guideline for metapopulation management in any specific case. Both tools, how-

ever, give a rough orientation. Knowing the optimum patch size distribution as described

by the rules of thumb is sometimes useful for decision-making, even if it is certain that the

optimum itself cannot be reached. The optimum provides a reference for setting correct

management priorities (which of a variety of possible alternative measures will bring the

system closest to the optimum?). The principle of optimality draws the decision-maker’s

attention to an important metapopulation dynamic effect. It points out that the balance

between “colonizing” and “becoming recolonized” becomes a key factor of effectiveness of

metapopulation management if the environmental noise in the local populations is strong.

5.3 Discussion

By analyzing the functional structure of the formula T am for the mean lifetime (equation

(5.1)), we were able to derive formulas and rules of thumb for the optimum patch size

distribution in metapopulations with given patch configurations and to deduce a “Prin-

ciple of Optimality” as well. Formulas, rules and principle are valid for classes of species

(see Section 5.2.3.1). They generalize existing rules of thumb such as those by Day and

Possingham (1995) or Etienne (2002). By comparing the results for the different classes,

new insights about the optimum patch size distribution in metapopulations and the role

of the species’ dispersal strategy in this context can be obtained, as is explained below.

The results of this study also give rise to some conclusions about the chance of finding

general laws in population ecology – a question that is widely discussed in recent ecology

(Berryman 1999; Lawton 1999; Murray 2000; Turchin 2000) and has implications for
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both theory and practical conservation. By taking the rules of thumb and the presented

principle of optimality as a basis, we discuss the limits of generality of laws in the field

of metapopulation persistence and habitat network design. Moreover, we discuss the

potential of using formulas like T am as tools for persistence analyses to the benefit of theory

building and management support. Finally, we give some prospects for further research.

5.3.1 New insights into the optimum patch size distribution

As we have seen, the question of what patch size distribution is optimum for metapopula-

tion persistence cannot be answered in general. Depending on the type of the considered

species, a uniform or a network-dependent distribution can be optimum. Various aspects

of the network structure can be determinant for the optimum patch size distribution: the

pattern of connectedness, the nearest neighbors, or the entire patch configuration.

The preceding findings also give insight into the effect of patch size variability on

metapopulation persistence (Anderson 1991; Hanski and Gyllenberg 1993; Hanski 1994;

Day and Possingham 1995; Ovaskainen and Hanski 2003; Frank 2005). They indicate

that patch size variability is only favorable for metapopulation persistence if the following

two conditions are met: (a) The considered species shows strong environmental noise in

the local populations and has a dispersal strategy that induces competition between the

patches for dispersers, and (b) The “right” patches are above-average large. The latter

condition is a reflection of the fact that, in the case of dispersal with competition effect,

the patch size distribution has to tally with a certain other spatial aspect of the habitat

network (network-dependent optimum!). Which aspect is relevant depends on the species’

dispersal strategy. Note, however, that the whole study was based on the assumption of

having significant exchange between the patches. With decreasing exchange, the relative

importance of patch size variability increases (see also Day and Possingham 1995).

The decisive criterion for the optimum patch size distribution was the competitiveness

of the patches (Rule 2 in Section 5.2.3.1). Evidently, the competitiveness/attrativeness of

a patch influences the number of immigrants and so the chance of becoming recolonized

after an extinction. Hence, the rule “allocate habitat according to the competitiveness”
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ensures that the colonization ability of a patch tallies with its recolonization chance.

This corresponds with the intention of the Principle of Optimality presented. This is not

surprising because the derivation of Rule 2 started from the Principle (system (5.16)).

Therefore, Rule 2 can be interpreted as tool for implementing the general Principle.

5.3.2 Key factor “competition effect”

One central element of the presented analysis was the comparison of four dispersal models.

This allowed us to attain better insight into the relationship between the optimum patch

size distribution and the species’ dispersal strategy. We see that the species’ dispersal

strategy crucially influences the optimum patch size distribution, but only as long as the

environmental noise in the local populations is strong and the metapopulation depends on

successful colonization events. But our results also reveal that the dispersal strategy only

matters if it induces competition between the patches for dispersers. This indicates that

the actual key factor for the optimum patch size distribution is the competition effect.

What does the competition effect cause? In the absence of any competition effect, the

uniform patch size distribution is optimum. This particularly indicates that the optimum

patch size distribution is independent of the spatial structure of the habitat network.

In the presence of a competition effect, however, an additional interaction between the

patches comes into play which primarily influences the immigration rates. This additional

interaction changes the entire spatiotemporal dynamics of the metapopulation and so the

functional relationship between the landscape structure and metapopulation persistence.

One implication is that the uniform patch size distribution is not optimum anymore. In-

stead of, a certain network-dependent distribution becomes optimum. The nature of the

competition effect (e.g. caused by corridor-orientation or patch-orientation) determines

which spatial aspect of the network structure is decisive for the optimum patch size dis-

tribution (e.g. pattern of connectedness, patch configuration). Last but not least, the

network-dependence of the optimum reveals that, in presence of a competition effect, a

certain correspondence between the patch size distribution and the network structure is re-

quired for metapopulation persistence. All these arguments show that the optimum patch

size distribution is highly sensitive to the absence or presence of any competition effect.
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A high sensitivity of spatial effects to the absence or presence of competition between

patches for dispersers has also been found in connection with another aspect of metapop-

ulation persistence. Heinz et al. (submitted) considered alternative habitat networks and

ranked them according to their effect on metapopulation persistence (measured in terms

of Tm). They reported a high sensitivity of the ranking orders to changes in the details of

the individuals’ dispersal behavior. All the dispersal patterns they analyzed were of the

“Patch-oriented” case, i.e. induced a competition effect. After artificially excluding the

competition effect, however, high robustness of the ranking orders against changes in the

dispersal behavior was found. This shows that all the reported behavioral effects on the

ranking orders primarily worked over the competition effect.

The two studies indicate that the mentioned competition effect is crucial in the analy-

sis of landscape effects on metapopulation persistence. Therefore, it must not be ignored,

otherwise there is a high risk of counter-productive conclusions. This indicates the need

to check every dispersal strategy for the emergence of competition effects. Whether indi-

vidual movement is oriented and to which sort of landscape elements is certainly easier

to determine than detailed movement patterns.

5.3.3 Ecologically differentiated rules and principles are needed

Two tools have been derived which condense important effects of metapopulation per-

sistence and provide a rough orientation for habitat network design: rules of thumb for

the optimum patch size distribution and a Principle of Optimality. Both tools, how-

ever, are not valid in general. Different ecological cases must be distinguished: weak and

strong environmental noise in the local populations; dispersal strategies with and without

competition effect (“competition” between the patches for dispersers).

This reveals a dilemma of the classical neutral rules of thumb of the type “One large

is better than several small” or “The closer, the better” found in many textbooks on

landscape ecology (e.g. Wilson and Willis 1975; Wilcove et al. 1986). On the one hand,

these rules try to condense important functional relationships between landscape structure

and species’ survival in an as simple as possible way. This is important for conservation
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practice, because overly complex rules would never be applied. On the other hand, these

rules completely ignore differences in the species’ ecology. This over-simplification is

critical because it can lead to counter-productive decisions, at least for some species.

The present study shows that there is a good chance of overcoming this drawback by

formulating ecologically differentiated but still simple rules of thumb of the type “If the

species is of type X, then the optimum is Y”. At a first glance, managing the diversity

of the species’ ecological attributes seems hopeless. But as is well-known from numerous

population viability analyses, relative results are usually extremely robust to change in

the species’ ecological attributes (e.g. Lindenmayer and Possingham 1996; Drechsler et

al. 2002). Only a few attributes are usually found to have an influence on the relative

results - and hence on the optimum - at all (in our case, strength of environmental noise

x, type of dispersal). Only these attributes have to be taken as a basis for classifying

the species. After determining the functional relationship between the decisive attributes

and the optimum, rules of thumb of the mentioned type can be formulated. These rules

are valid for whole ecological classes of species (see also Verboom et al. (1993), Frank

and Wissel (1998), and the concept of “ecological profiles” by Weaver et al. (1996)).

This has strong implications for conservation management. Firstly, it allows the focal

point of conservation to be shifted from a particular target species to a class of species

of a certain type. Secondly, although ecologically differentiated rules of thumb cannot

solve the conflict concerning what type of species should be supported, they allow the

consequences of a planned management measure to be assessed through the eyes of all the

species considered. In this way, decisions can be made on a more scientifically sound basis.

5.3.4 On the practical value of formulas like T am for decision-

support in conservation management

All the analysis work in the present study was exclusively carried out by the mean of

the formula T am for the mean lifetime of a metapopulation given by equation (5.1). This

formula allows decision-making in the context of habitat network design to be supported

in several respects. Firstly, the formula shows how data from species and landscape have
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to be combined to predict the resulting metapopulation viability. In this way, alternative

scenarios can be quantitatively assessed, compared, and ranked according to their effect

on metapopulation persistence. Secondly, the functional structure of the formula provides

insight into the interplay between landscape structure and species’ ecology and its con-

sequences for metapopulation dynamics. This improves understanding and is certainly

the main advantage of the formula. In particular, important metapopulation dynamical

effects such as the Principle of Optimality presented can simply be “read off”. Thirdly,

the formula allows the robustness of the relative results to ecological uncertainty to be as-

sessed. By analyzing its functional structure, it can be determined what species-ecological

attributes affect ranking orders and optimum values in the first place. In consequence,

ecologically differentiated rules of thumb can be derived. All these findings reveal that

analyzing formulas like T am is a useful approach if rules of thumb or general principles of

(meta)population persistence need to be derived.

5.3.5 Prospects for further research

The assumptions underlying the present study show some prospects for further research:

(a) The presented rules of thumb depend on the assumption that the total habitat area Atot

exceeds a certain minimum. Therefore, both an estimate of the critical minimum and rules

of thumb for the case that Atot is below this threshold are needed. (b) In order to cover a

wider range of ecological situations, it has to be analyzed how the presented rules of thumb

change if Allee or rescue effects are taken into account. (c) In the present study, stochastic

metapopulation dynamics are considered and the formula T am for the mean lifetime of

metapopulations of Frank and Wissel (2002) is taken as a measure of persistence. In the

case of deterministic metapopulation dynamics, there are other measures of persistence

such as the metapopulation capacity λM by Hanski and Ovaskainen (2000), or the basic

reproduction ratio R0 by Etienne and Heesterbeek (2000). Therefore, it is useful to

compare the optimum patch size distributions resulting from the different measures. This

reveals how robust the rules of thumb are to a change in the measure of persistence and

how strongly they depend on the assumption of considering deterministic or stochastic

dynamics (see Chapter 6). (d) Because of the practical value of having landscape measures
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for population persistence, it is useful to develop techniques for deriving approximation

formulas for the output of any spatially realistic PVA model (see Chapter 9).

5.4 Appendix

Determination of the optimum allocation key for the remaining dispersal mod-

els (“Simple exponential” (5.3a), “Pie-slice” (5.3b), “Patch-oriented” (5.3c))

To determine the optimum allocation key q = (q1, .., qN) for the distribution of a given

total amount of habitat Atot over a given habitat network means to determine the zero-

solution of the stochastic generator matrix M specified in (5.12). The central step towards

a solution for the three dispersal models under consideration is the following relationship

that is well-known from matrix theory: if the arrival probabilities aij are symmetric, i.e.

aij = aji for all i 6= j, then M is symmetric as well and 1 = (1, .., 1) is the zero-solution

of M (Minc 1988). Now we pass on to the three dispersal models of interest.

Simple exponential.– Evidently, the arrival probabilities aij = e−α·dij are per definition

symmetric. Hence, q = 1 and the optimum patch size distribution is given by Ai = 1
N
·Atot.

Pie-slice.– In the case of the Pie-slice model aij =

√
Aj

π3/2 · 1
dij
· e−α·dij , the situation is

more complex. But note that Ai · aij ≡ Ãi · ãij with Ãi =
√
Ai and ãij =

√
Ai · aij =√

Ai·Aj
π3/2 · 1

dij
·e−α·dij . Consequently, if vector (A1, .., AN) solves (5.12) for the original values

aij then vector (Ã1, .., ÃN) solves (5.12) for the transformed values ãij, and vice versa.

Evidently, the ãij-values are symmetric. Hence, q = 1, i.e. the Ãi-values ought to be

uniformly distributed and so the values of Ai(= Ã2
i ) as well. This gives Ai = 1

N
· Atot.

Patch-oriented.– Here, we can use the same “trick” as in the preceding case. The

arrival probabilities are given by aij =
R(dij)

N−1
P
k( 6=i) R(dik)N−1 ·R(dij). Evidently, Ai · aij ≡ Ãi · ãij

with Ãi = AiP
k( 6=i) R(dik)N−1 and ãij = R(dij)

N . As before, the ãij-values are symmetric and

so the Ãi-values ought to be uniformly distributed. But note the Ãi = const = c implies

that Ai = c ·
∑

k( 6=i) R(dik)
N−1. Consequently, Ai =

P
k( 6=i) R(dik)N−1

P
j

P
k( 6=i) R(djk)N−1 · Atot.
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Chapter 6

Unifying deterministic and stochastic

metapopulation persistence

This chapter is mainly based on the following publication:

Frank, K. 2005. Metapopulation persistence in heterogeneous landscapes: lessons about

the effect of stochasticity. The American Naturalist 165: 374-388

As the preceding Chapters (Chapters 3 to 5) demonstrate and as is generally known (e.g.

Shaffer 1981; Soulé 1987; Lindenmayer and Possingham 1996; Burgman and Possingham

2000; Coulson et al. 2001; Drechsler et al. 2003; Westphal et al. 2003), mathematical

models can considerably contribute to achieving a better understanding of metapopulation

persistence and to supporting decision-making. However, some snags still exist: Firstly,

there are different model types, which vary in terms of the spatial or temporal structure,

or the level of detail (e.g. non-spatial/spatial, deterministic/stochastic, without/with

local dynamics) (e.g. Levins 1969; Nisbet and Gurney 1982; Quinn and Hastings 1987;

Verboom et al. 1991; Wissel and Stöcker 1991; Mangel and Tier 1993; Doak et al. 1992

and references therein; Hanski 1994; Day and Possingham 1995; Bascompte and Solé

1996; Drechsler and Wissel 1997; Stelter et al. 1997; Frank and Wissel 1998; Johst et

al. 2002; Ovaskainen 2002; Ovaskainen et al. 2002). Secondly, different measures of

metapopulation persistence (e.g. Hanski and Ovaskainen 2000; Etienne and Heesterbeek

2001; McCarthy et al. 2001, 2003; Frank and Wissel 2002) are considered. This opens

143
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the possibility of drawing different conclusions about metapopulation persistence. Hence,

a unifying theory of metapopulation persistence is needed. This entails highlighting the

consequences of choosing a particular modeling approach, looking for bridges to the other

approaches, identifying and explaining common effects and differences, and determining

implications for theory and management. This motivated the present study.

In this Chapter, we aim at clarifying some consequences of ignoring and including

stochasticity for the analysis of metapopulation persistence. Special emphasis is placed

on the effect of the landscape structure in this context. To understand this effect is crucial

for both ecological theory and conservation management. Stochasticity is a key factor for

metapopulations which are vulnerable to extinction. The source of stochasticity under

consideration is the stochasticity in the sequence of the extinction and colonization events.

In order to meet this goal, the outcomes of two existing (one deterministic, one stochastic)

spatially realistic, Levins-type metapopulation models (Frank and Wissel 1998; Hanski

and Ovaskainen 2000) are compared and checked for common effects and differences. One

central finding of this study is that, if environmental noise in the local populations is

moderate or strong, there are extra effects of the landscape structure on metapopulation

persistence in face of stochasticity and an increasing importance of the initial conditions

as well. In the result, important absolute and relative conclusions about metapopulation

persistence (e.g. persistence status, ranking orders, qualitative trends) are highly sensitive

to ignoring and including stochasticity. Evidently, including stochasticity is vital in this

case in order to prevent counter-productive conclusions. All the results of the comparative

analysis are condensed in “five lessons about the effect of stochasticity”. These lessons

are complementary to the “four facts about persistence” by Mangel and Tier (1994). Ad-

ditionally, some implications of the result for ecological theory (interplay between spatial

heterogeneity and stochasticity; combined effects of different sources of stochasticity) and

conservation management (rules of thumb; landscape indices as predictors for metapop-

ulation persistence) are discussed. Finally, some general remarks on the potential and

demands of the comparative approach taken in this study are drawn.

All the analysis work in this study is based on the recently published formulas for the

metapopulation capacity λM (Hanski and Ovaskainen 2000), the mean lifetime Tm (Frank
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and Wissel 2002; see also Chapter 3 in this thesis), and the effective number of patches

Ñ (Ovaskainen and Hanski 2004). The study shows how these formulas can serve as

powerful tools in comparative persistence analyses to benefit of theory and management.

6.1 Methods

Our aim is to obtain a better understanding of the consequences of ignoring or including

stochasticity in connection with the analysis of metapopulation persistence. The source

of stochasticity under consideration is the stochasticity in the sequence of extinction and

colonization events. In order to meet this goal, we perform a comparative analysis which is

based on two existing spatially realistic metapopulations models: one deterministic model

(Hanski and Ovaskainen 2000; Ovaskainen and Hanski 2001) and one stochastic model

(Frank and Wissel 1998). Each model is a presence-absence continuous time model, i.e. it

only takes the occupancy state (occupied, empty) of the patches into account. Extinction

and recolonization are the only processes which can cause changes to these states. Each

model is Levins-type, i.e. it takes neither rescue-effects (Brown and Kodric-Brown 1977)

nor Allee effects (Hanski 1994; Ovaskainen 2002) into account. This assumption, however,

is uncritical for the purpose of this study because we are primarily interested in the effect

of ignoring and including stochasticity on the model results.

In the following, we briefly describe the two models (state space, parameters). We

assemble the definitions and measures of metapopulation persistence used in the two cases

and clarify central underlying assumptions. This is done in order to provide a sound basis

for the desired comparative analysis and to support understanding of the results.
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6.1.1 The deterministic case

6.1.1.1 The model

The deterministic metapopulation model used is the model by Hanski and Ovaskainen

(Hanski and Ovaskainen 2000; Ovaskainen and Hanski 2001)

dpi
dt

= (
∑
j( 6=i)

cji · pj) · (1− pi)− νi · pi for all i ∈ {1, ..., N}, (6.1)

where N is the number of patches and p = (p1, ..., pN) the state of the metapopulation

given by the probabilities pi of the individual patches i being occupied. The term cij

denotes the colonization rate, i.e. probability per time of patch i colonizing patch j, and

νi the local extinction rate, i.e. the probability per time of patch i going extinct. The

spatial structure of the habitat network is included by the following standard submodels:

νi = eAi
−x , cij = y Ai

b e−αdij (6.2)

(e.g. Wissel et al. 1994; Hanski 1994; Foley 1997; see also Chapter 2 in this thesis).

Although the state of the metapopulation p = (p1, ..., pN) is given by probabilities (i.e.

pi), the model is characterized as “deterministic” because it does not take the stochasticity

in the sequence of extinction and recolonization processes into account.

If the metapopulation is assumed to be spatially homogeneous, i.e. the model param-

eters νi = ν and cij = c are assumed to be identical for all the patches i, then the spatial

model is equivalent to the classical Levins model dp
dt

= ctot · p · (1− p)− ν · p (Levins 1969)

where ctot = (N − 1) · c is the total colonization rate of each patch.

6.1.1.2 Definition and measure of metapopulation persistence

It is known (e.g. Ovaskainen and Hanski 2001) that the solution of system (6.1) always

converges to a stable equilibrium p∗ = (p∗1, ..., p
∗
N) that can be determined by repeatedly

applying the following iteration rule:

pi =

∑
j( 6=i) cji · pj∑

j( 6=i) cji · pj − νi
. (6.3)
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This iteration has been found to converge always: either to the extinct state 0 = (0, ..., 0)

or to a certain non-trivial solution p∗ > 0 where at least one component p∗i > 0. There-

fore, it makes sense to call a metapopulation to be persistent if it is not extinct in the

equilibrium, i.e. p∗ > 0. In order to make metapopulations and/or options of metapopu-

lation management comparable, a scalar measure of metapopulation persistence is needed

which can be determined from the model parameters (cij, νi).

In the spatially homogenous case, the measure of persistence is evident. Here, the func-

tional structure of the stable equilibrium is explicitly known: p∗ = max[0, 1− (ctot/ν)−1].

The persistence condition p∗ > 0 is met if ctot/ν > 1 that is the well-known Levins condi-

tion (Levins 1969). Hence, the ratio ctot/ν between the total colonization rate ctot and the

local extinction rate ν is an appropriate measure of persistence in this case. It gives the

total number of colonizations a local population is able to induce during its life span 1/ν.

In the spatially heterogeneous case, the situation is more complex because the functional

relationship between the stable equilibrium p∗ = (p∗1, ..., p
∗
N) and the model parameters

(cij, νi) is not explicitly known. There is only an iteration scheme (6.3) for the determi-

nation of p∗. But note that the persistence condition p∗ > 0 is equivalent to the loss of

stability of the trivial solution 0 = (0, ..., 0) of the iteration scheme. By using standard

results from calculus, Hanski and Ovaskainen (2000) showed that 0 is unstable as long as

λM > 1, (6.4)

where λM is the leading eigenvalue of the matrix M = (mij) with elements mij = cji/νi

for j 6= i and mij = 0 else. The authors also showed that λM can be approximated by

λM ≈
∑N

i=1 srow(i) · scol(i)∑N
k=1 srow(k)

(6.5)

where

srow(i) =
∑
j

mij =
∑
j( 6=i)

cji/νi =
y

e

∑
j( 6=i)

AbjA
x
i e
−αdji ,

scol(i) =
∑
j

mji =
∑
j( 6=i)

cij/νj =
y

e

∑
j( 6=i)

AbiA
x
j e
−αdij .

The term λM is a mathematical aggregation of the colonization rates cij and the local

extinction rates νj. It is called metapopulation capacity and used as measure of metapop-
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ulation persistence in deterministic case (for didactic reasons, we depart from the original

notation by Hanski and Ovaskainen (2000) who called e
y
· λM metapopulation capacity).

λM can be interpreted as the average colonization ability of the local populations in

the case that only one of the patches is occupied. It has been found that, if λM > 1, then

1− λM−1 ≈ pw
∗ (6.6)

with pw
∗ =

∑
iwi · p∗i being a certain weighted mean of the equilibrium patch occupancy

states p∗i . The weights wi are determined by the left leading eigenvector of the matrix

B = (bij) with elements bij =
cji·p∗jPN
k=1 ckip

∗
k

. These weights called “patch values” measure the

relative long-term contribution of the individual patches to the total colonization events

in the metapopulation (Ovaskainen and Hanski 2003). Since the correspondence between

pw
∗ ≈ 1−λM−1 and p∗ = 1− (ctot/ν)−1 is obvious, we can conclude that λM is the spatial

equivalent to the (homogenous) measure of persistence ctot/ν and the threshold condition

λM > 1 the spatial equivalent to the (homogeneous) threshold condition ctot/ν > 1.

6.1.2 The stochastic case

6.1.2.1 The model

The stochastic metapopulation model used is the continuous time, finite Markov chain

model described in Chapter 2 where the degrees of correlation ρij are assumed to be

negligible (ρij = 0). Analogous to the deterministic case, νi and ckj denote the (stochastic)

extinction and colonization rates, respectively. By using the submodels for νi and cij

specified in relation (6.2), the model can be made spatial.

Remember that Markov chain models show a typical dynamic behavior (cf. Chapter

2): If the metapopulation is initially in state x0 then a certain percentage of the runs

indicates a rapid extinction, while the remaining runs indicate a rapid approach to quasi-

stationarity. In the result, the survival probability Sx0(t) of the metapopulation at time t

shows the following structure: Sx0(t) ≈ cx0 · e−t/Tm for larger values of t. The term cx0 is

the probability of the metapopulation successfully approaching quasi-stationarity. It sum-

marizes the effects of the initial state x0 relevant for persistence. The term S∗(t) := e−t/Tm
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is the survival probability of the metapopulation after reaching quasi-stationarity. It is

determined by the mean lifetime Tm that summarizes the effects of the quasi-stationary

phase of the metapopulation dynamics relevant for persistence. Tm is independent of

the initial state x0. Both cx0 and Tm can be extracted by eigensystem analysis of the

transition matrix A underlying the Markov chain model (see Chapter 2).

6.1.2.2 Definition and measure of metapopulation persistence

The relation Sx0(t) ≈ cx0 · e−t/Tm reveals three serious problems in connection with the

definition of metapopulation persistence in the stochastic case: Firstly, the survival prob-

ability Sx0(t) goes to zero with increasing time t. Secondly, 0 < Sx0(t) < 1 for each time

t. Thus, the question of survival cannot be answered with “yes” or “no” in the absolute

sense. Thirdly, this question also depends on the initial state x0 of the metapopulation.

Such an effect is completely missing in the deterministic case. Here, all non-trivial initial

states p0 belong to the range of attraction of the stable equilibrium p∗. This shows that

a new definition of metapopulation persistence is needed in the stochastic case.

One option is to fix a certain time horizon tH and a certain acceptable risk of extinction

ε and to call a metapopulation with initial state x0 to be persistent if it (a) successfully

approaches quasi-stationarity with probability

cx0 > 1− ε, (6.7)

and (b) survives under quasi-stationarity until time tH with probability S∗(tH) > 1 − ε.

Since S∗(tH) = e−tH/Tm , the latter condition is equivalent to

Tm >
tH

− ln(1− ε)
. (6.8)

This definition of metapopulation persistence can be directly interpreted by conserva-

tion biologists who are familiar with dealing with time horizons and risks. This combined

cx0- and S∗(tH)-based approach to persistence is widely used in the context of population

viability analysis (e.g. Goel and Richter-Dyn 1974; Nisbet and Gurney 1982; Burgman

and Possingham 2000; Possingham et al. 2001; Beissinger and McCullough 2002) and

is closely related to the concept of “minimum viable population” (e.g. Shaffer 1981; for
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an overview see Soulé (1987) or Remmert (1994)). Taking 100 or 1000 years as the time

horizon tH and 0.1 or 0.05 as the acceptable risk of extinction ε is quite common in this

field. The major advantage of this definition is that it allows the effects of the transient

and the quasi-stationary phases of the metapopulation dynamics on the persistence to

be separately analyzed. The correspondence between equilibrium and quasi-stationarity

ensures a certain comparability between deterministic and stochastic case.

In Chapter 3, we revealed that the mean lifetime Tm can be approximated by

Tm ≈ T am
(
N, νagg, (

ctot
ν

)agg
)

(6.9)

where T am is the formula given by equation (3.5) in Chapter 3. The terms νagg and ( ctot
ν

)agg

are special mathematical aggregations of the model parameters νi and cij (see also relations

(3.15; 3.16) in Chapter 3). They can be interpreted as the effective local extinction rate

and the effective colonization ability of the subpopulations. Formula (6.9) was found to

be applicable to a wide range of patch configurations in the sense that qualitative and

quantitative effects on metapopulation persistence are well reproduced.

For large numbers of patches N , Ovaskainen (2002) developed an alternative approach

to deriving effective metapopulation parameters and approximating the mean lifetime Tm.

His approach is based on diffusion-approximation (see also Example 4 in Sec. 7.1.2.1 of

this thesis). He revealed for a number of examples that Tm ≈ T am(Ñ , ν̃, c̃tot
ν̃

), where T am

is as above and ν̃, c̃tot and Ñ are the effective parameters given by relations (6.14; 6.15;

6.16) in the Appendix. By taking into account that c̃tot/ν̃ = λM (see (6.15)), we obtain

Tm ≈ T am

(
Ñ , ν̃, λM

)
. (6.10)

In contrast to formula (6.9), this formula is only partly explicitly expressed in terms of

νi and cij. Additionally, macroscopic quantities such as the patch values wi and the

deterministic equilibrium occupancies p∗i have to be determined before ν̃, Ñ , and, finally,

Tm can be calculated (see (6.14; 6.16)). The major advantage of this formula is that its

functional structure reveals how the stochastic (Tm) and deterministic (λM) measures of

metapopulation persistence are related to each other: Tm is nearly a polynomial of λM of

the order Ñ − 1. But note that formula (6.10) is only applicable to metapopulations with

a large number of patches N , as is the whole diffusion-based approach.
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6.2 Results

This study aims at highlighting some consequences of ignoring or including stochasticity

in connection with the analysis of metapopulation persistence. The source of stochasticity

considered is the stochasticity in the sequence of the extinction and colonization events.

Special emphasis is placed on the spatial effects on metapopulation persistence and

the analysis of their robustness against ignoring or including stochasticity. This especially

concerns the relative results (e.g. trends, ranking orders among alternative habitat net-

works according to their effect on persistence) because they are of particular importance

for both theory (understanding the relationship between spatial structure and metapop-

ulation persistence) and conservation management (ranking of management options).

The central question of this study is the following: “When do the two (determinis-

tic/stochastic) approaches to metapopulation persistence described in Section 2 lead to

the same conclusions and when to different results?”. In order to meet this goal, the results

of the deterministic and the stochastic analyses will be compared and checked for common

effects and differences. One aspect of particular interest is the role of those elements of

the stochastic approach which are missing in the deterministic approach: the time horizon

tH , the acceptable risk of extinction ε, and the initial state of the metapopulation x0.

6.2.1 A start-up analysis

In order to get an initial impression about the functional relationship between landscape

structure and metapopulation persistence and its sensitivity to choosing the deterministic

or the stochastic approach for the analysis, we start with a simple experiment. This

experiment addresses the following questions: (a) What total amount of habitat is needed

in a given habitat network for maintaining metapopulation persistence? (b) What is the

effect of the number, the spatial configuration and the relative size of the patches? (c)

How robust are the results against ignoring and including stochasticity? (d) What is the

role of the initial state x0, the time horizon tH and the acceptable risk of extinction ε?

To answer these questions, we consider four hypothetical habitat networks which co-

incide in the total amount of habitat in the network, Atot, but vary in number and
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configuration of the patches (see Fig. 1). For didactic reasons, the effect of the relative

patch size is analyzed in a hierarchical way. In the first step, we assume that the total

amount of habitat Atot is uniformly distributed among the patches. In this case, the area

Ai of each patch i is given by Ai = 1
N
·Atot for all i ∈ {1, ..., N}, where N is the number of

patches in the relevant habitat network. By applying this rule to all habitat networks con-

sidered, we obtain three correspondingly named scenarios (“Net 1”, “Net 2”, “Net 3a”).

In the second step, we abandon the condition of uniform habitat distribution in order to

analyze the effect of patch size heterogeneity. Here, we exclusively consider the 9-patch

system and assume that the two patches closest to each other (patches 1 and 2 indicated

by the arrows in Figure 1C) contain 50% of the total amount of habitat Atot. The other

50% are uniformly distributed among the remaining seven patches. This uneven habitat

distribution is modeled as A1 = A2 = 1
4
·Atot and Ai = 1

2·7 ·Atot for all i ∈ {3, ..., 9}. The

corresponding scenario is referred to as “Net 3b”.

To obtain insight into the role of the species’ ecological attributes, we consider ex-

tremely weak (x = 6) and moderate environmental noise (x = 0.8) in the local popu-

lations. After specifying the values for all the other species-ecological parameters (we

assume y = e = 1, b = 0.5, α = 0.04), the local extinction rates νi and the colonization

rates cij are calculated for each scenario considered by using the submodels (6.2).

Before we can start with the actual analysis, we have to specify the time horizon tH

and the acceptable risk of extinction ε for the stochastic case. We start with tH = 100

years and ε = 0.05. Then the different measures of persistence (one deterministic and

two stochastic) are calculated for each scenario. The metapopulation capacity λM and

the mean lifetime Tm are calculated by using the corresponding approximation formulas

(Equation (6.5) for λM and Equation (6.9) for Tm). In order assess the relative importance

of the initial states x0 for metapopulation persistence, the percentage P (cx0 > 1 − ε) of

favorable initial states x0 meeting the condition cx0 > 1− ε is calculated.
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Figure 6.1: Three hypothetical habitat networks which are taken as a basis for different sce-

narios of habitat allocation (three uniform, one uneven). The arrows in Net 3 (C) indicate the

two patches which receive above-average amounts of habitat in the uneven scenario (see text).

Figure 6.2 shows the result for the case of weak environmental noise in the local popula-

tions. The curves in Figures 6.2A-F reveal a number of common effects in the determinis-

tic and stochastic approaches. Firstly, the arrows in Figures 6.2A and 6.2B indicate that

there are critical total amounts of habitat Acrittot above which the deterministic condition

λM > 1 (Fig. 6.2A) and the (quasi-stationary) stochastic condition Tm > tH
−ln(1−ε) (Fig.

6.2B) for metapopulation persistence are met. In each scenario considered, the stochastic

threshold value Acrittot is found to be both robust to variation in the time horizon tH (Fig.

6.2C) and the acceptable risk of extinction ε (Fig. 6.2D) and close to the corresponding

deterministic threshold value Acrittot (cf. Figs. 6.2A and 6.2B). Figures 6.2E-H give insight

into the role of the initial state x0 of the metapopulation. They reveal that, as long as Atot

is above the threshold value Acrittot (indicated by the arrow), the percentage P (cx0 > 1− ε)

of favorable initial states x0 is ≈ 1. This indicates that almost every initial state x0 leads

to quasi-stationarity such that we have both deterministic and stochastic metapopulation
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persistence in this range. Only if Atot approaches Acrittot , the value of P (cx0 > 1− ε) starts

to decline, i.e. there is an increasing percentage of initial states x0 which fail the condition

cx0 > 1− ε. Here, the question of metapopulation persistence can only be answered in a

x0-dependent way. Note that, in Net 3b (Fig. 6.2H), the decline starts already markedly

above Acrittot . This is an effect of spatial heterogeneity (here: patch size heterogeneity in

combination with isolation). If the metapopulation is initially in a state where merely

small and isolated patches are occupied then there is an increasing risk of extinction be-

fore approaching quasi-stationarity. Secondly, the different scenarios considered differ in

both the threshold values Acrittot and the λM - and Tm-values resulting for a certain fixed

value Atot. The ranking orders among the scenarios according to Acrittot , λM , and Tm are

found to be identical and robust to variation in the time horizon tH and the acceptable

risk of extinction ε (cf. Figs. 6.2A-D). This shows that, in the case of weak environmental

noise, important quantitative and qualitative aspects of metapopulation persistence are

independent of ignoring or including stochasticity. The deterministic and stochastic ap-

proaches have a similar predictive power, as far as absolute and relative conclusions about

metapopulation persistence are concerned. However, with increasing spatial heterogeneity

in the habitat networks, there is an increasing importance of the initial states.

A totally different picture emerges in the case of moderate environmental noise in the

local populations (Figures 6.3A-F). Firstly, as before, there are critical total amounts of

habitat Acrittot above which the deterministic condition λM > 1 (Fig. 6.3A) and the (quasi-

stationary) stochastic condition Tm > tH
−ln(1−ε) (Fig. 6.3B) for metapopulation persistence

are met. The deterministic and stochastic threshold values Acrittot , however, now markedly

differ in all the scenarios considered. The value Acrittot for Net 1, for instance, is ≈ 2 in the

deterministic case (Fig. 6.3A) but ≈ 130 in the stochastic case (Fig. 6.3B). Moreover,

there are clear effects of the time horizon tH and the acceptable risk of extinction ε on

the stochastic threshold value Acrittot . Figure 6.3C reveals an increase in Acrittot if the time

horizon tH is enlarged. However, this rise is only significant if the number of patches N

is small (Net 1). The effect of the acceptable risk of extinction ε is different.
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Figure 6.2: (A) Metapopulation capacity λM and (B) mean lifetime of the metapopulation Tm
vs. the total amount of habitat Atot for the three habitat networks given in Figure 6.1, four

scenarios of habitat allocation (see text) and weak environmental noise in the local populations

(x = 6). The dashed lines indicate the threshold values 1 and tH
−ln(1−ε) to be exceeded by λM

and Tm, respectively, where tH = 100 years and ε = 0.05 are assumed. (C and D): Critical total

amount of habitat Acrittot resulting from the stochastic model (Tm-analysis) vs. the time horizon

tH with ε = 0.05 (C), and the acceptable risk of extinction ε with tH = 100 years for the three

habitat networks considered (D). (E, F, G and H): Percentage P (cx0 > 1 − ε) of initial states

x0 meeting the condition for stochastic metapopulation persistence cx0 > 1 − ε vs. the total

amount of habitat Atot for the four scenarios considered, weak environmental noise (x = 6), and

ε = 0.05. The arrows indicate the critical Acrittot -values found in Fig. 6.2B.
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As is indicated by Figure 6.3D, there is a certain critical value (ε ≈ 0.1) above which Acrittot

is quite robust to a change in ε, irrespective of the scenario considered. Below this critical

value, however, Acrittot is found to be highly sensitive to ε. This sensitivity is especially high

if the metapopulation is small (Net 1). Figures 6.3E-H give insight into the role of the

initial state x0 of the metapopulation. In the two 9-patch scenarios (Net 3a and 3b; Figs.

6.3G-H), P (cx0 > 1 − ε) is markedly < 1 in the whole range of Atot-values considered.

Around 50% of the initial states x0 is found to be critical. As before, this is an effect of

the spatial heterogeneity. The negative effect of patch smallness and isolation is amplified

by the stronger environmental noise (smaller x, higher extinction rate νi = Ai
−x).

Another interesting effect can be seen in the 2-patch scenario (Fig. 6.3E). Here,

P (cx0 > 1 − ε) is ≈ 1 for Atot-values far below Acrittot (see the arrow). In this case, the

limiting factor for stochastic metapopulation persistence is primarily the quasi-stationary

behavior (Tm) and not the initial state. This also indicates, the two quantities Tm and

cx0 actually measure different aspects of stochastic metapopulation persistence. Secondly

and even more importantly, the ranking orders among the different scenarios according to

the threshold values Acrittot -values markedly differ in the deterministic and stochastic cases.

The same is true for the ranking orders according to the λM - and Tm-values resulting for

a certain fixed value Atot. Both can be seen by comparing the deterministic ranking order

((Net 1, Net 2, Net 3b, Net 3a); Fig. 6.3A) with the stochastic ranking order ((Net 2, Net

3a, Net 3b, Net 1); Fig. 6.3B). Net 1 (2 patches), for instance, is found to be best in the

first case but worst in the latter case. Changes in the ranks are obviously not restricted to

small metapopulations. As can be seen, Net 3b (9 patches/uneven habitat distribution) is

found to be better than Net 3a (9 patches/uniform habitat distribution) in the determin-

istic case, while the opposite is true in the stochastic case. This indicates that the spatial

structure of the habitat networks (number, spatial configuration, relative size of patches)

has an extra-effect on metapopulation persistence if stochasticity is included. All these

findings reveal that, in the case of moderate environmental noise, several quantitative

and qualitative effects on metapopulation persistence are highly sensitive to ignoring or

including stochasticity, even if the number of patches N is large.
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Figure 6.3: As Figure 6.2, but with moderate environmental noise (x = 0.8).

To summarize, one central result of the start-up experiment is the following finding:

Depending on the strength of environmental noise in the local populations, there can be

extra effects of the spatial structure of the habitat networks on metapopulation persistence

if stochasticity in the sequence of extinction and colonization events is taken into account.

Since this finding would have numerous implications for theory and management, we have

to clarify whether the effects revealed are just artifacts of the particular habitat networks

and/or species’ attributes considered or whether they are more generally valid.
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6.2.2 A more systematic analysis

In order to obtain a better understanding of the effects revealed (e.g. extra effects of

spatial structure under stochasticity, role of the strength of the environmental noise), we

continue with a more systematic analysis of the functional structure of the approximation

formulas for the two measures of metapopulation persistence used: the metapopulation

capacity λM (deterministic measure) and the mean lifetime Tm (stochastic measure).

As can be seen, the formula for λM (formula (6.5)) can be rewritten as a product

λM ≈
∑

i(
∑

j
cji
νi

) · (
∑

j
cij
νj

)∑
i
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1
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) (6.11)

The first factor is always≤ 1 because (
∑

j
cji
νi

)·(
∑

j
cij
νj

) ≤ (1
2
(
∑

j
cji
νi

+
∑

j
cij
νj

))2 (remember:

geometric mean ≤ arithmetic mean). It reaches its maximum value 1 if
∑

j
cji
νi

=
∑

j
cij
νj

for all i, i.e. if the colonization activity into patch i is equal to the colonization activity

from patch i. The second factor is a self-weighted mean of the total colonization activity

1
2
(
∑

j
cji
νi

+
∑

j
cij
νj

) of the individual patches i. As is typical for self-weighted means,

it increases with increasing variance in 1
2
(
∑

j
cji
νi

+
∑

j
cij
νj

) and becomes maximum if the

colonization power is concentrated to a few patches. This shows that spatial heterogeneity

is favorable for λM and (deterministic) metapopulation persistence (see also Hanski and

Ovaskainen 2000). This result corresponds with Adler and Nuernberger (1994), who

found that (deterministic) metapopulation persistence benefits from a clumped patch

configuration. It also explains why Net 1 (2 patches) is found to be best for λM , Net 3a (9

patches/uniform habitat distribution) to be worst and Net 3b (9 patches/uneven habitat

distribution) to be better than Net 3a (cf. ranking orders of Acrittot in Figs. 6.2A and 6.3A).

How is the situation for the mean lifetime Tm? To answer this question, we analyze

the diffusion-based formula (6.10) for Tm ≈ T am(Ñ , ν̃, λM), which indicates that Tm is a

polynomial of λM of the order Ñ -1 and a pre-factor 1/ν̃. This shows that the overall

effect of the spatial structure on Tm and so on (stochastic) metapopulation persistence

consists of two components: the deterministic effect (summarized in λM) and additional

effects (summarized in ν̃ and Ñ). But as the calculation in the Appendix (relations (6.17)
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to (6.20)) reveals, the effective number of patches Ñ (relation (6.16)) can be algebraically

transformed such that the effect of spatial structure can simply be read off. We obtain

Ñ ≈

N∑
i=1

wi·νi−1
P
k wk·νk−1 · νi p∗i

N∑
i=1

wi2P
k wk

2 · νi p∗i

· 1

1 + VarW
(EW )2

·N. (6.12)

This shows that Ñ is approximated by a product of three factors: the actual number of

patches N , a ratio between two specially weighted means of νi p
∗
i , and a term 1

1+ VarW
(EW )2

determined by the relative variance VarW
(EW )2 of the patch values wi. In the case of spatial

homogeneity (νi = ν, cij = c), we find that Ñ = N , i.e. the effective and actual numbers

of patches coincide (note that all the p∗i s and wis are constant and VarW = 0 in this case;

see also Ovaskainen and Hanski (2004)). Increasing variance in the patch values wi, how-

ever, resulting from rising heterogeneity in the spatial configuration reduces the effective

number of patches Ñ . This functional relationship between spatial heterogeneity and the

effective number of patches Ñ is a formal reflection of the fact that an uneven distribution

of the colonization activity causes an above-average risk of fatal sequences of extinction

events if some of the “main colonization players” go extinct. Note that the decreasing

effect of spatial heterogeneity on Ñ is opposite to the increasing effect on λM . Evidently,

there is a trade-off between λM and Ñ in the face of stochasticity. Which part dominates

the threshold condition T am(Ñ , ν̃, λM) > tH
− ln(1−ε) depends on the pre-factor 1/ν̃, i.e. the

effective local lifetime of the local populations. This quantity determines the contribution

of local persistence to metapopulation persistence within the time horizon tH , the de-

mand on the collective colonization success and, therefore, the relative importance of the

effective number of patches Ñ . This especially explains the effect of the environmental

noise in the local populations x revealed. As long as this noise is weak (x large), there

is long-term local persistence (1/ν̃ large), prompting the low importance of Ñ and the

dominance of λM . As a result, all the effects of the spatial structure on metapopulation

persistence coincide in the deterministic and the stochastic cases. They are summarized

in λM . Increasing environmental noise in the local populations (decreasing x and 1/ν̃),

however, increases the importance of Ñ and, hence, the need to take the trade-off between
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λM and Ñ into account. This trade-off effect explains in particular the ranking orders in

Figure 6.3B: it reveals why Net 2 (6 patches) is found to be best (benefit for λM and Ñ),

Net 1 (2 patches) to be worst (Ñ too small), and Net 3a to be better than Net 3b (Ñ is

higher for a uniform than for an uneven distribution of habitat).

To summarize, the structural analysis of the approximation formulas for the metapopu-

lation capacity λM and the mean lifetime Tm revealed that spatial heterogeneity has a

positive effect on λM and a trade-off effect on Tm. In the result, differences in the response

of λM and Tm to changes in the landscape structure have to be expected which are the

more likely the less persistent the local populations are. This phenomenon is generally

valid and independent of the details of the extinction and colonization processes.

6.3 Discussion

This study addressed an important aspect of the analysis of metapopulation persistence.

Its major aim was to highlight consequences of ignoring and including stochasticity in

the sequence of the extinction and colonization events (“extinction-colonization stochas-

ticity”) for the derivation of (absolute and relative) conclusions about metapopulation

persistence. To meet this goal, we performed a comparative analysis of one deterministic

and one stochastic approach to metapopulation persistence. In the following, we take the

results of this study as a basis and derive a list of both those effects which are common

in the two approaches and those which are really “extra” if stochasticity is included and

which are not covered by the deterministic approach. We discuss important implications

of these findings for ecological theory and conservation management. We finish with some

methodological remarks on the comparative approach followed in this study.

6.3.1 Five lessons about the effects of stochasticity

In the following, we want to condense the results of this study into a few “lessons” about

the effects of stochasticity in connection with the analysis of metapopulation persistence:
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Lesson 1: In both approaches, metapopulation persistence is determined by the mean

of threshold conditions. But there are two major differences. Firstly, two conditions are

needed for characterizing metapopulation persistence in the stochastic approach: one on

the initial state (cx0 > 1−ε) and one on the quasi-stationary behaviour (Tm > tH
− ln(1−ε)) of

the metapopulation. In the deterministic approach, a single condition on the equilibrium

behaviour (λM > 1) suffices; a x0-dependent component is missing because convergence

to the equilibrium is certain for each non-trivial initial state x0. Secondly, the threshold

values 1− ε and tH
− ln(1−ε) to be exceeded in face of stochasticity are not constant as in the

deterministic case but dependent on the subjective perspective of the decision-maker, i.e.

the time-horizon tH and the acceptable risk of extinction ε.

Lesson 2: The measure of deterministic metapopulation persistence, λM ≈ (1−p∗w)−1

(remember (6.6)), indicates that it suffices to analyze an appropriately weighted mean of

the equilibrium occupancy pattern, p∗w, to draw correct conclusion about deterministic

metapopulation persistence. The two measures of stochastic metapopulation persistence,

cx0 and Tm ≈ T am(ν̃, Ñ , λM) (see (6.10)), reveal that this is not enough in face of stochas-

ticity. Here, the effective local lifetime of the local populations, 1/ν̃, the effective number

of patches, Ñ , and the initial state, x0, have additionally to be taken into account.

Lesson 3: In the case of moderate or strong environmental noise in the local popu-

lations (x < 1.5), there is an extra effect of spatial structure (number of patches, spatial

heterogeneity) on metapopulation persistence in face of stochasticity. In the deterministic

case, heterogeneity in the colonization abilities and concentration to few strong local pop-

ulations is advantageous for metapopulation persistence. In the stochastic case, however,

there is a need to support both a high colonization ability (λM) and a medium effective

number of patches (Ñ) in order to avoid fatal sequences of extinction events. As a result of

the latter condition, a medium number of patches and homogeneity in the colonization abil-

ities of the local populations become decisive. This difference between the deterministic

and stochastic effects of spatial structure on metapopulation persistence has a serious con-

sequence: if alternative patch configurations are assessed and compared regarding their

effect on λM (deterministic persistence) and Tm (stochastic persistence), the resulting

ranking orders can differ. This means that ignoring or including extinction-colonization
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stochasticity can lead to different relative results and to different qualitative trends.

Lesson 4: The subjective perspective of the decision-maker (the time horizon tH , the

acceptable risk of extinction ε) has a noticeable effect if the effective number of patches

(spatial heterogeneity!) is small (≤ 5) or if ε < 0.1. But note that this is the range of

ε-values which is usually used in the context of population viability analysis and which is

relevant for conservation management (risk aversion).

Lesson 5: Including stochasticity in the sequence of extinction and colonization events

is indispensable for avoiding counter-productive conclusions about metapopulation per-

sistence if the environmental noise in the local populations is moderate or strong. The

same is true if the habitat network is highly spatially heterogeneous and the colonization

ability is concentrated to a few strong local populations. In this case, the question of

metapopulation persistence strongly depends on the initial state x0.

The lessons presented are complementary to the four facts about persistence by Mangel

and Tier (1994). While the the “four facts” address important local effects on the persis-

tence of single populations, our “five lessons” focus on the persistence of metapopulations

with special respect to the effects of spatial structure in interplay with stochasticity, to

the role of the subjective aspects of the assessment (the time horizon tH , the acceptable

risk of extinction ε), and to the initial state x0 of the metapopulation.

None of the lessons supports a “precise” determination of extinction thresholds in

any concrete case study. But this goal cannot be met anyway because the models under

consideration are rather generic and, hence, too rough to allow predictions for concrete

metapopulations. Moreover, all the models are of the Levins type and ignore important

effects such as Allee and rescue effects. First and foremost, the lessons provide a better

understanding of some fundamental consequences of ignoring or including stochasticity

for the analysis of metapopulation persistent. They reveal that ignoring or including

stochasticity may have quantitative and qualitative effects, even if the (actual) number of

patches N is large. They reveal important conditions under which including stochasticity

is vital to prevent counter-productive conclusions concerning metapopulation persistence.
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6.3.2 Implications for ecological theory

The results of this study (especially Lesson 3) also contribute to the debate on the role of

spatial structure for ecological processes (e.g. Doak et al. 1992; Durrett and Levin 1994;

Adler and Nuernberger 1994; Day and Possingham 1995; Bascompte and Solé 1996, 1998;

With and King 1999; Fahrig 2001, 2002). They especially provide new insights into the

effect of the landscape structure on stochastic metapopulation persistence. But they also

have relevance for other fields of ecology such as epidemiology because there is a strong

analogy between epidemiological and metapopulation models (e.g. Anderson and May

1991; Nee 1994; Grenfell and Harwood 1997; Amarasekare and Possingham 2001).

6.3.2.1 Extra effects of the landscape structure in face of stochasticity

We revealed that an increasing heterogeneity in the colonization abilities of the local

populations always has a positive effect on λM (deterministic persistence) but a trade-off

effect on Tm (stochastic persistence). This structural difference in the responses of λM

and Tm gave rise to the following conclusion: There is an extra effect of the landscape

structure on metapopulation persistence in face of stochasticity the relative importance

of which is the higher the less persistent the local populations are. This is certainly the

most important finding of this study (see also Lesson 3). This extra effect is caused by the

interplay between the spatial heterogeneity and the extinction-colonization stochasticity.

This interplay primarily influences the risk of suffering from fatal sequences of extinction

events. An (inverse) measure of this risk is the effective number of patches Ñ (see (6.12)).

We showed that an increasing heterogeneity in the colonization abilities of the local pop-

ulations always causes a decrease in Ñ and, hence, an increasing risk of fatal sequences of

extinction events. This counteracts the positive effect on λM and explains the trade-off

effect on Tm. Note that all these results are direct benefits of the comparison between Tm

and λM . They could not have been derived with analyzing only one of them alone.
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6.3.2.2 Interplay between environmental noise and extinction-colonization

stochasticity

Lesson 3 reveals an additional interesting point that is worth being discussed in more

detail. It indicates that the strength of the environmental noise in the local populations

determines the extent to which the extinction-colonization stochasticity can influence the

functional relationship between landscape structure and metapopulation persistence, i.e.

can alter trends and ranking orders. This shows that important (quantitative and even

qualitative) persistence effects of one source of stochasticity can markedly depend on the

strength of another source of stochasticity at another (here: lower) organizational level.

In such situations, correct conclusions about persistence can only be drawn if the interplay

between the different sources of stochasticity at the different levels is taken into account.

Further research is needed to obtain a better understanding of such combined stochastic

effects and their consequences for stochastic (meta-)population persistence.

6.3.3 Implications for conservation management

Conservation management strongly depends on information about trends and ranking

orders among alternative scenarios (e.g. management options, landscape configurations)

according to their effect on (meta-)population persistence. As is known, models can be

very useful tools for providing this information (e.g. Bascompte and Solé 1996; Linden-

mayer and Possingham 1996; Frank and Wissel 1998; Burgman and Possingham 2000;

Coulson et al. 2001; Drechsler et al. 2003; Westphal et al. 2003; Frank 2004). The

present study, however, reveals a serious problem in connection with metapopulation

management. It indicates that trends and ranking orders are not robust to choosing a

deterministic or a stochastic model for the persistence analysis. This is especially the case

if the environmental noise in the local populations is moderate or strong (see also Lessons

3 and 5). Here, the use of stochastic models is vital for preventing counter-productive con-

clusions about metapopulation persistence. But now another problem comes to light. All

model-based tools of decision-support which aim at ranking landscape scenarios have to

be assessed regarding whether they are based on a deterministic or on a stochastic model.
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6.3.3.1 Check the assumptions of rules of thumb

Rules of thumb for landscape management are common and widely discussed. They

condense important qualitative effects of the landscape structure on (meta-)population

persistence in a verbal way (e.g. Wilson and Willis 1975; Wilcove et al. 1986; Adler

and Nuernberger 1994; Day and Possingham 1995; Frank and Wissel 1998; Etienne and

Heesterbeek 2000, 2001; Frank 1998, 2004). To clarify the assumptions and ranges of

applicability of every rule of thumb is highly relevant for landscape management, as the

following example demonstrates. At a first glance, the two rules of thumb “Clumping and

patch size variability are favorable for metapopulation persistence” (Adler and Nuern-

berger 1994) and “Patch size homogeneity is favorable for metapopulation persistence

if colonization is strong enough” (Day and Possingham 1995) seem to be contradicting.

A more careful check of the two rules, however, revealed that the first rule is based on

a deterministic model. Hence, it is only applicable as long as the environmental noise

in the local populations is weak. The second rule is based on a stochastic model with

moderate environmental noise in the local populations (x = 1). This shows that the two

rules simply have complementary ranges of applicability.

6.3.3.2 Ecologically scaled landscape indices as predictors of persistence

In the recent landscape ecological literature, there is a debate on the development of

ecologically scaled landscape indices and their use as predictors for landscape effects on

population dynamics (e.g. Schumaker 1996; Frank and Wissel 1998, 2002; Wiegand et

al. 1999; Hanski and Ovaskainen 2000; Vos et al. 2001). Such indices take important

characteristics of both the landscape structure and the species’ ecology into account.

In connection with metapopulations, there is a discussion on whether the fraction of

occupied patches (or a related quantity such as p∗w) is a useful predictor for metapopula-

tion persistence. Regarding deterministic persistence, the question is fully and positively

answered because Ovaskainen and Hanski (2001) proved the correspondence between p∗w

and 1 − λM−1 and showed that p∗w is a much better predictor than the total amount of

habitat Atot, or the number of patches N . Regarding stochastic persistence, however, the
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discussion is ongoing. Vos et al. (2001) performed a model analysis and concluded that

p∗w is also a useful predictor for stochastic metapopulation persistence. They especially

proposed that the threshold condition p∗w > (0.4 to 0.6) indicates stochastic persistence.

The findings of the recent study indicate that these statements are not valid in general

and have to be differentiated. To see this, take into account that S∗(100) = e−100/Tm ,

Tm ≈ T am(ν̃, Ñ , λM) (see (6.10)), and λM ≈ (1− pw∗)−1 (remember (6.6)). Therefore,

S∗(100) ≈ e−100/Tam(ν̃,Ñ ,(1−p∗w)−1). (6.13)

This relation gives the relationship between S∗(100) and p∗w. Figures 6.4A-B show some

S∗(100) vs. p∗w curves for different values of Ñ and ν̃. Although the curves markedly differ,

they corroborate that p∗w < 0.4 indicates non-persistence, irrespective of Ñ and ν̃.But we

also see that the threshold condition p∗w > (0.4 to 0.6) does not yet guarantee stochastic

metapopulation persistence in general, as was proposed by Vos et al.. This condition is

only sufficient as long as the effective number of patches Ñ is relatively large, namely

≥ 15 for medium-term local persistence (ν̃ = 0.1; Fig. 6.4A) and ≥ 20 for short-term

local persistence (ν̃ = 0.5; Fig. 6.4B). It does not work for smaller effective numbers of

patches Ñ which are particularly relevant in connection with conservation questions (note

that Ñ can be small even if the actual number of patches N is large because Ñ decreases

with increasing spatial heterogeneity). Vos et al. considered metapopulations with seven

to fifty patches, i.e. large systems. Even more critical is the fact that p∗w does not always

allow ranking orders in the S∗(100)-values to be correctly reflected. p∗w only works as long

as the environmental noise in the local populations is low, but fails if the noise becomes

moderate or strong (cf. Figs. 6.4C-D). To be fair, Vos et al. could not find this effect

because they did not vary the strength of environmental noise in their study.

All these findings corroborate what we already formulated in Lesson 2: the fraction of

occupied patches p∗w alone is unable to correctly predict metapopulation persistence in face

of stochasticity. This is especially the case if the environmental noise in the local popula-

tions is moderate or the effective number of patches is small. Here, the only appropriate

predictor is the mean lifetime Tm. But note that the aggregation-based approximation

formula T am(νagg, N, (
ctot
ν

)agg) (see (6.9)) applied to appropriate spatial submodels for νi
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Figure 6.4: (A and B) Survival probability S∗(100) for a quasi-stationary metapopulation after

100 years (calculated with equation (6.13)) versus the weighted mean equilibrium occupancy p∗w
(see text) for different effective numbers of patches Ñ and effective local extinction rates ν̃ of

0.1 (A) and of 0.5 (B). The dashed line denotes the 0.95-threshold. (C-D) S∗(100) = e−100/Tm

vs. p∗w ≈ (1−λM )−1 calculated from the Tm- and λM -values for the four scenarios considered in

Figures 6.2A-B and 6.3A-B with (Atot = 7, x = 6) (C) and (Atot = 44, x = 0.8) (D), respectively.

and cij (e.g. (6.2)) gives an ecologically scaled landscape index which meets all the

requirement: It is expressed in terms of spatial as well as species-ecological attributes and

allows correct conclusions about stochastic metapopulation persistence to be drawn.

6.3.4 Some general remarks on the approach presented

The main idea of the approach taken in this study was to compare the outcome of two

(one deterministic, one stochastic) metapopulation models and to seek common effects,

differences, and possible reasons. This supported a better understanding of important
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quantitative and qualitative effects of stochasticity on metapopulation persistence with

implications for theory building and conservation management. But the study was only

successful because a number of favorable conditions were met.

6.3.4.1 Complementary but comparable model structures

Ignoring and including a certain factor and comparing the resulting outcomes is a common

way of analyzing its relative importance. This shows that each of the two models used was

indispensable for obtaining a comprehensive understanding of the effects of stochasticity

in the context of metapopulation persistence. But note that the comparison was markedly

facilitated by the fact that the two models have comparable model structures, i.e. they

work on the same levels of detail (finite, presence-absence, Levins-type models) and refer

to the same model parameters (cij, νi, N).

6.3.4.2 Approximation formulas for the measures of persistence

The present study especially benefited from the fact that approximation formulas for the

(deterministic and stochastic) measures of metapopulation persistence and their ingredi-

ents (the effective parameters; see also Section 7.1.2) were available: one formula for the

metapopulation capacity λM and even two formulas for the mean lifetime Tm working on

different levels of resolution (microscopic, macroscopic) with complementary advantages.

As the λM -formula (equation (6.5)), the aggregation-based Tm-formula (equation (6.9))

is completely expressed in terms of the main model parameters (N, cij, νi). This means

that, once the local extinction rates νi and colonization rates cij are known, these two

formulas allow the values for λM and Tm to be directly calculated. In this way, they

enable a decision-maker to perform comparative analyses of metapopulation persistence

and to check the robustness of the results to ignoring or including stochasticity.

The diffusion-based Tm-formula (equation (6.10)) has the advantage that it clarifies

the functional relationship between Tm and λM , and reveals that all the extra effects of the

interplay between spatial heterogeneity and stochasticity are summarized in the effective

local extinction rate ν̃ and the effective number of patches Ñ .
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The two (aggregation-based and diffusion-based) approximation formulas for the mean

lifetime Tm were derived in totally different ways. Even so, they reflect important quali-

tative effects on metapopulation persistence in exactly the same way and give rise to the

same ecological conclusions. The two formulas thus qualitatively validate each other.

The main achievement of the formulas, however, became apparent when the effects of

spatial heterogeneity were analyzed (see Sec. 6.3.2). As we saw, it proved possible by al-

gebraic transformation to express λM and Ñ in terms of variances of certain patch-specific

quantities (i.e. of the total colonization activities srow(i)+scol(i)
2

in (6.11) and of patch values

wi in (6.12)) which can be directly related to spatial heterogeneity. This allowed general

conclusions to be drawn on the effect of spatial heterogeneity on metapopulation persis-

tence. These conclusions are independent of the details of the functional dependence of

νi and cij on landscape structure and species’ ecology. But note that they depend on the

assumption that neither rescue nor Allee effects are involved because they are based on

Levins-type models. Comparing the resulting deterministic and stochastic “principles”

enables a comprehensive understanding of the main effects of stochasticity on a rather

general level. The advantage of combining numeric and algebraic analyses was already

demonstrated in Chapter 5, where ecologically differentiated rules of thumb for habitat

allocation and a Principle of Optimality for metapopulation persistence were derived on

the basis of the (aggregation-based) formula for Tm. All these arguments show the po-

tential of the approximation formulas for λM (Hanski and Ovaskainen 2000), Tm (Frank

and Wissel 2002), and Ñ (Ovaskainen 2002; Ovaskainen and Hanski 2004).
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6.4 Appendix

The effective parameters Ñ , ν̃, c̃tot derived by Ovaskainen (2002)

For larger values of N , Ovaskainen (2002) showed that Tm ≈ T am(Ñ , ν̃, c̃tot
ν̃

) for a large

number of examples. The effective parameters Ñ , ν̃, and c̃tot are given by

ν̃ = (
N∑
i=1

wi · νi−1)−1, (6.14)

c̃tot = ν̃ · λM , (6.15)

Ñ =
c̃tot · p∗w(1− p∗w) + ν̃ · p∗w∑N

i=1 wi
2 · [(

∑
j( 6=i) cji · p∗j)(1− p∗i ) + νi · p∗i ]

(6.16)

with p∗w =
∑N

i=1 wi ·p∗i (see also Ovaskainen and Hanski (2004)). The p∗i s are the determin-

istic equilibrium occupancies and the weights wi the patch values discussed in Section 6.2.

Algebraic transformation of the effective number of patches Ñ

Below, the formula for the effective number of patches Ñ by Ovaskainen and Hanski

(2004) (see also equation (6.16) in the present study) will be algebraically transformed

such that the effect of spatial heterogeneity can be directly analyzed. Starting point of the

calculation is the fact that (p∗1, ..., p
∗
N) used in formula (6.16) is the equilibrium occupancy

state of the spatial Levins-model (6.1). Therefore, (
∑

j( 6=i) cji · p∗j)(1− p∗i ) = νi · p∗i for all

i. Furthermore, it is evident that p∗w approximates the equilibrium occupancy state of the

related classical Levins model dp
dt

= c̃tot ·p(1−p)−ν̃ ·p because p∗w =
∑

iwi ·p∗i ≈ 1−λM−1 =

1 − (c̃tot/ν̃)−1, as can be concluded from both relation (6.6) (see also Ovaskainen and

Hanski (2001; 2003)) and the definition of the effective colonization rate c̃tot = λM · ν̃ (see

(6.15)). Consequently, c̃tot ·p∗w(1−p∗w) ≈ ν̃ ·p∗w. This results in the following simplification

of the original formula for Ñ :

Ñ =
c̃tot · p∗w(1− p∗w) + ν̃ p∗w∑

iwi
2 ·
[
(
∑

j( 6=i) cji · p∗j)(1− p∗i ) + νi p∗i

] ≈ 2 · ν̃ p∗w
2 ·
∑

iwi
2 · νi p∗i

. (6.17)

Inserting the definitions of ν̃ = (
∑

iwi · νi−1)−1 (see (6.14)) and p∗w =
∑

k wk · p∗k in (6.17)
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leads to:

Ñ ≈ ν̃ p∗w∑
iwi

2 · νi p∗i
=

1∑
iwi · νi−1

·
∑

k wk · p∗k∑
i(wi

2 · νi p∗i )

=
1∑

iwi · νi−1
·
∑

k(wk · νk−1) · (νk p∗k)∑
i(wi

2 · νi p∗i )

=

∑
k

wk·νk−1
P
i wi·νi−1 · νk p∗k∑
iwi

2 · νi p∗i

=

∑
k

wk·νk−1
P
i wi·νi−1 · νk p∗k∑

i
wi2P
k wk

2 · νi p∗i
· 1∑

k wk
2
. (6.18)

This shows that Ñ is the product of a ratio of two specially weighted means of νi p
∗
i and

the inverse of
∑

k wk
2. Note that the wks are weights such that

∑
k wk = 1. Therefore,

1∑
k wk

2
=

(
∑

k wk)
2∑

k wk
2

=
( 1
N

∑
k wk)

2

1
N

∑
k wk

2
·N

=
( 1
N

∑
k wk)

2

( 1
N

∑
k wk)

2 +
(

1
N

∑
k wk

2 − ( 1
N

∑
k wk)

2
) ·N

=
(EW )2

(EW )2 + VarW
·N =

1

1 + VarW
(EW )2

·N, (6.19)

where EW and VarW denote the expected value and the variance of the wks. By inserting

the last term (6.19) in relation (6.18), we obtain

Ñ ≈

N∑
k=1

wk·νk−1
P
i wi·νi−1 · νk p∗k

N∑
i=1

wi2P
k wk

2 · νi p∗i

· 1

1 + VarW
(EW )2

·N. (6.20)
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In Part II of this thesis (Chapters 3 to 6), we addressed several aspects of metapopulation

persistence and contributed to both theory building and management support in this field.

Theory building.– We contributed to the further development of the concept of “meta-

population persistence”. We provided new insights into the role of the interplay between

spatial heterogeneity, stochasticity and species’ ecology in this context. We contributed

to the unification of deterministic and stochastic metapopulation persistence.

Management support.– We were able to clarify important principle aspects of metapop-

ulation management (e.g. minimum conditions for long-term metapopulation persistence;

optimum habitat allocation; choice of an appropriate approach for the landscape analy-

sis). Additionally, we were able to develop model-based tools for decision-support such

as rules of thumb and a formula for the mean lifetime Tm of metapopulations that can be

interpreted as a special landscape index. Both have been found to be powerful.

The type of questions addressed is not only relevant in the context of metapopulations but

in other fields of ecological research and conservational landscape management as well.

For the work in Part II, however, special forms of model building and model analysis were

needed. Hence, it is useful to reflect the work in Part II and to make the methodolog-

ical experience gained usable for other applications. This motivated Part III of this thesis.

Aim of Part III

In the following, we depart from the analysis of metapopulation persistence. We shift

the focus of attention to (A) methodological aspects of using models for theory building

and management support in the context of applied ecology, (B) implications of the at-

tainable model results for various interdisciplinary aspects of environmental research and

conservational landscape management, and (C) some prospects for further research.

A. Methodological development work.– This work is done in three different contexts. In

Chapter 7, we address methodological aspects of model building and model analysis that

become relevant if generalization and unification are the aim. Generalization and unifi-

cation are central for both theory building and management support. Special emphasis

is placed on mastering two particular challenges which arise in the context of organismic
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ecology: (a) bridging between specific case studies and general concepts, and (b) manag-

ing biocomplexity. A systematic methodology to master these challenges is missing so far.

We review both the modeling work performed in this thesis and the literature and assem-

ble approaches and methods that prove to be appropriate. In Chapter 8, we develop a

systematic approach and a rough protocol for the derivation of ecologically differentiated

rules of thumb. In Chapter 9, we do the same for (meta)population dynamical landscape

indices. In both cases, approach and protocol are missing so far. In all cases, the pre-

sented approaches, protocols and methods are supplemented with a number of illustrative

examples. This is done in order to give a living impression about how one can work with

each method in a concrete case and what one can gain from it. The examples are taken

from both this thesis and the literature. This helps to understand the results of this thesis

as part of a larger system and clarifies the interrelationships.

B. Implications.– All the methods presented in Part III have a range of applicability

that goes beyond the analysis and management of (single species) metapopulation per-

sistence, i.e. the original focus of this thesis. This concerns the support of generalization

and unification as well as the derivation of ecologically differentiated rules of thumb and

(meta)population dynamical landscape indices. Fields of extension are for example:

Original focus (Parts I & II) Fields of extension (Part III)

Single species Classes of species

Metapopulations Spatially structured populations

Measures of persistence Tm, λM Other (meta)population dynamical quantities Q

Patchy landscapes Complex landscapes

Changes in landscape structure Other critical impacts on biodiversity

As we have seen in Part II of this thesis, ecologically differentiated rules of thumb and

(meta)population dynamical landscape indices are powerful tools for predicting and an-

alyzing in (theoretical and applied) population ecology. In Part III (Chapters 8 and 9),

we go a step further and demonstrate that both additionally provide bridges to various

fields of environmental research beyond population ecology. We show that they have se-

rious implications for community ecology and biodiversity research in general, but also
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for landscape ecology and various interdisciplinary aspects of conservational landscape

management: landscape planning, the development of economic instruments including

conceptual aspects of ecological economics, integrated assessment. Moreover, we discuss

parallels to road ecology and ecotoxicology where the approach of classifying species ac-

cording to their sensitivity to certain critical impacts is used as well (see also Fig. III.1).

Figure III.1: Implications of this thesis for different fields of environmental research

C. Prospects.– The third objective of Part III is the indication of prospects for further

research. This is done in the context of the individual chapters. The prospects concern

ecological research, interdisciplinary aspects of conservation management and modeling.

Character of Chapters 7, 8, and 9

The character of Part III markedly differs from that of Part II. In Part II, all chapters

(Chapters 3 to 6) address a particular ecological question and present a particular way

to answer it. This includes the development of the methods needed, a comprehensive

analysis of the problem addressed and a sound discussion of the results. In contrast to

this, all chapters in Part III (Chapters 7 to 9) basically consist of review and synthesis

work supplemented with new insights attained from this work. Three different sources of

knowledge serve as basis for the review and synthesis work: (a) the results of this thesis,

(b) results from co-operation projects with colleagues, and (c) of course, literature. The

individual chapters, however, do not claim to be comprehensive. They primarily aim at
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broaching the implications of this thesis, the connections to other fields of recent ecological

and environmental research, and some possibilities for further development. But they also

aim at giving a rough impression about the scientific profile of the candidate.

As was already mentioned, numerous examples presented in Chapters 7 to 9 come

from co-operation projects with colleagues such as PhD or other projects supervised by

the candidate (*) or “normal” research co-operations (†). For the original work, see:

† Frank, K. & Ring, I. (1999) Model-based criteria for the effectiveness of conservation

strategies: an evaluation of incentive programs in Saxony, Germany. In: Ring, I., Klauer,

B., Wätzold, F. und Mansson, B. (Hrsg.) Ecological Economics, Physica Berlin, 91-106

* Heinz, S.K., Conradt, L., Wissel, C. & Frank, K. (2005) Dispersal behaviour in fragmented

landscapes: A practical formula for patch accessibility. Landscape Ecology (in press)

* Heinz, S.K., Wissel, C. & Frank, K. On the viability of metapopulations: individual

dispersal behaviour matters. Landscape Ecology (submitted)

* Pe’er, G., Saltz, D. & Frank, K. (2005) Virtual corridors: the concept and its implications

for conservation management. Conservation Biology (in press)

* Pe’er, G., Heinz, S.K. & Frank, K. (2005) Connectivity in heterogeneous landscapes:

analyzing the effect of topography. Landscape Ecology (in press)

* Tluk von Toschanowitz, K. (2002) Der Einfluß von Straßennetz und Verkehrsfluss auf die

Überlebensfähigkeit von territorialen Wildtierpopulationen: Eine Modellanalyse. Diplo-

marbeit Universität Osnabrück

† Westphal, M.I. & Frank, K. On rules of thumb for the design of metapopulations (manuscript)

Chapters 7 to 9 are not yet published so far.



Chapter 7

Towards generalization and

unification under biocomplexity

One of the great challenges in the context of theory building and management support

are the generalization and unification of the profusion of (existing and ongoing) studies.

In the field of ecological research and theory building, the need of generalization and

unification is obvious for two reasons: Firstly, there is an increasing number and diver-

sity of specific case studies. Case studies have a clear strength because they bring new

ecological phenomena to light and allow complex ecological interactions to be analyzed in

concrete situations. But in view of their ability to contribute to a comprehensive mecha-

nistic understanding, it is especially important and worthwhile to manage their diversity

and to bring the different lines together. One way is to perform comparative analyses and

to search for common effects, differences and the reasons behind. This certainly stimu-

lates theory building and, hence, increases the chance of making the scientific knowledge

obtained from the case studies “more sustainable”. Secondly, there is a problem with the-

ory building itself: it evolved a life of its own with the result of diverse approaches with

own terminology, methods and hypotheses. For an example, remember the two different

approaches to metapopulation persistence: the deterministic and the stochastic approach.

As an intrinsic by-product of this “own life”, there is an increasing risk that theory moves

away from reality. This shows that both a unification of the different approaches and a

closer linkage between general concepts and specific case studies are required.

183
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As far as conservation management is concerned, generalization is even more urgent.

There are numerous powerful case studies where extensive field work is combined with ex-

tensive model analyses. In the result, detailed recommendations for conservation manage-

ment (e.g. in the realm of species’ protection plans) can be derived which are specifically

geared to the given species in the given landscape. This is certainly the best case, but is

not attainable in general. It is impossible to start a new empirical study and/or a new

specific model analysis for each new situation. One way to overcome this drawback is to

take the existing case studies as a basis and to scan them for typical patterns or general

principles determining persistence in a wide range of situations. Searching for general

principles is especially useful if knowledge about (a) relative trends (e.g. ranking orders

among management scenarios according to their effect on persistence), (b) minimum or

optimum conditions for persistence, or (c) the effects of uncertainty is needed as a basis

for decision-making. Principles give at least a rough orientation for setting management

priorities or estimating the effectiveness of a planned management measure.

All these arguments indicate the need of a framework for analysis and synthesis across

different levels of abstraction: from case studies via models to concepts (for theory and

management, respectively) and vice versa (see the scheme in Figure 7.1). Such an iterative

approach bridges the gap between general concepts and case studies and enables their ad-

vantages to be combined: On the one side, concept-based case studies have the advantage

of being intrinsically comparable to each other. On the other side, the close link to the

case studies ensures that the conceptual work is anchored in reality. The applicability of

concepts and hypotheses to concrete situations can be tested and conceptual deficits can

be derived. Moreover, case studies can induce new hypotheses and even new scientific

questions. Models represent the decisive bridge between case studies and concepts.

Figure 7.1: Analysis across different levels of abstraction: case studies, models, concepts
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To bridge between case studies and concepts requires an appropriate model and an appro-

priate model analysis. The models, for instance, have to be flexible enough to be applicable

to a wide range of situations, but also tractable to allow general results to be derived.

If we are interested in generalization/unification in the context of organismic ecol-

ogy, an additional challenge comes into play: biocomplexity as part of ecological realism.

Three different sources of biocomplexity can be distinguished (see the scheme in Fig. 7.2).

Firstly, processes on various organismic levels (e.g. individuals, populations, metapopu-

lations, species communities) can interact and influence the dynamics of the ecological

system considered. Secondly, on each particular organismic level, a multitude of fac-

tors and processes can be relevant. Thirdly, each process can be influenced by biological

variability (e.g. spatial heterogeneity, temporal variation, individual variability).

In the context of the metapopulation analyses presented in this thesis (Chapters 3 to

6), we were confronted with both the need to bridge between case studies and concepts and

the need to manage the full range of biocomplexity. Even so, we were able to derive some

general findings on the concept of “metapopulation persistence” and to derive model-

based tools for decision-support in conservational landscape management (e.g. rules of

thumb, landscape indices for predicting metapopulation persistence). This led to the idea

to reflect the way how models were built and analyzed in this thesis and to document

the methodological experience gained. In the following, we assemble approaches and

methods of model building and model analysis which have proved to be appropriate for

the support of generalization and unification. We supplement all the approaches and

methods presented with examples from both this thesis and the literature. We finalize

with some general conclusions and some prospects for further research.

Figure 7.2: Three sources of biocomplexity



186 CHAPTER 7. GENERALIZATION AND UNIFICATION

7.1 Appropriate model building

There are powerful approaches to integrate ecological realism in models. One of them is

the development of rule-based models. Prominent examples of these models are individual-

based and spatially realistic simulation models (DeAngelis and Gross 1992; Pulliam et

al. 1992; Dunning et al. 1995; Grimm 1999; Wiegand et al. 1999; for an overview over

the merits of individual-based models, see Grimm and Railsback 2005). These models

allow the entire life history and the behavior of the individuals to be described, but also

their interactions between each other and their response to the landscape structure. They

primarily focus on the lowest organizational level (i.e. individuals), but allow processes

from other levels to be included as well, if the need arises. One major advantage of these

models is that the can be closely adapted to any particular case study considered. This

advantage, however, becomes a disadvantage if generalization and unification are the aim.

Firstly, the high level of detail makes these models hardly applicable to other situations.

Secondly, these models usually contain a huge number of parameters that counteracts the

tractability. Hence, alternatives are needed to the “all-in-one” modeling strategy.

In the following, we demonstrate that the mentioned methodological drawbacks can

be partly overcome. We present strategies for managing two sources of biocomplexity:

(a) the multitude of organismic levels involved, and (b) the effect of biological variabil-

ity. Both strategies have been used for model building in preparation of the analyses of

metapopulation persistence presented in Part II of this thesis (Chapters 2 to 6).

7.1.1 Managing the multitude of organismic levels: hierarchical

model building

As was already mentioned, factors and processes on different organismic levels can in-

fluence the dynamics of ecological systems and so the dynamical aspects of particular

interest. This multi-level structure, however, also shows a way of how to deal with this

source of biocomplexity. One possibility is to follow a hierarchical modeling approach.

This means that, in a first step, merely the dynamics on the highest organismic level are

described by the mean of an appropriate main model. In the second step, all the relevant
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effects of lower organismic levels are integrated by the mean of appropriate submodels.

7.1.1.1 Generic main models

The heart of any hierarchical model system is a generic main model. Generic models

merely consider the most essential factors and ignore details. In a multi-level situation

such as the recently discussed one, this means the following. The main model has to focus

on the highest organismic level that is relevant for the question to be answered. It has to

take into account factors, processes, and interactions that are essential on this level.

Example:

In this thesis, we followed a hierarchical approach to model the dynamics of metapop-

ulations. The main model merely considered the occupancy states of the patches but

ignored all the details within the patches (e.g. state of the local population, state of the

individuals). It merely described the processes that are essential for metapopulations:

extinction and colonization. This was done by stochastic rates {νi, cij} (see Chapter 2).

7.1.1.2 Cascades of submodels

All the relevant effects from lower organismic levels can be integrated by using submodels

for the main model parameters. Different types of submodels can be used: fully mecha-

nistic (mathematical or simulation) models but also simple input-output rules. To specify

the local extinction rates, νi, for instance, any stochastic population model can be applied

which allows the mean lifetime Tm (and so the reciprocal extinction rate ν = 1/Tm) to

be calculated. In this thesis, a well-known input-output relation νi = A−xi was used. In

any case, the submodels ought to be kept as simple as possible. If the need arises, further

details can be included by using submodels for submodel parameters. In this way, whole

cascades of models - each working on a particular level of detail - can be generated.

Example:

In this thesis, we were working with submodels on two levels of detail. Remember the

submodel for the colonization rate cij = Ei · aij that expressed cij in terms of the num-

ber of emigrants Ei and the patch accessibility aij. Additionally, a variety of alternative
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submodels (e.g. aij = e−α·dij , aij =
R(dij)

N−1
P
k R(dik)N−1 ·R(dij) with R(d)=1−e−a·e−b·d) was used

to specify the patch accessibility aij in terms of the landscape structure (dik) and species’

ecological attributes (α or {a, b}) and according to the movement type.

Modular systems resulting from a hierarchical modeling approach (generic main model,

cascades of submodels) are very flexible: the main models can be applied to a wide range

of situations and geared to each particular case by choosing appropriate submodels with

appropriate parameter values. Moreover, the level of detail of the resulting models can

be adapted to the question to be answered and to the empirical data available.

7.1.1.3 Comparison between hierarchical and other modular model systems

Modular model systems are quite common, especially in connection with integrative mod-

eling. But often, these systems are structured in such a way that the modules correspond

to the individual processes involved. In the result, the overall dynamics can only be an-

alyzed if all the relevant modules are coupled with each other, that causes complexity

again. One major advantage of the hierarchically structured modular system presented

is that the generic main model already includes all information about the main processes

and interactions between them. In this case, to analyze merely the main model is already

sufficient for obtaining at least a rough understanding of the overall dynamics (e.g. rela-

tive importance of the individual main processes). By subsequently including submodels,

knowledge about the effects of details on lower organismic levels or of biological variability

(e.g. spatial heterogeneity, individual variability) can be added subsequently.

7.1.1.4 Range and limitations of applicability of the hierarchical approach

At a first glance, the described hierarchical approach of managing the multitude of organ-

ismic levels looks ad hoc. The decisive question is whether including details by submodels

leads to the same results as including all the details from the very beginning.

Example:

For the context of metapopulations, the question of the applicability of the hierarchical

approach is fully answered (Drechsler and Wissel 1997). The approach is applicable if
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the local populations show the following dynamical behaviour: they either rapidly go

extinct or they rapidly reach quasi-stationarity before extinction. In the consequence, the

transition probabilities Pnk(t) describing their dynamics can be approximated as follows:

Pnk(t) ≈ hn · ck · e−ν·t for t large enough. (7.1)

Hence, the local dynamics are completely characterized by three quantities: the probabil-

ities ck of reaching quasi-stationarity from a certain state k, the probabilities hn of being

in state n under quasi-stationarity, and the rate of extinction ν under quasi-stationarity

(see also Wissel and Stöcker 1991). All these quantities are related to quasi-stationarity

of the local populations (Keilson 1979; Pollett 1995, 1997). This justifies to interpret

patches as “empty” and “occupied by a quasi-stationary population” and to describe the

dynamics of the overall metapopulation as changes in the occupancy states of the patches.

This shows that explicitly modeling details of the local dynamics and implicitly incor-

porating their effects by using (hn), (ck), ν, and relation (7.1) are equivalent to each other

in this case. This is meant in the sense that they effectively lead to the same dynamics

Pnk(t), the same behavior regarding colonization and extinction, and so the same dynam-

ics of the overall metapopulation. Local and metapopulation processes can be separated

from each other without any loss of information, provided (hn), (ck), and ν are used as

interface. There are standard methods for extracting these quantities from the local de-

tails which are based on eigensystem analysis in the case of Markov chain models (Pollett

1995) or on a special numerical protocol for simulation models (Grimm and Wissel 2004).

Drechsler and Wissel (1997) also showed that “rapid transition to extinction or quasi-

stationarity” occur in almost all cases, provided (a) the birth rates sufficiently exceed the

death rates, (b) the environmental noise in the local populations is not too strong, and (c)

the individual exchange between the local populations is not too strong as well. The role

of the first two conditions is obvious: both aim at rapidly passing the range of critically

small numbers of individuals. The functioning of the third condition is more complex.

An increasing individual exchange results in increasing immigration rates with increas-

ing sensitivity to the number of currently occupied patches. Hence, the local dynamics

are increasingly affected by the regional dynamics (occurrence of a feedback!) with the
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consequence that the process of approaching quasi-stationarity is slowed down. All these

arguments clarify the limitations of applicability of the hierarchical approach: too unstable

local populations or/and significant feedbacks between local and regional dynamics.

To summarize, the presented hierarchical approach of “using cascades of models” does not

reduce complexity. Surely, the individual models are rather simple. The entire cascade,

however, covers the whole range of complexity relevant for the problem to be addressed.

The major advantage of the approach is that it allows a step-wise increase of complexity

and supports a hierarchical model analysis (see Chapters 3 and 4), both to the benefit of

a better understanding of the dynamics. In this sense, the approach just helps to manage

the effect of complexity. Therefore, it bridges between closeness to reality and tractability.

7.1.2 Managing biological variability: effective parameters

Even if models are generic and relatively simple compared to other models, they can show

a certain complexity. Complexity can be caused, for example, by individual variability or

spatial heterogeneity (in this thesis: patch individuality). In these cases, however, there

are special methods for further model simplification and complexity management.

One strategy is to search for effective parameters. The idea is to make use of an

ideal, non-structured model and to parameterize it in such a way that aspects of the

dynamics of the original model are correctly reproduced. Once appropriately specified,

the parameters of the non-structured model summarize all the relevant effects of biological

variability covered by the original model. In this sense, these parameters are “effective”.

7.1.2.1 Some examples for the search for “effective parameters”

There are some examples where the strategy of searching for effective parameters has been

successfully applied in different fields of population ecology, for different purposes:

Example 1:

The most prominent example of an effective parameter is certainly the effective popula-

tion size well-known from population genetics (e.g. Wright 1938; Lande and Barrowclough
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1987; Gilpin 1991). Here, one is interested in the size of an ideal (i.e. non-structured)

population which shows the same degree of heterozygocity as a given structured popula-

tion. This information is important for assessing the vulnerability of the population to

demographic stochasticity.

Example 2:

Several authors analyzed the outcome of population models which incorporate different

sources of stochasticity (e.g., demographic / environmental stochasticity). They found

that, in a wide range of situations, the simulated population dynamics can be approxi-

mated by a diffusion process, dN
dt

= f(N) +
√
g(N) · ξt (e.g. Goodman 1987; Lande 1993;

Foley 1994; Wissel et al. 1994). In this case, the effective parameters are given by the char-

acteristic parameters of the drift term f(N) and the diffusion term g(N). One implication

is the finding that demographic and environmental stochasticity result in qualitatively dif-

ferent diffusion terms, namely power-functions g(N) ∝ Nα of the population size N where

the power α characteristically depends on the type of stochasticity considered.

Example 3:

Fahse et al. (1998) developed an individual-based model for the population dynamics of

nomadic birds in the Karoo (South Africa). This model takes the complexity of both the

spatio-temporal dynamics of the landscape and the behavioral response of the individuals

to them into account. In spite of this complexity, the authors found that the simulated

population dynamics effectively behave as a stochastic logistic equation dN
dt

= r̃N(1−N
K̃

)+√
g(N) · ξt with an effective individual growth rate r̃ and an effective carrying capacity

K̃. This finding has an important methodological implication. It indicates that there is

a clear protocol (namely diffusion approximation) for extracting population parameters

such as r̃ and K̃ from individual-based models. This contributes to a reconciliation of

classical and individual-based approaches of population modeling.

Example 4:

In the context of metapopulations, there are two similar studies on effective parameters.

Both analyze the dynamics of a certain weighted mean pw(t) =
∑

iwi · pi(t) and pw(t) =∑
iwi · xi(t) of the patch occupancies induced by the deterministic and stochastic spatial
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Levins model, respectively, with weights wi given by so-called patch values (Ovaskainen

and Hanski 2003). In the deterministic case, the dynamics of pw(t) was found to behave as

the solution of the classical Levins model dp
dt

= c̃ ·p(1−p)− ν̃ ·p with effective colonization

and extinction rates, c̃ and ν̃ (Ovaskainen and Hanski 2002). In the stochastic case, the

dynamics were approximated by a diffusion process dp
dt

= c̃·p(1−p)− ν̃ ·p+
√

c̃·p(1−p)+ν̃·p
Ñ

·ξt
with effective colonization and extinction rates, c̃ and ν̃, as before and an effective number

of patches Ñ (Ovaskainen 2002, Ovaskainen and Hanski 2004).

Example 5:

Last but not least, we shouldn’t forget the example of using effective parameters in the

context of metapopulations presented in this thesis (Chapter 3): Remember that, as far

as the effect on the mean lifetime of a metapopulation Tm was concerned, the spatial

stochastic Levins model for N patches with patch-specific colonization and extinction

rates (cij, νi) was found to behave as the non-spatial stochastic Levins model for the same

number of patches N with aggregated parameters (cagg, νagg). In all the metapopulation

studies mentioned, effective parameters were used in order to obtain a better understand-

ing of the effect of spatial heterogeneity on metapopulation dynamics and persistence.

All these examples indicate that it can be generally worthwhile in population ecology

to search for effective parameters and homogeneous models in order to reproduce certain

aspects of the behavior of more structured models. At first sight, this looks surprising,

for the following reason. On the one hand, the existence of effective parameters is an

indicator for the existence of complete mixing in the (meta-)population considered, oth-

erwise the use of homogeneous models would not be adequate at all. On the other hand,

at least all the three metapopulation studies and the study on the nomadic birds in the

Karoo (see Examples (3-5)) assumed limited dispersal of the individuals. In the result,

individual interaction in these (meta-)populations is restricted to a certain spatial scale,

i.e. it is not global. This seems to contradict the finding of having complete mixing. But

note that all the individuals mentioned act as “moving reproducing units”. This means

that the primary effect of the individual interaction is “creation” of new individuals and

new local populations, respectively, which will be the source for further interactions. In
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this sense, a single individual can cause a whole sequence of interactions on a much larger

spatial scale. In the result, the (meta-)population becomes effectively mixed in the course

of time, although the range of interaction of the single individuals is restricted.

As a precondition for the occurrence of “effective mixing”, the sequence of interactions

has to exceed a certain length, i.e. it must not break down too early. This requires that the

birth rates (colonization rates) significantly exceed the death rates (extinction rates). But

this condition has anyway to be met in order to ensure the occurrence of quasi-stationarity

and so the applicability of the hierarchical modeling approach (see the preceding Section).

7.1.2.2 Methods for the determination of effective parameters

There are different methods for determining effective parameters, each having pros and cons:

Method 1: Most of the examples discussed were related to diffusion approximation.

In this context, there is standard procedure of determining effective pa-

rameters which is based on fitting (e.g., Karlin and Taylor 1981). Here,

the mean µ(x) and the variance σ2(x), respectively, of the simulated

growth rates is plotted against the state variable x. Then the resulting

plot is fitted against an appropriate drift function f(x) and an appropri-

ate diffusion function g(x), respectively. The characteristic parameters

of the two functions f(x) and g(x) give the effective parameters desired.

The advantage of this procedure is that it is applicable to a wide class of

(meta-)population models where the quality of the fit, however, remains

to be checked in each particular case. But note that the procedure has

also a disadvantage: the effective parameters resulting from fitting are

purely macroscopic, i.e. they do not give explicit insight into the func-

tional dependence on the details but merely summarize all the effects.

Method 2: As an alternative to the fitting procedure, Ovaskainen and Hanski de-

veloped an algebraic approach to diffusion approximation which is based

on eigenvalue pertubation (Ovaskainen and Hanski 2002). In the result,

they came up with formulas for the effective parameters c̃, ν̃, and Ñ
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(Ovaskainen and Hanski 2004) discussed in Example 4. The disadvan-

tage of this approach in comparison with the fit-based method is that it is

so far only proved to be applicable to the two spatial (deterministic and

stochastic) Levins models. But note that diffusion approximations gen-

erally have a limitation: they are only applicable to systems with a large

number of individuals/patches. This can become critical if conservation

purposes are addressed.

Method 3: As one major result of this thesis (Chapter 3), an aggregation-based ap-

proach to effective parameters was developed and extensively discussed

(see also Frank and Wissel 2002). This approach addresses models which

take individual differences or spatial heterogeneity into account (all pro-

cesses are modeled by describing each individual by a separate parameter

qi). The aim is to find appropriate aggregation rules for the parameters qi

such that the original model with its parameters qi and the homogenized

version applied to the aggregated parameters qagg nearly coincide in their

effect on a certain target quantity Q, i.e. Q(qi) ≈ Qh(qagg). Since the ag-

gregated parameters qagg are explicitly expressed in terms of the original

parameters qi, they provide structural insight into the interplay between

the qi’s. This has several advantages for further model analysis, especially

if generalization and unification are the aim (see next Section). A further

strength of the approach is that it is also applicable to (meta-) popula-

tions with small numbers of individuals/patches which are highly relevant

in the context of conservation. So far, however, there is no general recipe

for finding appropriate aggregation rules, that is a weakness. Neverthe-

less, a recommendation can be given: Standard aggregation rules (e.g.

harmonic, geometric, arithmetic, or self-weighted means) can be tested

regarding their ability to fit Q. Sometimes, the qualitative behavior of

the system already indicates what type of aggregation is worth being

considered and what type can be excluded. Remember the saturation

behavior of the mean lifetime Tm in view of one-sided enlargement of a
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number of emigrants Ek. This led to the conclusion that the aggregated

parameter Eagg must consist of harmonic means (see Chapter 3).

For all the methods of determining effective parameters, the comparison of models (full

model vs. homogeneous model plus effective parameters) was of central importance.

7.1.2.3 Implications of using effective parameters

The strategy of using effective parameters has serious implications. Firstly, it enables a

separate analysis of all the effects caused by the interplay between the different processes

included (covered by the homogeneous model) and all the effects caused by heterogeneity

(covered by the effective parameters). This separation is the actual mechanism of model

simplification because the two parts (homogeneous model, effective parameters) are much

simpler, more tractable and better to understand than the original model. An example

for the practical value is the fact that we were allowed to take the Goel and Richter-Dyn

formula for the mean lifetime Tm of metapopulations in homogeneous landscapes as a basis

for the derivation of a formula for the heterogeneous case (see Chapter 3). Secondly, to use

effective parameters provides a bridge to important classical models of population theory

(e.g., logistic equation, diffusion equation, Levins model) the behavior of which is widely

investigated and well understood. To take a classical model as a reference is beneficial

in two respects: (a) for obtaining a better understanding of more structured models,

and (b) for analyzing the functioning of important principles of population theory (e.g.,

recovery after a disturbance, quasi-stationarity, persistence) in more realistic situations.

Both aspects are important if generalization or unification are the aim.

To search for effective parameters and effectively equivalent homogeneous models is

certainly a promising strategy of model simplification. But note that all the results pre-

sented only show that original and homogeneous model are effectively equivalent regarding

a particular statistical aspect of the dynamics (e.g. the overall population size, the resulting

drift and diffusion terms, the mean lifetime Tm, or any other (meta)population dynamical

target quantity Q). It is an open question till now whether the functional structure of

the effective parameters is robust against a change in the perspective, i.e. in the target

quantity Q considered. It can be supposed that effective parameters are not “rich enough”
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to correctly reproduce the full structure (e.g., age- or stage distribution, spatio-temporal

patterns) of the (meta-)population dynamics. They are certainly just context-dependent

projections of the effect of heterogeneity. This is a matter for further research.

To conclude, there are several possibilities to combine flexibility with tractability without

any loss of information. The common elements of the two approaches discussed (hierarchi-

cal model system, using effective parameters) are the separation of details/heterogeneities

and the development of interfaces for coupling the separated model parts in a later stage.

But note that an appropriate model structure alone is not yet a guarantee for a successful

generalization of model results. It has to be combined with an appropriate model analysis.

7.2 Appropriate model analysis

So far, we were focused on model building. Now we pass on to the question of what sort

of model analysis is needed if generalization and unification of model results are the aim.

Before we can start to discuss particular methods of model analysis, we have to specify

the sense in which the terms “generalization” and “unification” are used in this study.

In the following, we focus on structural model results such as (a) typical functional

relationships, (b) trends or trade-offs, (c) the existence of threshold or optimum values, (d)

the relative importance of certain factors, or (e) the functioning of a certain mechanism.

To generalize a certain result means to test its robustness against changes in the values

or submodels for the model parameters, changes in the level of detail, changes in central

model assumptions or even in the modeling approach. This provides insight into the range

and limitations of generality of the result. This information is especially important in

connection with unification relevant in situations where different approaches/models exist

to answer the same question. Unification means to deal with the diversity of approaches

(not to reduce it!), i.e. to clarify the consequences of choosing a particular approach, to

reveal interrelations between the different approaches, and to find bridges between them.

Taking this conception as a basis, one can see that aspects of generalization/unification

are also addressed in this thesis. Hence, it is worthwhile to re-consider the corresponding
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model analyses and to reflect them methodologically. Below we present the result of this

work: We assemble a list of methods which are found to be powerful in connection with

generalization/unification and discuss their ranges and limitations of applicability. To

demonstrate the potential of these methods, we give examples of their application.

7.2.1 Hierarchical model analysis

Tasks such as the determination of the functional relationship between a certain target

quantity Q and all the model parameters or the characterization of the relative importance

of a certain factor are a challenge in situations where aspects of biological variability (e.g.

spatial heterogeneity, species’ ecology) are taken into consideration. In these cases, an

appropriate management of the inevitable complexity is crucial - not only in connection

with model building (see Section 7.1), but also in connection with the model analysis.

One possibility is to organize a hierarchical model analysis that works as follows. In

the first step, the model under consideration will be artificially simplified - by neglecting

details, assuming homogeneity, or even excluding factors which are known to be decisive.

The only aim of this step is to obtain a model which is such simple that it can be an-

alytically solved or its dynamic behavior can be comprehensively studied by systematic

parameter variation. This model will then serve as a reference for the further analysis.

In the second step, all the formerly excluded factors will be consecutively incorporated.

By contrasting the results of consecutive model versions, insight will be provided into the

effect of the factor currently added and its interplay with the factors incorporated so far.

The consecutive increase in the model complexity therefore goes along with a consecutive

generation of knowledge about the dynamic behavior of the original model. This is cer-

tainly the most important advantage of a hierarchical model analysis. It also underpins

the potential of following a hierarchical modeling approach. In this thesis, hierarchical

model analyses have been performed in different contexts and for different purposes:

Example 1:

In connection with the deduction of the approximation formula for the mean lifetime Tm in

heterogeneous landscapes (Chapter 3), hierarchical model analyses were applied two times.
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Firstly, we started with assuming spatial homogeneity and excluding the correlation of

extinction. The resulting reference model was found to be equivalent to a simple birth and

death model for which an analytical approximation formula for Tm existed. This formula

could be extended to the correlated (still homogeneous) case. Secondly, we consecutively

included aspects of spatial heterogeneity. In the result, appropriate aggregation rules for

the different (patch-specific) model parameters could be found. The final approximation

formula resulted from the application of the homogeneous formula to the aggregation rules.

Example 2:

Hierarchical model analyses also underly the derivation of minimum conditions for long-

term metapopulation persistence (Chapter 4). Here, we started with assuming spatial

homogeneity and ignoring the details for arrival probability a and degree of correlation ρ.

For this model, we found that two things are needed for long-term persistence: a negligible

correlation and a minimum arrival probability. In the next step, aij and ρij were related

to landscape structure (dij) and species’ ecology (da, dρ). In the result, aij = e−dij/da

and ρij = e−dij/dρ became coupled to each other. In the consequence, we found that long-

term persistence can only be ensured if the species’ dispersal range exceeds the correlation

length (da > dρ) and no patch is inside the range of correlation of another patch (dij > dρ).

These conditions are just spatial versions of the preceding homogeneous condition. They

indicate that both species and landscape have to meet some requirements. To make these

results available for landscape management, we condensed them in rules of thumb.

7.2.2 Combining numerical with algebraic analyses

To test the robustness of model results against changes in the model parameters usually

requires extensive numerical work in the form of parameter variations. One powerful way

to overcome this drawback is the combination of numerical with algebraic analyses.

To motivate this idea, we make a short excursus and consider models which are an-

alytically solvable. These models have exact solutions which are explicitly expressed in

terms of the model parameters. This allows the functional structure of the solutions to

be algebraically analyzed. In the result, important structural properties and their ro-
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bustness can be deduced in a mathematically rigorous way, without having to perform

any numerical work. This shows that algebraic analyses represent an effective method for

the generalization of model results. Compared with numerical analyses, algebraic analy-

ses even have two advantages: firstly, they safe time and computer work, and secondly,

they lead to “harder” results (mathematically rigorous deduction vs. heuristic evidence).

Therefore, whenever possible, algebraic analyses should be given preference. But note

that the decisive precondition for algebraic analyses is certain knowledge about the func-

tional structure of a relevant target quantity. In the special case of analytically solvable

models, this condition is automatically met. Here, the analytical solution itself is the

relevant target quantity because it summarizes all the effects covered by the model.

What is happening in the case of more complex models where the relevant target quan-

tities can be only numerically determined? Here, numerical work is certainly unavoidable.

But even in this case, there are several possibilities to perform algebraic analyses and to

combine them with the necessary numerical work. In the following, we give some ex-

amples for algebraic analyses in the context of the metapopulation studies performed in

this thesis (Chapters 3 to 6). The didactic aim of these examples is to demonstrate (a)

what structural information can be used as starting point for algebraic analyses, (b) what

techniques can be applied, and (c) in what way can generalization be supported.

7.2.2.1 Benefiting from approximation formulas for the target quantities

Algebraic analyses are especially useful if approximation formulas for the relevant target

quantities exist. Although the predicted values of the target quantities are not precise

anymore, approximation formulas have a merit: they provide structural insight into the

functional interplay between the different model parameters. In the result, the same

types of algebraic analyses become applicable as in the analytical case. The following two

examples give an impression about the implications. Both examples address particular

aspects of (deterministic or stochastic) metapopulation persistence. In this context, target

quantities such as the metapopulation capacity λM , the effective number of patches Ñ ,

or the mean lifetime Tm are known to be relevant (see Chapter 6). As we know, for all

of them, special approximation formulas exist which are expressed in terms of the (main)
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model parameters (e.g. extinction rates νi, colonization rates cij) and related quantities.

Example 1:

In Chapter 6, we were interested in understanding the effect of spatial heterogeneity

on (deterministic and stochastic) metapopulation persistence. To meet this goal, we

started with an analysis of the approximation formulas for the metapopulation capacity

λM (Equation (6.5)) and the effective number of patches Ñ (Equation (6.16)). As the

result of simple algebraic transformations, both formulas could be rewritten in terms of

variances in the main model parameters {νi, cij} and related quantities {wi, p∗i }. These

variances could be directly interpreted in terms of spatial heterogeneity. This allowed us to

conclude that spatial heterogeneity has a positive effect on λM but a negative effect on Ñ .

Since this conclusion was drawn on the level of the main model parameters {νi, cij}, it is

independent of the details of the given landscape and the given species. Hence, the result

is general. In the next step, we considered the (diffusion-based) approximation formula

for the mean lifetime Tm (Equation (6.10)) which is expressed in terms λM and Ñ . Since

the effects of spatial heterogeneity on λM and Ñ were found to be counteracting, a trade-

off effect on Tm could be concluded. For the same reasons as above, the existence of the

trade-off effect is general again. The most important implication of these results was the

finding that qualitatively different responses of λM (deterministic measure of persistence)

and Tm (stochastic measure of persistence) to spatial heterogeneity (increase vs. trade-

off) have to be expected. Whether the increasing or the decreasing part of the trade-off

is dominating, however, could not be determined in general. Here, the species-specific

strength of environmental noise in the local populations was found to be decisive.

Example 2:

In Chapter 5, we addressed the question of what allocation of habitat is optimum for

(stochastic) metapopulation persistence if a certain configuration of patches is assumed.

By analyzing the functional structure of the (aggregation-based) approximation formula

for the mean lifetime Tm (Equation (6.9)), we found a Principle of Optimality for the

case that the environmental noise in the local populations is moderate or strong. This

Principle of Optimality says that the effect on Tm is maximum if
∑

j( 6=i) cij =
∑

j( 6=i) cji,

i.e. there is a balance between the total colonization rate of each patch and its total
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chance of recolonization after extinction. The principle is completely expressed in terms

of the colonization rates cij, i.e. it is independent of the details of the colonization pro-

cess. In this sense, the principle is general. It is just a formal reflection of the fact that

metapopulations depend on the functioning of the entire circle between “colonizing” and

“becoming recolonized” if they cannot benefit from long-term local persistence.

In both examples, the results of the algebraic analyses were additionally checked by ex-

emplary numerical analyses. In both cases, the results were confirmed (see Chapters 5

and 6). This shows the potential of having insight into the functional structure of the

relevant target quantities and the value of searching for approximation formulas.

7.2.2.2 Benefiting from equation-based submodels for the model parameters

Algebraic analyses can also be performed if details have to be included, provided equation-

based submodels are used for the integration. This is especially relevant if the interplay

between the individuals and the landscape structure - the determinant of any landscape ef-

fect on the (meta)population dynamics - is to be taken into account. In this case, submodel

equations q = fa,b..(vs) for the main model parameters q are needed which are expressed in

terms of spatial variables vs and species-ecological attributes {a, b..}. This strategy of “us-

ing equation-based submodel” supports generalization and unification in several respects:

It supports the determination of spatial effects on (meta)population persistence. Addi-

tionally, it allows their robustness to be tested against changes in the species-ecological

attributes or even in the submodels themselves (comparison of alternative submodels).

This provides new insights into key factors of metapopulation persistence.

Example:

We return to the Principle of Optimality. Obviously, a rule for the optimum allocation of

habitat can only be determined if the functional dependence of the colonization rates cij

on the landscape structure (esp. patch size, patch configuration) and the species’ ecology

(esp. dispersal behavior) is specified. We used the submodel cij = y · Abi · aij where aij

denotes the probability that an emigrant from patch i successfully arrives at patch j. To

analyze the influence of the dispersal behavior, we made use of four different submodels
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for aij (Equations (2.12), (2.13), (2.14), (2.16)) which cover different dispersal types.

By taking the Principle of Optimality (
∑

j( 6=i) cij =
∑

j( 6=i) cji) as a basis, the optimum

allocation rule could be determined algebraically, namely by solving the following system

of equations:

∑
j( 6=i)

aji · Abj = (
∑
j( 6=i)

aij) · Abi (7.2)

By comparing the results for the different dispersal types (Chapter 5), we learned that (a)

the optimum allocation rule is not general, (b) two situations have to be distinguished,

and (c) the decisive criterion is whether competition between the patches for emigrants is

caused by the relevant dispersal type. This led to ecologically differentiated rules of thumb:

Without competition effect, habitat ought to be distributed uniformly. With competition

effect, however, habitat ought to be distributed according to the degree of connectedness.

To work with submodels in the form of equations means to integrate details, but also

to gain structural knowledge. This increases the chance of performing algebraic analyses.

This also demonstrates the potential of following a hierarchical modeling approach. But

note that, sometimes, submodels are only available in the form of simulation models. In

this case, it is useful to look for approximation formulas for the submodel outcome. This

is not hopeless, as the formula for the arrival probability aij by Heinz et al. (2004) demon-

strates. This formula is a surrogate of an entire individual-based movement model, covers

a wide range of dispersal behaviors, and represents one of the submodels for aij (“active

search model”; Equation (2.16)) which was considered in the optimality study. This indi-

cates the potential of using (meta)population dynamical landscape indices QI = Fµ,ν..(vs)

as spatial submodels. These indices are particularly designed to describe the functional re-

lationship between a certain (meta)population dynamical target quantityQ, the landscape

structure and the species’ ecology by a simple formula (for the concept, see Chapter 9).

7.2.2.3 Benefiting from the classical models of (meta)population theory

One strategy of particular importance in the context of combining numerical with alge-

braic analyses is the search for bridges from the relevant structurally realistic model to
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the classical models of (meta)population theory. The classical models are usually non-

structured, analytically solvable and provide structural insight into important effects of

the interplay between the relevant processes. This structural information can also be fruit-

ful for the analysis of the more realistic model: Firstly, it can help to generate hypotheses

which are worth to be tested. Secondly, it can give hints for the numerical analysis of the

more complex model (which quantities ought to be analyzed and related to each other?).

Example 1:

In the case of the classical birth-and-death model, there is a close formula for the mean

lifetime Tm of the population (Goel and Richter-Dyn 1974). The application of this for-

mula to the special case of spatially homogeneous, uncorrelated metapopulations revealed

that (Tm · ν · e−
N

ctot/ν ) ≈ (N−1)!
N(N−1)N−1 · ( ctotν )N−1, i.e. that there is a power-like relationship

between (Tm · ν · e−
N

ctot/ν ) and the total colonization ability of the local populations ctot
ν

,

where pre-factor and power depend on the number of patches N . This finding motivated

the following rule for a regression analysis of the numerically determined values of Tm

in the case of spatially homogeneous, correlated metapopulations (see Chapter 3): test

(Tm ·ν · e−
N

ctot/ν ) for a power-like dependence on ctot
ν

; uncover the dependence of pre-factor

and power on degree of correlation ρ and number of patches N . The test was “positive”

and resulted in an extension of the approximation formula for Tm to the correlated case.

Example 2:

Another important example is diffusion approximation, i.e. the approximation of the dy-

namics of a fully structured population or metapopulation model with a diffusion process

dx
dt

= f(x) +
√
g(x) · ξt, where the drift term corresponds to the classical logistic model

f(x) = r̃x(1 − x/K̃) or the classical Levins model f(x) = c̃x(1 − x) − ν̃x, respectively

(see Examples 2, 3, and 4 in Section 7.1.3). The advantage of this approach is that the

classical models provide clear rules for the numerical analysis of the simulation results:

for example, plot the mean µ(x) of the simulated growth rates against the state variable

x; fit the resulting µ(x)-x-plot against r̃x(1− x/K̃) (see also Method 1 in Section 7.1.3).

In any case, this analysis provides important insights. A successful fit indicates that the

(meta)population dynamics actually effectively behaves as the supposed diffusion process;

the corresponding fit parameters (e.g., {r̃, K̃}) summarize all the effects of the population
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structure. In contrast to this, a decreasing quality of the fit indicates a deviation from a

diffusion process and the emergence of extra effects of the population structure.

Example 3:

The last example is the class of finite Markov chain models with an absorbing extinct-

state (0, ..., 0). The dynamic behavior of these models is determined by their transition

matrices. As is well-known, a simple eigensystem analysis of the transition matrices suf-

fices to reveal the following effect: In most cases, the probability of extinction P0n(t)

at time t shows an exponential structure, i.e. P0n(t) ≈ 1 − cn · e−ν·t, where cn is the

probability of reaching quasi-stationarity from state n and ν is the extinction rate under

quasi-stationarity. This structural law (a) gives insight into likelihood and consequences

of reaching quasi-stationarity, (b) allows separate analyses of initial and intrinsic effects on

(meta)population persistence, and (c) indicates that the initial effects are summarized in

cn, while the intrinsic effects are summarized in ν. All these components together provide

a powerful framework for systematic analyses of (meta)population persistence. The struc-

tural law, however, also indicates how to proceed in situations where the (meta)population

dynamics are not modeled by Markov chains but by Monte Carlo simulation models. The

key is the fact that exponentiality of P0n(t) ≈ 1 − cn · e−ν·t is equivalent to linearity of

− ln(1− P0n(t))≈− ln(cn) + ν · t. This gives a rule for the numerical analysis of the sim-

ulation results (e.g. Stelter et al. 1997; Grimm and Wissel 2004): determine the relative

frequency distribution for the times to extinction tE over all simulation runs; calculate the

cumulative probability of extinction P0n(t) for different times t; plot the corresponding

− ln(1−P0n(t))-values against t; test the result for linearity. If − ln(1−P0n(t)) ≈ y0 +m ·t

then the decisive quantifiers of (meta)population persistence, ν and cn, can be extracted

from the slope m and the interception point y0 with the y-axes: ν = m and cn = e−y0 .

This analysis is even two-in-one: firstly, a standard protocol for extracting informa-

tion on (meta-)population persistence from simulation data, and secondly, a test for the

applicability of the protocol (test for linearity). This protocol was already successfully

applied in numerous (single-species) viability studies (e.g. Stelter et al. 1997; Wiegand

et al. 1998; Grimm et al. 2003). But there is even a further implication: by applying the

procedure to simulation data for multi-species populations, one can learn to what extent
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the range of applicability of this originally single-species method can be extended to the

multi-species context (Stephan xx; Johst and Schöps xx; Stelter xx; Singer, in prep.)).

This especially opens the possibility to separate between effects of stochasticity and effects

of the species’ interactions on the viability of the coupled population system.

7.2.3 Comparing modeling approaches

So far, we were concentrated on the determination of functional relationships and the anal-

ysis of their robustness to changes in parameter values or submodels. The corresponding

main model was assumed to be the same. One particular problem of the recent ecological

research, however, is the multitude of models and even modeling approaches which are in

use to answer a certain ecological question. Therefore, unification work is needed in the

sense of clarifying the consequences of choosing a particular model or modeling approach.

This requires (a) to compare alternative models regarding their assumptions, definitions

of central concepts (e.g. metapopulation persistence), target quantities Q considered, (b)

to search for common effects and differences, and (c) to classify the conditions under

which the models lead to the same conclusions and under which not.

Example:

In this thesis, the described strategy was applied to compare deterministic and stochastic

metapopulation persistence (Chapter 6). We revealed that elements such as the initial

conditions x0 or the subjective perspective of the decision-maker (time horizon tH , ac-

cepted risk of extinction ε) are extra in the stochastic case. But we also found that, as

long as the environmental noise in the subpopulations is weak, deterministic and stochas-

tic approach coincide in the conclusions, i.e. the extra elements do not really matter. In

the case of moderate or strong noise, however, the two approaches were found to differ

considerably in the quantitative and qualitative results (trends, ranking orders).

7.3 Some conclusions

The results of this study give rise to some conclusions about the reconciliation of closeness

to ecological realism and model tractability and the support of generalization/unification:
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One important strategy is to combine hierarchical model building with hierarchical

model analysis. Its major benefit is the step-wise generation of ecological understanding.

To link simulation models to ecological theory is of similar importance. While the

models summarize relevant effects of ecological reality, theory provides general principles

and hypotheses which can be checked for validity in the considered case. This underpins

the importance of searching for “effective parameters” that relate the original model to

an appropriate classical model of theoretical ecology. While the classical models code

all information about the interactions between the relevant processes (2nd source of bio-

complexity), the “effective parameters” code all information about the effect of biological

variability (3rd source of biocomplexity). The insight into the effect of biological variabil-

ity is best if the “effective parameters” are described/approximated by simple functions.

The two preceding strategies share a common idea that can be described as follows:

“First subdivide, then integrate”. But note that certain preconditions have to be met

before the strategies can be applied without any loss of information. The hierarchical

approach is only adequate as long as feedbacks between the organismic levels are missing.

A successful search for effective parameters requires that the system is effectively mixed.

The central step towards model tractability was the differentiation between the dif-

ferent sources of biocomplexity (multitude of organismic levels; variety of factors and

processes; biological variability). Each source has a specific effect on the overall system

and opens a specific way to manage it. Hence, structural schemes such as those presented

in Figures 7.1 and 7.2 are useful for the development of modeling strategies.

7.4 Prospects for further research

So far, we were focused on generalization/unification in the context of organismic ecology.

This leads to the following questions: What is happening in situations where the ecological

processes on the different organismic levels are coupled with other processes (e.g. hydro-

logical or economic processes)? Are the presented strategies of managing complexity (e.g.

hierarchical modeling, search for effective parameters) still applicable? Can the range and
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limitations of applicability of these strategies be characterized in terms of the dynamics

of the external processes? To answer these questions is a matter of further research.
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Chapter 8

Towards ecologically differentiated

rules of thumb for conservational

landscape management

In Part II of this thesis, we addressed a variety of important questions of metapopulation

conservation management: (a) We determined a number of minimum conditions which

have to be met by the landscape and the species in order to allow long-term metapopula-

tion persistence. Additionally, we assessed and ranked the relative importance of different

management strategies such as habitat connecting, but also local habitat management and

desynchronization of the effects of regional stochasticity in the local populations (Chapter

4). (b) We characterized the optimum allocation of habitat in a given patch configura-

tion (Chapter 5). (c) We assessed the sensitivity of central (especially spatial) effects on

metapopulation persistence to ignoring and including stochasticity. This brought insight

into the role of the approach chosen to analyze metapopulation persistence (Chapter 6).

In all cases, it was possible to condense the scientific results in simple rules of thumb.

Rules of thumb are widely discussed in the conservation biological and the landscape

ecological literature because they provide a powerful tool for decision-support in these

fields. To see the relevance, note that it is neither useful nor is it possible to perform

new detailed studies (e.g. record of empirical data, field-ecological experiments, model

analyses) for each new species and each new study site considered. In such a situation, it is

211
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helpful to have tools which give at least a rough orientation for conservation management.

Different types of rules of thumb for conservation management can be distinguished.

The first type consists of rules which are both spatially and species-ecologically neutral,

i.e. they do neither take the landscape structure nor the species’ ecology into account.

These rules focus on the main processes of the (meta)population dynamics. Some of

them rank the relative importance of the individual processes for (meta)population per-

sistence (e.g. Drechsler and Wissel 1998; Frank and Wissel 1998; Etienne and Heesterbeek

2001). Other rules address the general effect of heterogeneity in the colonization abili-

ties of the local populations on deterministic (Adler and Nuernberger 1995; Hanski and

Ovaskainen 2000) and stochastic metapopulation persistence (Frank 2005; see also Chap-

ter 6). The second type consists of rules which address important landscape structural

effects on (meta)population persistence but are still species-ecologically neutral (e.g. Wil-

son and Willis 1975; Wilcove et al. 1986). These rules can be found in many text books

on landscape ecology (e.g. Hansson et al. 1995). They allow to think in terms of spatial

structure but ignore the fact that different organisms may differently respond to the land-

scape structure. This is a shortcoming because ignoring the species’ ecology may lead to

counter-productive conclusions. This drawback has been overcome by the third type of

rules: ecologically differentiated rules of thumb for landscape management. These rules

address important spatial effects but differentiate between the species’ according to their

sensitivity to changes in the landscape structure (e.g. Day and Possingham 1995; Weaver

et al. 1996; Drechsler and Wissel 1998; Frank and Wissel 1998; Etienne 2002; Frank 2004,

2005; see also all the spatial rules derived in Chapters 4 to 6 of this thesis).

To attain guidance for the interpretation, assessment and evaluation of landscape

structures through the eyes of a particular species from a conservational perspective is

relevant for all branches of conservational landscape management beyond the metapopu-

lation case. This leads to the question of the derivation of ecologically differentiated rules

of thumb. A systematic methodology is missing so far. This motivated the present study.

In the following, we present a rough protocol for the derivation of ecologically dif-

ferentiated rules of thumb for conservational landscape management. It is based on the
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methodological experience gained from analyzing the derivations of both the rules pre-

sented in this thesis and the rules available in the literature. Additionally, we discuss some

limitations of the derivation of rules of thumb. We complete the study with general re-

marks on the merits of rules of thumb. We show that they have implications for ecological

research as well as for different aspects of conservation management: landscape planning,

the development of economic instruments, and integrated assessments. We conclude that

rules of thumb provide bridges between ecology and various other disciplines involved in

conservation management. We finalize with some prospects for further research.

8.1 Chances and limitations of the derivation of eco-

logically differentiated rules of thumb

In the following, we address methodological aspects of the derivation of ecologically dif-

ferentiated rules of thumb for conservational landscape management. We develop a rough

protocol and discuss some limitations of the derivation of these rules. Before we can start

with the actual development work, we have to become clear about the demands on the

functionality and the structure of ecologically differentiated rules of thumb:

Firstly, rules of thumb in general are usually derived in order to strengthen the ecolog-

ical knowledge basis of conservation management and to support planning and decision

processes in this context. Ecologically differentiated rules of thumb for conservational

landscape management in particular code important information about the interplay be-

tween a certain (meta)population dynamical target quantity Q of interest and the land-

scape structure and the role of the species’ ecology in this context. They are always of

the form “If the species is of type X, then the landscape ought to be of type Y”.

Secondly, rules of thumb merely aim at providing a rough orientation for conservation

management. This means that they exclusively focus on qualitative key effects which are

valid for a wide range of ecological situations. Consequently, they neither support any

quantitative assessments nor do they give detailed guidance for any specific situation.
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8.1.1 A rough protocol for the derivation of rules of thumb

Ecologically differentiated rules of thumb exist for several questions of metapopulation

management. Numerous rules have been derived in Part II of this thesis (Chapters 4

to 6). Complementary rules are available from the literature (e.g. Day and Possingham

1995; Drechsler and Wissel 1998; Etienne 2002). All these rules have been derived by

model analysis. In spite of all the differences in the details, their derivation followed a

common scheme, i.e. a common sequence of model analysis steps. Although there is no

guarantee of success, we can conclude the following rough protocol:

Step 1: Specify the question of conservation management to be addressed by the

rule of thumb (e.g. minimum conditions for long-term (meta)population

persistence, optimum conditions, setting priorities in a given variety of

possible scenarios). This question both (a) influences the choice of an ap-

propriate (meta)population dynamical target quantity Q as quantifier for

the effect of the management (e.g., mean lifetime of a (meta)population

Tm), and (b) determines the point of view from which the functional

relationship between the target quantity Q and the landscape structure

ought to be considered. The following list gives a rough orientation:

Management question to be addressed Characteristics to be analyzed

Minimum conditions for persistence threshold values

Optimum conditions optimum values / patterns

Prioritizing in a variety of scenarios ranking orders

Step 2: Choose both an appropriate (meta)population dynamical target quantity

Q and an appropriate (meta)population model which can be used as a

basis for the derivation of the rule of thumb desired.

Step 3: Analyze the functional relationship between the target quantityQ and the

spatial factor of interest (e.g., area distribution). Determine the optimum1.

1For a better comprehensibility, the remaining steps of the protocol are formulated for the analysis of

optimum values / patterns. They are also valid for the analysis of threshold values, ranking orders,
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Step 4: Perform a sensitivity analysis and determine the species-ecological at-

tributes which significantly influence the optimum.

Step 5: Determine the functional relationship between the optimum and the de-

cisive species-ecological attributes.

Step 6: Condense the findings in verbal rules of thumb of the form “If the species

is of type X, then the optimum is of type Y”.

Step 7: Test the robustness of the rules of thumb against the addition of further

details and conclude about their range and limitations of applicability.

This protocol indicates that two components of model analysis are particularly important

in this context: (a) the determination/analysis of functional relationships, and (b) tests

of sensitivity/robustness. These tasks have been already discussed in connection with the

generalization of model results (Chapter 7). Hence, all the methods of model analysis

found to be powerful in the context of generalization are also relevant for the derivation

of the rules of thumb desired. This especially concerns the organization of a hierarchical

model analysis (used for the rules in Chapter 4) or the combination of numerical with

algebraic analyses (used for the rules in the Chapters 5 and 6). However, there are

additional methodological aspects which are worth to be considered in more detail.

8.1.1.1 Choice of the target quantity Q

The first remark concerns the choice of the (meta)population dynamical target quantity

Q. As we have already mentioned, it depends on both the goal of the conservation man-

agement planned and the management question to be answered. In connection with the

support of (long-term) metapopulation persistence and the determination of minimum or

optimum conditions in this context, for instance, one should be aware of the variety of

target quantities in use: measures of (stochastic) persistence such as the mean lifetime Tm

(Drechsler and Wissel 1997; Frank 1998, 2004; Frank and Wissel 1998; Ovaskainen 2002)

or the probability of extinction P0(t) (Verboom et al. 1991; Day and Possingham 1995),

or any other characteristics of the functional relationship between the target quantity Q and the landscape

structure which are relevant for the management question to be addressed.
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as well as measures of (deterministic) persistence such as the metapopulation capacity

λM (Adler and Nuernberger 1994; Hanski and Ovaskainen 2000) or the basic reproduc-

tion ratio R0 (Pooler 1987; Etienne and Heesterbeek 2000). Sometimes, however, one

is interested in the relative contribution of the individual patches to the persistence of

the entire metapopulation. This information is important in connection with prioritizing

in reserve network design. Here, patch values wi (Ovaskainen and Hanski 2003) ought

to be analyzed and compared. Etienne and Heesterbeek (2001) considered management

measures which affect a particular parameter p of the metapopulation dynamics. In order

to assess and compare the effect of such measures on metapopulation persistence, they

used the sensitivity measure ∆p · ∂Tm
∂p

as a target quantity. This approach is especially

powerful if the functional structure of Tm is known because, in this case, the sensitivity

measure can be calculated analytically. But it also has a weakness because management

measures usually do not affect one single parameter but a variety of parameters.

In any case, it is indispensable to specify the target quantity Q underlying the rules of

thumb. This is needed because quantitative and qualitative results regarding the effect of

the landscape structure can strongly depend on the target quantity Q chosen. Remember

the comparative analysis of the results for the metapopulation capacity λM and the mean

lifetime Tm (Chapter 6; see also Frank 2005). As we have demonstrated, spatial effects (e.g.

ranking orders among alternative patch configurations) are highly sensitive to ignoring

or including stochasticity in the sequence of extinction and colonization events if the

environmental noise in the local populations is moderate or strong. In this case, it is

strongly required to follow the stochastic approach to metapopulation persistence in order

to avoid counter-productive management conclusions. Hence, it is important to know

which rules of thumb are based on a stochastic measure of persistence and which are not.

8.1.1.2 Choice of an appropriate model

The demands on the functionality of rules of thumb result in a number of demands on

the models which can be used as basis for the derivation of these rules.

Firstly, rules of thumb in general are to address qualitative key effects that are valid

for a wide range of ecological situations. Moreover, they are to give a rough orientation
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for conservation management but no detailed guidance for specific cases. This indicates

that generic models are adequate in this context (see also Chapter 7). These models take

exclusively those factors into account which are essential and relevant for a wide range of

cases. This makes them tractable, that is the precondition for generalization work needed.

Secondly, ecologically differentiated rules of thumb for conservational landscape man-

agement in particular are to code important information about the functional relationship

between a certain (meta)population dynamical target quantity Q, the landscape struc-

ture and the species’ ecology. This indicates that a (meta)population model is required

which has the target quantity Q as outcome and which allows Q to be explicitly related to

both the landscape structure and the species’ ecology. A structural demand of particular

importance is that the characteristics of landscape and species can be varied separately.

8.1.1.3 Classification of the species

A particular challenge in connection with the derivation of ecologically differentiated rules

of thumb is the classification of the species’ ecological attributes. At a first glance, it seems

to be hopeless to manage the diversity of all the attributes characterizing a species. But

note that there are two facts which are beneficial in this context:

Firstly, only those attributes have to be considered which are relevant for the ef-

fect of the interplay between the individuals and the landscape structure on the main

metapopulation processes (extinction, colonization). On this hierarchical level, the rel-

evant attributes are usually small in numbers and highly summarizing, i.e. they sub-

sume a multitude of effects of the species’ ecology on lower hierarchical levels. To see

this, remember the submodel for the extinction rate νi = e · A−xi which is known to be

valid for a wide range of within patch dynamics where x gives an index for the strength

of the environmental stochasticity in the local populations. The picture becomes even

more clear if the submodel for the colonization rate for the case of active movement,

cij = y ·Aβi ·
R(dij)

N−1
P
k R(dik)N−1 ·R(dij) with R(d) = 1− e−a·e−b·d , is considered (see also Chapter

2). The parameters a and b of function R(d) summarize all the effects of the individual

movement behavior relevant for the colonization of a patch (e.g., step length, step mor-

tality, perceptual range or other characteristics of movement patterns such as correlated
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random walks, Archimedian spirals, or loops; see Heinz et al. (2004)). These two summa-

rizing parameters a and b can be used for the classification: species with the same values

for a and b belong to the same type because they coincide in their response to the patch

configuration. Note that this result also demonstrates that it is advantageous to follow an

hierarchical approach and to use the approximation formula aij =
R(dij)

N−1
P
k R(dik)N−1 ·R(dij) for

the arrival probability aij (two summarizing attributes) as input of the metapopulation

model instead of a full individual-based model (all the details of the movement behavior).

Secondly, rules of thumb usually address relative results. Attributes of the species

which act as factors of proportionality for the target quantity Q, however, do not influence

the relative results (see the parameters e and y in Chapter 5). This additionally diminishes

the number of attributes which are relevant for the classification of the species.

8.1.1.4 Test of the robustness

As was already mentioned (Section 8.1.1.2), rules of thumb are usually based on tractable

generic models. Since they shall support conservation management, all “key effects” re-

vealed by the model analysis have to be checked for being “actual effects” or being artifacts

of the underlying model. In any case, it is necessary to specify range and limitations of

applicability of the rules. This directly leads to the question of the robustness of the rules

against the addition of details. This was exemplarily tested for the rules of thumb for the

optimum habitat allocation in the following experiment (Westphal and Frank (manus.)):

Example: An experiment for testing the robustness of rules of thumb

Remember that all the rules of thumb presented in this thesis are based on the assump-

tions of circular patches and a centre-to-centre measurement of patch distance (see also

Chapter 2). In order to analyze the effects of an increasing spatial realism, we decided

to allow irregular patch shapes and to move to an edge-to-edge measurement of patch

distance. As in Chapter 5, we addressed the question of how to allocate a given total

amount of restoration habitat over the patches of a given habitat network with maxi-

mum effect on metapopulation persistence. We considered a situation (passive dispersal;

cij = y · Ai · e−dij/da) where a “uniform” distribution was found to be optimum in the
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centre-to-centre reference case (see Chapter 5). The optimum allocation in the edge-to-

edge case was determined by applying a simulated annealing algorithm (Metropolis et al.

1953, Kirkpatrick et al. 1983) where the approximation formula for the mean lifetime Tm

(Chapter 3) was taken as objective function. In order to assess the chances of finding

any simple rule of thumb, the Tm-value for the simulated optimum was compared with

the Tm-values resulting from a number of heuristic allocation rules (e.g., attain a uniform

distribution; allocate according to a certain patch criterion such as its current size or its

degree of connectedness; in total 10 heuristics). We found the following results:

(a) The simulated annealing algorithm always resulted in a higher Tm-value than all

the heuristics considered. (b) As long as the environmental noise in the local populations

was moderate or strong, the “uniform” heuristic led to roughly the same Tm-value as the

simulated optimum. (c) The weaker the environmental noise, the larger the difference

in the Tm-values of the simulated optimum and the best heuristic. (d) In all cases, the

“uniform” heuristic was found to be better than all the other heuristics considered.

These effects can be explained as follows: With an edge-to-edge measurement, patch

shape and patch distance are no longer independent of each other. In the result, the allo-

cation of habitat does not only affect patch size and shape, but also patch distance. Hence,

there is an extra effect on the mean lifetime Tm. The simulated annealing algorithm allows

an optimization of the allocation on two spatial scales: on the regional scale (which patch

should get which percentage of habitat) and on the local scale (which part of a patch

should be enlarged). All the heuristics considered exclusively cover the regional scale, but

lack in any local optimization component. Note that the rule of thumb (uniform distribu-

tion) known from the centre-to-centre case, still has a certain predictive power, although

it is not optimum anymore. After all, it was found to be the best of all the heuristics

considered. Hence, it gives at least a rough orientation for the allocation management.

8.1.2 Limitations of the derivation of rules of thumb

So far, we were focused on the chances of deriving rules of thumb. We presented a rough

protocol for the derivation of ecologically differentiated rules of thumb for conservational
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landscape management and discussed several methodological aspects. But note that ap-

proaches and methods generally have limitations of applicability. They ought to be known,

especially when the resulting “products” are planned to be used in conservation man-

agement. Otherwise, there is a high risk of misuse and counter-productive conclusions.

Therefore, we complete the study with some remarks on the limitations of the derivation

of rules of thumb. Here, we distinguish two different levels of limitation: (a) limitations

of the presented protocol, (b) limitations of the concept of rules of thumb itself.

8.1.2.1 Limitations of the presented protocol

The presented protocol is strongly dependent on the following assumption: Throughout a

simulation run, the landscape structure (habitat quality, patch configuration) is constant.

This indicates that there is a limitation of applicability if the landscape structure becomes

highly dynamic as is the case if disturbances (e.g. floods, fire, land use regimes) or suc-

cession processes are important or habitat quality changes in the course of time. In these

cases, however, the protocol can be correspondingly modified. Instead of considering the

functional relationship between the target quantity Q and the landscape structure itself

(Step 3), the relationship between Q and the characteristics of the landscape dynamics

ought to be analyzed. This would result in rules of thumb for managing the landscape

dynamics. In these cases, it anyway does not make sense to think about changes of a

particular landscape structural element. It is anyway more appropriate to think in terms

of dynamical regimes.

The presented protocol also assumes that the species-ecological model parameters

are constant throughout a simulation run. But note that, as long as presence-absence

metapopulation models are used, this does not inevitably mean that all the relevant

behavioral and life-history attributes of the individuals are constant as well. To see this,

remember the submodel for the extinction rate, νi = e·A−xi . It is known that the parameter

x meets the following relationship: x = 2rm
σ2 − 1 (e.g. Wissel et al. 1994), where rm is

the mean and σ2 the variance of the distribution of the individuals’ intrinsic reproduction

rates rt that are assumed to fluctuate in a stochastic manner (White noise). This shows

that parameter x is a statistical measure for the stochastic dynamics in the individuals’
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attributes. Hence, a constant value of xmerely indicates that the dynamics in the rt-values

follow the same statistical law, i.e. are based on the same probability distribution.

8.1.2.2 Limitations of the concept of rules of thumb

There are also limitations of the concept of rules of thumb itself. This means that there

situations where simple rules of thumb cannot be found anymore. This was the case

in connection with the prediction of movement patterns in topographically heterogenous

landscapes when the species shows a certain response to topography (Pe’er et al. 2005).

Here, the rule of thumb “Go to the nearest summit” found to be valid in landscapes with a

few summits only lost its validity when the topographical structure became too complex.

The latter example gives rise to the following supposition: The more complex the

landscape structure, the lower the chance of finding rules of thumb. This would explain

why numerous rules of thumb exist for metapopulations (spatial structure is given by

a configuration of patches that is described by few patch variables (e.g., location, size,

shape)) while, for more complex landscape structures, rules of thumb are widely missing.

To summarize, the presented findings indicate that, although there is no guarantee of

success, it is worth to search for ecologically differentiated rules of thumb for landscape

management. Since these rules merely aim at providing a rough orientation, it is appropri-

ate to start with a tractable, generic model. Here, there is a high chance of finding rules of

thumb which summarize the most important effects in the sense of a “caricature”. If the

need arises, further details can be included and the robustness of the rules can be tested.

8.2 Merits of ecologically differentiated rules of thumb

So far, we were concentrated on methodological aspects of the derivation of ecologically

differentiated rules of thumb for conservational landscape management. Now we shift the

focus of attention to the merits of such rules. As we have already mentioned, such rules

code important information about the relationship between (meta)population persistence

and the landscape structure and the role of the species’ ecology in this context. Chapters



222 CHAPTER 8. ECOLOGICALLY DIFFERENTIATED RULES OF THUMB

4, 5 and 6 of this thesis gave some examples and an impression about the type of informa-

tion condensed in rules of thumb: (a) minimum conditions for long-term metapopulation

persistence on species and landscape, (b) ranking orders among alternative management

measures according to their effect on metapopulation persistence, (c) conditions for op-

timum habitat network design, (d) conditions under which stochasticity must be taken

into account in landscape analyses to avoid counter-productive conclusions.

In the following, we demonstrate that rules of thumb of this type have serious implica-

tions for ecological research but also for several aspects of conservation management (e.g.

landscape planning, development of economic instruments, integrated assessment).

8.2.1 Implications for ecological research

One result of particular importance for ecological research is the finding that we have to

think in terms of classes of species if we want to understand the effects of the landscape on

(meta)population viability or we plan measures of conservational landscape management.

Each class is determined by a certain ecological profile (Andren 1994; Frank and Berger

1996; Grimm et al. 1996; Weaver et al. 1996; Frank and Wissel 1998; Vos et al. 2001),

i.e. a set of ecological attributes which characterize the species’ sensitivity to changes in

the landscape structure. The concept of ecological profiles is used in various contexts to

characterize the species’ sensitivity to various critical impacts. Ecological profiles have

been determined for the sensitivity to roads (road ecology, e.g. Jaeger et al. (2005))

and for the sensitivity to pesticides (ecotoxicology, e.g. Liess et al. (2005)), for example.

In the first case, the profiles resulted from model analyses combined with techniques

from fuzzy logics. The second case is even more interesting. Liess et al. searched for

ecological profiles in the realm of field experiments. They found that five life history

attributes characterize the sensitivity of microorganisms to pesticides in rivers. These

results give rise to the following prospects for further research: Firstly, they encourage to

investigate the sensitivity of species to other types of impacts/disturbances and to search

for characteristic ecological profiles. Secondly, combining model-based and experimental

approaches is certainly synergistic to the benefit of a better mechanistic understanding.

Both activities would contribute to biodiversity research and management.
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The existence of ecologically differentiated rules of thumb for landscape management

also has an implication for the methodology of modeling. Note that the mentioned rules

are based on models which were originally developed for (meta)population viability anal-

yses (MPVA) of single species. These rules, however, are found to be valid for entire

classes of species. Hence, it is worth to look for possibilities to extend the well-established

methodology for MPVAs of single species (Shaffer 1981; Day and Possingham 1995; Drech-

sler and Wissel 1997; Frank and Wissel 1998; Burgman and Possingham 2000; Possing-

ham et al. 2001; Beissinger and McCullough 2002; Ovaskainen 2002; Frank et al. 2003;

Ovaskainen and Hanski 2004; Grimm and Wissel 2004) to classes of species.

8.2.2 Implications for conservation management

The information coded in ecologically differentiated rules of thumb is highly relevant for

several aspects of conservational landscape management: landscape planning, the devel-

opment of economic instruments, and the work with stakeholders (integrated assessment).

8.2.2.1 Relevance for landscape planning and habitat network design

The mentioned rules of thumb give rise to some guidelines for landscape planning activi-

ties in the realm of conservation management. Firstly, the rules indicate the need to think

in terms of classes of species. Common conclusions about the effect of landscape changes

on (meta)population persistence can only be drawn for species of the same ecological pro-

file. Secondly, the rules clarify under which conditions a certain management measure is

useful and worth to be considered at all. This especially concerns the strategy of “habitat

connecting”. We learned that asynchronous dynamics and a certain minimum stability

of the local populations, but also a certain minimum dispersal ability of the species are

required before habitat connecting can lead to noticeable effects on metapopulation per-

sistence at all. This information has direct consequences for management prioritizing: if

the need arises, desynchronization and stabilization of the local populations ought get a

higher priority than connecting measures. Thirdly, the rules for optimum habitat network

design help the planner to determine which management measures out off a variety of al-

ternatives allow the best support of (meta)population persistence. Last but not least, the
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rules indicate that, in case of moderate or strong environmental noise, there is a need to

take stochasticity into account in the landscape analyses. In this case, spatial effects on

metapopulation persistence have been found to be highly sensitive to including or ignoring

stochasticity (see the “Lessons about the effect of stochasticity” in Chapter 6). To ignore

stochasticity therefore means to increase the risk of counter-productive conclusions.

8.2.2.2 Relevance for the development of economic instruments

Traditionally, conservation management is closely linked to landscape planning. Nowa-

days, economic aspects become increasingly important. In particular, there is an increas-

ing interest in developing economic instruments for conservation management. These

instruments have to be both ecologically effective and economically efficient. Ecologically

differentiated rules of thumb can support the development work in several respects:

Firstly, these rules clarify under which conditions a certain management strategy is use-

ful and worth to be considered at all (remember the discussion on “habitat connecting”).

This information decreases the risk of investing in ineffective management activities.

Secondly, the rule of thumb in Chapter 5 reveals what area distribution is optimal

for species’ survival if a certain total habitat area and a certain patch configuration are

assumed. Frank and Ring (1999) took this example as a basis and concluded some conse-

quences for the ecological effectiveness of economic instruments such as incentive programs

or compensation charge. They argued that the “optimum area distribution” indicates

how a given budget available for the purchase of land ought to be invested to maximize

the conservational effect. The mentioned rule of thumb reveals that the optimum area

distribution strongly depends on the degree of connectedness of the individual patches.

This shows that the effect of the purchase of land depends on where the area is enlarged.

Hence, the decision about the investment of the money ought to take the spatial structure

of the landscape into account. Until now, however, incentive programs and compensation

charge are not spatially differentiated. This shows that rules of thumb help to determine

key factors of the ecological effectiveness of economic instruments.

Thirdly, ecologically differentiated rules of thumb also help to clarify important con-
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ceptual questions in connection with economic aspects of biodiversity conservation. Cost-

benefit analyses are of central importance if assessments of the ecological effectiveness

and economic efficiency of conservational management measures are the aim. The heart

of such analyses is the utility function. It is widely discussed, however, whether spatial

aspects have to be included in the utility function or not if effectiveness and efficiency of

changes in the landscape structure have to be assessed (e.g. Wätzold and Drechsler 2005;

Wätzold and Schwerdtner 2005). This question can be answered. Remember the analysis

in Chapter 6 where we analyzed the functional relationship between the mean lifetime

Tm and the total amount of habitat Atot for different scenarios of area allocation. We

showed that the Tm vs. Atot curves for the different scenarios strongly differ between each

other. But we also revealed that the ranking orders between the scenarios depend on the

strength of environmental noise in the local populations (compare Figs. 6.2B and 6.3B).

This indicates that correct conclusions on the ecological effect of the landscape structure

can only be drawn if both the spatial structure of the habitat network and the species’

ecology are taken into account. Hence, both aspects ought to be integrated in the utility

function. Some remarks on how to combine spatial and species-ecological data and to

integrate them in utility functions can be found in Chapter 9 on the (meta)population

dynamical landscape indices.

8.2.2.3 Relevance for integrated assessment

Conservation management is characterized by multi-criteria and multi-agent decision pro-

cesses, where conservational objectives compete with other interests. In the past decade,

socioecological research invested a lot of efforts in developing concepts and strategies for

integrated assessments, i.e. for the involvement of stakeholders in the decision processes

(e.g. Kiker et al. 2001; Pahl-Wostl 2002; van der Sluis 2002). In this context, learning

processes and decision-support tools are of central importance. Ecologically differentiated

rules of thumb for landscape management support learning processes and decision-making.

To see this, remember that these rules code important information about the relationship

between species’ survival and the landscape structure in a verbal way. Hence, they help

to clarify the consequences of a considered scenario and to differentiate between possible
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alternatives. This strengthens the scientific basis and the transparency of the decision

process and increases the chance of more sustainable decisions as well.

To summarize, all these arguments show that ecologically differentiated rules of thumb

for landscape management provide a powerful tool for decision-support. These rules allow

an integration of ecological knowledge in the interdisciplinary framework of conservation

management. They provide a bridge from ecology to various other disciplines involved

(e.g. landscape planning, economics, governance research, socioecology).

8.3 Prospects for further research

The results of this study allow some conclusions about prospects for further research.

Firstly, in Section 8.1.2.2, we argued that the concept of rules of thumb for landscape

management has a limitation if the spatial structure of the landscapes under considera-

tion is too complex. But note the study in Chapter 9. In that Chapter, a rough protocol

is presented for the derivation of (meta)population dynamical landscape indices QI . Such

indices describe the functional relationship between a (meta)population dynamical tar-

get quantity Q of interest and the landscape structure by the mean of a simple function

Fµ,ν..(vs) of few landscape variables vs which have been found to be “effectively decisive”

for Q. This protocol was found to work even for very complex landscapes (see the ex-

amples in Section 9.2.1). The decisive point is that Q is related to few spatial statistics,

namely vs, instead of to the landscape structure itself. This opens a completely new per-

spective: the derivation of rules of thumb for landscape management which are formulated

in terms of spatial statistics. Important conditions for population persistence in spatially

complex landscapes could be determined in this way. Such a strategy would be in the

spirit of With and King (1999) who made important contributions to the unification of

metapopulation dynamics and neutral landscape models. The suggested strategy would

extend the unification work to the derivation of rules of thumb. Secondly, the integration

of rules of thumb in the interdisciplinary framework of conservation management needs

further attention. All these activities would contribute to further strengthening of the
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ecological knowledge basis for conservational landscape management.
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temperate zone. In: Soulé, M.E. (ed.) Conservation Biology. Sinauer, Sunderland.

pp. 237–256

Wilson G.G. and Willis, E.O. 1975. Applied biogeography. In Cody, M.L., and Diamond,

J.M. (eds.) Ecology and Evolution of Communities. Harvard University Press,

Cambridge, MA. pp. 523–534

Wissel, C., Th. Stephan, and S.-H. Zaschke. 1994. Modelling extinction of small

populations. In: Remmert, H. (ed.) Minimum viable populations (Ecol. Studies

106). pp. 67–103

With, K. A., and A. W. King. 1999. Extinction thresholds for species in fractal land-

scapes. Conservation Biology 13: 314–326



Chapter 9

Towards (meta)population

dynamical landscape indices

Landscape indices are increasingly discussed in the landscape ecological literature. Orig-

inally, landscape indices have been developed in order to quantify landscape patterns

(Romme 1982; Burrough 1986; Gustafson 1998 and references therein). This was mo-

tivated by the wish to document and to quantify changes in the landscape structure.

There are now huge collections of quantitative measures of landscape patterns such as the

FRAGSTATS collection (McGarigal and Marks 1995). Most of these measures, however,

are ecologically neutral, i.e. they are not linked to any specific ecological process and they

do not take into account that different organisms may differently respond to the landscape

structure. These indices are purely descriptive and non-mechanistic. Neutral models un-

doubtedly have their merits as null-hypotheses (With and King 1997). Nevertheless, the

mentioned lacks are shortcomings given the fact that the analysis and prediction of the

effect of landscape patterns on ecological processes are core topics of landscape ecology.

This led to the wish to develop indices which allow the effect of the landscape structure

on ecological processes to be predicted. The most prominent examples are certainly the

indices for landscape connectivity which are commonly used for predicting the landscape

effect on dispersal processes (e.g. Schippers 1996; Schumaker 1996; Tischendorf and

Fahrig 2000; Tischendorf 2001; Tischendorf et al. 2003; Heinz et al. 2004). Few studies

even go a step further and develop landscape indices for the prediction of landscape effects

231
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on (meta)population dynamical target quantities Q. Some examples are given in Table

9.1 (one of them is the formula T am for the mean lifetime of metapopulations developed in

Chapter 3 (Eqn. (3.20))). All these indices are expressed in terms of certain landscape

variables and certain species-specific attributes. Their functional structure therefore gives

insight into the interplay between landscape structure and species’ ecology and the effect

on important aspects of the dynamics and viability of (meta)populations. This indicates

that the practical value of (meta)population dynamical landscape indices goes far beyond

quantification and prediction. These indices especially support analyzing and obtaining

a sound mechanistic understanding. Thus, they are powerful tools for (meta)population

research, (meta)population viability analysis and conservational landscape management.

The mentioned potential of (meta)population dynamical landscape indices directly

leads to the question of their derivation. The examples in Table 9.1 indicate that there is a

high diversity of methods used for index derivations. The spectrum reaches from regression

analysis and spatial statistics to algebraic analysis and eigenvalue approximation, i.e.

the whole range of system analysis is covered. A systematic methodology, however, is

completely missing so far. The need to fill this gap motivated the present study.

In the following, we develop a systematic approach to and a rough protocol for the

derivation of (meta)population dynamical landscape indices. Throughout the develop-

ment process, we pay attention to structural compatibility between the general scheme

and the existing methods, especially those used for the derivation of the indices listed in

Table 9.1. This ensures that approach and protocol (a) stand on a conceptually sound

basis, (b) guide the development of new indices, and (c) allow as many as possible of the

existing methods of index derivation to be fitted in. We also analyze the (meta)population

dynamical landscape indices resulting from the presented protocol. We show that these

indices have serious implications for landscape analysis and management: They go beyond

the concept of “ecologically scaled landscape indices” introduced by Vos et al. (2001),

support an ecological classification of species and the derivation of rules of thumb for

landscape management as well. Finally, we show that these indices enrich the landscape-

ecological framework because they support mechanistic understanding and strengthen the

theoretical basis. We finish the study with some prospects for further research.
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Table 9.1:

The (meta)population dynamical landscape indices considered throughout the study.

Target quantity Landscape Model Reference

index type

Dispersal success PC I Schumaker (1996)

Arrival probability aIij I Heinz et al. (2004)

Mean population size OGG(r) I Wiegand et al. (1999)

Mean dispersal distance OGM(r)

Critical traffic density TDI
crit I Tluk von Toschanowitz (2002)

Fraction of occupied patches Kmean, Cmean II Vos et al. (2001)

Metapopulation capacity λIM III Hanski and Ovaskainen (2000)

Mean lifetime T Im III Frank and Wissel (2002)

9.1 Development of a systematic approach

In the following, we develop a systematic approach to the derivation of (meta)population

dynamical landscape indices. We start our work with an analysis of those landscape

indices listed in Table 9.1. As we have already mentioned, these indices have been derived

in different ways. In spite the differences in the methods of derivation, however, the indices

share two common properties: Firstly, all the indices are based on a certain spatial (meta)-

population model which has the target quantity Q of interest as outcome. To use such a

model as departure point for the index derivation is powerful since models code important

information about the landscape effects on the processes which are relevant for the target

quantity Q. Secondly, all the methods used for the index derivation aim at revealing the

functional relationship between the target quantity Q and the landscape structure and at

describing this relationship by the mean of a simple function (the “index”).

The need to identify functional relationships reveals a principle problem: the range of

methods which are suited to meet this goal strongly depends on the degree of complexity of

the underlying model. Complex models require other methods than simpler ones. There-
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fore, it is useful to distinguish between models of “low/moderate” and “high” complexity

and to develop the methodology for the index derivation for each case separately.

To use the degree of complexity as sole criterion for the classification of the mod-

els underlying index derivations has a serious weakness. The degree of complexity is a

rather technical criterion and is hardly ecologically interpretable. Ecological understand-

ing, however, is crucial because we have to look for methods which allow the ecological

essentials of the functional relationship between the target quantity Q and the landscape

structure to be preserved. Therefore, it is appropriate to go a step further and to search

for an ecological classification of the sources of complexity which can become relevant in

connection with the derivation of (meta)population dynamical landscape indices. Here, a

clear answer can be given: irrespective of the organizational level (e.g., individual, pop-

ulation, metapopulation) and the target quantity Q of interest, the dynamical effect of

the landscape structure is primarily determined on the individual level and influenced by

the individuals’ behavior and life history. Hence, the interplay between the individuals

and the landscape is a key determinant and has to be appropriately taken into account.

For the degree of complexity, however, it matters a lot whether the interplay is explicitly

described or implicitly incorporated via the summary effect on the processes modeled.

For all these reasons, it is useful to classify the relevant models according to the way

in which the interplay between individuals and landscape structure is incorporated and to

distinguish between explicit and implicit cases. This classification is still simple, but allows

to think in terms of ecological mechanisms. There are three prominent classes of models

which cover a wide range of spatial (meta)population models (especially those underlying

the indices in Table 9.1) and which fit in our classification scheme: individual-based,

spatially explicit models (Class I, “explicit”), individual-based metapopulation models

(Class II, “explicit”), and presence-absence metapopulation models (Class III, “implicit”).

9.2 Development of a rough protocol

Now the basis is provided for passing on to the main objective of this study: the devel-

opment of a rough protocol for the derivation of (meta)population dynamical landscape



9.2. A ROUGH PROTOCOL 235

indices, where the attention is focused on the three model classes considered. We start

with the development of a protocol for individual-based, spatially explicit models (Class

I), i.e. the model class with the highest degree of complexity. We take the resulting pro-

tocol as starting point for the development work in the two remaining, less complex cases.

For that, we explore the respects in which models of Class II and Class III are structurally

simpler than models of Class I, search for possibilities to simplify the steps of the index

derivation suggested by the protocol, and modify the protocol if necessary. We complete

the work with methodological assessments of the (meta)population dynamical landscape

indices listed in Table 9.1. We check whether their derivation follows the general protocol

and the methods used fit in. This strengthens the confidence in the applicability of the

protocol and gives a vivid impression about how to work with it in a concrete case.

9.2.1 Class I: Individual-based, spatially explicit models

In this class of models, the interplay between the individuals and the landscape structure

is explicitly described that usually results in a multitude of spatial and behavioral pa-

rameters and in a simulation-based modeling approach (e.g. DeAngelis and Gross 1992;

Grimm 1999; Wiegand et al. 1999; Grimm and Railsback 2005). The inevitable complex-

ity impedes a mathematically rigorous determination of the entire functional relationship

between the population dynamical target quantity Q of interest and all the model param-

eters mentioned. Hence, the “direct way” of deriving a landscape index for Q fails.

9.2.1.1 The Protocol

In the case of individual-based, spatially explicit models, there is no alternative to a

heuristic, statistic-based methodology of the index derivation. The test indices belonging

to this class (Table 9.1, Class I) indicate that the strategy of “searching for ecologically

plausible indices and testing their reliability” is promising in this context, although there

is no guarantee of success. The corresponding protocol consists of four steps:

Step 1: Attain a rough (qualitative) understanding of the functional relationship

between the target quantity Q and the landscape structure by an ap-
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propriate model analysis. This includes (a) the identification of those

landscape variables vs which seem to be decisive for the target quan-

tity Q, (b) the search for typical patterns in the functional relationship

between Q and the decisive variables vs, and (c) the analysis of the sen-

sitivity of the shape of the Q-vs-patterns to changes in the individuals’

behavioral and life history attributes.

Step 2: Find a class of functions Fµ,ν..(vs) which is able to describe the Q-vs-

patterns found in Step 1. These functions may depend on a number of

parameters (see the subscripts µ, ν..) in order to reproduce the shape of

the Q-vs-patterns. Keep this parameter set as small as possible.

Step 3: If a particular species with particular ecological attributes is considered,

calibrate the Fµ,ν..(vs)-function against the corresponding Q-vs-pattern

by appropriately parameterizing {µ, ν...}. Calibration can be reached in

different ways (e.g., regression analysis, maximum likelihood, sometimes

algebraic analyses as demonstrated in Example 4). Take the calibrated

function QI = Fµ,ν..(vs) as a “candidate” for the landscape index desired.

Step 4: Test the predictive power of QI for a wide range of landscape structures

and ecological attributes by comparing the values predicted with the

index (QI) with those simulated with the model (Q). The criteria for

the predictive power can be different (e.g., quantitative correspondence

or just correlation between QI and Q), depending on the aim.

This protocol gives a rough orientation for the derivation of (meta)population dynamical

landscape indices which are based on individual-based models. The most crucial steps

are certainly the identification of the landscape variables vs which are decisive for the

target quantity Q (Step 1) and the determination of a function Fµ,ν..(vs) which is able to

describe the functional relationship between Q and vs (Step 2). There are several ways

to meet these goals. To give a vivid impression about the methodological possibilities, we

demonstrate how the two tasks have been mastered in connection with the derivation of

the five “individual-based” landscape indices listed in Table 9.1 (Class “I”).
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9.2.1.2 Some examples

Example 1: Dispersal success DS

Schumaker (1996) simulated individual movements through fragmented landscapes which

were described as grids of habitat and non-habitat cells. Movement was modelled as

random walk to the neighbor cells with different degrees of directionality and different

probabilities of stopping per time. The target quantity of interest was the dispersal success

DS, i.e. the probability that a released individual successfully arrives at any other habitat

cell. Schumaker searched for an index that correlates with the dispersal success DS.

In order to find landscape variables which are decisive for the dispersal success DS,

Schumaker tested nine statistical measures of habitat pattern commonly used in the land-

scape ecological literature: number of patches, contagion, distance to the nearest neighbor

patch, patch area, core area, fractal dimension, patch perimeter, perimeter-area ratio, and

shape index. He considered harmonic, geometric, arithmetic, and area-weighted means of

all the measures (except of number of patches and contagion) and assessed their correlation

with the dispersal success DS. Schumaker revealed that the area-weighted means of both

the perimeter-area ratios (AWPA =
P
i PiP
i Ai

) and the shape indices (AWSI =
P
i Pi·
√
AiP

i Ai
)

correlated best with DS. Both measures, however, were found to have a weakness in dis-

tinguishing between small and large patches. This reduces their predictive power because

small patches contribute less to the dispersal success than large patches. To overcome

this drawback, Schumaker constructed a new statistical measure, called patch cohesion,

PC = (1 − s · AWPA
AWSI

)(1 − 1√
N

)−1 where N is the total number of cells in the grid and

s the length of a cell. He tested a large variety of landscapes and found a nearly linear

relationship between DS and PC, i.e. DS ≈ a · PC + b with two fit parameters a and b.

The characteristics of the movement pattern such as the degree of directionality and

the probability of stopping were merely found to influence the slope a and the interception

point with the y-axis b of the DS-PC-regression-lines. This shows that, as long as one

is merely interested in a high correlation, DSI = PC can be taken as an index for the

dispersal success DS, irrespective of the details of the movement behavior.
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Example 2: Arrival probability aij

Heinz et al. (2004) simulated individual movement through patchy landscapes. They con-

sidered configurations of circular habitat patches with homogeneous matrix in between

and analyzed different movement patterns (correlated random walks, Archimedian spirals,

Loops). The target quantities of interest were the arrival probabilities aij that an individ-

ual which starts at a certain patch i successfully arrives at a certain patch j (in contrast to

Example 1 where it is only important that the individual arrives at any other patch, not

at a specific one). Heinz et al. searched for a landscape index that allows the aij-values

for all the pairs (i, j) to be predicted. Hence, there were two extra challenges: Firstly, an

entire matrix of target quantities has to be handled instead of a single target quantity.

Secondly, the demand on the predictive power of the index is stronger (correspondence

instead of correlation between simulated and predicted values).

Since all the patches were assumed to have circular shapes, Heinz et al. hypothesized

that the distances {dlk} between the patches are the decisive landscape variables for the

arrival probabilities aij. Two observed patterns provided the basis for the actual index

derivation: In two-patch landscapes, a clear sigmoidal relationship between aij and dij

was detected. The movement patterns were merely found to influence the shape of the

sigmoidal aij-dij-plot. This justified to fit the aij-dij-plot against a sigmoidal function

given by R(d) = 1 − e−a·e−b·d . The two parameters a and b determine the shape of the

function R(d) and summarize the effects of the movement pattern assumed. In multi-patch

landscapes, all the points of the aij-dij-plot were found to lie below the sigmoidal function

R(dij) taken from the two-patch case. This reduction in aij was interpreted as an effect

of an immanent competition between the patches for immigrants which is the stronger

the more patches exist (individuals were assumed to stay at the first patch they reach

such that they are prevented from arriving at another patch). Heinz et al. described this

competition effect by a correction of R(dij) with a weighting factor Wij =
R(dij)

N−1
P
k( 6=i) R(dik)N−1

where weighting was assumed to be according to the arrival probability R(dij) in the

competition-free case. This led to aIij = Wij ·R(dij) as a candidate for the index desired.

Systematic tests revealed a strong correspondence between the aij- and aIij-values for all

the pairs (i, j) for a wide range of landscapes and individual movement patterns.



9.2. A ROUGH PROTOCOL 239

Example 3: Population size Ns / Dispersal distance Dm

So far, we considered the consequences of one process: individual movement. Wiegand

et al. (1999) simulated a more complex situation where individuals move through a frag-

mented landscape in order to find a suitable breeding site and to reproduce. Landscapes

were described as grids of matrix, low-quality, and good-quality habitat cells. Movement,

habitat selection and reproduction were modelled with behavioral rules which take the

individuals’ response to the landscape but also mechanisms such as density regulation

into account. The target quantities were the number of females Ns with a source home

range (a measure for the mean population size) and the mean dispersal distance Dm the

individuals cover. Wiegand et al. searched for indices which correlate with Ns and Dm.

Starting point of the index derivation by Wiegand et al. were two ecologically plausible

arguments: Firstly, the number of females Ns with a source home range depends on the

degree of clumpedness of the good-quality habitat on a certain scale r. To see this,

note that a high density of good-habitat cells results in a large number of small home

ranges which, in addition, can be shared by several females. A measure for the degree of

clumpedness is the spatial autocorrelation in the good-habitat cells. Secondly, the mean

dispersal distance Dm depends on the degree of fragmentation of the habitat on a certain

scale r. A measure for this is the correlation between good-habitat and matrix cells. These

arguments justified the use of two ring statistics, OGG(r) and OGM(r), as descriptors of

the landscape effects on Ns and Dm. These quantities are given by the mean density of

good-habitat cells (in case of OGG(r)) / of matrix cells (in case of OGM(r)) in rings with

radius r around each good-habitat cell. Since the exact value of the relevant spatial scale

r was unknown, the two ring statistics were calculated for different values of r.

Wiegand et al. reported a clear linear relationship between Ns and OGG(r) and be-

tween Dm and OGM(r) for all values of r considered, different strategies of habitat se-

lection, and different individual demands on habitat quality. Since they were merely

interested in a high correlation, they took N I
s = OGG(r) and DI

m = OGM(r) as the land-

scape indices desired and calibrated them in each particular case by using the r-value

which gives the sharpest linear regression. This r-value was found to be quite robust and

in the order of magnitude of the home range size of the species considered.
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Example 4: Critical traffic density TDcrit

Tluk von Toschanowitz (2001) analyzed the effect of traffic on the population viability of

territorial species. She developed an individual- and grid-based simulation model which

takes processes such as reproduction, individual movement and territory selection, but also

factors such as sex and social status into account. Each grid-cell represented a territory

which can be occupied by a group of individuals with a certain maximum group size.

The grid of territories was overlayed by a network of roads with a certain traffic flow.

Traffic was assumed to affect the mortality. It was assumed that each individual which

crosses a road dies with a probability 1− e−TD·DC60 , where TD denotes the traffic density

(cars per hour) and DC the duration of crossing, i.e. the time a crossing individual stays

on the road. Tluk von Toschanowitz reported the existence of a critical traffic density

TDcrit below which the population is viable but above which the probability of extinction,

P0(500), rapidly increases. Because of the practical value of TDcrit as a yardstick for traffic

management, the author searched for on index which allows TDcrit to be predicted.

Starting point of the index derivation was the finding that the modeled population

effectively behaves as an ideal (i.e. non-structured, completely mixed) population, despite

its complex dynamics. This led to the hypothesis that the critical traffic density TDcrit is a

reflection of the well-known principle of population persistence “mortality m < fecundity

f”. The author took the average mortality over all grid cells, m = mbas + 2 · nR
nL
·mtra,

where mbas denotes the basic mortality common for all cells, mtra the additional traffic

mortality for all cells adjacent to a road, nR the number of roads and nL the number of

cells in one direction of the grid. Moreover, she took into consideration that the yearly

traffic mortality is given by mtra = 1 − e−TD·DC60
·12k·(1−pA) where k is the number of road

crossing attempts per month and pA the probability of avoidance (returning at a road).

By solving the threshold equation “m = f”, she got a formula for TDcrit:

TDI
crit =

− ln(1− 1
2
· nL
nR
· (f −mbas))

DC
60
· 12k · (1− pA)

,

that is expressed in terms of parameters characterizing the landscape structure (nL, nR),

the demography (f,mbas), and the individuals’ crossing behavior (DC, k, pA). Systematic

tests of the predictive power of the index TDI
crit revealed that, as long as the territory
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search of the individuals is restricted to the neighboring cells, there is a strong correspon-

dence between the simulation-based and the index-based values, TDsim
crit and TDI

crit, for a

wide range of parameter sets. If territory search occurs on a larger spatial scale, there is

still a linear relationship between TDsim
crit and TDI

crit but the slope is > 1. This indicates

that the index underestimates the actual value of the critical traffic density. The reason for

this deviation is that the individuals’ territory search induces a buffer effect because the

loss of individuals (especially in the “road-territories”) can be compensated by immigrants

from more distant territories. This buffer effect is not covered by TDI
crit. Nevertheless,

the index has a certain practical value as a “conservative” predictor of TDcrit.

Two aspects were crucial for the successful index derivation. The first key was the

finding that the modeled population behaves as an ideal population. This opened the

possibility to make use of population theory (e.g., ‘m = f ’) and to work with effective

(averaged) parameters (for the potential of using effective parameters, see also Section xx).

The second key was the fact that the functional relationship between the traffic mortality

mtra and the traffic density TD was described by a formula, mtra = 1−e−TD·DC60
·12k·(1−pA).

In the result, TDcrit could be determined by solving a simple algebraic equation.

9.2.1.3 Some methodological conclusions

The examples indicate that there are at least three different ways of determining appropri-

ate landscape variables vs and fitting functions Fµ,ν..(): (a) comparative tests of arbitrary

sets of landscape variables and determination of the variable which correlates best with

the target quantity Q of interest (Example 1); (b) use of hypotheses about the key factors

for the target quantity Q (e.g. degree of clumpedness on a scale r as a key factor for

the number of females with source home ranges Ns (motivation for using ring statistics;

Example 3), competition between patches for immigrants as a key mechanism for the

probabilities of arrival aij (motivation for using a weighting factor Wij; Example 2)); (c)

application of principles of population theory in combination with the use of effective

parameters (Example 4). Evidently, a sound mechanistic understanding of the landscape

effects on the population dynamics is indispensable in these fields - especially in the two

latter cases. The understanding-based construction of landscape indices has an important
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advantage: The resulting indices are both simple and ecologically interpretable.

9.2.2 Class II: Individual-based metapopulation models

Although being individual-based, the degree of complexity of this class of models is al-

ready partly reduced, for the following reason. By definition, the spatial structure of the

landscape underlying any metapopulation is characterized as a configuration of habitat

patches. Metapopulation models therefore already start with a list of landscape variables

{vs} which describe the patch configuration (e.g. patch location, patch area, perimeter-

area ratio of a patch, habitat suitability) and which are assumed to be relevant for the

metapopulation dynamics and the target quantity Q of interest. The interplay between

the individuals and the landscape structure is explicitly incorporated by describing the

effect of the mentioned landscape variables vs on the individual and/or the population

dynamical parameters q. This is usually done by the mean of functions, i.e. q = fa,b..(vs),

where the function parameters “a, b..” summarize the effect of the species’ ecology on q.

9.2.2.1 Implications for the protocol

The preceding findings have serious implications for the derivation of landscape indices

QI . Since the models under consideration are individual-based, their degree of complexity

is still too high (multitude of parameters) for a determination of the entire relationship

between the target quantityQ and all the model parameters. Hence, there is no alternative

to applying the heuristic Protocol presented in Section 9.2.1. However, the peculiarities

of the model structure give rise to some modifications of single steps of the protocol:

Modification of Step 1: The basis of any index derivation is the identification of land-

scape variables vs which seem to be decisive for the target quantity Q. In the case of

spatially explicit models, this task required special analysis work (see Step 1 of the Pro-

tocol). In the case of metapopulation models, such analysis work is not needed anymore.

Here, the spectrum of the potentially decisive landscape variables is already pre-defined:

just take the landscape variables vs used for the model description as a starting point.



9.2. A ROUGH PROTOCOL 243

Modification of Step 2: The model structure also gives some hints for the search

for functions Fµ,ν..(vs) which can describe the relationship between Q and the vs’s (see

Step 2 of the Protocol). Note that Q is completely determined by the individual and/or

population dynamical parameters q and, hence, by the functions q = fa,b..(vs). Therefore,

it is useful to analyze the relationship between Q and fa,b..(vs) instead of between Q and

vs itself. The model functions fa,b..(vs) provide important “structural ingredients” for the

overall index QI desired because they code all spatial information relevant for Q.

9.2.2.2 An example

Example: Percentage of occupied patches p∗

Vos et al. (2001) were interested in the landscape effects on (stochastic) metapopulation

persistence. They worked with an individual-based metapopulation model and used patch

area Ai and patch distance dij as descriptors of the landscape structure. In their model,

area size Ai was related to the carrying capacity, Ki = Ai
A0

, which on its part was assumed

to influence individual fecundity and mortality as an effect of density-regulation. A0

denotes the species-specific area demand of a breeding unit. Patch distance dij was related

to the individual arrival probability, aij = e−dij/d0 , where d0 denotes the mean dispersal

range of the individuals. Vos et al. took the fraction of occupied patches p∗ as measure

of metapopulation persistence and searched for an appropriate landscape index p∗I .

Vos et al. based their index derivation on a standard result of metapopulation theory.

They argued that the probability of a patch i being occupied mainly depends on two

factors: (a) the local extinction rate νi in the patch that is negatively correlated with the

carrying capacity Ki = Ai
A0

, and (b) the total colonization rate Ci =
∑

j 6=iEj · aji that

depends on the emigration rate Ej = δ ·Aj in all the other patches j and the probability

of arriving at patch i, aji = e−dji/d0 . This finding brought the authors to the idea to

relate the (simulated) fraction of occupied patches p∗ to the arithmetic means of both

the carrying capacities, Kmean = 1
N

∑
iKi = 1

N

∑
i
Ai
A0

, and the total colonization rates,

Cmean = 1
N

∑
iCi = δ · 1

N

∑
i

∑
j( 6=i)Aj · e−dji/d0 . Both quantities Kmean and Cmean can be

interpreted as population dynamical landscape indices because they are expressed in terms

of landscape variables (Ai, dij) and species’ attributes (A0, d0, δ). Vos et al. performed a
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logistic regression analysis of p∗ with the logarithmic values ln(Kmean) and ln(Cmean) as

explanatory variables. They reported a clear positive correlation. By transforming the

corresponding regression line ln( p∗
1−p∗ ) = α+ β · ln(Kmean) + γ · ln(Cmean), they came out

with the following predictor for p∗: p∗I = Cγmean
Cγmean+e−α·K−βmean

, where the regression coefficients

α, β, and γ condense all the effects of the species’ ecology which are relevant for p∗.

Vos et al. unfortunately did not say any word about from where they got the idea

to perform a logistic regression analysis of p∗ with the logarithmic values ln(Kmean) and

ln(Cmean) as explanatory variables. It can be supposed, however, that they borrowed the

idea from the classical Levins model. Here, the functional structure of p∗ is well-known:

p∗ = 1−(C
ν

)−1. Therefore, ln( p∗

1−p∗ ) = ln(C
ν
−1) ≈ ln(C

ν
) = − ln(ν)+ln(C) for larger values

of C
ν

. By taking the standard submodel for the extinction rate, ν = ε ·K−x (Foley 1994,

Wissel et al. 1994), as a basis, we see that ln( p∗

1−p∗ ) ≈ − ln(ε) + x · ln(K) + ln(C). This

indicates that the central principle underlying the index derivation is the assumption that

the simulated metapopulation effectively behaves as an ideal, non-structured metapopu-

lation. In this case, two well-known results from metapopulation theory (Levins model,

standard submodel for extinction rate) indicate that p∗ actually follows a logistic regres-

sion law with ln(K) and ln(C) as explanatory variables. Vos et al. inserted the arithmetic

means Kmean and Cmean in order to deal with the effect of spatial heterogeneity.

9.2.2.3 Some methodological conclusions

The most important peculiarity of the index derivation in the case of individual-based

metapopulation models is that structural information (e.g. landscape variables vs, model

functions fa,b..(vs)) from the model development can be used. This considerably simplifies

the analysis work needed for the index derivation. As in the preceding case (Class I),

ecological understanding is essential for the search of functions Fµ,ν..(vs) which describe

the relationship between the target quantity Q and the landscape variables vs. Here,

two different sources of knowledge can be used: (a) experience gained from the model

analysis, and (b) theoretical knowledge, especially on the dependence of the metapopula-

tion dynamical quantity Q of interest on the extinction and colonization rates and on the

dependence of the extinction and colonization rates on the landscape variables vs.
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9.2.3 Class III: Presence-absence metapopulation models

This class of models is mainly characterized by two things: (a) The landscape structure

is given by a certain configuration of habitat patches and described by a set of patch

variables {vs =(v1
s , .., v

N
s )}, as is typical for metapopulations (see also Section 9.2.2). (b)

In contrast to the individual-based cases previously considered, the interplay between the

individuals and the landscape structure is not explicitly described anymore. Instead, it

is implicitly taken into account via the summary effect on the essential metapopulation

processes: the extinction and the colonization of patches. This is done by specifying the

process parameters q (q stands for the colonization rates cij, extinction rates νi, degrees

of correlation ρij etc.) by the mean of functions of the patch variables, i.e. q = f qaq ,bq ..(vs),

where the function parameters “aq, bq..” summarize the effects of the species’ ecology on

q. Examples for such functions are the widely used spatial submodels for the extinction

rates νi = f νiε,x = ε · A−xi and the colonization rates cij = f
cij
δ,β,d0

= δ · Aβi · e−dij/d0 .

9.2.3.1 Implications for the protocol

The structural properties of presence-absence metapopulation models ensure that the

degree of complexity is much lower than in the preceding model classes (Class I and Class

II). This is true in several respects: (a) The state space is tremendously reduced because

neither the states of the individuals nor the states of the local populations are taken

into account. Merely the occupancy states of the individual patches are considered. (b)

Only processes on the highest organizational level (extinction/colonization of patches) are

considered. In the result, there are only three types of process parameters q (colonization

rates, extinction rates, degrees of correlation). (c) The sole source of model complexity is

the individuality of the patches (patch-dependence of the process parameters).

The reduced model complexity increases the chance of determining the entire func-

tional relationship between the target quantity Q and all the process parameters {q}.

This has a serious implication for the derivation of metapopulation dynamical landscape

indices: It provides an alternative to the heuristic protocol presented in Section 9.2.1:

Step 1: Uncover the functional relationship between the target quantity Q and
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all the process parameters {q}. Search for an approximating function

F such that Q ≈ F ({q}). Although there is no guarantee of success,

approximating functions F can be determined in a mathematically driven

(Example 1 below) or in a heuristic way (Example 2 below).

Step 2: Insert the functions q = f qaq ,bq ..(vs) for the process parameters q in F ({q}).

The resulting expression QI = F ({f qaq ,bq ..(vs)}) relates Q to the patch

variables {vs}. Hence, it gives an appropriate landscape index for Q.

9.2.3.2 Some examples

Example 1: Metapopulation capacity λM

Hanski and Ovaskainen (2000) were interested in the landscape effects on (deterministic)

metapopulation persistence. They used the spatial Levins model, i.e. the system of dif-

ferential equations dpi
dt

= (
∑

j( 6=i) cji · pj) · (1− pi)− νi · pi, for simulating metapopulation

dynamics. Based on this model, they came up with an iteration scheme pi =
P
j( 6=i) cji·pjP

j( 6=i) cji·pj−νi

for the stable equilibrium (p∗1, .., p
∗
N). This allowed them to define metapopulation persis-

tence as instability of the trivial solution 0∗ = (0, ..0) of this scheme. To operationalize

this definition, they linearized the scheme in 0∗ and obtained the matrix M = (mij) with

mij =
cji
νi

and mii = 0. They argued that 0∗ is instable if the leading eigenvalue λM of this

matrix M (called metapopulation capacity) is > 1. The authors took λM as a measure

for metapopulation persistence and searched for an appropriate landscape index λIM .

The central step of the index derivation was the development of an approximation

formula for λM . To meet this goal, the authors applied a standard result from Algebra.

They used the fact that, for matrices M with non-negative entries, the leading eigenvalue

λM equals the limit of a sequence of Rayleigh quotients, i.e. λM = limn→∞
<Mn+1x,x>
<Mnx,x>

,

for each vector x > 0. They argued that the Rayleigh quotient <M21,1>
<M11,1>

for n = 1 and

x = 1 = (1, .., 1) provides already a satisfactory approximation for λM . This means that

λM ≈ λIM := <M21,1>
<M1,1>

= <M1,M∗1>
<M1,1>

=
P
i(
P
j mij)·(

P
j mji)P

k

P
j mjk

=
P
i(
P
j( 6=i) cji/νi)·(

P
j( 6=i) cij/νj)P

k

P
j( 6=k) ckj/νj

. Fi-

nally, the authors inserted the submodels νi = ε ·A−xi and cij = δ ·Aβi · e−dij/d0 in order to

include the landscape structure in λIM . This index derivation is mathematically driven.
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Example 2: Mean lifetime Tm

Frank and Wissel (2002) were interested in landscape effects on (stochastic) metapopula-

tion persistence. They used a spatially realistic Markov chain model for the simulation of

the metapopulation dynamics. They took the mean lifetime Tm as measure for metapop-

ulation persistence and searched for an appropriate landscape index T Im.

As in Example 1, the index derivation was essentially based on the development of

an approximation formula for Tm (see also Chapter 3 in this thesis). The central argu-

ment was the finding that every spatially heterogeneous metapopulation with parameters

(νi, cij) effectively behaves as a spatially homogeneous metapopulation with appropriately

aggregated parameters (νagg, (
ctot
ν

)agg). This allowed the authors to make use of the non-

spatial version of their model which is equivalent to a special birth-and-death model. For

this type of models, however, there is a close formula T hm for the mean lifetime Tm by Goel

and Richter-Dyn (1974). The desired landscape index T Im resulted from applying this for-

mula T hm to the aggregated parameters (νagg, (
ctot
ν

)agg), i.e. T Im = T hm(νagg, (
ctot
ν

)agg), and

inserting the relevant spatial submodels for νi and cij (e.g., νi = ε·A−xi , cij = δ·Aβi ·e−dij/d0).

The aggregation rules for (νagg, (
ctot
ν

)agg) have been heuristically determined. The criterion

for their acceptance was the ability to reproduce important (especially spatial) effects on

metapopulation persistence qualitatively correctly and quantitatively sufficiently.

9.2.3.3 Some methodological conclusions

Presence-absence metapopulation models have an important advantage. The compara-

tively small number of states and process parameters opens the possibility to work with

equation-based models (e.g., systems of differential equations, matrix models, Markov

chains) instead of with simulation models. This increases the chance of applying analyti-

cal or algebraic methods for the determination of the functional relationship between the

target quantity Q of interest and all the process parameters q. The two examples in the

preceding section give an impression about the methodological possibilities. Example 1

demonstrates the advantage of target quantities Q which are given by eigenvalues of a ma-

trix with non-negative entries. For such matrices, special approximation techniques exist

(Perron-Frobenius theory, Rayleigh approximation). Example 2 shows the potential of
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searching for effective/aggregated parameters and working with birth-and-death models.

These models have the merit that there are close formulas for a variety of target quantities

Q (Goel and Richter-Dyn 1974): (a) mean first passage times Fij, i.e. the time until the

first passage of j occupied patches when starting with i occupied patches, (b) probabil-

ities Rik of reaching k occupied patches before extinction when starting with i occupied

patches, (c) probabilities ci of reaching quasi-stationarity when starting with i occupied

patches, (d) probabilities hn of having n occupied patches under quasi-stationarity. These

formulas can be used as starting point for index derivations, as was done in connection

with the mean lifetime Tm. The bottleneck is the determination of the effective parameters

the functional structure of which may depend on the target quantity Q considered.

The effect of the interplay between the individuals and the landscape structure is

exclusively incorporated via the functions q = f qaq ,bq ..(vs) for the process parameters q.

While these functions are explicit in the landscape variables vs, they are implicit in the

effects of the species’ ecology and the individuals’ behavior. These effects are summarized

in the function parameters {aq, bq..}. This is a disadvantage because the relationship

between the summarizing parameters {aq, bq..} and the individual attributes of the species

are not explicitly known. This hampers to think in terms of ecological mechanisms.

This drawback can be partly overcome. One way is to use functions q = f qaq ,bq ..(vs)

which are not ad hoc but input-output surrogates of appropriate individual-based, spa-

tially explicit submodels for the model parameters q. In this case, the functional rela-

tionship between the parameters {aq, bq..} and the attributes of the species/individuals

can be analyzed and understood. With other words, the main idea is to follow a hier-

archical approach and to incorporate population dynamical landscape indices from lower

organizational levels. The following two examples illustrate this idea. The first example

is the widely used landscape index for the local extinction rate νIi = ε · A−xi . The power-

like dependence of νi on the patch area Ai has been proven by numerous theoretical and

individual-based population models (Foley 1994; Wissel et al. 1994). It is well understood

that the function parameter x can be interpreted as an inverse measure for the strength

of the environmental noise in the local populations. The second example is the landscape

index for the arrival probability aij by Heinz et al. (2004), aIij =
R(dij)

N−1
P
k R(dik)N−1 ·R(dij) with
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R(d) = 1− e−a·e−b·d (see also Example 2 in Section 9.2.1). As we have seen, this index is

the surrogate of an individual-based movement model and the function parameters a and

b summarize the effects of the individuals’ movement behavior. This index can be used for

specifying the colonization rate, e.g. cij = δ ·Aβi ·aIij. Doing this, Heinz et al. (submitted)

were able to show that the movement behavior has an influence on ranking orders among

habitat networks regarding their effect on the mean lifetime Tm of the hosted metapopu-

lation. This demonstrates that it is actually needed to integrate behavioral aspects into

metapopulation models, otherwise there is a high risk of counter-productive conclusions.

But we also see that it suffices to take the summary effect of the behavior into account.

Finally, we draw attention to another point. At first sight, one can get the impression

that, in the case of presence-absence metapopulation models, ecological understanding is

less important for the index derivation than in the two other cases. Analytical or algebraic

techniques allow a straightforward derivation of the indices desired without requiring any

ecological reflection. But note that ecological understanding is essential at an earlier stage

namely when the functions q = f qaq ,bq ..(vs) for the process parameters q are determined.

To summarize, we developed rough protocols for the derivation of (meta)population dy-

namical landscape indices for the three model classes considered. The developed protocols

are very similar to each other and merely differ in two respects: Firstly, they differ in the

need to search for landscape variables {vs} which seem to be decisive for the target quan-

tity Q. In Class I (Section 9.2.1), this requires extra analysis work, while, in the Classes

II (Section 9.2.2) and III (Section 9.2.3), the variables are already known from the model

structure. Secondly, the protocols differ in the methods for determining functions which

are able to describe the functional relationship between Q and the landscape variables

{vs}. With decreasing model complexity, there is a shift from purely heuristic-statistical

methods (Classes I and II) to analytical or algebraic methods (Class III). We also showed

that all the example indices listed in Table 9.1 and the methods of their derivation fit in

the general scheme. The methodological analysis of these examples brought additional

insights into the requirements of index derivations. We learned that ecological understand-

ing is indispensable for the derivation of (meta)population dynamical landscape indices.
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9.3 Implications of (meta)population dynamical land-

scape indices

So far, attention was focused on the methodology of index derivations. Now we go a

step further and analyze the “outcome” of the presented protocols. We show that the

resulting (meta)population dynamical landscape indices give rise to new insights with

serious implications for landscape analysis and management as well as for landscape-

ecological research. We finish the study with some prospects for further research.

9.3.1 Implications for landscape analysis

Regardless of the model class considered, the derived (meta)population dynamical land-

scape indices QI have the same functional structure: QI = Fµ,ν..({vs}), where {vs} are the

landscape variables / spatial statistics found to be relevant and {µ, ν..} are some function

parameters. The indices represent summarizing measures of the effect of the complex

interplay between the individuals and the landscape structure on the target quantity Q of

interest. While the spatial variables vs summarize effects of the landscape structure, the

function parameters {µ, ν...} summarize effects of the species’ ecology. To fully under-

stand the latter statement, remember the following: The protocol for Class III indicates

that QI = F ({f qaq ,bq ..(vs)}) where F is an approximating function for Q and f qaq ,bq ..(vs) are

the model functions for the process parameters q. In this case, Fµ,ν..() = F ({f qaq ,bq ..()}).

Hence, the function parameters {µ, ν...} coincide with {aq, bq..} which - per definition -

describe the effect of the species’ ecology on q and, hence, on Q. In the two other cases

(Classes II and III), the heuristic protocol presented in Section 9.2.1. is relevant. Step 1

of this protocol indicates that the influence of the individuals’ behavioral and life history

attributes on the shape of the Q-vs-pattern has to be assessed. This shape is reproduced

by Fµ,ν..(), i.e. the type of the function (e.g. being additive, multiplicative, power-like, or

logarithmic) and the function parameters {µ, ν...}. In this sense, Fµ,ν..() provides “species-

specific, population dynamical glasses” through which a given landscape can be assessed

and interpreted in terms of its effect on the target quantity Q of interest. The overall

landscape index QI = Fµ,ν..({vs}) provides a bridge between (meta)population dynamics
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and neutral landscape models in the sense of With and King (1999).

The concept of (meta)population dynamical landscape indices, QI = Fµ,ν,..({vs}), goes

beyond the concept of ecologically scaled landscape indices introduced by (Vos et al. 2001).

The idea of Vos et al. was to link landscape structures to ecological processes by appropri-

ately scaling, i.e. by relating the relevant landscape characteristics (e.g. area, distance) to

the spatial scale on which the modeled organisms typically act. This approach has a lot

of merits, but also two serious drawbacks: Firstly, temporal scales can also be important

because we are interested in the landscape effects on ecological processes. Secondly, it

is often not clear what the decisive scales are. Especially in the context of population

dynamics, the relevant scales often result from the interplay between the individuals and

the landscape and, hence, depend on the individuals’ behavior (for an illustration, see

the index derivation of the arrival probability aij or the mean dispersal distance Dm (Ex-

amples 2 and 3 in Section 9.2.1)). Using Fµ,ν,..() as “species-specific glasses” instead of

being exclusively focussed on scaling allows the drawbacks to be partly overcome. Fµ,ν,..()

indicates which species-specific characteristics (namely {µ, ν, ..}) are actually needed for

adequately reflecting the combined species-landscape effect on Q. These can be critical

spatial or temporal scales, but also other characteristics (e.g. strength of environmental

noise in the local populations). In this sense, the Fµ,ν,..()-approach is wider, more flexible

and better adapted to ecological processes than a pure scaling-approach.

9.3.2 Implications for landscape management

The species-specific characteristics {µ, ν, ..} in the (meta)population dynamical landscape

indices QI = Fµ,ν,..(vs) usually summarize the effect of a multitude of attributes describing

the individuals’ behavior and life history. This has an important implication. If two

species in a given landscape coincide in the species-specific glasses Fµ,ν,..() then they also

coincide in the landscape index QI = Fµ,ν,..(vs). This means that the two species show

the same response to changes in the landscape structure, as far as the effect on the target

quantity Q is concerned. Hence, the same recommendation for landscape management

can be given for the two species. This indicates that Fµ,ν,..() can be used as a basis for

an ecological classification of the species according to their management needs (see also
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the discussion on the ecological profile (Grimm et al. 1996; Frank and Wissel 1998; Vos

et al. 2001) or on the resilience profile of species (Weaver et al. 1996)). This is the

same sort of classification as was used in connection with the derivation of ecologically

differentiated rules of thumb for landscape management (remember Chapter 9). This

indicates that the (meta)population dynamical landscape indices QI = Fµ,ν,..(vs) and the

ecologically differentiated rules of thumb are closely linked to each other. Both together

provide a powerful toolbox for the analysis and management of ecological classes of species.

While the rules of thumb give a rough qualitative orientation for the management (e.g.

for prioritizing), the landscape indices enable quantitative assessments of the effect of

landscape changes on the (meta)population dynamical target quantity Q.

Nowadays, economic aspects become increasingly important for conservational land-

scape management. Management measures ought to be ecologically effective and econom-

ically efficient. This shows the relevance of cost-benefit analyses and utility functions in

this context. As we have seen, the interplay between the individuals and the landscape

structure is a key determinant of the (meta)population dynamical effect of any landscape

changing activity. Hence, it has to be integrated in the utility function. The presented

(meta)population dynamical landscape indices QI = Fµ,ν..(vs) provide a tool to do this.

They relate landscape changing activities to the effect on the (meta)population dynamical

target quantity Q which can than be evaluated by the actual utility function U(Q):

Landscape change

Species’ ecology

 Fµ,ν..(vs)−→
(Meta)population

dynamical

target quantity Q

U(Q)−→
Utility

U(Q)
−→

Cost-benefit

analysis

The resulting utility function U(Fµ,ν..(vs)) is ecologically differentiated in two respects:

the resulting spatial structure of the landscape and the species’ sensitivity to changes in

the landscape structure. It enriches the economic framework of landscape management.

9.3.3 Implications for the landscape-ecological research

(Meta)population dynamical landscape indices QI = Fµ,ν,..(vs) condense important in-

formation about both the interplay between the relevant processes, the role of spatial



9.3. IMPLICATIONS 253

heterogeneity, temporal variability and the individuals’ behavior and life-history in this

context, and the overall effect on the target quantity Q. This is mechanistic information.

Hence, we can conclude that (meta)population dynamical landscape indices enrich the

landscape-ecological framework because they support mechanistic thinking.

A rough (qualitative) understanding of the landscape effects on the (meta)population

dynamical target quantity Q of interest was the minimum condition for the derivation of

an appropriate landscape index QI (see Step 1 of the protocol in Section 9.2.1). There

are even indices where principles of population theory are used as starting point for

the index derivation. To see this, remember Example 4 in Section 9.2.1.2 where the

principle of population persistence ‘mortality m < fecundity f ’ was used to derive an

index for the critical traffic density TDcrit. This shows that (meta)population dynamical

landscape indices are quantitative measures of the landscape structure which stand on an

ecologically sound basis. Hence, they provide a bridge between (meta)population ecology

and landscape ecology. Doing so, they strengthen the theoretical basis of landscape ecology.

9.3.4 Implications for integrative modeling

(Meta)population dynamical landscape indices QI are surrogates of spatial (meta)popula-

tion models (remember the demand that the indices have to approximate or at least to

correlate with the target quantity Q produced by the model (see Step 4 of the heuristic

protocol in Sec. 9.2.1)). They approximate the relationship between the landscape struc-

ture and the target quantity Q by the mean of an input-output relation. Such relations

can be (a) integrated in more complex studies (e.g. integration of the index for the arrival

probability aij in metapopulation models), (b) used as objective functions in optimization

algorithms for reserve network design (remember the Example in Section 8.1.1.4), or (c)

used as starting point for the development of utility functions U(Q) = U(Fµ,ν,..(vs)) which

allow landscape structure and species’ ecology to be integrated in cost-benefit analyses in

the context of conservational landscape management. Hence, (meta)population dynam-

ical landscape indices QI = Fµ,ν,..(vs) open new possibilities of integrative modeling: To

integrate the indices is a powerful alternative to integrating the underlying models.
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9.4 Prospects for further research

Our study shows that (meta)population dynamical landscape indices represent a powerful

tool for landscape analysis and management as well as for landscape-ecological research.

Therefore, it is useful to look for possibilities to extend the presented model-based method-

ology of index derivation to more complex situations. (a) So far, we assumed that the

spatial structure of the landscape in which the (meta)population dynamical processes

take place is static. Hence, it is worth to take landscape dynamics into account and to

analyze their influence on the landscape indices and the protocol of their derivation. A

question of particular importance is the role of the rate with which the landscape changes

occur. (b) The presented methodology for the derivation of (meta)population dynamical

landscape indices was originally developed for the case of single species. As we have seen,

the resulting indices QI = Fµ,ν,..({vs}) are valid for entire classes of species (see Section

9.3.1). Interactions between the species, however, were completely ignored so far. This

directly leads to the question whether the methodology can be extended to systems of

interacting species. Note that there are additional challenges in this case. For different

species, different landscape structural elements can be relevant. Additionally, interac-

tions between the species may completely change the spatio-temporal structure of the

population dynamics. Therefore, it is not obvious what landscape structural elements

are decisive for the overall dynamics. It is also questionable whether simple landscape

indices can be found at all in this complex situation. The influence of type and intensity

of the interaction between the species is another important aspect. A study by A. Singer

(unpubl.1) produced promising results. He investigated the viability of populations of

The Dusky Large Blue butterfly (Maculinea nausithous). The development of the but-

terflies strongly depends on interactions with their host ants and host plants. In spite

the complexity (static plant distribution, dynamic ant distribution which changes under

the pressure of the butterflies), Singer found a simple landscape index which strongly

correlates with the mean lifetime Tm of the butterfly populations. If it would be generally

possible to find landscape indices which describe the relationship between the landscape

1The study is part of a PhD thesis which is in preparation. The study was supervised by me.
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structure and the population dynamics of interacting species then these indices would pro-

vide a bridge between landscape ecology and community ecology. (c) Landscape indices

are tools for quantifying and analyzing the effects of landscape patterns on ecological pro-

cesses. It is worth to search for possibilities to develop a similar concept for assessing the

effects of disturbance regimes. Disturbance indices certainly have to take all the relevant

characteristics of a disturbance (frequency, intensity, spatial scale) but also its effect on

the ecological system under consideration into account. To summarize, all these research

projects would contribute to a mechanistic approach to biodiversity research.
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die Überlebensfähigkeit von territorialen Wildtierpopulationen: Eine Modellanalyse.

Diplomarbeit Universität Osnabrück

Vos C.C., Verboom J., Opdam P.F.M., and Ter Braak C.J.F. 2001. Toward ecologically

scaled landscape indices. The American Naturalist 157: 24-41.

Weaver, J.L., Paquet, P.C. and Ruggiero, L.F. 1996. Resilience and conservation of large

carnivores in the Rocky Mountains. Conservation Biology 10: 964–976



9.5. REFERENCES 257

Wiegand T., Moloney K., Naves J., and Knauer F. 1999. Finding the missing link be-

tween landscape structure and population dynamics: a spatially explicit perspective.

The American Naturalist 154: 605-627.

Wissel, C., Th. Stephan, and S.-H. Zaschke. 1994. Modelling extinction of small

populations. In: Remmert, H. (ed.) Minimum viable populations (Ecol. Studies

106). pp. 67–103

With, K.A. 1997. The application of neutral landscape models in conservation biology.

Conservation Biology 11: 1069–1080

With, K.A., and King, A.W. 1997. The use and misuse of neutral landscape models in

ecology. Oikos 79: 219–229

With, K.A., and King, A.W. 1999. Extinction thresholds for species in fractal landscapes.

Conservation Biology 13: 314–326



258 CHAPTER 9. (META)POPULATION DYNAMICAL LANDSCAPE INDICES



Part IV

Lessons learnt

259





Chapter 10

The thesis at a glance

The aim of this Chapter is to give a brief overview over the thesis as a whole. This concerns

(a) the general aim and relevance of the thesis, (b) some methodological challenges and

the approach to master them, (c) the conception of the studies presented in Parts I to III

(Chapters 2 to 9), and last but not least (d) the lessons learned from these studies.

10.1 General aim of the thesis and its relevance

The thesis addresses the subject of stochastic metapopulation persistence in spatially het-

erogeneous landscapes. A matter of particular interest is the interplay between landscape

structure, species’ ecology, and stochasticity and its effect on metapopulation persistence.

The thesis primarily aims at contributing to metapopulation theory and conservation

management by the mean of modeling. This includes the development of appropriate

methods of model building and analysis where necessary. The thesis additionally aims at

synthesis work. This is motivated by the wish to make the experience gained in the course

of the metapopulation studies applicable to other fields of environmental research. This

concerns the methodology of using models for the disclosure of general principles, the

development of concepts for theory and management, and the derivation of tools for

decision-support. In this sense, the synthesized results go beyond the topic of metapop-

ulation persistence and provide bridges to other disciplines of environmental research.

To analyze the functional relationship between landscape structure, species’ ecology
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and metapopulation persistence is relevant for several reasons: (a) The interplay between

spatial patterns and ecological processes is a core topic of spatial ecology. The role of

stochasticity in this context is of particular interest. (b) Habitat loss and fragmentation

are among the key factors of extinction for many species. The development of concepts

and strategies for counteracting the negative effects of these landscape changes is urgent.

A comprehensive understanding of the landscape- and species-ecological conditions of

metapopulation persistence strengthens the scientific basis for the development of such

strategies. (c) The derivation of model-based tools for decision-support in conservational

landscape management is a general objective of applied environmental research.

10.2 Methodological challenges and the approach to

master them

Theory building and management support require generalization work. This is a challenge

in view of the biocomplexity caused by (a) the diversity of the organismic levels involved

in metapopulation dynamics (individual, population, metapopulation processes), (b) the

multitude of factors and processes interacting on each particular organismic level, and (c)

biological variability (spatial heterogeneity, stochasticity, individual variability).

The thesis follows a hierarchical modeling approach to master the challenges. A main

model focusing on the processes on the metapopulation level is supplemented by a cascade

of submodels for integrating effects from lower levels such as the effects from the landscape

structure and the species’ ecology. Special methods of model analysis are developed in

order to manage the complexity caused by biological variability. The main emphasis of

the methodological development work, however, is placed on the support of generalization

and unification and on the derivation of model-based tools for decision-support.

10.3 Conception of the individual studies

In Part I (Chapter 2), the modeling framework is developed which underlies the thesis. In

addition to the main model, a collection of altenative submodels is given to cover a wide
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range of ecological situations. The specification of the models is supplemented by ecolog-

ical justifications to the benefit of a better understanding of the model results. Finally,

definition and measures of stochastic metapopulation persistence used (survival chance

Sx0(t), probability of reaching quasi-stationarity cx0 , mean lifetime Tm) are specified.

Part II (Chapters 3 to 6) is dedicated to the analysis of important aspects of stochastic

metapopulation persistence (e.g. minimum and optimum conditions for long-term per-

sistence; interrelation between deterministic and stochastic metapopulation persistence).

Various aspects of the landscape structure (e.g. number and configuration of patches,

patch size distribution, pattern of connectedness) and of the species’ ecology (e.g. strength

of environmental noise in the local populations, dispersal strategies) are analyzed in terms

of their effect on metapopulation persistence. A matter of special interest is the role of

synchrony / spatial correlation in the extinction processes. In order to meet the objectives

of the different studies, special methods of model analysis are developed (e.g. hierarchi-

cal model analysis, work with non-spatial models and effective parameters, combination

of numerical and algebraic analyses). In all the studies, special model-based tools for

decision-support are developed (e.g. an approximation formula for the mean lifetime

Tm of metapopulations, a Principle of Optimality for metapopulation persistence, various

rules of thumb for landscape management) which condense the scientific results presented.

Chapters 3 to 6 are mainly based on papers published in peer-reviewed journals.

The character of Part III (Chapters 7 to 9) is different. Its major aim is to make

the experience gained in the course of the metapopulation studies in Part II applica-

ble to other fields of environmental research. Therefore, Chapters 7 to 9 are primarily

dedicated to methodological reflection, review and synthesis work on the basis of this the-

sis and the literature. The methodological work addresses three topics: (a) the use of

models for generalization and unification under biocomplexity, (b) the derivation of eco-

logically differentiated rules of thumb for landscape management, and (c) the derivation

of (meta)population dynamical landscape indices. The results attainable from the ap-

proaches and methods presented have implications for different fields of ecological research

(e.g. community ecology, landscape ecology, road ecology, ecotoxicology) and various in-

terdisciplinary aspects of landscape management (e.g. landscape planning, development
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of economic instruments, integrated assessment). Chapters 7 to 9 are unpublished so far.

10.4 Lessons learnt

In the following, we give a brief overview over central results of the thesis. Two classes of

results are distinguished: (a) results which address the core topic of the thesis - metapop-

ulation persistence - and which contribute to theory building and management support

in this context, and (b) results which go beyond metapopulation persistence.

10.4.1 Contributions to metapopulation theory

Stochastic metapopulation persistence is influenced by several factors: the spatial struc-

ture of the underlying habitat network, the ecological attributes of the target species,

different sorts of stochasticity, and the initial occupancy state x0 of the metapopulation.

The thesis aimed at obtaining a better mechanistic understanding of the relative impor-

tance of the different factors, their interplay and their overall effect on metapopulation per-

sistence. This includes the disclosure of general principles of metapopulation persistence.

The following results concern metapopulations which have reached quasi-stationarity. In

this case, metapopulation persistence is independent of the initial occupancy state x0 and

all the relevant effects are summarized in the mean lifetime Tm.

Below, we thematically group the results of the studies from Chapters 3 to 6. This

“grouping” is done in order to maximize the understanding of the different persistence ef-

fects which usually have various “dimensions”, i.e. depend on various factors. This has the

price of a certain doubling, because the effects are discussed from different perspectives.
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Figure IV.1: The central components of the persistence analyses

10.4.1.1 An approximation formula for the mean lifetime Tm

We deduced an approximation formula for the mean lifetime Tm of (quasi-stationary)

metapopulations in heterogeneous landscapes (see Chapter 3). This formula is completely

expressed in terms of the decisive factors of any (stochastic) metapopulation dynamics:

the number of patches N , the colonization rates cij, the local extinction rates νi, and

the degrees of correlation ρij. The formula is “two in one”: (a) a result of persistence

analyses, and (b) an element of the methodology of model analysis developed in the thesis

with the aim to allow more structural persistence analyses and generalization work.

Lesson 1 (Chapter 3):

Although being less precise, the approximation formula T am of the mean lifetime Tm

has a major advantage: it provides structural insight into the functional relationship

between stochastic metapopulation persistence, landscape structure, and species’

ecology. The formula discloses how landscape-structural and species-ecological char-

acteristics interact and influence the mean lifetime Tm. In the result, numerous

important effects on stochastic metapopulation persistence can simply be read-off –

just by analyzing the functional structure of approximation formula T am.

All the Principles and Lessons presented in Section 10.4.1 have been derived by using

approximation formula T am in one or another form (for details, see Chapters 4 to 6).

10.4.1.2 Principles of metapopulation persistence

Principle 1 (Chapter 4):

Long-term metapopulation persistence can only be obtained if the following pre-

conditions are met: (a) a certain minimum colonization potential of the local pop-

ulations measured in terms of the number of emigrants released during the lifespan

of the local populations, (b) asynchrony, i.e. a low degree of correlation of the ex-

tinction processes in the local populations, and (c) a certain minimum connectivity

between the patches measured in term of the arrival probability of the dispersers.
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Principle 2 (Chapter 5):

In case of strong environmental noise in the local populations, metapopulation per-

sistence is maximum if
∑

j( 6=i) cij =
∑

j( 6=i) cji for all patches i, i.e. there is a balance

between “colonizing” (
∑

j( 6=i) cij) and “becoming recolonized” (
∑

j( 6=i) cji). This bal-

ance condition reflects the fact that, in case of strong environmental noise, the local

populations are short-term persistent such that the metapopulation depends on the

functioning of the cycle “colonizing, going extinct, becoming recolonized”.

The two Principles are general in the sense that they are independent of the details of the

extinction and colonization processes, the landscape structure and the species’ ecology.

They provided the departure point for the derivation of some of the Lessons listed below.

10.4.1.3 Consequences of ensuring asynchrony and a minimum connectivity

In case of distance-dependent degrees of correlation (e.g. ρij = CORR(dij)), the need to

ensure both asynchrony and a certain minimum connectivity between the patches as a

precondition for long-term metapopulation persistence (cf. Principle 1, Section 10.4.1.2)

leads to demands on both the species’ ecology and the landscape structure:

Lesson 1 (Chapter 4):

Asynchrony and minimum connectivity are only attainable at the same time if (a)

the species’ dispersal range da is above the correlation length dρ (condition on the

species’ ecology), and (b) the distance to the nearest neighboring patches d is above

dρ but below da (condition on the patch configuration). This ensures that all patches

lie outside the range of correlation of any other patch but are still reachable.

Lesson 2 (Chapter 4):

The different spatial factors in the play (correlation length dρ, species’ dispersal

range da, scale d and type of the patch configuration) are not of the same value for

metapopulation persistence: As long as the species’ dispersal range fails the condi-

tion required (da > dρ), there is no chance of obtaining long-term metapopulation

persistence through a change in the landscape structure. Furthermore, an appro-
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priate configuration scale is needed (dρ < d < da) before the configuration type

becomes limiting. This leads to the following Hierarchy of Importance:

dispersal range . configuration scale . configuration type.

This especially indicates that only those species which cope with the spatial scale of

the extinction processes dρ have a chance to persist in metapopulations in the long

term. Hence, there is only a class of species which can benefit from metapopulation

management (e.g. reserve network design, connecting measures) at all.

10.4.1.4 Effects of the landscape structure

The following results provide insight into (a) the role of spatial heterogeneity for (stochas-

tic and deterministic) metapopulation persistence, (b) the effect of the interplay between

spatial heterogeneity and stochasticity, (c) the spatial scale of metapopulation dynamics,

(d) the role of the patch configuration, and (e) the role of the patch size distribution.

Lesson 1 (Chapters 3 and 6):

For each metapopulation with patch-specific parameters (cij, νi, ρij), there is a ho-

mogenous metapopulation with aggregated parameters (cagg, νagg, ρagg) of nearly the

same mean lifetime Tm. Hence, all the effects of spatial heterogeneity relevant for

persistence are summarized in the aggregated parameters (cagg, νagg, ρagg).

Lesson 2 (Chapter 6):

By algebraic analysis of the functional structure of the approximation formulas for

the metapopulation capacity λM (measure of deterministic persistence) and the

mean lifetime Tm (measure of stochastic persistence), we revealed the following: In

the deterministic case, heterogeneity in the colonization ability of the local popula-

tions is always advantageous for metapopulation persistence. Hence, concentration

to few strong local populations is favorable. In the stochastic case, however, het-

erogeneity in the colonization ability of the local populations has always a trade-off

effect on metapopulation persistence: there is a positive effect on the strength of the
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local populations but a negative effect on the effective number of patches. Which ef-

fect dominates depends on the time scale of local persistence Tl = 1/νagg in relation

to the time horizon tH chosen for the analysis of metapopulation persistence. The

findings are independent of the details of the colonization and extinction processes.

Lesson 3 (Chapter 6):

In case of moderate or strong environmental noise in the local populations, there

are extra effects of the interplay between spatial heterogeneity and stochasticity in

the sequence of extinction and colonization events on metapopulation persistence.

In this case, local persistence is merely short-term such that the negative effect of

heterogeneity on the effective number of patches becomes limiting (cf. Lesson 2). In

the result, absolute and relative results (e.g. trends, ranking orders among alterna-

tive scenarios) on metapopulation persistence are highly sensitive to following the

deterministic or the stochastic approach. In particular, spatial effects on metapopu-

lation persistence can be completely different depending on whether stochasticity in

the sequence of extinction and colonization events is ignored or taken into account.

Lesson 4 (Chapter 4):

The presented minimum conditions for long-term metapopulation persistence (cf.

Principle 1 (Section 10.4.1.2) and Lesson 2 (Section 10.4.1.3)) merely depend on the

relationship between the dispersal range da (or patch distance d) and the correlation

length dρ. Thus dρ defines a spatial scale for any metapopulation dynamics and pro-

vides a yardstick for estimating the survival chance from both the species-ecological

(da) and the landscape-structural (dij) point of view. Whenever dρ is neglected, a

totally distorted picture of metapopulation persistence may occur.

Lesson 5 (Chapter 4):

Patch configurations are characterized by two factors: the scale (mean distance to

the nearest neighbor patches) d and the type (relative arrangement of the patches).

The question of which configuration type is better for metapopulation persistence

(e.g. “Chain” or “Array”) cannot be answered in general. The answer depends on

the configuration scale d and its relation to the correlation length dρ. As long as d is
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around or above dρ, an “Array” is better because of its higher arrival probability. If

d is markedly below dρ, however, a “Chain” is better because of its lower degree of

correlation. Long-term metapopulation persistence can only be obtained if d > dρ.

Lesson 6 (Chapter 5):

The question of what patch size distribution is optimum for metapopulation persis-

tence in a habitat network with a given patch configuration cannot be answered in

general. The optimum patch size distribution strongly depends on two factors: (a)

the strength of the environmental noise in the local populations that depends on the

strength of fluctuations in essential environmental factors and the species’ sensitiv-

ity to them, and (b) the species’ dispersal strategy: If the environmental noise in the

local populations is weak then a uniform patch size distribution is optimum. If this

noise is strong then the size Ai of the patches ought to correspond to their “com-

petitiveness” DCi (competition for dispersers), i.e. Ai
Aj
≈ DCi

DCj
. The competitiveness

DCi depends on the landscape structure and on the species’ dispersal strategy:

• Passive dispersal: DCi = const = 1 (equal competitiveness);

• Corridor-oriented dispersal: DCi = ni (number of adjacent corridors);

• Patch-oriented dispersal (large N): DCi = ñi (number of nearest neighbors);

• Patch-oriented dispersal (small N): DCi=
∑

k R(dik)
N−1 (total accessibility).

Once the values of the arrival probabilities aij are known and the colonization rates

are described by cij = δ ·Ai ·aij, the optimum patch size distribution Ai = popti ·Atot
can be determined by solving a simple system of linear equations (see (5.12)) derived

from the Principle of Optimality (cf. Principle 2, Section 10.4.1.2).

Lesson 7 (Chapter 5):

The preceding findings contribute to the ongoing discussion about the role of patch

size variability for metapopulation persistence. Evidently, patch size variability is

only favorable if (a) the species shows strong environmental noise and a dispersal

strategy that induces competition between the patches for dispersers, and (b) the

“right” patches are above-average large. The latter condition reflects the fact that, in
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case of dispersal with competition effect, the patch size distribution has to tally with

a other spatial aspects of the habitat network (e.g. patch configuration, arrangement

of corridors). What aspect is relevant depends on the dispersal strategy.

10.4.1.5 Effects of the species’ ecology

The analyses of the effects of the species’ ecology on metapopulation persistence were

focused on the following two aspects: (a) the influence of the species’ ecological attributes

on relative results (e.g. trends, ranking orders among alternative scenarios), and (b) min-

imum conditions to be met by the species to allow long-term metapopulation persistence.

Lesson 1 (Chapter 5):

Not surprisingly, the species-ecological attributes analyzed were found to influence

metapopulation persistence. Some of these attributes, however, merely affect abso-

lute results. Only few species-ecological attributes were found to influence the rela-

tive results. Examples for such attributes are: (a) the strength of the environmental

noise in the local populations (depending on the species’ sensitivity to fluctuations

in decisive environmental factors), and (b) the species’ dispersal strategy.

Lesson 2 (Chapter 6):

The strength of environmental noise in the local populations determines the sensitiv-

ity of the functional relationship between metapopulation persistence and landscape

structure to ignoring or including stochasticity in the colonization and extinction

events. It determines the occurrence of extra-effects caused by the interplay between

spatial heterogeneity and stochasticity (cf. Lesson 3, Section 10.4.1.4).

Lesson 3 (Chapter 5):

The strength of environmental noise in the local populations influences the optimum

patch size distribution in a given habitat network and its sensitivity to both the spa-

tial structure of the network and the species’ dispersal strategy (cf. Lesson 6, Section

10.4.1.4). This results from the fact that the environmental noise determines the

degree of local persistence and the relative importance of successful recolonizations.
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Lesson 4 (Chapter 5):

The species’ dispersal strategy determines whether and how the optimum patch size

distribution depends on the network structure (e.g. patch configuration, arrange-

ment of corridors). However, only a few characteristics of the dispersal strategy

were found to be decisive: (a) whether a competition effect between the patches for

dispersers is induced, and (b) what landscape elements attract the dispersers, guide

them to one patch and prevent them from moving to any other patch.

Lesson 5 (Chapter 5):

The mentioned “competition effect” induces additional interactions between the dif-

ferent elements of the spatial structure of the habitat network. This can considerably

alter the effect of the landscape structure on metapopulation persistence. There-

fore, the competition effect has to be taken into account, otherwise there is a high

risk of counter-productive conclusions. Since actively dispersing individuals often

use special landscape elements as a guide, competition effects are expected to be

common. Despite this, most metapopulation models ignore the competition effect.

Lesson 6 (Chapter 4):

The species’ dispersal range da determines the chance of obtaining long-term meta-

population persistence by an appropriate landscape management. Long-term per-

sistence is only attainable if the dispersal range da exceeds the correlation length dρ.

10.4.1.6 Effects of stochasticity

Different sources of stochasticity have been analyzed in terms of their effect on metapop-

ulation persistence: (a) environmental noise in the local populations, (b) stochasticity in

the sequence of colonization and extinction events, and (c) the spatial correlation/scale of

the extinction processes which can be interpreted as an indicator for regional stochasticity.

Lesson 1 (Chapter 6):

The strength of environmental noise in the local populations determines character

and extent of the effect of stochasticity in the sequence of extinction and colonization

events on metapopulation persistence. With other words, important (quantitative



272 CHAPTER 10. THE THESIS AT A GLANCE

and even qualitative) persistence effects of one source of stochasticity can markedly

depend on the strength of another source of stochasticity at another (here: lower)

organizational level. This indicates that correct conclusions about metapopulation

persistence can only be drawn if the interplay between different sources of stochas-

ticity at the different levels is taken into account. This requires further research.

Lesson 2 (Chapter 6):

Spatial heterogeneity causes a decrease in the effective number of patches Ñ . This

results in an increasing number of critical initial occupancy states x0 which are

characterized by a considerable risk of failing quasi-stationarity. These are clear

symptoms of an increasing effect of the stochasticity in the extinction and coloniza-

tion events. To see this, remember that effects of the initial occupancy states x0 on

metapopulation persistence are completely missing in the deterministic approach.

Lesson 3 (Chapter 4):

The degree of correlation in the extinction processes limits the chance of obtaining

long-term metapopulation persistence. As long as this degree is noticeable, long-

term persistence is impossible. The negative effect of a simultaneous extinction of

several local populations cannot be compensated by increased colonization. This is

analogous to the situation in the local populations where the negative effect of strong

environmental noise cannot be compensated by an increase in the carrying capacity.

These lessons provide deeper insight into the concept “metapopulation persistence” and

the interplay between landscape structure, species’ ecology and stochasticity in general.

10.4.2 Contributions to metapopulation management

Metapopulation management aims at obtaining long-term metapopulation persistence.

Its effectiveness, however, was controversial as was mentioned in Chapter 1.

The results of this thesis support metapopulation management in several respects.

Firstly, they strengthen the scientific basis of metapopulation management by providing

insight into (a) minimum conditions for long-term metapopulation persistence, (b) op-

timum habitat network design, (c) the relative importance of various spatial factors as
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a basis for management prioritizing, and (d) sources of ecological uncertainty (see the

Lessons in Section 10.4.1). Secondly, the scientific results have been condensed in various

model-based tools for decision-support in metapopulation management.

10.4.2.1 What every decision-maker should have in mind

In the following, we assemble a number of findings every decision-maker should have in

mind when designing metapopulation management. These findings help to determine (a)

whether metapopulation management is useful at all in a given situation, and (b) which

measures are most favorable for metapopulation persistence. They also indicate (c) under

which conditions using the stochastic approach for the persistence analyses is vital.

Lesson 1 (Chapter 4):

There is only a class of species which can benefit from metapopulation management

at all. A species can only persist as a metapopulation in the long term if its dispersal

range da exceeds the correlation length dρ, i.e. the spatial scale of extinction.

Lesson 2 (Chapter 4):

Metapopulation management is only effective, i.e. leads to long-term persistence, if

a number of landscape-structural preconditions are met: (a) the local populations

have a certain minimum colonization potential, i.e. they are not too weak, and (b)

no patch lies inside the correlation range dρ of any other patch.

Lesson 3 (Chapter 4):

The latter condition in Lesson 2 has serious implications for management prioritizing

in different situations: (a) If patch choice in connection with habitat network design

is the aim then the scale d of the resulting habitat network (mean distance to

the nearest neighbors) is of higher importance than the relative arrangement of the

patches. (b) If a given species in a given habitat network is considered then ensuring

asynchrony in the extinction processes is a matter of priority. Desynchronization can

be obtained by reducing the spatial scale dρ of critical anthropogenic disturbances /

land use, or by diversity in the patches’ exposition to critical environmental factors.
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But note that the effect of desynchronization is only sufficient if dρ becomes smaller

than both the scale d of the habitat network and the species’ dispersal range da.

Lesson 4 (Chapter 6):

In the case of strong environmental noise in the local populations or strong spatial

heterogeneity in the habitat network, it is vital to use the stochastic approach for

the analyses of metapopulation persistence. This requires to take into account (a)

the time-horizon of the persistence analysis tH , (b) the accepted risk of extinction

ε, and (c) the initial occupancy state x0, and to expect (d) extra-effects of spatial

heterogeneity on absolute and relative results. Otherwise, there is a high risk of

drawing counter-productive conclusions about metapopulation persistence.

Lessons 1 to 3 particularly indicate that the question of the effectiveness of habitat con-

necting management cannot be answered in general terms. The answer depends on the

ecological attributes of the target species and the spatial structure of the habitat network.

10.4.2.2 Model-based tools for decision-support beyond computer programs

Models support conservation management in several aspect: They allow (a) ecological

effects to be quantified, (b) alternative scenarios to be simulated, compared and ranked

according to their ecological effect, (c) key factors of persistence and sources of uncertainty

to be identified etc. A decision-maker, however, can only benefit from a model if he has

access to an implemented version of the model (e.g. computer program) or to special

tools which allow the same conclusions to be drawn as the original model.

In the thesis, various model-based tools for decision-support in metapopulation man-

agement have been derived. These tools represent alternatives to using software. Each

tool has a special range of applicability, special pros and special cons.

Lesson 1 (Chapters 3 to 6):

The approximation formula T am for the mean lifetime (see Chapter 3) is a powerful

tool for decision-support: Firstly, it allows the decisive measure of metapopulation

persistence - the mean lifetime Tm - to be predicted on a direct way, i.e. without

having to resort to extensive simulations. Secondly and even more important, it
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provides a “tool for developing tools for decision-support”. This is meant in the sense

that important structural information can simply be extracted by analyzing the

functional structure of the approximation formula T am. This enabled us to disclose

a Principle of Optimality, a Hierarchy of Importance, as well as various Rules of

Thumb - each being a tool for decision-support on its part (cf. Lessons 2 to 4).

Lesson 2 (Chapter 5):

The Principle of Optimality (
∑

j( 6=i) cij =
∑

j( 6=i) cji for all i; cf. Principle 2 in Section

10.4.1.2) provides a tool for determining the optimum patch size distribution in the

case of strong environmental noise in the local populations. If the colonization

rates are described by cij = δ · Ai · aij and the patch areas by Ai = pi · Atot where

Atot is the total amount of habitat and pi the percentage of habitat allocated to

patch i, then the system of balance equations
∑

j( 6=i) cij =
∑

j( 6=i) cji simplifies to

a system of linear equations (−
∑

j( 6=i) aij) · pi +
∑

j( 6=i) aji · pj = 0 in the pj’s (see

(5.12)). Perron-Frobenius theory indicates that this system of linear equations has

a uniquely determined (up to a scaling factor) solution with non-negative entries qi.

The optimum patch size distribution desired results from Ai = qi
q1+..+qN

· Atot.

Undoubtedly, the optimum itself is not attainable in most cases. Nevertheless,

the information summarized in the optimum is highly relevant for metapopulation

management. The optimum patch size distribution, for instance, indicates in which

direction ought a habitat network be changed to maximize the ecological benefit,

i.e. which patches ought be enlarged in the realm of habitat restoration measures.

Lesson 3 (Chapter 4):

The Hierarchy of Importance among the different spatial factors of metapopulation

persistence revealed (cf. Lesson 2 in Section 10.4.1.3) is a useful tool for setting

management priorities. The hierarchy indicates that a change in a certain factor

does not have any considerable effect on metapopulation persistence as long as not

all conditions governing factors “higher” in the hierarchy are really met. In this case,

the scope of management ought to be changed or a certain preparatory management

ought to implement the conditions required. The knowledge of all these relationships



276 CHAPTER 10. THE THESIS AT A GLANCE

increases the chance of investing scarce resources with higher effects on persistence.

Lesson 4 (Chapters 4 to 6):

All the Lessons about the effects of the landscape structure assembled in Section

10.4.1.3 can be interpreted as Rules of Thumb for conservational landscape man-

agement. They condense important spatial effects on metapopulation persistence

in a verbal way and concern aspects such as minimum and optimum conditions for

metapopulation persistence, the role of spatial heterogeneity, the choice of an appro-

priate modelling approach for the persistence analyses etc.. Evidently, these rules

are not universal, i.e. valid for all species. They are only valid for classes of species

sharing a common ecological profile, i.e. a set of ecological attributes which charac-

terize the species’ sensitivity to changes in the landscape structure (e.g. strength of

environmental noise in the local populations, species’ dispersal strategy (dispersal

range, generation of a competition effect between the patches for dispersers)). In

this sense, the presented rules of thumb are ecologically differentiated.

Lesson 5 (Chapters 4 to 6):

The four tools for decision-support presented (Lessons 1 to 4) condense structural

information that gives rise to conclusions about sources of ecological uncertainty:

The approximation formula T am indicates which species-ecological attributes merely

influence the absolute but not the relative results about metapopulation persistence:

all attributes which exclusively serve as factor of proportionality in formula T am.

The Principle of Optimality reveals that the species’ dispersal strategy is a key factor

for the optimum patch size distribution. Hence, uncertainty in the species’ disper-

sal strategy matters - but only if there is uncertainty in the following two aspects:

whether a competition effect between the patches for dispersers is induced and what

landscape elements attract the dispersers (cf. Lesson 4 in Section 10.4.1.5).

The Hierarchy of Importance indicates that, as long as a factor on a certain hierar-

chical level fails the persistence condition required, there is no chance of obtaining

long-term metapopulation persistence through changes in factors on lower hierar-

chical levels. Hence, uncertainty in all the factors on these lower levels does not
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influence the absolute results concerning the persistence of a metapopulation.

The Rules of Thumb are formulated for classes of species with common ecological

profile. Hence, as long as uncertainty in the species’ ecological attributes remains

within the limits of the profile, the conclusions about the effects of the landscape

structure remain unchanged. Uncertainty only matters if it goes beyond the limits.

The presented model-based tools for decision-support have one major advantage over the

use of software: The decision-maker is no longer dependent on the availability of appro-

priate software. Once approximation formula, Principle of Optimality, Hierarchy of Im-

portance, or the various Rules of Thumb are published, they can immediately be used by

the decision-maker. However, these tools also have a disadvantage: They merely support

specific aspects of decision-making in metapopulation management. The approximation

formula merely supports analyses from the perspective of a particular target quantity

(here: the mean lifetime Tm). The Principle of Optimality merely supports the determi-

nation of the optimum patch size distribution. Approximation formula and Principle of

Optimality are quantitative tools, whereas the Hierarchy of Importance and the Rules of

Thumb are exclusively qualitative and providing a rough orientation only. In all cases,

a mechanistic understanding of the interplay between landscape structure and species’

ecology and its effect on metapopulation persistence was central for the derivation.

10.4.3 Conclusions about metapopulation modeling

One particular challenge in connection with metapopulation modeling is the management

of the effects of spatial heterogeneity. The results in Chapter 3 indicate one possible way

of model simplification and of combining structural realism with tractability.

Lesson 1 (Chapter 3):

The non-spatial version of the spatially realistic metapopulation model used in this

thesis was found to cover all the effects of spatial heterogeneity that are relevant

for metapopulation persistence and described by the original model - provided its

parameters p are appropriately specified (p = pagg). Hence, the entire effect of

spatial complexity is summarized in special aggregations pagg of the patch-specific
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parameters pi of the original model. This finding is valid for both deterministic and

stochastic metapopulation persistence. The rules for the aggregation of the patch-

specific parameters pi, however, differ in the deterministic and stochastic cases.

Lesson 2 (Chapter 3):

The idea to use appropriately aggregated parameters pagg for covering effects of spa-

tial heterogeneity is analogous to the mean field techniques widely used in Physics.

However, the aggregation rules used in the metapopulation context are more so-

phisticated than usual arithmetic, geometric, or harmonic means. The aggregation

rule Eagg for the number of emigrants Ei (see (3.14)), for instance, indicates that

Eagg consists of special weighted means
∑

j( 6=i) w
i
j ·Ej of the Ej’s where the weights

wij =
ajiP

n( 6=i) ani
depend on the arrival probabilities aki. This shows that the aggrega-

tion rules reflect the interactions between the different spatial factors and processes.

Lesson 3 (Chapters 3 and 7):

The fact that a homogenous model in combination with appropriately aggregated

parameters covers the effects of spatial heterogeneity is an indicator for complete

mixing in the metapopulation. At first sight, this looks surprising because individual

dispersal was assumed to be restricted to a certain spatial scale. But note that the

dispersing individuals act as “moving reproducing units”: They create new local

populations which will be the source for further interactions. In this sense, a single

individual can cause a whole sequence of interactions on a much larger spatial scale.

In the result, the metapopulation becomes effectively mixed in the course of time,

although the range of interaction of the single individuals is restricted. The only

precondition is that the sequence of interactions does not break down too early. This

implies that the colonization rates significantly exceed the extinction rates. This

condition, however, has anyway to be met to ensure quasi-stationarity.

10.4.4 Beyond metapopulation persistence

Part III (Chapters 7 to 9) of the thesis aimed at making the experience gained in the course

of the metapopulation studies in Part II (Chapters 3 to 6) applicable to other fields of
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environmental research. We departed from the analysis of (single species) metapopulation

persistence and shifted the focus of attention to the following fields of extension:

Original focus (Parts I & II) Fields of extension (Part III)

Single species Classes of species

Metapopulations Spatially structured populations

Measures of persistence Tm, λM Other (meta)population dynamical quantities Q

Patchy landscapes Complex landscapes

Changes in landscape structure Other critical impacts on biodiversity

Emphasis was placed on drawing methodological conclusions about the use of models for

generalization and unification under biocomplexity (Chapter 7) and on deriving ecologi-

cally differentiated rules of thumb (Chapter 8) and (meta)population dynamical landscape

indices (Chapter 9). The latter two objects provide powerful tools for decision-support

in conservational landscape management (note that the approximation formula T am for

the mean lifetime derived in Chapter 3 is a special metapopulation dynamical landscape

index). In both cases, however, a systematic methodology of their derivation was missing.

The following results address both (a) methodological aspects and (b) some implica-

tions of the results attainable from the approaches, methods and protocols presented.

10.4.4.1 Using models for generalization and unification under biocomplexity

In the following, we assemble methods which have been found to be appropriate for sup-

porting generalization and unification under biocomplexity. They concern (a) model build-

ing (with special emphasis on bridging the gap between structural realism and tractabil-

ity), and (b) model analysis (with special emphasis on deriving generalizable results).

We focus on structural model results such as typical functional relationships, trends

or trade-offs, threshold or optimum values, the relative importance of certain factors, or

the functioning of a certain mechanism. To generalize a certain result means to test its

robustness against changes in the values or submodels for the model parameters, changes

in the level of detail, changes in central model assumptions or even in the modeling

approach. To unify means to deal with the diversity of approaches (not to reduce it!),
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i.e. to clarify the consequences of choosing a particular approach, to reveal interrelations

between the different approaches, and to find bridges between them.

Lesson 1 (Chapter 2 and 7):

Processes on different organismic levels can influence the dynamics of ecological

systems. One way of managing the complexity caused by the multi-level structure

is hierarchical model building. This means that, in a first step, merely the dynamics

on the highest organismic level are described by using a generic main model. In the

second step, all the relevant effects of lower organismic levels are integrated by the

mean of submodels. This strategy of “first subdividing, then integrating” allows

structural realism and tractability to be combined without any loss of information,

provided feedbacks between the different organismic levels are missing.

Lesson 2 (Chapters 3, 6, and 7):

One way of managing the complexity caused by biological variability is the search

for effective parameters. The idea is to make use of an ideal, non-structured model

and to parameterize it in such a way that aspects of the dynamics of the original

model are correctly reproduced. Once appropriately specified, the parameters of

the non-structured model summarize all the relevant effects of biological variability

covered by the original model. In this sense, these parameters are “effective”.

The strategy of searching for effective parameters has several implications. Firstly,

it enables a separate analysis of all the effects caused by the interplay between the

different processes included (covered by the homogeneous model) and all the effects

caused by biological variability (covered by the effective parameters). Secondly, to

use effective parameters provides a bridge to important classical models of population

theory the behavior of which is widely investigated and well understood. To take a

classical model as a reference is beneficial in two respects: (a) for obtaining a better

understanding of more structured models, and (b) for analyzing the functioning of

important principles of population theory in more realistic situations. Note that the

strategy is only adequate as long as the ecological system is effectively mixed.

There are several approaches of determining effective parameters: (a) diffusion ap-
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proximation, (b) eigenvalue pertubation, or (c) parameter aggregation.

Lesson 3 (Chapters 3, 4, and 7):

Hierarchical model analysis is a promising strategy in case of hierarchical model

systems, that works as follows: In the first step, the model under consideration

will be artificially simplified - by neglecting details, assuming homogeneity, or even

excluding factors which are known to be decisive. The only aim of this step is to

obtain a model which is such simple that it can be analytically solved or its dynamic

behavior can be comprehensively studied by systematic parameter variation. This

model will then serve as a reference for the further analysis. In the second step, all

the formerly excluded factors will be consecutively incorporated. By contrasting the

results of consecutive model versions, insight will be provided into the effect of the

factor currently added and its interplay with the factors incorporated so far. The

consecutive increase in the model complexity therefore goes along with a consecutive

generation of knowledge about the dynamic behavior of the original model.

Lesson 4 (Chapters 5 to 7):

To test the robustness of model results against changes in the model parameters usu-

ally requires extensive numerical work in form of parameter variation. Nevertheless,

there are several possibilities to combine numerical work with algebraic analyses.

Algebraic analyses have the advantage that they provide insight into important

structural properties and their robustness, without requiring numerical work.

The precondition for algebraic analyses is certain knowledge of the functional struc-

ture of the relevant target quantity Q. Hence, algebraic analyses are useful if (a) an

approximation formula for the target quantity Q exists, (b) there are equation-based

submodels for the model parameters, or (c) the model is related to a classical model

of (meta)population theory. The classical models are usually non-structured, analyt-

ically solvable and provide structural insight into important effects of the interplay

between the relevant processes. This information can be fruitful for the analysis of

the original, structured model: It can help to generate hypotheses which are worth

to be tested and give hints for the numerical analysis of the original model.
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Lesson 5 (Chapters 6 and 7):

One particular problem of the recent ecological research, however, is the multi-

tude of models and even modeling approaches which are in use to answer a certain

ecological question. Therefore, unification work is needed in the sense of clarifying

the consequences of choosing a particular model or modeling approach. This requires

(a) to compare alternative models regarding their assumptions, definitions of central

concepts (e.g. metapopulation persistence), and the target quantities Q considered,

(b) to search for common effects and differences, and (c) to classify the conditions

under which the models lead to the same conclusions and under which not.

10.4.4.2 Model-based ecologically differentiated rules of thumb

The following results address (a) methodological aspects of the derivation of ecologically

differentiated rules of thumb (with emphasis emphasis on chances, limitations, and the

development of a rough protocol), and (b) implications of the resulting rules of thumb for

ecological research and various aspects of conservation management.

Rules of thumb merely aim at providing a rough orientation for conservation manage-

ment. This means that they exclusively focus on qualitative key effects which are valid for

a wide range of ecological situations. Consequently, they neither support any quantitative

assessments nor do they give detailed guidance for any specific situation.

Rules of thumb in general are usually derived in order to strengthen the ecologi-

cal knowledge basis of conservation management and to support planning and decision

processes in this context. Ecologically differentiated rules of thumb for conservational

landscape management in particular condense important information about the interplay

between a certain (meta)population dynamical target quantity Q of interest and the land-

scape structure and the role of the species’ ecology in this context. They are always of

the form “If the species is of type X, then the landscape ought to be of type Y”.

Lesson 1 (Chapter 8):

As the rough protocol in Section 8.1.1 indicates, the derivation of ecologically differ-

entiated rules of thumb requires (a) the specification of the management question
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to be supported, (b) an appropriate target quantity Q for measuring the effect of

management, and (c) an appropriate generic model that takes landscape structure

and species’ ecology into account and has the target quantity Q as outcome. Central

components of the actual model analysis are (1) the determination/analysis of the

functional relationship between the target quantity Q and the landscape structure,

(2) tests of sensitivity/robustness against changes in the species’ ecology and, on

this basis, (3) a classification of the species’ ecological attributes.

Lesson 2 (Chapter 8):

The strategy of deriving rules of thumb has limitations of applicability caused by

(a) the presented protocol, or (b) the concept of rules of thumb itself.

The presented protocol assumes that, throughout a simulation run, the landscape

structure (habitat quality, patch configuration) is constant. Hence, there is a limita-

tion if the landscape structure becomes highly dynamic as is the case if disturbances

(e.g. floods, fire, land use regimes) or succession processes are important or habitat

quality changes in the course of time. In these cases, however, the protocol can

be correspondingly modified. Instead of considering the functional relationship be-

tween the target quantity Q and the landscape structure, the relationship between

Q and the characteristics of the landscape dynamics ought to be analyzed.

There are limitations of the concept of rules of thumb itself. There are situations

where simple rules of thumb cannot be found anymore. The more complex the land-

scape structure, the lower the chance of finding rules of thumb. This would explain

why numerous rules of thumb exist for metapopulations (spatial structure is given

by a habitat network that is described by few patch variables (e.g., location, size,

shape)) while, for more complex landscape structures, such rules are widely missing.

Lesson 3 (Chapters 4, 5, 6, 8):

Ecologically differentiated rules of thumb have serious implications for ecological

research. They indicate that we have to think in terms of classes of species if we

want to understand the effects of the landscape on (meta)population viability or we

plan measures of conservational landscape management. Each class is determined
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by a certain ecological profile, i.e. a set of ecological attributes characterizing the

species’ sensitivity to changes in the landscape structure. Ecological profiles are

used in various contexts to characterize the species’ sensitivity to critical impacts:

e.g. in road ecology (sensitivity to roads) or ecotoxicology (sensitivity to pesticides).

Lesson 4 (Chapters 4, 5, 6, 8):

Ecologically differentiated rules of thumb support several aspects of conservational

landscape management: (a) landscape planning, (b) the development of economic

instruments, and (c) the work with stakeholders (integrated assessment).

Landscape planning.– The rules indicate the need to think in terms of classes of

species, clarify under which conditions a certain management measure is useful and

worth to be considered at all, and help the planner to determine which management

measures out off a variety of alternatives is most efficient.

Development of economic instruments.– The rules support the development of ef-

fective and efficient economic instruments for conservational management. They

provide conditions for ecological effectiveness and efficiency. Last but not least,

they give rise to the conclusion that the utility function, the heart of any cost-

benefit analysis, has to take both the landscape structure and the species’ ecology

into account if it is used in the context of conservational landscape management.

Integrated assessment.– Conservation management is multi-criteria and multi-agent.

Hence, stakeholder involvement and learning processes become increasingly impor-

tant. Both are supported by rules of thumb which condense information about

the relationship between species’ survival and landscape structure in a verbal way.

Hence, they help to clarify the consequences of a considered scenario and to differen-

tiate between alternatives. This strengthens the scientific basis and the transparency

of the decision process and increases the chance of more sustainable decisions.

10.4.4.3 Model-based (meta)population dynamical landscape indices

The following results address (a) the development of a systematic approach and a rough

protocol for the derivation of (meta)population dynamical landscape indices, and (b)

implications of such indices for landscape analysis and conservational landscape manage-
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ment, but also for ecological research and the methodology of integrative modeling.

The idea of (meta)population dynamical landscape indices is analogous to that under-

lying the approximation formula T am for the mean lifetime of metapopulations: The aim

is to describe the functional relationship between the (meta)population dynamical target

quantity Q of interest and the landscape structure by a simple formula (the index).

The study surveyed eight (meta)population dynamical indices. Evidently, there is a

high diversity of methods used for their derivation. The spectrum reaches from regression

analysis and spatial statistics to algebraic analysis and eigenvalue approximation. The

study aimed at systematizing the different methods and concluding a rough protocol.

Lesson 1 (Chapter 9):

The functional relationship between any (meta)population dynamical target quan-

tity Q and the landscape structure can only be fully understood if the interplay

between the individuals and the landscape structure is taken into account. Whether

this interplay is explicitly described or implicitly included via its effect on relevant

processes markedly influences the complexity and so the methods for exploring the

relationship between Q and the landscape structure. This led to the following clas-

sification of spatial (meta)population models which can be used as starting point

for index derivations: (a) individual-based spatially explicit models, (b) individual-

based metapopulation models, and (c) presence-absence metapopulation models.

These three classes cover a wide range of spatial (meta)population models.

In the cases (a) and (b), the interplay between the individuals’ and the landscape

structure is explicitly described, whereas, in case (c), the interplay is implicitly in-

cluded. In case (a), the landscape structure can be complex, whereas, in the cases

(b) and (c), a simple landscape structure (configuration of patches) is assumed.

Lesson 2 (Chapter 9):

For each of the three model classes, a rough protocol for the derivation of (meta)-

population dynamical landscape indices has been developed (Section 9.2). The ma-

jor difference between the individual protocols is that, in the case of individual-based

spatially explicit models, there is a need to determine a set of landscape variables
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vs which are decisive for the functional relationship between Q and the landscape

structure. In the two classes of metapopulation models, the decisive landscape vari-

ables vs are already known from the beginning. This reduces the complexity. With

decreasing complexity (a . b . c), there is a clear gradient from statistical to partly

analytical/algebraic methods for describing the relationship between Q and the vss.

All the existing methods of index derivation fit in the overall scheme.

Lesson 3 (Chapter 9):

In all three cases, the resulting (meta)population dynamical landscape indices QI

have the same functional structure: QI = Fµ,ν..(vs) where the vss are the decisive

landscape variables, Fµ,ν..() a certain function and {µ, ν..} certain function param-

eters. The landscape variables vss summarize all the spatial effects on the target

quantity Q, whereas Fµ,ν..() summarizes all the effects of the species’ ecology. Hence,

Fµ,ν..() can be interpreted as “species-specific glasses” through which the landscape

can be analyzed and interpreted in terms of its (meta)population dynamical effect.

Lesson 4 (Chapter 9):

The concept of “(meta)population dynamical landscape indices” QI = Fµ,ν,..(vs)

goes beyond the concept of “ecologically scaled landscape indices” in the sense of

Vos et al. (2001) whose idea was to link landscape structures to ecological pro-

cesses by appropriately scaling, i.e. relating the relevant landscape variables (e.g.

area, distance) to the spatial scale on which the modeled organisms typically act.

Fµ,ν,..(), however, indicates which species-specific characteristics (namely {µ, ν, ..})

are actually needed for adequately reflecting the combined species-landscape effect

on Q. This can be critical spatial or temporal scales, but also other characteristics

(e.g. strength of environmental noise in the local populations). In this sense, the

Fµ,ν,..()-approach is wider, more flexible and better adapted to ecological processes

than a pure scaling-approach. It provides a bridge between neutral landscape models

(commonly used in landscape ecology) and spatial (meta)population dynamics.

Lesson 5 (Chapter 9):

If two species coincide in the species-specific glasses Fµ,ν,..() then they also coin-
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cide in the landscape index QI = Fµ,ν,..(vs). Hence, the two species show the same

sensitivity to changes in the landscape structure, as far as the effect on the target

quantity Q is concerned. This indicates that Fµ,ν,..() can be used as a basis for an

ecological classification of the species according to their demands on the landscape

management. This is the same sort of classification as was used in connection with

the derivation of ecologically differentiated rules of thumb for landscape manage-

ment. Hence, (meta)population dynamical landscape indices QI = Fµ,ν,..(vs) and

ecologically differentiated rules of thumb are closely linked to each other. Both

together provide a powerful toolbox for the analysis and management of ecological

classes of species. While the rules give a rough qualitative orientation for the man-

agement (e.g. for prioritizing), the indices enable quantitative assessments of the

effect of landscape changes on the (meta)population dynamical target quantity Q.

Lesson 6 (Chapter 9):

(Meta)population dynamical landscape indices QI = Fµ,ν,..(vs) are surrogates of

spatial (meta)population models. They condense important information about the

interplay between individuals and landscape structure and its effect on the target

quantity Q in form of input-output relations. Such relations can be (a) integrated in

more complex studies (e.g. integration of the index for the arrival probability aij in

metapopulation models), (b) used as objective functions in optimization algorithms

for reserve network design, or (c) used as starting point for the development of

utility functions U(Q) = U(Fµ,ν,..(vs)) which allow landscape structure and species’

ecology to be integrated in cost-benefit analyses in the context of conservational

landscape management. This indicates that (meta)population dynamical landscape

indices QI = Fµ,ν,..(vs) open new possibilities of integrative modeling: To integrate

the indices is a powerful alternative to integrating the underlying models.

Although we started with the subject of metapopulation persistence, we could draw con-

clusions which go beyond this subject and support further fields of environmental research.
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10.5 Concluding remarks

The overall thesis gives rise to some general remarks on the possibilities to contribute to

a methodology of using models for theory building and management support in environ-

mental research and on the chances and limitations of the problem-oriented approach. In

the context of metapopulation persistence, a number of methods for supporting general-

ization and unification and for deriving model-based tools for decision-support have been

derived. These methods could be extended to other fields of environmental research. A

closer look at these methods, however, reveals that the range of extension is limited:

1. The presented methods for supporting generalization and unification primarily aim

at reconciling closeness to biological realism and tractability. This requires manage-

ment of biocomplexity. In the context of metapopulation persistence, three sources

of biocomplexity could be distinguished: (a) diversity of organismic levels involved,

(b) diversity of processes interacting on a particular level, (c) biological variability.

The methods presented allow particular sources of complexity to be managed, e.g.

hierarchical model building and analysis −→ diversity of organismic levels

work with effective parameters −→ biological variability.

Hence, these methods are merely applicable/extendable to situations which are char-

acterized by the same sources of biocomplexity as metapopulation persistence.

2. The presented methods for deriving model-based tools for decision-support are ex-

tendable in two respects but to a limited range of situations as well. Firstly, the

methods share a common starting point: systematic analyses of the interplay be-

tween landscape structure, species’ ecology and stochasticity and its effect (note that

this interplay is central in the context of metapopulation persistence). Hence, the

methods are applicable/extendable to situations for which this interplay is central

as well. Thus, extension is merely possible within the components involved in the

interplay. In spite of this restriction, important extensions are possible (→ complex

landscapes, → classes of species, → other ecological target quantities). Secondly,

the presented methods enrich disciplines which use ecological information as input

(e.g. development of economic instruments, integrative modeling).
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All these arguments show that the structural characteristics of an environmental problem

(e.g. sources of complexity, essential factors and their interplay) determine the range

of extendability of methods originally developed for model-based theory building and

management support in the context of the particular environmental problem considered.

To differentiate between different sources of complexity is found to be promising. This

allows the development of methods which are specifically geared to the specific nature of

each source of complexity. In this way, complexity can be managed more effectively.

The thesis provided insight into chances and limitations of theory building and man-

agement support under biocomplexity. The experience gained in the course of this work

can be used as a starting point for the next step that is theory building and management

support under biocomplexity and interdisciplinarity. This is especially relevant if environ-

mental problems are addressed which occur at the edge between ecology and economy.

To contribute to a methodology is one objective of my future research.
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