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Zusammenfassung

Wasser ist sowohl fiir alle Lebewesen, als auch fiir die sozioGkonomische Ent-
wicklung einer Region sowie fiir das Bestehen jeglicher natiirlicher Okosysteme
von essentieller Bedeutung. Wachsende Probleme hinsichtlich der Qualitdt und
Quantitit von Wasserressourcen sorgen fiir groBe Besorgnis unter Wissen-
schaftlern, Fachleuten im Bereich des Wasserressourcen- Managements und
politischen Entscheidungstriagern: Der Klimawandel, entweder durch natiirliche
und/oder anthropogene Aktivitdten verursacht, wird den hydrologischen Zy-
klus intensivieren, beschleunigen oder verbessern. Dies veriindert wiederum
die Wahrscheinlichkeit des Auftretens extremer hydrologischer Ereignisse wie
Uberschwemmungen und Diirren. Beide Extremereignisse stellen eine erhebli-
che Bedrohung fiir das Leben dar und bringen soziotkonomische und dkologische
Konsequenzen mit sich. Aufrufe, sowohl von wissenschaftlicher als auch von
politischer Seite, sollen nicht nur zu einem besseren Verstéindnis der den hy-
drologischen Systemen zugrunde liegenden Prozessen unter sich verdndernden
Umweltbedingungen fiihren, sondern auch ein brauchbares Werkzeug zu deren
Messung bereitstellen. Hydrologische Modelle, welche die Bewegung und Lage-
rung von Wasser im hydrologischen System beschreiben, sind Werkzeuge, die
primér zur Vorhersage solcher Ergeignisse verwendet werden.

Jiingste Fortschritte von Fernerkundungstechniken und geographischen Infor-
mationssystemen haben die Entwicklung von verteilten Modellen, d.h. Model-
len mit rdumlich expliziten Parametern, voran getrieben. Diese stellen einen
erfolgversprechenden Ansatz fiir Simulationen und Vorhersagen dar. Die An-
forderungen an hydrologische Modelle, wie die Beriicksichtigung der Auswir-
kung von Bodenbedeckung auf natiirliche hydrologische Prozesse, eine Ver-
besserung der Echtzeit-Fliefigeschwindigkeits-Prognose sowie eine angemessene
Einschétzung der rdumlichen und zeitlichen Dynamik von Bodenfeuchte und
Schneebedeckung sowie weitere wichtige variable Groflen, sind ein Grund fiir
die fortschreitende Entwicklung hydrologischer Modelle.

Verteilte hydrologische Modelle auf der Mesoskala zeigen verschiedene Proble-
me auf. Dies betrifft insbesondere die oftmals zu grofie und uniibersichtliche
Anzahl an Parametern, das Fehlen einer wirksamen Technik, mit deren Hil-
fe die rdumliche Heterogenitdt physiographischer Merkmale integriert werden
kann, die Tatsache, dass Parameter auf andere Skalen und Standorte nicht
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iibertragbar sind sowie die erhebliche Dauer, die zur Ausfithrung der numeri-
schen Simulationen bené&tigt wird. Ziel dieser Arbeit ist die simultane Unter-
suchung dieser Probleme. Vornehmlich prisentiert diese Arbeit die Ergebnisse
einer wissenschaftlichen Arbeit, die den folgenden zwei verschiedenen, jedoch
miteinander verwandten Fragestellungen unterliegt:

1. Wie kann ein robustes und rechnerisch effizientes verteiltes hydrologi-
sches Modell fiir ein mesoskaliges Flussgebiet entwickelt werden, welches
zugleich die Abflussganglinie an jedem willkiirlich gewédhlien Punkt inner-
halb des Gebiets reproduziert als auch rdaumlich und zeitlich dynamische
Komponenten von Bodenfeuchte, Schnee(bedeckung) und weiteren wich-
tigen variablen Komponenten bereitstellt?

2. Wie kénnen rdumliche Verteilungen der Modellparameter ermittelt wer-
den, die robust genug sind, um die hohe Anzahl an Parametern zu re-
duzieren, aber dennoch ausreichen um die Heterogenitdt von in Raster
geteilten Gebieten bei gleichzeitiger Gewdhrleistung der Ubertragbarkeit
von Modellparametern auf andere Skalen und Orte zu berticksichtigen?

Die Motivation hinter der ersten Frage liegt in der Tatsache, dass die aktuel-
le Entwicklung, insbesondere von den sogenannten physikalisch basierten hy-
drologischen Modellen nur eingeschrankte Verwendungsmoglichkeiten fiir me-
soskalige Einzugsgebiete aufweist. In den meisten praktischen Fillen ist dies
hauptsichlich auf die Annahmen in den Formulierungen zuriickzufiihren, wel-
che a) das Fortbestehen aller réumlichen und zeitlichen Charakteristiken und
b) die vollstéindige Skalierbarkeit der relevanten physikalischen Gleichungen
(z. B. Richards Gleichung) von der Punktskala zur Mesoskala betreffen. In der
Realitéit werden beide Aspekte selten gleichermafien erfiillt. Konzeptzionelle
hydrologische Modelle, die sich an die allgemeinen physikalischen Mechanismen
anndhern, konzentrieren sich hingegen hauptséichlich auf die FlieBgeschwindig-
keit und ihre unsichere Vorhersagbarkeit. Sie richten nur wenig Aufmerksam-
keit auf wichtige Aspekte wie die rdumliche und zeitliche Verteilung von Ein-
gangswerten, Zustandsvariablen und Wasserflussgroflen, die fiir eine sicherere
Vorhersagbarkeit des Zeitpunkts und Ausmafes von FlieBbewegungen relevant
sind. Auflerdem stellen sie Schliisselfaktoren fiir die Beschéiftigung mit neuen
gesellschaftlich verursachten Problemen hinsichtlich der Wasserressourcen dar.
Die Motivation aus welcher heraus sich die zweite Frage ergibt, beruht auf der
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Tatsache, dass verteilte Modelle generell eine sehr hohe Anzahl an Parame-
tern benétigen, die auf der Mesoskala wichtige Einheiten darstellen und durch
Kalibrierung geschétzt werden. Ein Modell mit einer signifikanten Menge an
freien Parametern fiir jede einzelne Modelleinheit zu kalibrieren, wiirde zu einer
zu groflen Parameteranzahl fiihren. Ein aktueller Losungsansatz fiir dieses Pro-
blem ist die Zusammenlegung einzelner Modelleinheiten (Rasterzellen) zu mehr
oder weniger homogenen Einheiten, die in der Regel als Hydrological Response
Unit (HRU) bezeichnet werden. Diese Modelle enthalten demnach weniger Pa-
rameter, da die Parameter durch Kalibrierung einer HRU zugewiesen werden.
Dies bringt jedoch wiederum den Nachteil mit sich, dass es sich um statische
Groflen handelt und die geographische Lage der HRU nicht unbedingt explizit
ist. Bin weiterer Ansatz ist die Nutzung von Regionalisierungs-Techniken, um
Modellparameter mit physikalischen Eigenschaften der Einzugsgebiete zu ver-
binden, was zu einer signifikanten Reduktion des Kalibrierungsproblems fiihrt.
Dies insbesonders indem nur wenige funktionelle Parameter regionaler Bezie-
hungen geschétzt werden, statt Modellparameter (fiir jedes Raster) selbst. Da
des Weitern eine dynamische Verkniipfung zwischen Modellparametern und
den entsprechenden Merkmalen der Gebiete (wie Bodenbedeckung) erreicht
wird, kdnnen die Auswirkungen solcher Verinderungen effektiver bestimmt
werden. Weder die HRU-Methode noch der Regionalisierungsansatz tragen der
Variabilitit der einzelnen sich unterscheidenden Merkmale der Unterraster ei-
nes Messgebietes Rechnung und sind somit auf der gleichen Gréfienordnung
wie die Modelleinheiten definiert. Folglich gehen dabei in der Regel wertvolle
Informationen hinsichtlich der Heterogenitét ihrer Unterraster verloren, wel-
che eng mit verschiedenen kleinenskaligen hydrologischen Prozessen verbunden
sind (einschlieBlich des Abflussprozesses an Héngen).

Auf der Grundlage dieser Voraussetzungen und unter Beriicksichtigung des
aktuellen Standes der Wissenschaft, konzentriert sich diese Arbeit auf die Ent-
wicklung eines raumlich verteilten Modelles mit einer Parameterisierungstech-
nik, die sowohl fiir wissenschaftliche Zwecke als auch fiir den praktischen Be-
trieb in mesoskaligen Einzugsgebieten geeignet ist.

Das im Rahmen dieser Arbeit entwickelte mesoskalige hydrologische Modell
(mHM) ist ein voll-verteiltes, prozess-basiertes konzeptionelles Wasserausgleich-
Modell, welches Rasterzellen als primére hydrologische Einheiten benutzt und
die folgenden hydrologischen Prozess simuliert: Uberwachung der Bodende-
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ckung, Anhidufung und Schmelzen von Schnee, Dynamik der Bodenfeuchte,
Infiltration und Oberflichenabfluss, Verdunstung, ober- und unterirdische La-
gerung und Wasserfluss, tiefe Versickerung und Basisabfluss sowie Abfluss-
Schwachung und Hochwasserabflussberechnung. mHM basiert auf numerischer
Anndherungen vorherrschender hydrologischer Prozesse, welche in dem bekann-
ten HBV-Model (Bergstrom, 1995) getestet wurden. mHM enthilt des Wei-
teren eine Reihe von neuen Funktionen, welche Prozesse wie das Einfrieren
und Auftauen des Bodens, der oberflichennahen Bodenfeuchte, Abdeckungs-
verinderungen und die Flusslenkung von Zelle zu Zelle iiberwachen. Es enthélt
auflerdem ein Modul zum automatischen Upscaling und zur Abgrenzung des
Flow-Routing-Netzwerks, sowie einer neuen Parameterisierungstechnik, die im
Folgenden beschrieben wird. Diese neuen Module wurden integriert, um die
Vorhersagungsfahigkeit des Modells zu verbessern. Angesichts der Tatsache,
dass mHM Rasterzellen verwendet, HVB im Gegensatz dazu vordefinierte Tei-
leinzugsgebiete, kann es effektiv genutzt werden, um Abflusshydrographen an
jedem Punkt des Fluss-Netzwerkes eines Einzugsgebiets zu schitzen.

Eines der wichtigsten Merkmale des mHM ist, daés es drei Ebenen raumlicher
Diskretisierung verwendet, um die rdumliche Variabilitit der hydrologischen
Prozesse und Input-Daten besser zu integrieren. Diese Ebénen sind, nach ih-
rer zunehmenden rdumlichen Auflssung, folgende: Die obere Ebene (Level-2)
fiir das Fiihren meteorologischer Variablen (z. B. Niederschlag, Temperatur),
die mittlere Ebene (Level-1) fiir die Beschreibung der vorherrschenden hy-
drologischen Prozesse und die untere Ebene (Level-0), welche die gerasterten
Informationen iiber statischen und dynamischen Einzugsgebiete, physikalische
Eigenschaften wie Bodenhohe und -textur, geologische Formationen, Bodenbe-
deckung und weitere Informationen enthédlt. mHM besteht aus 28 Parametern,
“von denen 26 fiir jede Modell-Rasterzelle benétigt werden. Die verbleibenden
zwei Parameter sind mit dem Flusslenkungs-Prozess verbunden.

Eine multiskalige Parameter-Regionalisierungstechnik (MPR) wird, zur Be-
stimmung der rdumlichen Bereiche der Modellparameter in dieser Arbeit vorge-
schlagen, mit dem Ziel die Parameteranzahl zu verringern und gleichzeitig die
Variabilitit der Unterraster zu beriicksichtigen. Um dies zu erzielen, folgt MPR
dem zweistufigen Verfahren. Im ersten Schritt wird die Regionalisierung auf der
feineren Skala (Level-0) mit linearen oder nichtlinearen Transfer-Funktionen,
die auf dem Verstindnis von Prozessen und/oder empirischen Grundlagen
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(z. B. Pedo-Transfer -Funktionen) beruhen, durchgefiihrt. Diese Funktionen
sollen eine quasi-kontinuierliche dynamische Verkniipfung zwischen Modellpa-
rametern und Einzugsgebietspradikatoren mit Hilfe von Transfer-Funktions-
Parametern festlegen. AnschlieBend, in einem zweiten Schritt, werden die raum-
lichen Bereiche effektiver Parameter in einen gréberen Modellierungsmafistab
(Level-1) mit den entsprechenden Parametern der feineren Aufldsung verbun-
den. Dies geschieht durch einen Upscaling-Operator, wie beispielsweise ein-
facher Mittelwert, harmonischer Mittelwert, oder andere. Das Zwei-Stufen-
Verfahren der MPR stellt sicher, dass der Kalibrierungsalgorithmus gute Lésun-
gen fiir die Transfer-Funktiones-Parameter (s = 62) findet, statt der Modell-
parameter (P = 28) fiir jede Rasterzelle. Dies wiederum impliziert eine starke
Reduktion der Komplexitéit, da P x N > s, wobei N die Gesamtzahl der
Zellen eines gegebenen Modells bezeichnet. Damit senkt MPR deutlich die Pa-
rameterzahl des Modells und beriicksichtigt zugleich implizit die Heterogenitit -
der Unterraster eines Regionalisierungsrahmens. Einer der wesentlichen Vortei-
le dieser Methode ist, dass die Informationen auf dem Level-0 Parameter-Feld
(aus Schritt 1) immer verfiigbar sind und effizient genutzt werden kénnen, um
Parameter Felder des Level-1 auf jeder Ebene der Skala zu errechnen (nur mit
Hilfe des Upscaling-Operators ohne neue Kalibrierung).

mHM wurde mit der MPR. Parametrierungs-Technik auf das Ober-Neckar-
Einzugsgebiet, in der Ndhe von Stuttgart in Deutschland, angewandt. Das
Untersuchungsgebiet ist durch die Messstation Plochingen erfasst, die ein Ein-
zugsgebiet von einer ca. 4000 km? groBen Fliche umfasst. Die Untersuchung
wurde in den Jahren von 1980 bis 2001 durchgefithrt. Die bendtigten Ein-
gabedaten fiir die Umsetzung des Modells wurden von verschiedenen staat-
lichen Stellen erhalten und beinhalten Folgendes: Geldndehohe, digitalisierte
Bodenkarte und geologische Karte von LUBW und Landbedeckungs-Daten von
Landsat TM5 Scene, die in drei Hauptgruppen eingestuft wurden: Wald, ver-
siegelte Flichen und druchldssige Bodenbedckung. Punktuelle tiglich gemes-
sene meteorologische Variablen (Niederschlag und Temperatur) von mehreren
Klimastationen im Untersuchungsgebiet und dessen Umgebung wurden von
DWD erhalten und anschlieflend auf die gewiinschten Modellraster mit einer
externen Drift-Krigging-Methode interpoliert. Andere Satellitendaten beinhal-
ten einen wochentlichen Blattfdchenindex, Oberflichentemperatur und Daten
zur Schneebedeckung. Durchschnittliche tdgliche Flussmessungen fiir den Ab-
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fluss des Einzugsgebiets sowie zehn Innenrdumen wurden von LUBW erhalten.

Das Modell wurde hinsichtlich seiner Leistung in verschiedenen ridumlichen
Aufteilung von Level-1 (Level-2 = Level-1) Stufen von 1 km auf 32 km sowie
Level-0 Leistung von 100 m auf 2000 m getestet. Die gesamte Modellperi-
ode wurde in zwei Teile gegliedert: 1980-1988 als Kalibrierungsphase, um den
geeigneten Einsatz von Transfer-Funktions-Paramentern, welche lediglich die
Daten einer Ventilstation beriicksichtigen, herauszufinden, sowie der folgende
Teil 1989-2001 als Evaluationsphase.

Die vorgeschlagene MPR Technik im mHM verringert nicht nur die Komple-
xitat des Modells, sondern fiihrt auch zu einem schnellen und robusten hydrolo-
gischen Modell, welches in der Lage ist, gute Abflusshydrographen nicht nur an
der Austrittsstelle des Einzugsgebiets sondern auch im Innern zu reproduzie-
ren. Dariiber hinaus ist eine Plausibilitétspriifung durchgefiihrt worden, um die
raumlich-zeitlichen Muster der Schneebedeckung und Bodenfeuchte mit direk-
ten Satellitendaten und Proxies von MODIS (zu Schneebedeckung und Ober-
flachentemperatur LST) zu vergleichen. Das Ergebnis zeigte, dass diese gut
miteinander iibereinstimmen. Insbesondere die rdumlichen Muster zwischen
den nahe der Oberflichen-Bodenfeuchte simulierten Modellergebnissen und der
von MODIS abgeleiteten LST-Daten zeigten starke negative Abhéngigkeiten,
was zu erwarten war. Die Einbeziehung sowoh! der Abdeckungsiiberwachung
als auch der Boden-Frost-Prozesse des mHM-Modells zeigte eine deutliche Ver-
besserungen in Simulationen zum Tagesabfluss. Die Einbeziehung dieser Pro-
zesse wurde noch deutlicher im Vergleich von mHM mit dem dezentralen HBV-
Modell. mHM zeigte eine klare Uberlegenheit gegeniiber HBV hinsichtlich der
Simulationen des Tagesabflusses sowohl in der Sommer als auch im Winter.
Dariiber hinaus zeigte ein Vergleich mit den von MODIS-LST gewonnenen Da-
ten, dass das riumliche Muster der Bodenfeuchte, simuliert durch mHM mit der
MPR Parametrierungs-Methode deutlich realistischer ist, als jenes rdumliche
Muster, welches durch HBV mit der HRU Parametrierungs-Methode simuliert
wurde (Abb. 1).

Um die vorgeschlagene MPR-Methode vor dem Hintergrund des aktuellen wis-
senschaftlichen Stands zu evaluieren, wurden verschiedene numerische Expe-
rimente entwickelt, die im Folgenden als Standard-Regionalisierungs-Methode
(SR) bezeichnet werden. Beide Regionalisierungsmethoden wurden in mHM
mit den gleichen Transfer-Funktionen implementiert. Ergebnisse der Ausfiihrung
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Abbildung 1: Vergleich der Oberflichen-Bodenfeuchteverteilung im Jahr 2000, Tag 255.
Von links nach rechts: LST (MODIS), Bodenfeuchte ermittelt jeweils durch HBV-HRU und
mHM-MPR.

des Modells mit beiden Methoden auf mehreren rdumlichen Auflésungsebenen
(von 2 km bis 32 km) zeigten auf, dass beide Methoden, solange sie fiir ei-
ne bestimmte Modellskala kalibriert und evaluiert wurden, sich nur in ge-
ringem Mafle hinsichtlich der Giite der Tagesabfluss-Simulationen unterschei-
den. Dass dennoch erhebliche Unterschiede bestehen, wurde deutlich, als die
Ubertragungs-Funktionsparameter auf den Modellierungsskalen verschoben wur-
den. In diesen Fillen, zeigte MPR eine deutliche Uberlegenheit in Bezug auf
SR (Abb.2 2). Dieses experimentelle Ergebnis zeigt deutlich die Signifikanz der
Unterraster-Varirabilitdt und die Tendenz, die sich aus der Aggregierung von
Input-Daten in Regionalisierungsverfahren ergeben kann. Das Ergébnis einer
solchen Aggregation konnte auch im rdumlichen Muster effektiver Modellpara-
meter auf verschiedenen Skalen von Level-1 beobachtet werden, da sie fiir beide
Methoden deutliche Unterschiede aufzeigten. Ein Vergleich der Unterraster-
Verteilung des geséttigten Feuchtegehalts des Bodens auf Level-0, mit den ent-
sprechenden effektiven Parameterwerten auf der Modellskala (Level-1), jeweils
durch MPR, und SR, erhalten, zeigte, dass die MPR-Methode das riumliche
Muster deutlich besser darstellt, als die SR Methode.

Das numerische Experiment zur Erhaltung des Mengengleichgewichts wurde
fiir zwei wichtige Wasserfliisse (effektive Evapotranspiration und Gesamtab-
fluss) sowie eine feststehende Variable (Bodenfeuchte der obersten Boden-
schicht) bei einer gegebenen Kontrollgrésse durchgefiihrt. Fiir beide Methoden
wurden, die auf einem feineren Skalenniveau erreichten Modellsimulationen, zu
der gréberen Kontrollskala aggregiert und mit den Simulationen verglichen, die
auf groberen Skalenniveau erhalten wurden. Auf gréberen Skalenniveau wur-
den die Simulationen mit zwei Funktionsparametersitzen ausgefiihrt: Erstens
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durch Kalibrierung auf ihrer eigenen Skala, um diese Simulationen als Baseli-
newert beizubehalten, damit die Leistungsmessung z. B. NSE geschéitzt werden
kann, sowie Zweitens beziiglich der Parametersétzer, welche von der Kalibrie-
rung auf kleinem Skalenniveau erhalten wurden, um die Ubertragungsfihigkeit
dieser Parameter zu einer griberen Skala hin zu priifen. Beide Regionalisie-
rungsmethoden zeigten, dass die Bodenfeuchte der obersten Bodenschicht den
stirksten Einfluss auf die Ubertragbarkeit der globalen Parameter fiir grobere
rdumliche Auflisung aufwies, wihrend die eigentliche Evapotranspiration die
“am wenigsten wichtigste Variable darstellte. Allerdings variiert der Einfluss je
nach Regionalisierungsmethode; ein systematischer Mangel in SR wurde im
Vergleich zu MRP fiir die Erhaltung des Mengengleichgewichts (d.h. in jeder
Kontrollmodellierungszelle) sowohl der Bodenfeuchte als auch des Gesamtab-
flusses festgestellt (Abb. 2; rechtes Bild). Diese Ergebnisse zeigten, dass die mit
SR erhaltenen Parameter, im Vergleich zu MPR, skalenspezifischer und da-
mit nicht iibertragbar sind. Auflerdem zeigte der ausgefiihrte Plausibilitatstest
fiir die Erhaltung rédumlicher Muster durch den Vergleich von modellsimulier-
ter diinner Oberflichenfeuchte mit MODIS-LST Daten eine stérkere negative
Korrelation fiir MPR als diejenigen durch SR-Methode erhalten wurden.

Die Tagesabfluss-Simulationen in Binnenlagen, erhalten durch MPR, waren
durchschnittlich besser als die durch SR erhaltenen. Obwohl beide Methoden
eine Verschlechterung der Simulationen an Binnenlagen im Gegensatz zu Simu-
lationen der Aufienlagen des Einzugsgebiets aufzeigten, kann festgestellt wer-
den, dass die Verschlechterung von MPR wesentlich geringer war (im Durch-
schnitt 50% in NSE Werten) als die der SR-Methode (Abb. 2; linkes Bild). Die-
se Ergebnisse beziehen sich auf die Durchfiihrungen, in denen Parameter von
anderen Skalen als der in der Simulation an Binnenlagen verwendeten, trans-
formiert wurden, was wiederum die Stabilitdt der MPR Methode gegeniiber
der SR-Methode unter Beweis stellt.

SchlieBlich wurde eine Fallstudie durchgefiihrt, um die Modellfahigkeit, das Ab-
flussverhalten unter extremen saisonalen Gegebenheiten (Winter und Sommer) .
darzustellen, zu priifen. Dies beinhaltet Folgendes: spezifisches Volumen, Ge-
samtdauer, Haufigkeit des Schnellflusses und spezifische Defizite, Gesamtdauer
von Diirre und die maximale Diirreintensitat fiir Niederwasserabfluss. Insbe-
sondere war Ziel dieser Studie die Auswirkungen der rdumlichen Diskretisie-
rung, Modell-Parametrisierung und die Auswirkungen der Kalibrierung sowohl
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Abbildung 2: Linkes Bild: Leistungen von MPR und SR beziiglich der Tagesabflusssimu-
lationen an verschiedenen Stellen im Einzugsgebiet des Oberen Neckars. Simulationen, unter
Nutzung von verschiedenen Transfer-Funktions-Parametern () fiir beide Methoden wurden
an der Modellierungsskala (Level-1 = 4 km) durchgefiihrt, welche von verschiedenen Skalen
erhalten wurde {(Level-1 = (4, 8,16, 32) km). Gauge-Id 10 gehdrt.zum Einzugsgebietsabgang.
Rechtes Bild: Diskrepanz zwischen den Fliissen simuliert auf zwei verschiedenen Modellie-
rungsskalen. [Die Kontrollskala (4 km) und die feinere Skala (2 km)] wihrend der Modell-
periode. Das NSE wurde als Korrespondenzmafl zwischen den simulierten Fliissen auf der
Kontrollskala als Baseline erachtet und die rdumliche Aggregation von Fliissen genutzt. Die
réumliche Verteilung des NSE fiir die tégliche Evapotranspiration, den vollstéindigen Abfluss
und die Oberflichenbodenfeuchte ist in den jeweiligen Feldern (a), (b), und (¢) dargestellt.

hinsichtlich der Tagesabflusssimulation als auch der jahreszeitlichen Abfluss-
eigenschaften zu untersuchen. Zu diesem Zweck wurde mHM in dem Unter-
suchungsgebiet mit zwei rdumlichen Auflésungen angewendet: aggregiert und
rdumlich verteilt. In dieser Fallstudie wurde das verteilte Model mit der MPR
und der HRU Methode parametrisiert. Die Kalibrierung der freien Parameter
wurde fiir drei Varianten der Zielfunktion durchgefiihrt, die separat Schnell-
fluss, Niederwasserfluss und eine Kombination dieser beiden betonen.

Die Ergebnisse zeigen, dass das Modell bei den Tagesabfluss-Simulationen so-
wie beim saisonalen Abflussverhalten empfindlich auf die Zielfunktion reagier-
te, wobei die starkste Empfindlichkeit beim aggregierten Modell, die geringste
beim verteilten Modell mit der MPR. Parameterisierung auftrat. Die Zielfunk-
tion, die Schnellfluss und Niederwasserfluss gemeinsam beriicksichtigt, erzielte
durchweg bessere Leistungen. Die Leistung des verteilten Modells, ungeachtet
des Parametri-sierengs-schemas und der Zielfunktion der Kalibrierung, war bei
der Simulation von Tages-Beobachtungs Hydrographen besonders bei Hoch-
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wasserriickgangs und Niederwasserfluss Perioden durchweg besser als die des
aggregierten Modells. Die relativ schwache Leistung des aggregierten Modells
unterstreicht, wie wichtig es ist, physikalische Eigenschaften von Einzugsge-
bieten zu beriicksichtigen, da Niedrigwasserfluss, bei dem grofe Divergenzen
beobachtet werden konnten, hauptséichlich von eben diesen Charakteristiken
des Einzugsgebiet bestimmt wird. Allerdings bleibt zu erwihnen, dass die Leis-
tungsfahigkeit des verteilten Modells stark von der angewendeten Parameteri-
sierungsmethode abhingt. Die MPR-Methode konnte im Vergleich zur HRU-
Methode nicht nur die Komplexitét des verteilten Modells reduzieren sondern
auch bessere Ergebnisse fiir die Simulation vom Tagesfluss im Ablauf und im
Inneren des Einzugsgebiets vorweisen.

Hinsichtlich der saisonalen Schnellwasser-Flusseigenschaften konnten keine si-
gnifikanten Unterschiede in der Leistungsfahigkeit zwischen dem aggregierten
Model und dem verteilten Modell gefunden werden. Im Gegensatz dazu, wa-
ren verteiltes Modell mit beiden Parametrisierungsmethoden in Simulationen
von Niedrigwasser-Flusseigenschaften dahingegen leistungsfihiger als aggre-
gierte Modelle. Dieses Ergebnis zeigt die Wirkung rdumlicher Diskretisierung,
wobei gleichzeitig die rdumliche Heterogenitat physikalischer Eigenschaften
von Einzugsgebieten, die eine signifikante Rolle auf die Prognose saisonaler
Niedrigwasser-Flusseigenschaften gespielt haben, beriicksichtigt werden. Die
Leistungsfihigkeit des verteilten Modells, insbesondeére der Eigenschaften des
Niedrigwasser-Flusses, hingen stark von der Parameterisierungsmethode ab,
die angewendet wurde, um rdumliche Felder der Modellparameter zu erhal-
ten. MPR lieferte im Vergleich zu HRU, die Simulationen betreffend, nicht
nur durchweg bessere Ergebnisse, sondern bewies auch grofiere Stabilitdt und
Verlésslichkeit bei der Prognose an Binnenlagen dieser Charakteristika. Ab-
schlieffend, kann angemerkt werden, dass im Vergleich zu Schnellwasser-Fliissen
die Leistungsfihigkeit aller Modelle fiir Niedrigwasser-Fliisse relativ schwach
ist. Um die Modelle fiir Niedrigwasser-Fliisse zu verbessern, sind weitere wis-

senschaftliche Untersuchungen notwendig,.

Zusammenfassend ist anzumerken, dass die vorliegende Arbeit ein effizientes
raumlich-verteiltes hydrologisches Modell (mHM) mit einer widerstandsfihigen
multiskaligen Parameter-Regionalisierungs-Technik (MPR) aufzeigt, welches
fiir verschiedene Zwecke einschliefilich Wasserlaufvorhersage iiberall entlang
eines Kanalsystems innerhalb eines Stromgebiets sowie fiir die Lieferung ge-
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eigneter rdumlicher und zeitlicher Dynamik der Bodenfeuchte, Schneebede-
ckung, etc. anwendbar ist. Die zweiphasige MPR-Parametisierungs-Methode
grenzte nicht nur die Komplexitit des Modells hinsichtlich der Anzahl offener,
durch die Kalibrienung grob eingeschétzter Parameter ein, sondern zeigte auch
einen Weg, die Unterversorgungssystem-Heterogenitit der physischen Binfluss-
gebietscharakteristika zu vereinigen, welche die Transfermdglichkeit von globa-
len Parametern {iber weitere, nicht fiir die Modell-Kalibrienung genutzte Skalen
und Positionen erleichtert. Die MPR-Methode ist in verschiedener Hinsicht wi-
derstandsfihiger und zuverlissiger, als die momentan verwendete SR-Methode
und iiblicherweise verwendete HRU-Methode. Diese Dissertation verdeutlicht
des Weiteren die Vorteile des rdumlich verteilten Modells gegeniiber einem ag-
gregierten Modell. Zu letzt gilt es zu erwihnen, dass das im Rahmen dieser Ar-
beit entwickelte Modell und die Parameterisierungsmethode generell anwend-
bar sind, insofern die benttigten Informationen verfiigbar sind. Die in dieser
Studie vorgestellten Ergebnisse betreffen dennoch ausschliellich das Einzugs-
gebiet des Oberen Neckars. Der Verfasser dieser Arbeit testet das Modell zur
Zeit in anderen mesoskaligen Einzugsgebieten in und auflerhalb Deutschlands.
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Chapter 1

Introduction

“Water is the most critical resource of our lifetime and our children’s lifetime.
The health of our waters is the principal measure of how we live on the land”

Luna B. Leopold

1.1 Background

Water is essential to human life, functioning of natural ecosystems and for the
sustainable socio-economic development of a region. For most of their activ-
ities, human beings are strongly dependent on the availability of clean and
sufficient water resources. Such activities involve water for drinking purpose,
growing food, fibers and woods, generating power and running industries. Over
the years, for satisfying most of their needs, humans have shaped their nat-
ural environment either by building dams, reservoirs and diversions, to have
the most efficient use of the available water, or by cutting down forests to
expand agricultural lands or urban areas. The impact associated with such
human activities on both water quantity and quality was either insignificant

1» Bra. This, however, has

or unnoticed at the beginning of the “Anthropocene
changed. During the industrial age, human interactions (e.g. urbanization, de-
forestation, burning of fossil fuels) with natural environmental processes have
increased in intensity. The effects of which are now perceivable at regional

and continental scale, as for e.g. changes in'the frequency and magnitude of

!The term “anthropocene” was first introduced by the atmospheric scientist Paul Crutzen
in the mid-1970s.



floods and droughts, degradation of water quality (Parry et al., 2007). Main
drivers of this growing impact are population and economic growth, which lead
to rapidly rising demand of water for food production as well as for industrial
water usage.

As we continue through a new millennium the increasing stress on freshwater
resources, brought about by growing demand and profligate use, remains to
occupy a great area of concern for scientists, water resource professionals and
policy makers. A sound planning and management of water resources is needed
to satisfy present and future environmental and societal water demands as
well as to meet one of the main objectives of the Millennium Development
Goals (UNDP, 2003) i.e. sustainable development of water resources.

Along with water management, concerns regarding adverse impact of anthro-
pogenic activities on the natural course of hydrological processes have received
- a considerable attention both from the scientific and the political sides. There
is a general consensus among scientists that global warming induced either due
to natural activities (e.g. volcanic eruptions) and/or anthropogenic activities
(e.g. deforestation) will intensify, accelerate or enhance the hydrological cy-
cle [e.g. see Parry et al. (2007)]. This enhancement will modify the likelihood of
the occurrence of extreme hydrological events such as floods and droughts. Ev-
idently, both extreme events pose a significant threat to human life and entail
substantial socioeconomic and environmental consequences such as reduction
in water availability for agriculture, industry and domestic use, decrease in
hydropower generation, damages to the basic infrastructure, increasing hazard
of forest fires and landslides, as well as famines and people’s migration.

Not only, but especially because of the consequences associated with the ex-
pected changes, it is of crucial importance to improve our understanding of the
underlying processes in the hydrological system? and to quantify them. For
these purposes, hydrological modeling studies have been pursued. Such mod-
eling exercises generally involve hydrologic models. These models attempt to
translate our scientific understanding regarding the movement and storage of
water in a complex natural or anthropogenic hydrological system in simplified
mathematical formulations. As a result, these models which are mainly driven

24A hydrologic system is defined as a structure or volume in space, surrounded by a
boundary, that accepts water and other inputs, operates on them internally, and produces
an outputs. Examples for such system can be a small plot or hillslope, a catchment, a large
river basin” (Chow, 1964).



by meteorological inputs (e.g. precipitation and temperature), can reproduce
some — but not all — hydrological responses (e.g. streamflow, soil moisture,
evapotranspiration).

A brief overview on complexities and challenges involved in such modeling
exercises at catchment scale are provided in the following section. Based on
the overview, research objectives formulated for this study are presented in the
last section of this chapter.

1.2 Hydrological Modeling at Catchment Scale

Although modeling of hydrological processes can be performed from a small
plot or hillslope over a catchment to a large river basin, the present research
focus on hydrological modeling of a catchment scale or mesoscale because
“catchments are widely recognized as being the most fundamental landscape
unit for the cycling of water, which integrates all aspects of the hydrological
cycle within a clearly defined area in o way that can be studied, quantified, and
acted upon” (Wagener et al., 2004; Sivapalan, 2005). Additionally, a mesoscale
river basin, whose drainage area is within the range of (102, 10%) km? (Dooge,
1986), is generally considered as an appropriate scale to support regional water
resources planning and management decisions to address several societal water
demands including flood estimation and drought mitigation (Uhlenbrook et al.,
2004).

Modeling of hydrological processes at a catchment scale poses, however, a sig-
nificant challenges mainly because “catchments are open, highly heterogenous
and dynamic complez systems with evolving entities such as vegetation, soil
structure, morphology, as well as human beings and living organisms” (Siva-
palan, 2005). As a result, hydrological processes arising due to the interactions
between climate inputs and heterogenous landscape properties within a catch-
ment are highly complex and exhibit tremendous variability over a wide range
of space and time scales (Dooge, 1986; Bléschl and Sivapalan, 1995). Most of
these processes — if not all — are tightly coupled to each other and exhibit intrin-
sic nonlinear relationships with delayed responses and feedback loops (Beven,
2001b; Porporato and Ridolfi, 2003). Furthermore, as catchments are not only
the complex systems but they are also poorly defined systems. There olften exits
a discrepancy between the scale at which models operate (tens of meters up

3



to several kilometers) and the scale at which routine observations (most often
at a point scale) are made (Sivapalan, 2005; Kirchner, 2006). Both practical
and financial constrains limit the sampling of required information with fine
resolution in a mesoscale control volume. Moreover, many hydrological pro-
cesses occurring within a catchment take place underground, which in many
cases can not be easily measured or observed at every locations. Examples of
such processes are: infiltration, sub-surface flow, groundwater flow.

In spite of these complexities and restrictions, a remarkable progress in ana-
lyzing and modeling of hydrological process has been achieved during the past
decades. During this period, a range of hydrologic models with various lev-
els of conceptualization and parameterization have been developed to support
water resources management decisions as well as for the scientific investiga-
tion purposes (Russo et al., 1994; Singh, 1995; Vieux, 2001; Singh and Frevert,
2002, 2006). Hydrologic model can be classified into lumped and spatially
distributed, depending on the spatial scale at which they model different pro-
cesses.

A lumped hydrologic model assumes a homogeneous distribution of the catch-
ment characteristics and meteorological inputs and thus represents a catchment
as a single modeling entity to simulate the temporal dynamics of streamflow at
a given location. Examples of lumped model are: the Stanford model (Craw-
ford and Linsley, 1966), the HBV model (Bergstrém, 1976), the Xinanjiang
model (Zhao et al., 1980), and the SAC-SMA model (Burnash, 1995). However,
their applications are limited because these types of models are not suitable
to evaluate the effects of spatially distributed environmental changes such as
land cover (Bronstert, 2004).

Spatially distributed hydrologic models, on the other hand, account for most
of the basin physical characteristics and the spatial variability of the mete-
orological inputs by discretizing the modeling domain into small individual
homogenous units — usually referred as grid cells. These models can simulate
the spatial distribution of hydrological processes over the whole modeling do-
main as well as they have the ability to provide estimates of discharge volume
along the entire length of the channel network. Examples of distributed model
are: the MIKE-SHE model (Refsgaard and Storm, 1995), the WASIM-ETH
model (S;::hulla. and Jasper, 2007), the TOPMODEL (Beven et al., 1995), the
ARNO model (Todini, 1996), the distributed HBV model (Lindstrém et al.,
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1997), the VIC model (Liang et al., 1994). During the last decades, there have
been a mounting interest towards the development of such models due to their
wide range of application. Their applications include, for instance, stream-
flow forecasts, impact assessment studies such as land cover change on basin
response (Hundecha and Bérdossy, 2004), streamflow predictions at interior
locations within a basin (Reed et al., 2004) or in ungauged basins (Samaniego
et al., 2010a), for the investigation of operational usages of meteorological data
sets obtained from satellites and radar networks (Reed et al., 2004), exploratory
analysis for integrated water resources management (Samaniego and Bardossy,
2007). Moreover, the recent advances in remote sensing acquisition techniques,
geographical information systems (GIS) and computational powers, have also
significantly contributed to this development process.

However, this development process at a mesoscale has not always contributed
to find the “right” answers to the main problems of the contemporary hy-
drology. These problems according to Beven (2001a) are nonlinearity, scale,
uniqueness, equifinality, uncertainty, overparameterization, considerably large
ereculion time.

Recent developments, especially from the so-called “physically based” hydro-
logic models, based on the blueprint proposed by Freeze and Harlan (1969),
have not properly addressed these problems, in most practical cases, mainly
due to the following reasons. Firstly, media properties (both vegetation and
soil) are essentially unknown or at least peorly known (Bldschl et al., 2008),
this implies that any system’s characteristic will always exhibit some spatial
variability regardless of the grid cell resolution chosen for modeling purposes.
Hence, trying to use point scale physics (e.g. Richard’s equation) at the basin
scale implies that both the media and the boundary conditions should be
known specially at the scale of the equations. This, in turn, requires pro-
hibitive amounts of input data, which in most cases goes far beyond practical
limitations even for small experimental plots (Zehe et al., 2006). And even if
it. is possible to gather such information (in near future), the representative-
ness at the grid scale of point measures would be a matter of concern (Beven,
2001a). Secondly, since the required information seldom exists, modelers are
forced to find “effective parameters” via calibration®. As a result, these types

3«“Calibration is a process in which model parameters are adjusted so as to match as closely
as possible the dynamic behavior of the model to the observed behavior of the catchment
such as streamflow” (Gupta et al., 2002)



of models are transmuted into “overparameterized conceptual models” (Beven,
2001a; Kirchner, 2006).

In contrast, “conceptual models” approximate the general physical mechanisms
governing the hydrological process on the basis that the assumptions stated
above are usually not fulfilled. In particular regarding the assumption of using
point scale physics (e.g. Richard’s equation) to a mesoscale level, since the
nonlinearity of the governing equations hinders its upscaling from smaller to
larger scales through simple averaging (Beven, 2001a; Hopmans et al., 2002;
Zhu and Mohanty, 2002). The dominant governing processes in conceptual
models, on the contrary, are mainly based on the process understanding and
are consequently formulated as a system of location specific ordinary differen-
tial equations (Bldschl et al., 2008) as opposed to the partial differential equa-
tions which are commonly used in a physically based hydrologic model. As a
result, conceptual models are more computationally efficient than physically
based models, and therefore they have been commonly used in operational
hydrology (e.g. real time flood forecasting). Conceptual models have been
mainly focused on the integrated behavior of the hydrologic system, in partic-
ular, streamflow hydrograph and its predictive uncertainty. While streamflow
is'important for characterizing the hydrologic regime of a basin, new problems
imposed by society and changing environmental conditions cannot be satis-
fied without considering the reliable predictions of other interior water fluxes
and state variables, such as soil moisture, evapotranspiration, amongst -others.
Spatio-temporal dynamics of near surface soil moisture and snow cover, as well
as spatial heterogeneities of basin physical characteristics (e.g. topography,
land cover, vegetation dynamics) are the key factors to improve our ability to
better predict the timing and magnitude of streamflow events. Moreover the
dynamics of near surface soil moisture, and evapotranspiration, as well as, the
spatio-temporal of near surface frozen soil are of fundamental for coupling a
hydrologic model with regional climate models (Seneviratne and Stockli, 2008)
and vegetation growth models.

While incorporating the spatial variability of basin physical characteristics and
meteorological variables in a distributed hydrologic model should, in theory, im-
prove the overall hydrologic response of a basin (e.g. streamflow simulations),
as compared to the simulated responses of its lumped counterpart. However,
their are controversies regrading the use of distributed models over lumped
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ones (Beven and Binley; 1992; Grayson et al., 1992). For instance, Reed et al.
(2004), based on the findings of a comprehensive inter-comparison test between
several physically based and conceptual distributed models and lumped mod-
elsin a phase one of Distributed Model Intercomparison Project (DMIP-I) for

&

the streamflow simulations concluded that “.. lumped model outperformed dis-
tributed models in more cases than distributed models outperformed the lumped
model ...”. Similarly, others have also found no significant improvement in
daily streamflow simulations using a spatially distributed model [e.g. see Refs-
gaard and Knudsen (1996); Booij (2005); Das et al. (2008); Pokhrel and Gupta
(2009)]. Given these conclusions and the magnitude of research efforts ex-
pended during the last decades to realize the benefits of distributed models, it
is not yet clear how well these models will helﬁ to improve the predictions of
hydrologic response of a basin. And therefore wether they can be used for the
operational forecasting purpose.

One of the major obstacles in the implementation of a spatially distributed
model at_mesoscale is its spatial complexity and its parameterization (Refs-
gaard, 1997; Yilmaz et al., 2008). A spatially distributed model requires a
spatial field of model parameters to characterize the spatio-temporal variabil-
ity of different hydrological processes. Model parameter at a mesoscale are by
definition “effective quantities” which can not be inferred from measurement
data but need to be estimated through a calibration process. When imple-
menting a spatially distributed models over a large spatial domain the number
of unknown model parameters grows quickly as the modeling resolution goes
finer and finer. This would eventually lead to a model overparameterization
problem. For example, if a distributed model would require 10 parameters
per grid cell, in a simplest case, and would be applied in a basin covering an
area of 1000 km? with a spatial resolution of 1 km?, then the dimension of the
calibration problem would be 10 x 1000 = 10 000, a daunting computational
task! This high dimensionality of optimization problem not only result in an ill
posed and a numerically intractable calibration problem (Doherty, 2003), but
also would impose severe restrictions on use of the state-of-the-art optimization
algorithms for model calibration (Pokhrel et al., 2008). Model overparameteri-
zation could further complicates the parameter identification process due to the
equifinality? of feasible parameter sets (Beven, 2001a). This would seriously

4Equifinality is the principle that in open systems a given end state can be reached by many
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compromise for the predictive validity of model outputs (Seibert, 2003).
Concerns have been also raised regarding the transferability of model param-
eters from one spatial scale to an another scale. Implementing a distributed
model in a mesoscale river basin at a coarser spatial scale (e.g. 8 km, 16 km)
offers several advantages as compared to applying it at a finer scale (e.g. 1 km,
2 km). These advantages include for instance, a considerable reduction in
running time, coupling its hydrological components with a regional climate
model, to incorporate an extensive coarser resolution remotely sensed data sets,
amongst others. However, the prediction of spatially distributed water fluxes is
still required at the finer resolution, for instance, for improving our understand-
ing of underlying processes and thereby for making better predictions. Recent
hydrologic studies have reported that model parameters estimated through cal-
ibration are not generally transferable to different scales other than that used
during calibration [e.g. see Haddeland et al. (2002); Liang et al. (2004); Troy
et al. (2008); Samaniego et al. (2010b)].

It is worthwhile mentioning here that the problem of the non-transferability of
model parameter across scales is directly or indirectly related to the parameteri-
zation process of a distributed hydrologic model. The practical implementation
of a distributed model in a mesoscale river basins would be limited without
addressing the solution to this problem.

The most common approach for the distributed model parameterization scheme
mainly relies on reducing the spatial variability by grouping modeling cells
— the smallest modeling spatial unit — into somehow homogeneous regions
called “Hydrologic Response Units (HRU)?” (Leavesley et al., 1983; Fliigel,
1995). This approach has been commonly used in distributed model parame-
terization [e.g. Leavesley et al. (1983); Fliigel (1995); Donigian et al. (1995);
Beldring et al. (2003); Arnold and Fohrer (2005); Das et al. (2008); Bloschl
et al. (2008); Viviroli et al. (2009), amongst many others]. The basic assump-
tion behind this approach is that the set of model parameter which control the
spatial dynamics of hydrological processes within a particular HRU shares a
common value regardless of their location in modeling domain. In this way the

HRU method reduces the spatial complexity and thus the model complexity

potential means. The word “equifinality” was first used by L. von Bertalanffy in year 1968
in his book named of “General Systems Theory” which was further adopted and popularized
in the context of environmental modelling by K. J. Beven and coworkers.

SHRU is a “distributed, heterogeneously structured entities having a common pedo-topo-
geological characteristics controlling their hydrological dynamics” (Fliigel, 1995)
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as an unique set of model parameters is assigned to each HRU through a cal-
ibration process. Its disadvantages, however, become apparent when a model
based on this concept is applied to particular situations. For example, to assess
the impacts of a changing input variable such as the land cover, or to estimate
reasonable spatio-temporal distribution of state variables or water fluxes such
as the soil moisture. In both situations the application of the HRU concept is
completely inappropriate mainly because it is based on the static categorical
classification and also its geographic location is not necessarily explicit, it does
not necessarily preserve an existing local relationship between model parame-
ters and catchment characteristics (Beighley et al., 2005; Viviroli et al., 2009).
Furthermore, there is no universally accepted guidelines available regarding
how many and which basin predictors can be used for identifying HRUs. As a
result, if a model based on this parameterization technique is applied to cap-
ture sufficient variability of hydrological processes there is always a danger of
a model overparameterization. For example, if a distributed model with 10
parameters is applied in a basin whose drainage area is 1000 km?, it would
require at least 20 to 30 (or even more) HRUs to capture the spatial variability
of hydrological processes [e.g. see Das (2006)]. This imply an optimization
problem with at least 200 degree of freedoms. As a result the HRU method
could still leads to a highly parameterized model.

An another parameterization scheme which is increasingly used in distributed
models and is gaining popularity in recent years is based on the concept of
regionalization — the method to transfer the information (i.e. the set of model
parameters) from one location to other (Bloschl and Sivapalan, 1995). The
basic assumption behind this approach is the fact that model parameters are
not independent entities that can take any arbitrary values, but rather their
values are somehow linked to the basin physical characteristics (Grayson and
- Bléschl, 2000; Pokhrel et al., 2008). The traditional approach for implement-
ing a regionalization procedure in model parameterization relies on two-step
procedure. The first step consists of estimating a set of model parameters in
several catchments through a calibrating process. In the next step, a regional
relationship is established between the respective basin physical characteristics
and the optimum parameter set found in first step (Abdulla and Lettenmaier,
1997; Seibert, 1999; Merz and Bldschl, 2004; Wagener and Wheater, 2006).
This approach is quite simple to implement but disadvantageous because it
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does not account for the equifinality of feasible parameter sets or the para-
metric uncertainty in the regionalization procedure. It uses a unique set of
model parameters to establish a regional relationship. As a result such re-
gional relationship may — most likely — provide an inconsistent result for other
equally good parameter set and therefore the so-established regional relation-
ships are likely to be weak or inconsistent (Fernandez et al., 2000; Hundecha
and Bardossy, 2004).

The improved approach for the parameter regionalization scheme that take care
of the problem of the previous approach relies in treating the both steps of the
previous approach concurrently so to simultaneously strengthen the regional
relationships and estimating the model parameters (Fernandez et al., 2000).
This approach is currently used in parameterizations of various distributed
models (Hundecha and Bardossy, 2004; Gotzinger and Bardossy, 2007; Pokhrel
et al., 2008; Samaniego et al., 2010b). The model parameterization based on
this approach is also more appealing than the HRU method because it not
only reduces considerably the feasible space for the parameter search process
in calibration by estimating only few functional parameters instead of model
parameters for each cell (Pokhrel et al., 2008; Samaniego et al., 2010b), but
also because it attempts to establish a quasi continuous link between basin
physical characteristics and model parameters which could be effectively used,
for instance, to study the impact of changes in the catchment characteristics,
lile land cover, on the response of catchment (Hundecha and Bédrdossy, 2004).
This technique is also being effectively used for transferring the set of model pa-
rameters from gauged to ungauged locations or for the preaictions in ungauged
basins (Abdulla and Lettenmaier, 1997; Seibert, 1999; Merz and Bloschl, 2004;
Young, 2006; Wagener and Wheater, 2006; Samaniego et al., 2010a).

One of the main shortcomings of the both parameterization schemes (i.e. based
on the HRU and the regionalization methods) described above are that they
do not explicitly account for the sub-grid heterogeneity of basin physical char-
acteristics. These physical characteristics are commonly estimated through
pre-defined aggregation techniques such as averaging, majority, amongst oth-
ers. They remain fixed at the same scale as that of the modeling units (i.e.
the grid cells). As a result, both parameterization techniques lose the valuable
information regarding the sub-grid heterogeneity which are intimately related
to several sub-grid hydrological processes, such as runoff generation at hills-
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lope (Barling et al., 1994; Becker and McDonnell, 1998; Grayson and Bloschl,
2000; McDonnell et al., 2001; Zehe and Bléschl, 2004). Moreover in the case
of parameter regionalization, the aggregation of catchment physical charac-
teristics from a sub-grid scale to a coarser modeling grid scale could induce
a significant noise that can diminish a functional relationship between basin
physical characteristics and model parameters, even when a theoretically strong
relationship exist (Kling and Gupta, 2009).

1.3 Research Objectives

This thesis presents the results of a course of research designed to address
two different, but related questions that emerged from the above presented dis-
cussions on the practical implementation of a spatially distributed hydrologic
model in a mesoscale river basin.

1. How to formulate a robust and computationally efficient spatially dis-
tributed hydrologic model for a mesoscale Tiver basin, which can not only
reproduce the discharge hydrograph at any point within a basin but also
able to provide a reasonable estimate of the spatio-temporal dynamics of
soil moisture, snow cover, amongst other state variables?

2. How to obtain spatial fields of model parameters robust enough to reduce
the overparameterization problem but still adequate enough to incorpo-
rate the sub-grid basin heterogeneily, while ensuring the transferability of
model parameters to scales other than that used during model calibration?

To address these questions, the following research objectives were considered
in this study:

e To develop a grid based distributed hydrologic model suitable for both
scientific and operation purposes at a mesoscale river basin;

¢ To formulate and evaluate a robust parameterization method for a spa-
tially distributed hydrologic model;

e To evaluate the efficiency of proposed parameterization method over
other existing methods for their performance to preserve the spatial pat-
terns of water fluxes as well as for the conservation the mass balance
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of water fluxes at a given control volume, when model parameters are
shifted across scales, and

¢ Finally, to realize the potential benefits of a spatially distributed model
over a lumped one for their capability to represent extreme runoff char-
acteristics such as magnitude and frequency of high and low flows.

The structure of this thesis is as follows. Chapter 2 provides a detail description
of the formulation of a spatially distributed hydrologic model. In Chapter 3, a
review on the state-of-the art regionalization methods is presented. Following
to that a method for obtaining the spatial fields of model parameters and its
implementation within a proposed distributed model are described in detail.
In Chapters 4, 5, and 6, extensive evaluations of a proposed model and a
parameterization scheme in a mesoscale river basin are presented. Finally, a
summary on the findings of the present study along with a short outline on the
future perspectives of this work is presented in Chapter 7.
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Chapter 2

Development of a Mesoscale
Hydrologic Model (mHM) !

“The aim of a model is, of course, precisely not to reproduce reality in all
its complexity. It is rather to capture in a vivid, often formal, way what is
essential to understanding some aspect of its structure or behavior.... We select,
for inclusion in our model, those features of reality that we consider to be
essential to our purpose... the ultimate criteria, being based on intentions and
purposes as they must be, are finally determined by the individual, that is,
human, modeler.”

Joseph Weizenbaum

2.1 Introduction

In this Chapter, the development of a process based spatially distributed hy-
drologic model (mHM) suitable for both operational and research purposes at
a mesoscale river basin is described. mHM is a continuous water balance model
which is based on numerical approximations of dominant hydrological processes
that have been tested in well known HBV model (Bergstrdm, 1995; Hundecha
and Béardossy, 2004). mHM also includes a number of new features which are
described in the next section(s). In general, mHM uses a grid cell as a primary
hydrological unit and simulates the following dominant hydrological processes

1This chapter is a modified version of the manuscript: Samaniego, L., Kumar, R., and S.
Attinger. A parsimonious spatially distributed hydrologic model for water resources manage-
ment at the mesoscale.(Manuscript to be submitted).
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(Fig. 2.1): canopy interception, snow accumulation and melting, soil moisture
dynamics, infiltration and surface runoff, evapotranspiration, surface and sub-
surface storage and discharge generation, deep percolation and baseflow, and
discharge attenuation and flood routing.

Figure 2.1: General model structure for a cell i at time point ¢ draining to a
stream section within a cell (graphic is not to scale).

2.2 Hierarchy of Spatial Scales

Dominant processes of the hydrological cycle at mesoscale span over several or-
ders of magnitude (Bléschl and Sivapalan, 1995). In mHM, three levels (Fig. 2.2)
of spatial discretization are differentiated to better incorporate and represent
the spatial variability of input, state variables and water fluxes:

1. Level-0: Spatial discretization used to describe the sub-grid variability of
relevant basin characteristics such as terrain elevation, slope, and aspect,
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the main soil characteristics and horizons of a pedotop, main geological
formations of a basin, and land cover characteristics. The cell size and
cell index at this level are denoted by ¢y and 7, respectively.

2. Level-1: Spatial discretization used to describe dominant hydrological
processes accounted in mHM at a mesoscale. The cell size and cell index
at this level are denoted by ¢; (such that ¢1 > £) and i, respectively.

3. Level-2: Spatial discretization used to describe the spatio-temporal vari-
ability of the meteorological forcings, for example the formation of con-
vective precipitation cells. The cell size at this level is denoted by £ (such
that & > f]_).

- Level-0

Figure 2.2: Hierarchy of data and modeling levels in mHM.

2.3 The Grid-based mHM Model

2.3.1 Model Formulation

A mesoscale basin is an open system that can be defined mathematically in
various ways depending on how the spatio-temporal variability of the basin
characteristics is described. If the basin characteristics can be assumed con-
tinuous in space, its media characteristics and boundary conditions would be

15



known at the point scale, and the governing process would be fully scalable,
then a system of partial differential equations (PDE) would be suitable to
describe the evolution of the dominant processes at this scale (Freeze and Har-
lan, 1969). Conversely, if these characteristics appeared to be discrete with
unknown scaling laws, then a system of ordinary differential equations (ODE)
may be appropriate to describe the temporal evolution of these processes at a
given location i (Bldschl et al., 2008).

Since the continuity and the scalability assumptions are quite difficult to justify
at the mesoscale, most conceptual hydrologic models (e.g. HBV, SAC-SMA,
VIC) have adopted a ODE formulation, which may also include stochastic
terms representing the uncertainty of the system (Young and Parkinson, 2002).
In this study, a system of simultaneously ODEs was adopted for the formulation
of mHM.

Let Z = {(z,9)]1 < z < n,1 < y < m} denote a n x m integer rectangu-
lar lattice covering a spatial domain of a river basin §2. The cell size of this
lattice is denoted by #; (i.e. at level 1). To ease the notation, the pair of
coordinates (z,y) is replaced by a unique cell identifier ¢ as shown in Fig. 2.1,
where 1 > 1V (j,k) € €, otherwise ¢ = 0. A necessary condition of the lattice
covering this domain is that there should be a unique point having the highest
flow accumulation. This point is denoted hereafter as the basin’s outlet. More-
over, let M{f, g} be a distributed mesoscale water balance hydrologic model
that relates the state variables x with some observable categorized as inputs
u and outputs y. Here f and g denote a set of functional relationships that
describe the evolution of the system and the quantification of model outputs
respectively. u is a set of fields (grids) representing the land cover, the phys-
iographical and the meteorological variables. Based on this the rate of change
of the state variables at a given location i (Fig. 2.1) and point in time ¢ are

xi(t) = £(xi(t), wi(t), Bi(t)) +mi(t) Vie Q. (2.1)

Observed outputs such as streamflow or ground water levels (y) at given loca-
tions { € £ in time ¢t are defined by

yi(t) = g(x(), u(t), B(8)) +e(t) (2.2)
where B is a vector of location specific parameters. 1 is a vector of unmeasur-
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able stochastic inputs, which can be interpreted as the degree of uncertainty
originated by the lack of knowledge about the dominant processes during the
formulation of M. € is a vector denoting the uncertainty of the system origi-
nated by defects on measurements of both the inputs and outputs.

It is worth noting that fields input u and outputs y can be measured or ob-
served at given point in time or at predetermined time intervals. Conversely,
the state variables and their rate of change (represented as x = %) can only -
be inferred indirectly. As a result, it becomes impossible to estimate the char-
acteristics probability density function (PDF) of . The classical deterministic
approach to solve this system of ODEs would be to assume that the stochastic
term n = 0 in (Eq. 2.1) and then to embed all model uncertainties into the
model parameters B and the measurement noise é. The main disadvantage of
this procedure is the impossibility to determine the causality of the various
sources of errors. It is worth noting that this solution procedure, although
disadvantageous, has been pursued by most of the existing hydrologic mod-
els. This approach was also pursued in this study for the sake of simplicity.
There are, however, other possible alternatives to solve explicitly this system
of stochastic ODE, for example through Bayesian analysis (Kavetski et al.,
2006) or data assimilation (Vrugt et al., 2005). The application of any of these
techniques within the mHM modeling framework is possible but not pursued
in this study. The assumption stated above, although disadvantageous in other
respects, would allow us to test the efficiency of the proposed model.

Under the above assumption, the state equations f for a given cell ¢ in time
point ¢ (Fig. 2.1) are

21 = Bi(t) - Fi(t) — Eu(t)

Ty — S?;(i) — M,:(t)

i = (1 —MIFHE) - B(1) - IF@)
tg; = p'(Rilt) + Mi(t)) — Ex(t) — qui(t)
Zs: = IZ(t) — qui(t) — asilt) — Cilt)

te; = Ci(t) — qai(t)

tr = Q%) — QH¢) J

ot

Vi € (2.3)

where k& denotes here the index of a root zone layer, &k = 1,2. £ is a time
index for each At interval. g* is an overall influx fraction accounting for the

impervious cover within a cell. ¢ denotes a surface runoff component, and
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Q is the generated discharge. The complete description of the inputs, state
variables, fluxes, and output variables can be found in the Notation section.
The following sections provides the detail description and mathematical for-
mulation of hydrological processes, that are accounted in mHM. The schematic
representation of main components of mHM are shown in Fig. 2.3. The main
differences and/or similarities between mHM and three commonly used hydro-
logic models are presented, after the description of the different mHM compo-
nents, in Table 2.1.

2.3.2 Canopy Interception

Canopy interception is the amount of precipitation (i.e. liquid and/or solid
phases) which is retained by the foliage and do not reach the ground. This
process plays an important role on the water balance but is often neglected in
hydrologic models (Fenicia et al., 2008). According to Dickinson (1984), the
maximum water intercepted by the vegetation is proportional to the leaf area
index L (cell sub-indices are omitted to ease the notation):

2T (1) = BLL(1) (29)

consequently the throughfall is the difference between the precipitation and
the interception, which can be estimated by

F(t) = max {P(t) + z:(t — 1) — zP*(¢) , 0} (2.5)

where 5, denotes proportionality constant in mm, normally assumed equal
to 0.2 mm. P is the precipitation depth. The leaf area index (LAI) is a
dimensionless ratio between the total upper leaf surface of the canopy and
the surface of the reference area. This index depends on the land cover state
(e.g. forest, impervious, permeable) and the vegetative cycle at a given place.
LAI ranges from 0 to 8, where the extremes correspond to bare soils (e.g. in
settlements) and dense forest, respectively.

2.3.3 Snow Accumulation and Melfing

Snow accumulation (z2) and melting (M) are modeled with a modified version
of the degree day method (Linsley, 1943). This method assumes that the po-
tential snow melt depth is proportional to both the temperature above a given
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Figure 2.3: Schematic representation of different components accounted in
mHM. Where, X = state variable, E = actual evapotranspiration, q = compo-
nent of runoff, S = snow precipitation depth, R = rain precipitation depth, F
= throughfall, I = infiltration capacity, C = percolation, K = gain/loss flux in
a leaking cell, Q, = net runoff produced at the outlet of a grid cell.

threshold §2 and the amount of heat expelled from the rain in liquid phase. The
latter proportionality relationship, however, is limited to avoid over-predicting
snow melting rates during intense precipitation events. To estimate the equiv-

alent depth of the snowpack, the throughfall is firstly separated into its liquid




(R) and solid phases (S) by

sgp={° TE>A (2.6)
P(t) otherwise

R() P(t) T(t) > Be @)
0 otherwise

Melting rates at a given location i is given by (Hundecha and Bérdossy, 2004)

i< [T e -} 06,
0 otherwise

here the modified degree-day factor o(t) in [mm d~! °C~1] is estimated by

Bs(t) + BuR(t) R(t) < 80
Bs(t) otherwise

o(t) = (2.9)
where T' denotes the average air temperature, (s is the degree-day factor during
rainless days, 5 denotes the maximum degree-day factor reached during rainy
days, and f4 is a positive proportionality factor denoting the rate of increase
of the degree-day factor per unit of precipitation.

2.3.4 Soil Moisture Dynamics

mHM (Fig. 2.3) is composed of three subsurface layers. The depths of these
three layers are denoted by z;, ¢ = 1,...,3 respectively. The first layer repre-
sents the upper part of vadose or — the root zone (0 < z < z;) — which responds
to rainfall events and controls the surface runoff generation. This zone is, in-
turn, sub divided into two horizons (A = 2) to better account for phenomena
like soil freezing during winter season and the soil moisture redistribution and
evapotranspiration during the summer season (Liang et al., 1996), as well as
the alterations of the soil physical characteristics due to anthropogenic activi-
ties (e.g. bulk density due to tillage or land cover change). The depths of these
subdivisions are denoted by z{, [ =1,..., )\ respectively, and often obtained
from soil and geologic maps.
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The middle layer (Fig. 2.1) z; < z < 23 comprises the lower part of the vadose
zone that governs the fast and slow subsurface interflows generation. Finally,
the third layer represents the saturated zone that controls the baseflow gen-
eration. Based on this conceptualization, the ratio between the influx and
the efflux at the I*® horizon of the root zone is estimated based on a simpli-
fication of the Richards’ equation proposed by Mahrt and Pan (1984); Liang
et al. (1994) neglecting the soil water diffusivity. In case the model is applied
in dry environmental conditions (e.g. arid river basin), capillary rise should
be included in this equations. The soil water conductivity is based on the
relationship proposed by Brooks and Corey (1964).

Under these conditions, the governing equation is

My (mé(t— 1)/d —Bi)m) (2.10)

=g -\~ Bi-o

where I2(t) = R(t) + M(t) for I = 1. Here, z4/d' denotes the average water
content [m® m~3] in the ! root zcne horizon of a given cell and time point. The
variable d' = z} — 2/~ denotes the depth of each horizon. 6% and 8 are the
limits within which the soil moisture fluctuates. They denote the residual and
the maximum soil moisture content, respectively.

It should be noted, however, that not all rainfall hitting the ground is con-
tributing to the infiltration process because only a fraction of a grid cell area
might remain permeable at a given time point. There are two reasons that
may hinder the infiltration process.

The first reason depends upon the fraction of impervious surfaces py(t) (e.g.
paved surfaces, roofs) at a given time point estimated with the land cover .
information at level-0. In this case, the fractional area concept (i.e. fraction of
a given grid cell that is located within the basin’s boundaries) is employed to
ensure that the basin’s area is not altered.

The second reason is related to the ground temperature. Empirical evidence
shows that freezing temperatures have a substantial impact on both the ther-
mal and hydraulic properties of soils (Bastidas et al., 2005; Niu and Yang,
2006). Frozen soil is in general less permeable (i.e. smaller hydraulic con-
ductivity) than unfrozen soil because the infiltration process mainly occurs
through macropores. As a result of the increase of the soil ice content (i.e.
water equivalent) in the upper root-zone horizon 9(t), a portion of the perme-
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able areas pr(t) become semi- to completely impermeable during freeze-thaw
cycles in winter and spring seasons (Koren et al., 1999; Niu and Yang, 2006).
During these periods, the thermal conductivity of the soil would also increase.
Changes of the mass and energy balances significantly alter the soil moisture
dynamics of the top soil horizon which, in turn, lead to an increase of surface
runoff. During extreme events, these changes would even decouple the mois-
ture exchange between land surface and the atmosphere (Williams and Smith,
1989).

It is assumed that there is a critical value of soil ice content g, above which the
soil is practically impermeable. Consequently, the fraction of impermeable area
pr(t) can be estimated as the probability that the soil ice content 4 exceeds
the threshold Ss, formally:

Bs

(*)
pﬂﬂ=PWﬂ>&®Fd*£ £(9)d9 (2.11)

Empirical evidence indicates that the spatial variability of ¥ can be described
by a standard Gamma distribution (Koren et al., 1999), i.e. f(d) ~ I'(§, Ba),
with £ = %. Here, B9 and 0 are the shape and scale factors of the distribution
respectively. In this case, (Eq. 2.11) is reduced to

1 v
t)=1- f ho=lg=ty 2.2
prt) =1~ gy |, €57 ede (212)
where, the scale parameter can be estimated by § = %?. Here E(-) denotes
the expectation of the soil ice content on a given cell. Since the best estimate
of this expectation at the time point ¢ is (¢t — 1), the upper limit of the integral
becomes v = ﬁso(t) = ——%’(gt)% !

Finally, the soil ice content can be estimated by

9(t) = z3(®) (1 - Fi(t)) (2.13)

where f; denotes the fraction of unfrozen water in the first root zone layer.
Since, in the present version of the mHM, the energy balance is not accounted,
a simple non-linear relationship based on empirical evidence was employed.
According to Patterson and Smith (1981), f; reduces rapidly in the range from
0°C to -2°C, then, it tends asymptotically to a minimum value. Both, the rate
of decrement ﬁi_:—{h_i; and the minimum fraction of unfrozen water fi2 are soil-
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type dependent. Since soil temperature is not often available, the antecedent
temperature index ar is used as a proxy of the accumulated heat in the ground.
The proposed relationship to estimate fj is

P12 ar(t) < Bio
Jlt) = { Pz + 57255 (ar(t) — Bro)  Bro S ar(t) < Bu (2.14)
1 otherwise

where ar is estimated by

ap(t) = ap(t — 1) + 13(T(t) — ax(t — 1)) (2.15)

where ;3 denotes weighting multiplier ranging from 0.1 to 1. T denotes the

daily mean air temperature.

2.3.5 Infiltration and Surface Runoff

The infiltration rate I generated by pervious surfaces within a given cell at
time t can be estimated as

= BE ()
I%(t) = (1 — p®(8)) I*1(2) (%ﬁgl)) (2.16)

where

(1—pr®)(1-pu(®) k=1

1 otherwise

1—p8(t) = (2.17)

Rainfall hitting impervious surfaces, on the contrary, would generate surface
runoff only if a given retention threshold f14 is exceeded. Otherwise, surface
ponding occurs. This parameter was not regionalized. Formally,

q1(t) = max {p(t)(R(t) + M(t)) + za(t — 1) — fra, 0} (2.18)

The water balance, in this layer, is ensured by the fourth state equation in
(Eq. 2.3).
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2.3.6 Evapotranspiration

Three types of evaporation are considered in mHM (Fig. 2.3), namely: Evap-
oration from the canopy Fi, evaporation from free-water and impervious sur-
faces Es, and evapotranspiration from the root zone layer E3. The total evap-
otranspiration within a cell is the sum of these three components, but should
never exceed the potential evapotranspiration (PET) E,. The attempt to sat-
isfy the PET is carried out sequentially starting from the canopy layer.

The evaporation component originated from the canopy on a grid cell is esti-
mated as according to Deardorff (1978)

T 2/3
Bo-(29)"5, 219

The evaporation from free-water bodies and/or ponding waters on impervious
areas is proportional to the ratio of the current amount of impounded water
x4 and its maximum retention capacity 14, given by

By(t) = =) (Ep(t) - El(t)) (2.20)

T B \ folf)

where f, denotes the time dependent evaporation-pan coefficient.

Finally, the evapotranspiration rate from the root zone depends not only on
the evaporative demand of the atmosphere but also on its relative soil water
content and the vegetation type. This component can be estimated by the
relationship proposed by (Denmead and Shaw, 1962) such that

k(1 _
sy < {0 (ET(t)) k =1 G
05,5{‘7 (Ep(t) = ;!=_1]L Eé‘*l(t)) otherwise
with
0 A1) < o
ke k
a=qBELBE e gkt —1) < B (2.22)
'816_‘615
1 otherwise
and
E(t) = Ey(t) — E1(t) — Ea(t) (2.23)
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where k denotes the root zone horizon. f;5 is the permanent wilting point
whereas (315 is the soil moisture limit above which the actual transpiration is
equated to the PET. B, denotes the fraction of roots in the k*" horizon, with

Yo B =1

2.3.7 Subsurface Storage and Discharge Generation

At the mesoscale, lateral flows—not shown in Fig. 2.1—originating from a
given cell to a neighboring one are assumed negligible with respect to the .
vertical components (I, C and K) (Zhu and Mohanty, 2002) . Three subsurface
storages are considered in mHM to simulate the fast interflow g2, the slow
interflow g3, and the baseflow g4. It is worth noting that ¢z, k = 1,...,4 are
afterwards aggregated to generate the total runoff of a given cell.

The fast interflow refers to the intermittent movement of water from the un-
saturated zone to the stream channel in a given cell. This flow occurs only
if the accumulated influx of water originated from the root zone exceeds the
maximum holding capacity fBig of the second reservoir. This surface runoff
component gz can be estimated at any point in time ¢ by

Q‘g(ﬁ) = max {I(t) - $5(t — l) — ﬁ13(32 - 31) 4 0} ﬁlg (:2.24)

where 19 denotes a fast-recession constant.

The slow interflow refers to the almost permanent flow of water that also
originates from the unsaturated zone. It is estimated as the outflow of a non-
linear reservoir by

g3(t) = Bao (z5(t — 1)) (2.25)

where 5 denotes a slow-recession constant and 877 is an exponent that quan-
tifies the degree of nonlinearity of the cell response.
The groundwater recharge or percolation C' is estimated as a linear reservoir
by

C(t) = Baazs(t — 1) (2.26)
where Bao denotes the percolation rate.
Currently no capillary flux is taken into account. The mass balance in the

second soil layer (i.e. reservoir) is ensured by the fifth state equation shown in
(Eq. 2.3).
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2.3.8 Baseflow

The last subsurface layer (Fig. ) 2o < z < z3 represents the saturated zone
which is assumed to generate entirely the base-flow g4. This process is concep-
tualized as a leaking linear reservoir whose outflow can be estimated as

ga(t) = Pasze(t — 1) (2.27)

with the gain/loss flux K given by

K(t) = BasC(t) | (2.28)

where f333 is a base-flow recession rate and fs4 denotes the fraction of the
groundwater recharge that might be gained or lost either as deep percola-
tion or as inter-catchment groundwater flow in nonconservative catchments.
These two fluxes may occur if the substratum is composed of geological forma-
tions such as karstic, limestone, and/or fractured quasi-impermeable insoluble
rocks (Le Moine et al., 2007). A value of f24 equal to zero corresponds to those
basins where the watertightness hypothesis holds.

2.3.9 Discharge Attenuation and Flood Routing

mHM generates time series of streamflow values g for every cell i as the
aggregate of all runoff components described before, hence, g(t) = Eid ax(t).
These runoff components, however, should not be consider as produced at the
center of a grid cell but as distributed non-uniformly over its area in accordance
with the antecedent distribution of soil moisture and the soil moisture capacity.
To take into account this effect in mHM, the total streamflow g is convoluted
with a triangular unit hydrograph (TUH) w(B25, At) to produce the hydrograph
@ at the outlet of every cell (i,). Here, the TUH simulates the routing within
the grid cell. Formally, @ can be estimated by

a
Q) =) alt— &+ k)u(k) (2-29)

k=1

with Z}Ll wk) =1land §d = %%f- — 1. Here (95 denotes the duration of the
TUH, usually taken as an even number for practical reasons. This parameter
is related to the length, land cover, and the slope of the drainage within a grid
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cell. At denotes the simulation time interval.

It may be noted that, if the modeling cell size is smaller than certain thresh-
old (e.g. ¢1 < 4km) or modeling time step is large (in order of days) then this
component (or hillslope routing) becomes not significant and adjusted within
surface flow and fast- and slow-interflow recession constants (Bléschl et al.,
2008). Conversely, if the cell size exceeds certain threshold limit or modeling
time step are short (in order of hours), this component becomes specially im-
portant because it represents the differences Of travel time of runoff occurring
within every cell (Wood et al., 1997).

The hydrograph generated at each cell are then routed through the drainage
network at level-1 towards the basin’s outlet. The drainage network at level-
1 is conceptualized as a graph whose nodes are hypothetically located at the
center of each grid cell connected by links that represent the river reaches. The
flow direction of a link correspond to the direction towards a neighboring cell in
which the net flow accumulation (outflows minus inflows) attains its: maximum
value. The net flow accumulation across a cell’s boundary at level-1 is estimated
based on flow direction and flow accumulation obtained at level-0 (Olivera
et al., 2002; Reed, 2003). Fig 2.4 presents the graphical representation of river
network upscaling from level-0 (i.e. input data scale) to level-1 (i.e. modeling
scale), adopted in mHM. It is worth mentioning that runoff from a given cell
can flow to its neighboring cells in multiple directions (Guo et al., 2004). At
the mesoscale, however, it is often assumed, for the sake of simplicity, that all
runoff leaving a given cell would exit through a major direction (O’Donnell
et al., 1999).

A river reach represents those segments of the river network within the bound-
aries of a grid cell at level-1. The river reach length, its mean slope, and the
potential floodplain areas within every grid cell ¢ are also estimated based on
level-0 information. The intersections between river reaches and cell bound-
aries are denoted as inflow or outflow points depending on the flow direction.

Hydrograph routing in river reaches are carried out with the Muskingum algo-
rithm (Cunge, 1969). This simplification of the St. Venant equations is justified
in mHM because the potential areas of application of this model would hardly
exhibit abruptly changing hydrographs with supercritical flows (Chow, 1964).
According to the Muskingum algorithm, the total reach storage as a flood wave
propagates downstream is estimated by (cell subindexes required for clearness)
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Figure 2.4: Panel (a): Schematic derivation of a drainage network at the level-1
based on level-0 flow direction and flow accumulation. The dotted line circle
denotes the point with the highest flow accumulation within a grid cell. Panel
(b): Topology of the drainage routing network at level-1.

z7:(t) = BosiQl (t) + BoeiBori (QL(2) — Q1Y) (2.30)

where

QY(t) = Qu(t) + Qi(t) (2.31)

here QY and Q} denote the discharge entering and leaving the river reach
located on cell i respectively. @y is the contribution from the upstream cell 7
based on (Eq. 2.29). f2¢ denotes the Muskingum travel time parameter. (a7
is a dimensionless attenuation parameter.

Following & routing sequence obtained from the flow directions at level-1, Q}(t)
can be found by combining (Eq. 2.30) with the last state equation shown in
(Eq. 2.3), thus

Qi(t) =Qi(t—1)+u (@t —1) — Qi(t — 1)) +w2 (QX() — It — 1)) (2:32)
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where

At

g = (2.33)

Y7 Basi(1 — Bam) + -

&t — Bagifari

= 2 WA (2.34)

Baei(1 — Bori) + 5
(2.35)

subject to

1 Pzs 1 (2.36)

T e g T

2(1 — Bor) — At T 20y
In case that man-made reservoir belongs to the drainage network, the total
reservoir capacity and minimum release rates can be specified for each grid cell

so that the routing can be performed at each grid cell.

2.4 mHM Model Parameters

The mHM model as described above consists of a total 27 parameters (i.e.
Bpy p=1,2,...,27). Out of which 25 parameters are associated to each mod-
eling cell (at level-1) to describe the spatio-temporal dynamics of the accounted
hydrological processes, and the remaining two parameters are for the flow rout-
ing process within a river network. A short summary of these model along with
their units is provided in Table 2.2. The method to estimate the spatial fields
of these effective parameters is presented in the next chapter.

29



Table 2.1: Main differences between mHM and other distributed hydrologic

models.
Item Description mHM HBV-IWS VIC-3L WASIM-ETH
Code Open source yes yes yes no
Language Fortran 95 FORTRAN 77 C C++
Input £y DEM, soil types, land - - -
layers cover
£ Hydrological all grids all grids » all grids
processes
) Meteorological - - -
forcings
Regionalization all parameters with 5 parameters - -
£y data, then up-
scaled at £
Meten.  daily/night yes - yes yes
variation
PET Hargreaves-Samani® Hargreaves- Penman- Penman-
with slope-aspect Samani® Monteith? MonteithP
correctiond
Interpolation EDK*® EDK*® simple average IDW®
Canopy  Interception Dickinsonf - Dickinson’ simple bucket
LAI weekly-monthly - monthly /seasonabeasonal
Evaporation Deardor{l® - Deardorff®
Snowmelt degree-day” degree-day” energy balance degree-day’
Seil Layers 2 1 3 n
moisture
Frozen soil based on ATI ™ - energy balance -
Evaporation nonlinear® Bersgstrom® Liang et al.” nonlinear®
Surface runoff sealed areas sealed areas Saturation- -
infiltration-
excess runoff
Infiltration Mahrt-Pan, Brooks- Bersgstrom® Zhao et al., Green-Ampt
surface runoff  Corey® Liang-Xie ®
Vadose  Fast interflow  linear reservoir linear reservoir® - -
zone
Slow interflow nonlinear reservoir nonlinear reser- - Richards'
voir
Percolation linear reservoir linear reservoir® Brooks-Corey! Richards'
Saturated Baseflow cell, linear reservoir, lumped Zhao™ Todini®? lumped nonlin-
zone leakage linear ear reservoir,
reservoir 2D groundwa-
ter model
Routing £y, cell-cell TUHA lumped TUH  cell-cell TUH  kinematic-wave
Muskingum Muskingum time delay Manning

® Land cover types is given as fractions in each cell

b Monteith and Unsworth (2007)
© Hargreaves and Samani (1985)

4 Shevenell (1999}

® Bxternal drift kriging / inverse distance weighting

f Dickinson (1984)
E Deardorff (1978)

h Linsley (1943), includes a precipitation-intensity correction factor

i Linsley (1943)
] Brooks and Corey (1964)

ke Bergstrim (1995), Bergstriim et al. (1997)

! Richards (1931)

M Antecedent temperature index (ATI)

™ Zhao et al. (1980}, Liang and Xie (2001)
© Related to soil moisture, wilting point and feld capacity

P Todini (1996)
9 Triangular unit hydrograph
¥ Liang et al, (1994)

5 Mahrt and Pan (1884), Brooks and Corey (1964)
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Table 2.2: List of mHM model parameters.

Parameter Unit Description

5 - Thickness of waterfilm on the canopy surface.

B2 °c Threshold temperature for phase transition snow and rain.

B3 mm d~1 °C Degree day factor during rainless days.

B4 mmd~! °C Rate of increase of the degree-day factor per unit of precipi-
tation.

Bs mm d~! °C Max. degree-day factor reached duringrainy days.

Bk mm Max. soil moisture content of *" root zone layer.

Br - Parameter that determines the relative contribution of rain or
snowmelt to runoff.

Ba mm Critical value of soil ice content in first root zone layer above
which the soil is practically impermeable.

Bo - Shape factor of the gamma distribution that statistically esti-
mates the virtual impermeable area due to frozen soil.

Bio K Antecedent Temperature Index (ATI, proxy for soil tempera-
ture) threshold below which unfrozen water content reach its
minimum value.

B11 K ATT threshold above which no frozen water exist.

Bi2 - Min. value of unfrozen water content estimated as the fraction
of total total water content of first root zone layer.

i3 - Weighting multiplier to estimate ATI from air temperature.

B4 mm Max. ponding retention in impervious areas.

Bis = Permanent wilting point, estimated as the fraction of maxi-
mum soil moisture content.

Big - Soil moisture limit above which the actual evapotranspiration
is equated with the potential evapotranspiration, estimated as
the fraction of max. soil moisture content. 2

Bi7 - Fraction of roots in the first root zone layer.

Pis mm Max. water holding capacity of the unsaturated zone.

Big d Fast recession constant.

Bag d Slow recession constant.

Bz - Exponent that quantifies the degree of nonlinearity of the cell
response.

Bas d Effective percolation rate.

Baa d Baseflow recession rate.

Baa - Fraction of the groundwater recharge that might be gained or
lost either as deep percolation or as intercatchment ground-
water flow in nonconservative catchments.

Bas h Duration of triangular unit hydrograph accounting for the dis-
charge attenuation within the cell.

Bae h Muskingum travel time parameter.

Bar - Muskingum attenuation parameter

31



32



Chapter 3

Distributed Model

Parameterization !

“If I have seen further, it is by standing on the shoulders of giants”

Sir Isaac Newton

3.1 Problem Description

The spatial heterogeneity and process complexity of surface and subsurface flow
imply that any spatially explicit hydrological model at the mesoscale is only a
conceptual approximation of hydrological processes (Beven, 2001a; Kirchner,
2006). Modeling of these processes would, therefore, require substantial sim-
plifications and generalizations. Model parameters that governs hydrological
processes would tends to compensate for an unaccounted spatio-temporal het-
erogeneity caused by the discretization, and due to the errors induced by the
numerical solution of the governing differential equations, as well as, due to
the simplification and assumptions made during the conceptualization of hy-
drological processes (Beven, 2001a; Bléschl, 2001; Kirchner, 2006). As a result,
these parameters (e.g. 8 of mHM) at a mesoscale lose their physical meanings
and become “effective parameters” (Kirchner, 2006). Since these effective pa-
rameters are not directly observable or easily inferred from measurement data
, they must be estimated through a model calibration process (Beven, 2001a;

LThis chapter is a modified and an extended version of the manuscript: Samaniego, L.,
Kumar, R., and S. Attinger (2010). Multiscale parameter regionalization of a grid-based
hydrologic model at the mesoscale. Water Resour. Res., 46, W05523.
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Gupta et al., 2002). Some degree of calibration is, therefore, generally required
for any hydrologic model when applied at a mesoscale level.

In case of a spatially distributed model the calibration process is challenging
mainly due to its highly parameterized nature. For instance, the proposed
distributed mHM model requires an estimate on the spatial fields of 27 model
parameter (f) to explain the spatial variability of incorporated hydrological
processes. Calibrating mHM with such a significant number of free parameters
for every grid cell would lead to the model overparameterization problem. This
would not only impose a severe restrictions on the use of available optimiza-
tion algorithms for a model calibration (Pokhrel et al., 2008), but also would
tend to increase the predictive uncertainty of the model due to the equifinal-
ity of feasible parameter sets (Beven, 2001a), as discussed in the introductory
chapter. Without addressing the solution to the overparameterization problem
the practical implementation of a distributed model in mesoscale river basins
would be limited.

Considerable research efforts have been devoted during the recent years, differ-
ent parameterization methods have been developed mostly aimed at reducing
the dimensionality of the calibration problem and therefore making it solvable
by existing optimization algorithms. One such method that is commonly used
in hydrological modeling studies at a mesoscale is based on the Hydrological
Response Units (HRU). The basic working methodology and the inherent ad-
vantages and limitations of this approach were discussed in the introductory
chapter.

An another approach for distributed model parameterization is founded on the
concept of parameter regionalization. This was also briefly explained in the
introductory chapter. Since the proposed parameterization for obtaining the
spatial fields of the mHM model parameters is mainly based on the concept
of regionalization method, a detail review on this method is provided in the
following section. Tt may be noted that some parts of the text provided in the
following review section may overlap with those written in the introductory
chapter. This was unavoidable and was necessary for better understanding
and readership of the proposed parameterization technique, as well as, for
recognizing the differences between the proposed method and the currently
used standard regionalization method.
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3.2 Regionalization of Hydrologic Model Parame-

ters

Regionalization in a broad sense is the method to transfer the information (in
our case model parameters) from one location to the another (Bloschl and Siva-
palan, 1995). Regionalization of model parameters in hydrological modeling
studies have been pursued in various ways for various purposes:

e to reduce model overparameterization or the dimensionality of the pa-
rameter estimation problem (Pokhrel et al., 2008, 2009),

e to constrain the parameter search space to realistic ranges (Hundecha
and Bérdossy, 2004; Gotzinger and Bardossy, 2007),

e to facilitate the transfer of model parameters from gauged to ungauged lo-
cations (James, 1972; Magette et al., 1976; Mosley, 1981; Jakeman et al.,
1992; Post and Jakeman, 1996; Sefton and Howarth, 1998; Abdulla and
Lettenmaier, 1997; Seibert, 1999; Koren et al., 2000; Merz and Bloschl,
2004; Young, 2006; Wagener and Wheater, 2006; Parajka et al., 2007;
Hundecha et al., 2008; Qudin et al., 2008; Samaniego et al., 2010a).

A variety of regionalization approaches has been developed and tested with
a varying degree of success, which reviewed from available literature can be
categorized in two main groups: First, parameter regionalization carried out
after model calibration, or simply post regionalization; and second, parameter
regionalization carried out simultaneously with a dual objective to establish a
functional relationship (or transfer functions) between model parameters and
catchment characteristics, and additionally to obtain the fields of model pa-
rameters via transfer functions (Hundecha and Bérdossy, 2004), or simply Si-
multaneous regionalization. These transfer-function parameters are also called
as global or super parameters (Pokhrel et al., 2008).

The post regionalization technique being commonly used (Post and Jake-
man, 1996; Abdulla and Lettenmaier, 1997; Seibert, 1999; Merz and Bldschl,
2004; Parajka et al., 2005; Young, 2006; Wagener and Wheater, 2006; Parajka
et al., 2007; Oudin et al., 2008) for model parameter regionalization follows
a general two-step procedure: a) estimation of a set of model parameters for
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a number of gauged locations or basins independently, followed by b) an at-
tempt to link statistically (e.g. multivariate regression, neural network) model
parameters obtained independently for each basin to a set of catchment char-
acteristics. These statistical (or regional) relationship and available catchment
characteristics can then be used to derive the estimates of model parameters
at ungauged locations (Wagener and Wheater, 2006). This technique, while
intuitive and simple to implement, however, quite disadvantageous due to the
following reasons.

First, the parameter regionalization uses a unique set of model parameters to
establish a functional relationships and thus do not account for the equifinal-
ity (Beven, 2001a) of parameters set in the regionalization procedure. There-
fore, the strength of so-established regional relationships directly depends upon
the parameter sets selected among the many optimum parameter sets. These
relationships may provide inconsistent results for other parameter sets and
therefore the regional relationships are likely to be weak or inconsistent (Merz
and Bloschl, 2004; Hundecha and Bérdossy, 2004; Gotzinger and Bérdossy,
2007). Second, a set of calibrated model parameters can be a good solution
to minimize a given error function used in calibration but it might be a bad
one to perform regionalization analysis because it may not conform with the
physical range expected for a given parameter. Or in other words, it might
be only an artifact of the calibration process. And third, because an inter-
action among both parameters and regionalization functions is not considered
during the model calibration process(Parajka et al., 2005; Heuvelmans et al.,
2006; Wagener and Wheater, 2006; Boughton and Chiew, 2007), which imply
that the regionalized relationship and transfer function parameters so obtained
could be a wrong estimate (Kim and Kaluarachchi, 2008).

The simultaneous regionalization technique has been proposed to address
the shortcomings of the previous approach as well as to account for the spa-
tial variability of model parameters (Fernandez et al., 2000; Hundecha and
Bardossy, 2004; Vogel, 2005; Gotzinger and Bardossy, 2007; Kim and Kalu-
arachchi, 2008; Hundecha et al., 2008; Bastola et al., 2008; Pokhrel et al.,
2008; Pokhrel and Gupta, 2009). In the simultaneous regionalization tech-
nique, both steps of post-regionalization are implemented concurrently, instead
of treating these two steps as independent, to simultaneously strengthen the
regionalization relationships or transfer functions and estimating the model pa-
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rameters (Fernandez et al., 2000) thereby mitigating the effect of strong model
" parameter covariance. The basic procedure is as follows: 1) select a group
of gauged basins, 2) establish a prior functional relationships or transfer func-
tions between model parameters and catchment, characteristics, 3) calibrate the
transfer function parameters coupled with a hydrologic model, and 4) cross-
validate the results in a gauged basin that was not used in the calibration
procedure.

- Early applications of this method were reported by Fernandez et al. (2000),
and Vogel (2005). In both cases, authors reported that the simultaneous-
regionalization resulted in strong regional regression relationships between model
parameters and catchment characteristics, although it did not improved the
performance of regionalized model for streamflow simulations in cross-validated -
catchments. In these studies, however, many of the catchment character-
istics employed for regionalization functions required an analysis of stream
flow data which limits this method for the predictions in ungauged locations.
More recently, Kim and Kaluarachchi (2008) followed the similar approach,
but without using streamflow characteristics as predictors. Here the authors
reported an improvement in the streamflow simulations using simultaneous-
regionalization technique as compared to those obtained through the two step
post-regionalization method. However, in all of the above three studies the
authors calibrated both unknown model parameters and transfer function pa-
rameters which in fact is a redundant because model parameters are inter-
nally linked with transfer function parameters (see step-2 of the simultaneous-
regionalization technique described above). As a result, use of this approach
in the case of a spatially distributed model is not reasonable since it does not
solve the overparameterization problem.

A variant of this method was used by Hundecha and Bardossy (2004), where
authors employed standard regionalization method for estimating model pa-
rameters of a semi-distributed conceptual model (HBV-IWS). The model was
calibrated for the estimation of transfer function parameters instead of the
model parameters itself and the spatial variability of the catchment character-
istics was grouped into homogenous areas or zones based on land cover classes,
soil types and elevation. A follow up of this study was proposed by Gotzinger
and Bérdossy (2007), in which only the top-soil reservoir of the HBV-IWS
model was conceived as spatially distributed. In this case, the authors intro-
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duced monotony and Lipschitz conditions into the optimization problem to
ensure the continuity of the model parameters in neighboring cells which share
similar properties. In both studies models were able to reproduce quite well
the discharge hydrograph. However, in both cases reasonable soil moisture
patterns are unlikely to be obtained, since this regionalization technique em-
ploys discrete classes as basin predictors. More recently, Bastola et al. (2008)
followed the similar approach for regionalization of the semi-distributed hydro-
logic model (TOPMODEL) parameters. A series of studies have been reported
by Pokhrel et al. (2008); Pokhrel and Gupta (2009) and Pokhrel et al. (2009)
following the same regionalization technique to obtain the spatial field of dis-
tributed HL-DHM model parameters. These studies were mainly aimed at
reducing the model overparameterization problem, while retaining the predic-
tive ability of the model for streamflow simulations. The relationships between
the model parameters and catchment characteristics proposed by Koren et al.
(2000) were used to derive a priori parameter estimates. However, the transfer
function parameters were further refined by the calibration process to improve
the model predictions.

The regionalization techniques reported in recent literature share a common
feature in respect that the catchment characteristics used for establishing func-
tional relationships are defined at the same scale that of modeling units (e.g.
grid cells). Or in other words, the catchment characteristics are pre-processed
(e.g. through an aggregation or upscaling procedures) to the modeling scale
before the regionalization procedure is employed. As a result these methods,
hereafter denoted as the standard regionalization technique (SR), do not
account for the sub-grid variability of the catchment characteristics. Many
hydrological studies have demonstrated the importance of such sub-grid vari-
ability which are intimately related to the several small scale hydrological pro-
cesses including the runoff generation process at hillslope (Barling et al., 1994;
Becker and McDonnell, 1998; Grayson and Bléschl, 2000; McDonnell et al.,
2001; Zehe and Bléschl, 2004).

Moreover, the recent study conducted by Kling and Gupta (2009), showed the
impact of ignoring the sub-grid scale variability in parameter regionalization.
The authors concluded that the noise induced due to the pre-aggregation of
catchment characteristics can be so high that it can diminish the regionalization
relationships even when a.theoretically strong relationship exists.

38



In this study, a multiscale parameter regionalization (MPR) technique is pro-
posed to overcome the issues related to the standard regionalization method
as mentioned above. This approach is a kind of a simultaneous-regionalization
buf it differs in many important aspects from those found in the reviewed lit-
erature. Foremost in case of MPR, the regionalization is performed at a finer
resolution (i.e. data input level) to account for the sub-grid variability of the
catchment characteristics such as soil texture, land cover, hydraulic conductiv-
ity of the geological formation, among others. Subsequently, the spatial fields
of effective model parameters required for capturing the spatial variability of
dominant hydrological processes in mHM at a coarser grid are obtained with
appropriate upscaling operators. Fig. 3.1 presents the schematic comparison
of the proposed MPR method with the SR method and also with the HRU
parameterization method.

3.3 Multiscale Parameter Regionalization (MPR)

The MPR technique focus on two levels of spatial resolution: level-0 and level-1.
The difference between these two spatial scales were discussed in Section 2.2 in
the previous chapter. To shortly summarize that these two scales are the input
data scale (level-0) containing gridded information on basin physical character-
istics (or predictors in regional relationships), and the modeling scale (level-1)
for describing the spatial variability of hydrological processes incorporated in
the mHM model.

It is worthwhile mentioning here that the basis of the MPR, method is the
fact that we are not interested in estimating aggregated basin characteristics
having little or no information regarding the spatial variability of the natural
factors that regulate the hydrological process at the sub-grid scale, but rather
than that in estimating effective model parameters that capture the emergent
properties of these processes at a modeling scale (level-1). -

Consequently, to achieve so, the MPR technique requires two phases to esti-
mate the effective values of mHM model parameters 5! (for details, see Sec-
tion 2.4) at modeling scale (level-1). These are namely: 1) regionalization, and
2) upscaling. These phases are graphically depicted in Fig. 3.2.
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Figure 3.2: Estimation of effective regionalized parameters B! at level-1 based
on regionalized model parameters 8° at level-0. Note that global parameters
«y are common for the effective parameters at level-1 and level-1°. Given the
level-0 information and a modeling scale, say at level-1, 4 can be found via
calibration.

3.3.1 Parameter Regionalization

The first phase of MPR. consists on establishing a priori relationships between
the fields of model parameter 8% and distributed basin predictor u® at level-0
(Fig. 3.2). These spatio-temporal fields are merged together through linear or
nonlinear transfer functions f(e) and scalar values denoted hereafter as global
parameters y.

The general formulation of a regionalization or transfer function f(e) can be

given by

OB ACHORY (3.1)
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where ,ﬁg- (t) denotes the I-th model parameters defined at the cell j at level-
0 in time point ¢, I = 1,...,p, with p denoting the total number of model
parameters. u_? denotes a v-dimensional predictor vector for cell 7. 7 is a s-
dimensional vector of global parameters, with s denoting the total number of
free parameters to be calibrated.

Global parameters -y are hypothesized as quasi-scale-independent scalar values
that remain fixed across the whole modeling domain . These global parame-
ters along with the transfer functions and different basin attributes u° estimate
the fields of model parameters B° at level-0. These functions are based on pro-
cess understanding and/or empirical evidences (e.g. pedo-transfer functions?).
Commonly, static morphological variables of a catchment such as terrain prop-
erties — elevation, slope, aspect; soil texture properties — sand, silt, clay, bulk
density; geological characteristics — hydraulic conductivity, as well as the dy-
namic variables — land cover classes, available at level-0 scale can be used as
basin predictors (Abdulla and Lettenmaier, 1997; Koren et al., 2000; Hundecha
and Béardossy, 2004).

The main objectives of this phase is to reduce model overparameterization,
to ease the transferability of global parameter sets from gauged to ungauged
catchments (Samaniego et al., 2010a), and to increase the overall model per-
formance. Furthermore, some model parameters A° may be time-dependent
due to its linkage with dynamic basin predictors such as land cover.

3.3.2 Estimation of Effective Parameter

The second phase of MPR consists in upscaling of the I** regionalized model
parameters (7 (¢) from level-0 to the modeling level-1 (cell i) in a way that the
resulting paia.meter B};(t) becomes an effective parameter that encapsulates the
emerging features of a given process at this scale. The schematic representation
of this phase is shown in Fig. 3.2.

The general form of an upscaling operator O applied to the [-th model param-
eter at level-1 (B(¢), I=1,...,p Vi€ Q) is given by:

Bh) = 0 (Bt Vi ei) (3:2)

i

2Pedo-transfer functions (PTFs) emerged as relationship between soil hydraulic param-
eters (e.g. saturated water content, saturated hydraulic conductivity, etc.) and the easier
measurable properties usually available from soil survey (e.g. percentage of sand, silt and
clay; organic matter content, etc.) (Pachepsky et al., 2006)
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where p denotes the total number of model parameters, ¢ and j are indices
related to grid cells at level-1 and level-0, respectively. O;(e) is the upscaling
operator applied to the model parameter I.

The main challenge in this phase is therefore to find the best, often non-linear
aggregation or upscaling rules, hereafter denoted as upscaling operators. Each
process and its related effective parameters, however, would have to be analyzed
in a case by case approach, since no generally agreed upon upscaling theory
exists for dominant hydrologic process at the mesoscale. Consequently, the
upscaling operators can be considered as an approximation to account the
influence of the subgrid variability on model parameters.

Moreover, these operators should also take into account the characteristics of
the sub-grid variability of a given parameter (i.e. second and higher moments)
and its propagation via non-linear equations describing the hydrological sys-
tem. If this is not done properly, significant biases in predicted variables would
be introduced. The reason for that stems from the fact that predicting the evo-
lution of an aggregated variable ! at a larger scale through a non-linear process
P(z') may be quite different from .predicting the evolution of the subgrid-scale
variability of variable z?, since

P(ad) # P(e}), Viei VieQ (3.3)
where
z} = 3:_? (3.4)

with overbar denoting the arithmetic mean. The magnitude of the difference
between the @ and P(z}) would depend mainly on the temporal gradient of
the function P and the variance of z (Nykanen et al., 2001). This point is also
schematically illustrated in Fig. 3.3, which considers the nonlinear evolution
of a variable 2z from sub-grid scale (level-0) to z! at modeling scale (level-1)
through a non linear process P and simple upscaling operator (i.e. arithmetic

mean) by two different ways.

3.3.3 Implementation of MPR in mHM

Foremost, it should be emphasized here that the working framework of MPR
is general and therefore it is not only limited for the mHM model parameter-
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P(x) = (x')*

(a) (b)

Figure 3.3: Nonlinear evolution of a variable z° from sub-grid scale (level-0)
to z! at modeling scale (level-1) through a non-linear process P [P(z) = 27|
and arithmetic mean as an upscaling operator by two different ways [MPR (a)
and SR (b)]. Depending upon the nonlinear function P and the magnitude of
sub-grid scale variance of 20, the effective values of the variable z! at higher -
scales can be very different by two different upscaling sequences. The plot is
based on the concept of Nykanen et al.(2001).

ization. It can be applied to any spatially distributed model that employ the
regionalization technique for estimating the fields of model parameters. In this
study, however, the MPR technique is implemented only for parameterizing
mHM. Although the description of study area and detail analysis of required
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input data for establishing MPR, within mHM is provided in the next chapter,
for better readership the basic framework of implementation of MPR in mHM
is provided in this chapter for better readership.

The basin predictors at level-0 used for establishing the regionalization func-
tions between them and model parameters are described in Table 3.1. In
this table, u denotes a field describing the spatial variability of a given basin
predictor. All these predictors, with the exception of land cover, leaf area
index (LAI), and fraction of impervious cover on the floodplains, are time
independent.

Table 3.1: Description of basin predictors used in MPR.

Variable Description

U1 Land cover class (time dependent).

us Leaf area index (LAI) (time dependent).

us Fraction of impervious cover on the floodplains (time dependent).
on Sink free digital elevation model (DEM).

us Terrain slope based on the DEM.

ug Aspect based on the DEM.

wr  Flow directions based on the DEM. _

ug Flow accumulation based on the DEM.

Ug Length of the reach segment in cell ¢ at level-1.

%10 Slope of the reach segment in cell 7 at level-1.

Uuq] Length of flow path based on flow direction (uz).

U9 Mean clay percentage in the root zone.

u13 Mean sand percentage in the root zone.

U4 Mineral bulk density in the root zone (Rawl, 1983).
U15 Mean clay percentage in the vadose zone.

U16 Mean sand percentage in the vadose zone.

U7 Mineral bulk density in the vadose zone (Rawl, 1983).
u18 Hydraulic conductivity of major geological formation.

U1g Fraction of karstic formations within a cell 1 at level-1.

Not all parameters of mHM required to be regionalized because not all of them
exhibit spatial variability at the mesoscale level and thus one that does not
show the spatial variability can be regarded as global parameters, and have
same value in a spatial domain. Among these parameters are: s, 84, 8o, B11,
B2, P14 (for definition, see Section 2.4). The other model parameters were
regionalized, the sources and the predictors used for these regionalization are
presented in Table 3.2. '
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Table 3.2: Predictors used in the regionalization functions. All model param-
eters ,Bf' are regionalized at level-0, [ = 1,...,28. Superscript index 0 is not
shown to ease notation.

Process Model  Predictor Reference(s)
Parameter variables .
Interception B LAI Dickinson (1984); Fenicia et al. (2008)
Snow accum. Ba,B4 — —
& Melting )
B3.8s Land cover Hundecha and Bardossy (2004);
Gétzinger and Bardossy (2007)
Infiltration Bes Soil texture, land cover Zacharias and Wessolek (2007)
root zone
B Soil texture, land cover Brooks and Corey (1964); Uhlenbrook
et al. (2004)
Bs Soil texture, land cover Koren et al. (1999)
Bo,B11, Pra — -
Bio, B12  Soil texture Patterson and Smith (1981)
Surface P14 - -
Runoff
EVT Bis, Bis  Soil texture, land cover Kutilek and Nielsen (1994)
root zone
B Land cover Kutilek and Nielsen (1994)
Fast Bis Soil texture, land cover Booij (2005); Uhlenbrock et al. (2004)
interflow
Big Slope Booij (2005); Uhlenbrook et al. (2004)
Slow B2 Soil texture Booij (2005); Uhlenbrook et al. (2004)
interflow
B2 Soil texture, elevation Booij (2005); Gétzinger and Bardossy
(2007)
Baseflow Baz Soil saturated hydraulic con- Liang et al. (1994)
ductivity
Bos, f24a  Geological formations Le Moine et al. (2007)
Routing Ba2s Length, slope and land cover of —

drainage path within the cell

Bas Length, slope and fraction of Tewolde and Smithers (2006)
impervious area of floodplains
of the reach segment

a7 Slope of the reach segment Tewolde and Smithers (2006)

There are a number of possible operators or upscaling functions that can be
used within the MPR method. Their selection and type, however, should be
based on conceptual and /or process understanding, and subject to evaluation.
Additionally, parsimonious relationships should be preferred to complex ones.
In this study, five kinds of upscaling operators were tested, namely: the ma-
jority operator M, the arithmetic mean A, the maximum difference D, the
geometric mean G, and the harmonic mean H. The detail mathematical for-
mulation of these equations are provided in Table 3.3.

The performance of several types of upscaling operators in MPR were studied
during the calibration and evaluation phases. Most of these operators and
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Table 3.3: Types of upscaling operators to derive an effective parameter at

level-1 based on regionalized parameters at level-0. | - | denotes the cardinality
of the set.

Name Notation Estimation Condition

Arithmetic A Bi(6) = A(B5(t) )i = = 225 85(t) Vi€

mean
Maximum dif- D BE(t) = D(BI(t)); = max(82(t)) —min(BI(t)) Vi€ i
ference

Geometric g B =9(8) ) = (I, 800)™ Yieid

mean

Harmonic H o BHE) =3(BI) )i = E—“,— pI(E) >0,V €

mean i EEE

Majority M BHE) =M(BI(t) )i =" vi € i |[{BJ() =

b}| > max beN

relationship between catchment characteristics and parameter fields at level-0
are based on process understanding and /or empirical evidence. For instance the
harmonic mean was used for the soil-related parameters, as suggested by Zhu
and Mohanty (2002). A summary of the mHM model parameter regionalization
with their corresponding upscaling operators are presented in Table 3.4.

Table 3.4: Regionalization (or transfer) functions and upscaling operators used
in the mHM. For simplicity three land cover classes, two soil layers, and two
geological formations are employed. Forest = 1, impervious cover = 2, and
permeable cover = 3. Time index ¢ only used for time dependent parameters.
Superscript indexes of 8 (0,1) are not shown to ease notation. Subindexes %
and j denote cells at level-1 and level-0, respectively. ||5;|l; denotes a locally
normalized field values located within the cell 4, i.e. ||8;]l; = ﬁ’;{fﬁ Viecie|
is a globally normalized field.

Process Param. Operator Regicnalization Function
Interceptionl Bri(t) = A{ nug; () )
Snow 2 f2: = 72
ac-
cum. &
Melt-
ing
13 w(t)=1
3 Bailt) =A(Pa(t) ) Bai(t) = S va wyy(t) =2
Y5 UL {t} =i
4 Bai =78

Table continue ...
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Process Param. Operator

Regionalization Function

rrow(E) =1
5 PBsi(t) =A(Bs;(t) )i Bsj(t) = {a w(t) =2
9 wy(t)=3
7o w(t) =1
Infiltration 6  BE(t) = H( BE(t) )i 0j(t) =Sy wy(t) =2
ek nz w(t)=3
zone
T iagm k=1
o5()) ={ ot
1.514j k
ﬁf;fj(ﬁ) =
113 + 1141125 +‘?159;?{f) u1z; < fs
M6 + mruizs +vises(t) otherwise
7 BE®) =H(me k() )i '
H{ ya0 + v Toi )i M{uyi(t) )i =1
8  Bei(t) = H{veo+yo2 5 )i M{wy;(t) )i =2
H{y20 + yoa S )i M{u1;(2) )i =3
9 Bei =724
10 Bioi = H{¥25 — Y26 Tox )i
11 frie=ryer
12 froi = H{y2s + 120 5a )+
13 fiai = 7130
Surface 14  fui=y3
Runoff
EVT 15 Bl () = H{ va2 BE; () )
root
zone
16 Bl (t) = H( a3 BE;(2) )s
vaa wy(t) =1
17 Prrilt) = A{Brr;(t) )i Br7i(t) = § 135 w15(t) =2
136 u15(t) =3
Fast 18 Prge = H{var(1+ 105D }: ©; =
interflow M3 + Taus; + nistar;  wisj < fs
716 + Yi7ugs + Yisu17; otherwise
19 Proi = A{yss(1 + |lus;l) )i
Slow 20 Pooi = A{ 130 +va0 (14 llesll) +var (U + [|D{waz Y) }i w5 = yage¥4s V16i7¥aa 1155
interflow
21 P21 = A{yas (14 D uag )I) )
Baseflow 22 f22: = A{yas (1 + I%5]:) }+
28 Bas®) =47 M{uig;(t) )i =1
. 1ae M{uigi(t) )i =2
24 Poyi(t) = 14 (—1)749 y50 M{uagj )i
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Process Param. Operator Regionalization Function

v51 wii(t) =1
Routing 25 Bosilt) = G(T;(t) ) Py =4 52 ui(t) =2
vs3 w1i(t) =3
3 (g 4511754
T5(t) = jrefioio) ¥l Tug;1) 55
26 Paei(t) = vselluo:l| (1 — |luail| )77 |leio:]| 758
27 Bari(t) = ysollwiol|

3.3.4 Remarks on the MPR Technique

1. The regionalization in MPR is carried out at the lowest spatial resolution
supported by the input data (i.e. level-0). This contributes to preserving
the spatial variability of both the predictors and the regionalized param-
eters, as well as, it allows for incorporating the sub-grid scale dynamics
of hydrological processes. This characteristic not only distinguishes this
approach from standard regionalization methods (Fig. 3.1) but also min-
imizes the bias introduced by simple aggregation of predictors that often
introduces a significant noise leading to the deterioration in functional
relationships between them and model parameters (Kling and Gupta,
2009). In contrast with MPR, basin predictors in standard regionaliza-
tion techniques are firstly aggregated from level-0 to level-1, and after-
wards parameter regionalization is performed at a modeling scale [e.g.
Hundecha and Bardossy (2004), Pokhrel et al. (2008)].

Furthermore, the rational behind performing regionalization at lowest
spatial resolution of input data is motivated by the fact that most of the
spatially distributed hydrologic models or even land surface models (e.g
VIC model) employ a pedotransfer functions for inferring soil related hy-
draulic parameters (e.g. saturated hydraulic conductivity, saturated soil
moisture content), which are mainly derived from the point scale or soil
core data from field measurement. The functional relationship between
hydraulic parameter and soil properties in such cases exhibit complex and
non-linear relationships (Pachepsky et al., 2006), and therefore the esti-
mate of these parameters at coarser modeling scale (level-1) may be quite
different with the MPR and the SR method due to difference in upscaling
sequences, as discussed before (see Section 3.3.1 and also Fig. 3.3)

2. MPR greatly reduces the level of model complexity in terms of number
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of free parameters estimated through calibration process, as denoted by
the following inequality
pxng>s (3.5)

where nq denotes the number of cells contained within the basin Q.
For example, if a hydrologic model requires p = 27 parameters per cell
(e.g- mHM) and would be calibrated without regionalization in a basin
covering an area 1000 km? with a resolution of 1 km? (i.e. ng = 1000
cells), then the optimization algorithm would have to search for a good
solution to an optimization problem with 27 x 1000 = 27 000 degrees of
freedom, a daunting computational task! '

Conversely, if MPR would be applied within mHM, then merely s = 59
global parameters 4 would have to be estimated. Consequently, MPR
becomes quite advantageous during model calibration because sampling
in a lower dimensional space improves dramatically the convergence speed
of any optimization algorithm (Pokhrel et al., 2008).

. MPR as a parametrization method is also advantageous with respect
to the Hydrologic Response Unit (HRU) concept (Fliigel, 1995; Bloschl
et al., 2008; Das et al., 2008) because it employs continuous and dy-
namic regionalization functions rather than a static categorical classifi-
cation which induces bias and do not necessarily preserve existing local
relationships. Additionally, it is more parsimonious than the HRU tech-
nique. For instance, if the HRU concept would be employed, at least
10 to 20 HRUs or even more, would be required to represent the spatial
variability of a typical mesoscale basin (Das et al., 2008). This would
imply an optimization problem with at least 270 DOF for a hydrologic
model having 27 parameters (e.g. in mHM) per HRU. MPR, on the con-
trary, would require only 59 global parameters to take into account the
full spatial variability of the basin predictors without requiring any ad
hoc classification.

It may be noted that the first phase of MPR. (i.e. parameter regionaliza-
tion) can also performed with the static or dynamic basin characteristics
of pre-classified HRUs. However, this procedure would anyhow required
a categorical classification for identifying HRUs, which in-turn induces a
bias in parameterization. Moreover, the HRU method using regionalized
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functions may not solve a overparameterization problem — i.e. it still
requires 59 parameters for each HRU.

. The MPR method, because of its two phase parameterization approach,
allows to generate effective parameters B! at various modeling scales, us-
ing the same upscaling operators, and without re-calibrating the global
parameteré v (Fig. 3.2). Global parameters are expected to be time-
invariant and quasi scale-independent. This is quite advantageous be-
cause this would allow us to perform the tedious calibration procedure, |
which requires several thousands iterations for obtaining good parame-
ter sets at a larger scale and then to transfer the global parameters to
a finer scale where more detailed information is required. Or in other
words it will reduce considerably model time complexity. Furthermore,
this would also allow us to link the hydrological model components to a
regional climate model normally running at much larger scales, for var-
ious purposes, for instance, to explore the sensitivity of future climate
conditions on different water fluxes.

It may be noted, however, that shifting global parameters from one scale
to another always induces bias and violate the fundamental hydrologi-
cal continuity principle [i.e. mass conservation on a given control vol-
ume (Dooge, 1986)]. This problem is widely recognized in catchment hy-
drology as a scaling problem [e.g. Bloschl and Sivapalan (1995)]. Large
deviations in the conservation of water fluxes due to shift in global pa-
rameter across scales would, therefore, be a clear indication of a biased
and poor regionalization technique.

. In the first phase of MPR that is regionalization which attempts to estab-
lish a regional relationship between model parameters and basin predic-
tors including the dynamic catchment characteristics such as land-cover
properties. As a result MPR offers a possibility to simulate the effect
of changes in land cover and/or agricultural management practices on
regional water balance (Hundecha and Bérdossy, 2004). Moreover, the
regionalization phase of the MPR method also allows us to make usage
of mHM with the MPR. parameterization method for the prediction in
ungauged or data-scare basins (Samaniego et al., 2010a).
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Chapter 4

Applications of mHM in a

Mesoscale River Basin !

“Data, Data, Data! He cried impatiently. I can’t make bricks without clay”
Sherlock Holmes
“Models are to be used, not to be believed in!”

James. C. L. Dooge

4.1 Introduction

In this chapter, a detailed application of the proposed spatially distributed
mesoscale hydrologic model (mHM) with the multiscale parameter regionaliza-
tion (MPR) method is presented. All applications of mHM presented in this
study are carried out in a mesoscale river basin belonging to Neckar river which
is located in the south and south-west of Germany. The selection of this area
as a study site was mainly based on the following reasons.

Firstly and the most importantly because of the previous study conducted by
Samaniego (2003) for the same region who had reported regarding the fast
transformations of land use/cover of the region, from cropland or grassland to
built-up area or industrial usages, during the last decades due to anthropogenic

1This chapter is a modified version of the manuscript: Samaniego, L., Kumar, R., and S.
Attinger. A parsimonious spatially distributed hydrologic model for water resources manage-
ment at the mesoscale. (Manuscript to be submitted).
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reasons. This will clearly have sooner or later implications on natural hydrolog-
ical processes of the region. Secondly because the river flows in the region for
most of its part are natural and not affected by hydraulic structures. This had
led to implement mHM without any modification in its conceptual structure
or inclusion of other dominant modules. And, finally the study basin has long
time series of observed hydo-meteorological dataset and other required data
sets which are readily available in digitized forms, to set up the mHM model
in this area. These data sets, for instance, include digitized terrain elevation
map, a series of land cover maps, soil and geological maps with their respective
characteristics.

4.2 General Description of the Study Area

The study area belongs to Neckar river located in the south and the south-
west part of Germany in the state of Baden-Wiirttemberg (Fig. 4.1). The
367 km long reach of the Neckar is right tributary of the River Rhine. The
study basin covers only 28% of the whole Neckar river basin and defined by
upstream of the Plochingen Gauging station with a drainage area of approx-
imately 4000 km?. Major urban settlements in and around the study region
are: Stuttgart, Tuebingen and Rottweil. The region is bounded by the Black
Forest, in the western side and the Swabian Jura on its south-eastern edge and
extends over wide range of landscape features with highly varying altitudes.
Topographic elevation ranges from 240 m.a.s.l. to 1010 m.a.s.l. with a mean
elevation of about 550 m.a.s.l. Although maximum slopes in parts of Black
Forest are as high as 50°, the mean slope in the region is generally mild, with
90% of the slopes are within a range of 0° to 15°.

The geologic formations in the study regions are from the Jurassic and the Tri-
assic periods which are predominantly composed of altered-keuper, claystone-
jura, claystone-keuper, loess, sandstone and shelly limestone. Some parts of the
study basin lying in the foothill of the Swabian Jura are composed of limestone-
jura formations or karstic formations. These karstic formations mainly origi-
nated from groundwater flow erosions act as interconnected subsurface reser-
voirs causing considerably large amount of subsurface water transfer from one
catchment to another catchment and therefore would present huge discrepan-
cies in water budget calculations for the region.
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Figure 4.1: Overview of the upper Neckar river basin located within the state
of Baden-Wiittemberg, Germany.

The soil in the study area is highly variable with shallow podsols and grey
brown podsols formed by weathered variegated sandstones in the westérn por-
tion (near the Black Forest) to the layers of loess, sandy soils as well as heavy
clay originated from shelly limestone and keuper formations on the eastern
side of the catchment. This variability is a direct consequence of geological

variations.

The vegetation in the study area is mainly dominated by forest of spruce, fir
and beech, whereas, the fertile areas on the either banks of the Neckar and
foothills of the Swabian Alps are mostly used for agriculture, pasture and
meadows. On slopes to the south are partly used for cultivation of wine yards
and fruits and partly are covered with ash, beech and elm and lime trees. The
barren soils on top of the Swabian Jura are covered with heath and juniper,
whereas pastures and meadows are found on heavy-clay soil in the foreland
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between keuper and the Alb.

The climate of the study area is characterized by moist with mild winters ac-
cording to the Koppen notation (Képpen and Geiger, 1939), and is dominated
by both continental as well as oceanic weather systems. The impact of the
Atlantic Ocean is relatively higher, due to western wind flowing through the
region. The daily mean air temperature is approximately 8 °C, ranging be-
tween approximately -19 °C and 27 °C with the coldest and warmest months
being January and July, respectively (Samaniego, 2003). All above statistics
are based on daily data for the time period from 1961 to 1990 (source: DWD).
Heavy snow fall events during the winter season are particularly noticed in the
upper part (i.e. northwest and southeast parts) of the catchment. Soil freezing
may occur during the winter at higher altitudes (e.g. in area of Black Forest).
The precipitation events in study area may occur whole year around, however,
it exhibit a large variation in both space and time. Mean annual precipitation
in the region ranges from 650 mm near Stuttgart to 1800 mm in the Black
Forest with the spatial mean of 900 mm (Bérdossy et al., 1999). The wettest
and the driest months being June and October, respectively.

The above description of study area was mainly based on the previous studies
of Samaniego (2003) and Das (2006), whom conducted their studies in the

same study area.

4.3 Data Availability and Processing

The required input data to implement mHM in the study basin were obtained
from different agencies and state authorities including German Weather Ser-
vice (DWD) and the State Agency for Environmental Protection (LUBW,
Baden-Wiirttemberg). These data can be broadly grouped into three cate-
gories: physiographical characteristics, land cover types and, meteorological
variables. '

4.3.1 Physiographical Characteristics

The physiographical characteristics of a river basin contain information re-
garding terrain elevation, soil properties and geological formations. Terrain
elevation map also known as digital elevation model (DEM) with a spatial res-
olution of 50 m x 50 m were obtained from LUBW, Baden-Wiirttemberg. It

56



was subsequently re-sampled to a spatial resolution of 100 m x 100 m in an
ArcGIS toolbox using a nearest neighborhood sampling technique. The DEM
map was further processed to produce a “sink free DEM” map, that ensures a
given drainage basin must have only one single pour point. From the sink free
DEM different characteristics such as flow direction, flow accumulation, stream
network, slope, aspect, was derived. Subsequently, the watershed boundary
corresponding to the outlet of the study area (i.e. Plochingen gauging station;
N3 530 930 m and E5 396 740 m in the Gauss-Krueger-3 coordinate system) was
delineated. The drainage area of the delineated watershed was cross-checked
with the official drainage map (Hydrological Atlas Map of Germany, HAD).
Fig. 4.2 shows some of these physical characteristics of the study area.

A digitized soil map for the study area at the scale of 1 : 200 000 (BUK 200)
was obtained from LUBW, Baden-Wiirttemberg, and subsequently processed
to 100 m x 100 m raster map in an ArcGIS toolbox. The soil map was grouped
into 20 major soil classes based on the soil textural information and the root
zone depth. The spatial variation of the sand and clay contents within the
study area are depicted in Fig. 4.3. These contents for different soil classes
are based on the look up table from AG Boden (1994). Mineral bulk density
for each soil class using their soil textural information was estimated by the
relationship proposed by Rawl (1983) .

A digitized geological map for the study area at the scale of 1 : 600 000 was ob-
tained from LUBW, Baden-Wiirttemberg, and was subsequently processed to
100 m x 100 m raster map in an ArcGIS toolbox. Although there exits a signif-
icant variation in the geological formation within the study area (Fig. 4.4), in
the present study only karstic (i.e. areas that belongs to only Limestone-Jura
formations) and non-karstic formation were distinguished for the geological for-
mations. This differentiation was necessary since the karstic formations could
present huge abnormalities in water budget calculations. The groundwater
flow in presence of karstic aquifer is accounted in mHM in a simplified way (for
detail see Section 2.3.7 in Chapter 2) since these formations are mainly located
around the boundary of the study area for which no measurements regarding
the inter-catchment groundwater flow are available. It is worthwhile pointing
here that the presence of karstic formations could be one of the potential source
of errors in modeling for the closure of water balance in these regions.
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Figure 4.2: Physiographical characteristics map for the study area. From top to
bottom: Terrain elevation, slope and aspect. Source: 100 mx 100 m, LUBW.
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Figure 4.3: Variation in soil textural properties within the study area: clay
(left panel) and sand content (right panel). Source: 1 : 200 000 (BUK 200),
LUBW,; resampled to 100 mx 100 m.
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Figure 4.4: Variation in geological formation within the study area. The karstic
formation corresponds to Limestone-Jura. Source: 1 : 600 000, LUBW,; resam-
pled to 100 mx 100 m.

4.3.2 Land Cover Characteristics

In addition to the physiographical characteristics, land cover plays an impor-
tant role in modulating the movement and the storage of water within a river

basin through various processes such as canopy interception, evapotranspira-
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tion, as well as changes the soil water relation capacity, which in-turn can effect
surface and sub-surface flow as well as the infiltration and runoff generation
processes. The study area, during the last decades, has experienced changes
in land cover/uses from permeable covers (e.g. croplands or grasslands) to
impervious areas (e.g. urban areas or industrial usages) mainly due to anthro-
pogenic activities as per the study conducted by Samaniego (2003). In some
places within this basin, this transition has been up to 1.5% per year. For this
reason a series of land cover maps derived from Landsat TM5 scenes with a
spatial resolution of 30 m x 30 m for the year 1975, 1984, 1989 and 1993 was
used in this study. These maps for the study area were further classified by
an algorithm proposed by Bérdossy and Samaniego (2002) and subsequently
re-sampled in an ArcGIS toolbox into raster maps of 100 m x 100 m spa-
tial resolution. Different land cover classes, ranging from urban settlements to
agricultural areas to forests, were than aggregated into three main categories:
Forest, impervious and permeable covers. This aggregation is based on the
previous study of Samaniego (2003):

Forest (Class 1): composed of permeable areas covered by coniferous, decid-

uous, and mixed forest,

Impervious cover (Class 2): mainly composed of impervious areas with
land usages such as settlements, industrial parks, highways, airport run-
ways, and railway tracks, and

Permeable cover (Class 3): mainly composed of permeable areas covered
fallow lands, or those surfaces coveg'ed by crops, grass, and orchards.
Wetlands and water bodies were included into this class because they are

insignificant in this region.

The land cover maps showing the changes in land cover for the year 1975, 1984
and 1993 in the study area are depicted in Fig. 4.5.

An another important land cover properties is leaf area index (LAI), which
have major implications on various simulated hydrological processes such as
canopy interception storage, root zone soil moisture, plant root water uptake,
amongst others. The time series of LAT mainly shows the plant phenology and
is variable in both space and time. It exhibits strong seasoﬁal characteristics,
which means while the annual cycle of LAI is fixed it shows a strong temporal
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Figure 4.5: Land cover maps for the study area for the year 1975, 1984 and
1993. Source: 30 mx 30 m, Landsat TM5 scenes; resampled to 100 mx 100 m

seasonal variations. It can be directly measured using LAI meters during the
field campaigns. However, it is not feasible to estimate LAI with direct mea- -
surement techniques over a large spatial domain both due to the financial and
the practical limitations. Often indirect remotely sensed measurement tech-
niques are used as alternatives. In this study, weekly LAI data at the spatial
resolution of 500 m x 500 m during the period from 2001 to 2007 were obtained
freely from Moderate Resolution Imaging Spectroradiometer (MODIS, NASA;
https://wist.echo.nasa.gov/api/). These data were subsequently processed for
each land cover class and the spatio-temporal variability of LAI was approxi-
mated by merging the maps of land cover (based on Landsat TM5) with the
long-term weekly LAT values. Fig. 4.6 briefly depicts the temporal variation
of weekly LAI data for three main land cover classes averaged over the study
area.
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Figure 4.6: Long term yearly distribution of LAI for three land cover classes:
Forest, impervious cover and permeable areas. Source weekly LAI-MODIS
data from 2001 to 2007.

4.3.3 Meteorological Variables

Meteorological variables, in general and precipitation and temperature in par-
ticular are the main driving forces for hydrological processes such as soil mois-
ture, runoff generation, infiltration, evapotranspiration, snow melt, occurring
within a basin. Both variables exhibit a large variability in both space and
time. As a result, hydrological response simulated by a model depicts a sim-
ilar behavior in both dimensions. These variables are directly measured at
meteorological or climate stations at a point scale by conventional gadgets.
There are also indirect procedures to infer these variables including rainfall
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estimates through either radars or satellites (e.g. Tropical Rainfall Measur-
ing Mission (TRMM), NASA). However rainfall amounts directly measured at
meteorological stations is often used to remove bias in precipitation estimate
inferred by an indirect procedure.

The measurements of daily total precipitation from 294 stations and daily
average, maximum and minimum air temperature from 157 climatic stations
distributed within and around the study area (Fig. 4.7) were obtained from
DWD for the period from 1979 to 2001.

@ Precipitation gauging stations.
A Climate stalions

— Rivers

== Baden-Wirliemberg slate
[] Upper Neckar river basin

Figure 4.7: Location of precipitation and temperature stations in and around
the study area. Source: DWD.

Since these input meteorological data are measured at point scale, and for driv-
ing a distributed hydrological model with these variables their areal average
estimates over a modeling grid cells are required. Their exist several inter-
polation techniques such as simple isohyetal, Thiessen-polygons, arithmetic
mean, inverse distance method, amongst others, in this study an external drift
krigging (EDK) method (Ahmed and Marsily, 1987) was used for the spatial
interpolation of all meteorological variables. The EDK method is based on
the geostatics and its intrinsic hypothesis that assumes the expected value of
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regionalized variables (e.g. precipitation) is constant all over the domain of
the study and the variance of the difference in the values of the regionalized
variable corresponding to two different locations (i.e. distance between rain
gauges) depends only on the vector separating them. EDK offers several ad-
vantages over other traditional methods and some of them can be listed as :
a) it ensures the spatial continuity of the variable under investigation over the
large distance, if it or till it exist, b) it is best linear unbiased estimators and,
_c) it offers a possibility to incorporate the effects of additional variables that
shows a relationship with meteorological variables. For instance the variation
of either precipitation or temperature due to terrain elevation.

To apply the krigging method for the spatial interpolation of meteorological
variables, a theoretical variogram model is required to fit the experimental vari-
ogram. The experimental variogram is computed by considering the difference
between observations separated by a given distance. Based on the previous
studies conducted by Bardossy et al. (1999) and Samaniego (2003) for the
same region, an isotropic theoretical variogram (i.e. variogram that depends
on the scalar separation distance and not on the direction) composed of a pure
nugget effect and a spherical variogram was used in this study. Fig. 4.8 depicts:
a sample of the experimental variogram and the corresponding fitted theo-
retical variogram derived from the daily time series of precipitation and the
daily average air temperature obtained from their respective stations for the
whole observational period (i.e 1979 to 2001). Since both precipitation and
air temperature has fairly good relationship with the topography (Bardossy
et al., 1999), the terrain elevation was used as an external drift in the EDK
interpolation method. The daily time series of total precipitation and average,
maximum and minimum air temperature for whole observational period were
subsequently interpolated on 1 km x 1 km spatial resolution with the EDK
method 2. Fig. 4.9, as an example, shows the spatial distribution of the long
term mean (1991 to 2001) of daily meteorological variables obtained through
the EDK method. For more details on the EDK interpolation method may
please refer to (Ahmed and Marsily, 1987; Bardossy et al., 1999; Samaniego,
2003).

2The initial version of fortran code for external drift krigging was obtained from Dr. Luis
E. Samaniego, and later modified by the author.
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Figure 4.8: Experimental and fitted theoretical variogram for the daily to-
tal precipitation [left panel: (a)] and the daily average air temperature [right
panel: (b)] for the study region. Source: Daily time series data for the period
from 1979 to 2001, DWD.

Potential Evapotranspiration

An another meteorological variable which is required to run mHM is the esti-
mate on potential evapotranspiration. Evapotranspiration is the combination
of evaporation occurring from soil, open water bodies, vegetation surface, and
transpiration from vegetation. It thus represents the process by which water
is returned back to the atmosphere. This process plays a important role in the
natural water cycle and it is mainly driven by the solar energy as the source
for the latent heat of vaporization and the prevailing meteorological conditions
such as wind velocity, relative humidity, to transport the water vapor away
from the evaporating bodies. Additionally, the characteristics of evaporating
surfaces such as vegetation cover, plant phenological properties, and terrain
characteristics such as slope, aspect, and water availability also influence the
evapotranspiration process.

If there is sufficient moisture available to completely meet the evapotranspira-
tion needs of a well vegetated surface then the resulting evapotranspiration or
an equivalent amount of water is called potential evapotranspiration (PET).
Actual evapotranspiration is always equal or lower than this Iﬁotential limit
and depends mainly on water available for meeting the evaporation and/or
transpiration demands. Actual evapotranspiration is usually obtained via sim-
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Figure 4.9: Spatial distribution of the long term mean of daily total precip-
itation [panel: (a)] and daily average, maximum and minimum air tempera-
ture [panel: (b), (c) and (d), respectively] in and around the study area esti-
mated using the EDK method. The long term means were calculated from the
daily interpolated values at 1 km x 1 km spatial resolution for the period from
1991 to 2001 (DWD).

ulations from hydrological models. An estimate on PET is always required for
modeling purposes since it is the upper limit of the actual evapotranspiration.

Many methods are available for an estimation of PET which ranges from data
intensive physically based Penman-Monteith method (Monteith, 1965) to less
data demanding the Blaney and Criddle (Blaney and Criddle, 1950) method
or the Hargreaves and Samani (Hargreaves and Samani, 1985) method. The
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Penman-Monteith method, based on the physical approach, can be the first
choice to estimate PET. However, this approach requires a large amount of
input information including air temperature, relative humidity, wind speed,
amongst other meteorological variables. Some of these meteorological vari-
ables are often not available at all climate stations for the longer time pe-
riod. Furthermore, to estimate the spatio-temporal distribution of meteoro-
logical variables, in particular wind speed and relative humidity, poses a sig-
nificant problem as they show large spatial variability within a small spatial
domain and depends on local conditions. Under these limitations and based
on the previous studies conducted by Das (2006) and Hartmann (2003) for
the same area, the Hargreaves and Samani method for the estimation of PET
was used in this study. This method estimates PET at a given geographical
location based on only the average, maximum, and minimum air temperature
data. Study conducted by Hargreaves (1994) reported a very good correspon-
dence between PET estimated by the Hargreaves and Samani method and the
Penman-Monteith method for several lysimeter data over the broad range of
climatological conditions.

The Hargreaves and Samani method estimates potential evapotranspiration Ej
as a function of air temperature and extraterrestrial radiation as

E} = 0.0023cRqa(Tovg + 17.8)(Trnaz — Tmin)™® (4.1)

where Toug, Trnaz and Trin denotes the average, minimum and maximum air
temperature, respectively. R, represents the extraterrestrial radiation, which
is a function of the day of the year starting from the first day of an year
(i.e. 1-l1-yyyy) and also depends on the latitude of a location (Allen et al.,
1998). ¢ = 0.408 is a constant used to convert the radiation to an evaporation
equivalent of water expressed in millimeter.

The daily time series of PET were estimated by the Hargreaves and Samani
method using EDK interpolated air temperature data on the spatial resolution
of 1 kin x 1 km spatial resolution for the whole observational period (1979 to
2001). Fig. 4.10, as an example, shows the spatial distribution of the long term
mean of daily total E, in and around the study area.
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Figure 4.10: Spatial distribution of the long term mean of daily total potential
evapotranspiration Ep in and around the study area. Daily time series of the E,
estimated through Hargreaves and Samani method (Hargreaves and Samani,
1985) for the period from 1991 to 2001 were used for the calculation of long
term mean. Source: DWD.

Adjustments and Disaggregation of Meteorological Forcings

Adjustments of meteorologic forcings can be done to better represent their
spatio-temporal distributions. For example, if mHM is to run with time in-
tervals less than 24 A and if no hourly information is available, then the daily
meteorological forcings can be disaggregated proportionally to their long term
daytime/nighttime fluctuations. In this study such long term mean daily-night
fractions were estimated from the hourly data of 160 stations (data obtained
from DWD) located in and around the Study during the period from 1994 to
2003. These fractions were estimated on monthly timescale (Fig. 4.11).

Empirical evidence showed that the potential evapotranspiration is significa-
tively influenced by elevation and aspect (Shevenell, 1999). The variability due
to elevation is indirectly considered in the interpolation of temperature using
EDK, whereas the variability induced by the orientation was accounted in the
multiscale parameter regionalization framework. The correction on potential
evapotranspiration Ej can be given by

E, = fasE} (4.2)
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Figure 4.11: Panel (a): Box plots with the yearly fluctuations of the day-
time/nightime air temperature (T' = T % dr) with respect to the average daily
air temperature (T') respectively. Panel (b): Box plots with the yearly varia-
tions of the daytime precipitation depth (FP;) with respect to the daily precip-
itation (P). Daytime comprises the time between (8:00-18:00) h. Data source:
Hourly data from 1994 to 2003, DWD.

where, Pog at level-1 is incorporated in the MPR framework. The effective
value of fag; for i” cell in MPR. is obtained from their corresponding Bag; of
jt* cells at level-0 and upscaling operator A such that

Pogi = Al oo + L ues i Uugj < Y62 43)
s . .
A( Y60 + Fgp—2ex (360 — ugs) )i otherwise

Here ug is aspect at sub-grid scale and ~, being global parameters. It may be
noted that now there are total 28 mHM model parameters (8) and 62 global pa-
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rameters (7). In case of surfaces covered by water bodies or impounded water,
the daily B, estimate is further adjusted with the pan-evaporation coefficient
to better represent the maximum free-water surface evaporation rate. Addi-
tionally, if mHM is implemented to run at hourly time scale the daily E, was
disageregated according to its long-term the day-night variations. This disag-
gregation is carried out to better describe the daily soil moisture dynamics. For
each month, long term mean day-night fractions were estimated from hourly
records from 1994-2003 at 49 climate stations (data obtained from DWD) lo-
cated in and around the study area. The Penman-Monteith approach Monteith
(1965) was used for estimated hourly PET. Fig. 4.12, as an example, shows
the long term diurnal cycle of PET in the month of January and July.

l_ﬁ (a) Jan
R I 1T
] (b) Jul
il
m 0£|[|||||? £ J|"J|‘il'!'!‘:.‘$§r||||
0 3 6 S 21

Hour of the day

Figure 4.12: Long-term diurnal cycle of the PET for January and July. The
proportion of daytime PET with respect to the daily total is 91.7% in summer
whereas in winter is 100%. Daytime ranges from 6:00 to 18:00h. Daily mean
PET in winter and summer are 0.62 mm and 3.3 mm respectively according
to the Monteith (1965). Data source: Hourly data from 1994 to 2003, DWD.

4.3.4 Discharge Data

River discharge plays a central role in the hydrological cycle as it integrates
all the hydrological processes (e.g. soil moisture, infiltration, runoff) occur-

70



ring within a basin, and at the same time it also serves as an indicator for
climatic change and variability as it reflect changes in precipitation and evapo-
transpiration. Furthermore, the estimates on the river discharge are commonly
required for water resources application purposes, including the design of hy-
draulic structure (e.g. dams, reservoirs, etc.), flood protection, irrigation and
water management for both ecosystem and human use.. River discharge data
can be readily measured. It has been long used for the calibration and evalu-
ation purposes of hydrologic models and as well as for land-surface models.
The time series of daily mean discharge data at the outlet (i.e Plochingen gaug-
ing station) as well as at several interior locations within the study area for
the period from 1979 to 2001 were collected from LUBW, Baden-Wiirttem-
berg. The mean daily discharge at the outlet for this period was estimated
as approximately 50 m®s~1. At the outlet of the study area, high flows or
floods are mainly observed during the month of February, whereas, low flows
occurs mostly in in October and at the beginning of November. The highest
daily discharge was noticed during May 1978 as approximately 1030 m3s~1,
a,ccording to the discharge records of the outlet station for the period of 1961
to 2001 (Das, 2006).

Since the main aim of this chapter is to show preliminary applications of mHM,
the simulation results of only two interior locations: Horgen-Kldranlage and
Horb, whose drainage areas are approximately 210 km? and 1120 km?, respec-
tively (Fig. 4.13), are presented in this chapter. In the-subsequent chapters,
however, discharge data from many other interior locations are used to evalu-
ate the model performance. These data too were acquired from the same state
authority. The locations and description of those interior gauging stations will,
therefore, be presented afterwards.

4.4 Global Parameter Identification

Once the functional relationship between model parameters and basin predic-
tors were established either based on past modeling exercises or on empirical
evidences such as pedo-transfer functions (see 3.2), this step also provides a
priori estimate on global parameters . These a priori estimates, however,
are required to be refined so as to match as closely as possible the dynamic
behavior of the modeled responses with those of the the observed behavier of

71



r
-I— 4F'4TN

B 20'E

Plochingen

& Gauging station
i D MNeckar river basin
Escl a@m r : .. [ Stchuchiibins
> : e —— Stream natwork
.05 Karstic formation
Elevation [m]

M High : 1015 i

10 km

i Low 1 250

Figure 4.13: Location of the interior gauging stations within the Upper Neckar
river basin. -

a catchment. This refinement is usually achieved via the calibration process.
The calibration of a hydrological model can be achieved either manually or
the so-called the #rial and error procedure or through an automatic calibra-
tion procedure using an automatic optimization algorithm and and computer
power. In case of a spatially distributed model or even simple lumped model,
the second approach is often preferred mainly because the calibration process
requires several thousands of model runs to find a good set of model parameters.
Manual procedure for such cases may be a very tedious and time consuming.
Moreover, the manual calibration procedure requires considerable training and
practice, and expertise and subjective decisions of the modeler, which in most
cases can not be easily transferred from one person to another.

Great deal of research have been devoted during the recent past for develop-
ing efficient and effective optimization algorithms. As a result several global
optimization algorithms exist including population based genetic algorithms,
combinatorial algorithms simulated annealing (Kirkpatrick et al., 1983), shuf-
fled complex evolution method (Duan et al., 1992), dynamically dimensioned
search algorithm (Tolson and Shoemaker, 2007), amongst others. For a detail
review on different search algorithms used in hydrological modeling studies
readers may refer to Gupta et al. (2002). In this study and for most of the ap-
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plications of mHM presented in this chapter, a good sets of global parameters
4 were identified with a split-sampling technique using a constrained optimiza-
tion algorithm based on simulated annealing (SA) (Kirkpatrick et al., 1983).
The SA algorithm utilizes the principles of statistical physics regarding the
behavior of a large number of atoms at low temperature for finding minimal
cost: solutions (in our case global parameters) to large optimization problems
by minimizing the associated energy (i.e. objective function or error function).
In the annealing process of SA, the temperature is first raised, then decreased
gradually to a very low value, while ensuring that one spends sufficient time at
each temperature value. This process yields stable low energy states. Geman
and Geman (1984) provided a proof that SA, if annealed sufficiently slowly,
converges to the global optimum. As a result, temperature, is one of the cru-
cial control parameter in SA. The following estimation procedure was used in
this study

Algorithm 1:

1. Randomly select an initial set of global parameters v within their prede-
fined ranges and constraints.

2. Estimate model parameters B° at level-0, using [Eq. (3.1)].

3. Estimate effective model parameters B! at level-1, using [Eq. (3.2)].
4. Set an initial annealing temperature 7 (a priori estimate).

5. Calculate the current objective function ® [Eq. (4.4)].

6. Randomly select an index (¢) with 1 < < s.

7. Randomly modify the element <, of the vector /4 and formulate a new
vector y*.

8. Estimate fields of model parameters 8% and corresponding effective model
parameters B* using [Eq. (3.1)] and [Eq. (3.2)], respectively.

9. Calculate the new objective function ®*.

10. If ®* < @ then replace by y*. Else calculate m = exp( 4’_}" ). With the
probability 7, replace y by 7*.
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11. Repeat steps (6)-(10) M times with M being the length of the Markov
chain of SA (Aarts and Korst, 1990).

12. Reduce the annealing temperature 7 and repeat steps (6)-(11) until the
objective function ® achieves a minimum.

The formulation of objective function that measures the closeness of observed
and simulated responses (typically the streamflow hydrograph) is crucial for
the successful calibration. Often, the use of different objective functions results
in different final parameter sets and thereby different model simulations, which
may fit specific aspects of the hydrograph at the expense of others.

The overall model efficiency @ in this study was estimated as a weighted combi-
nation of four estimators based on the Nash-Sutcliffe efficiency (NSE) between
observed and simulated streamflows using three different time scales (daily,
monthly and yearly) as well as the logarithm of the daily streamflow to de-
emphasize the effects of the peak flows over the low flows (Oudin et al., 2006).
These objective functions are denoted by ¢, n = 1,4. The overall objective
function to be minimized is then

@ = (Y wh(1— )

where p > 1, and Eflﬂ wpn = 1. Here p is an exponent according to the com-

1
P

(4.4)

promise programming technique (Duckstein, 1984) and w,, denote the degree
of importance of each objective. High values of p, say p = 6, should be chosen
to avoid substitution of objective function values at low levels. In this study,
the estimators related with daily streamflows were twice as important as the
long-term ones, thus {w,} = %, %, %, %} The NSE for a given time scale ¢
(say day, month or year) is given by

(@)~ @utt)”

M=

Il
fut

pn=1-"1 (4.5)

(Qn(t) - Qu(®))”

M=

o
I
-

where, T is the total number of observations, @,(t) is the mean value of the
observations time series over the calibration period. The index n denotes here
the daily, monthly, yearly, and the transformed In (Q(t)) streamflow discharges.
Q and Q are the observed and simulated streamflows at a given time scale.

74



Appropriate ranges (i.e. maximum and minimum values) were assigned to
each global parameter 7y based on either the empirical evidences (e.g. pedo-
transfer function derived values) or from the modeling experiences. Table 4.1
shows initial ranges and a priori estimates for global parameter -y for the study
basin used in this study. These global parameters were forced to stay within
the assigned ranges during calibration. Other physically significant constraints
were also applied to some of the model parameters B!. For examples, the
parameter “saturated water content” at modeling grid cell (level-1) was always
kept higher than the parameter “wilting point”, and the parameter “recession
constant” for the fast interflow was always higher than the “recession constant”
of the slow and fast interflows as well as of the base flow.

Table 4.1: Range and a priori guess of transfer function parameters () for the
Upper Neckar river basin. '

Parameter  Min. Max. Guess || Parameter Min. Max. Guess
- 0.10  0.50 0.2 a2 01 06 01
Y2 -1.0 1.0 0.0 a3 0.8 095 0.80
Y3 1.0 4.0 Lo Y34 0.1 0.3 0.2
Y4 1.0 4.0 1.0 T35 0.8 1.0 08
%5 1.0 4.0 1.0 Y6 0.6 0.8 0.6
~6 0.1 0.8 0.1 ¥a7 1.0 40.0 1.1
7 3.0 B.O 3.0 Y8 1.0 10.0 4.0
78 3.0 8.0 3.0 Y3o 1.0 30.0 10.0
Yo 3.0 8.0 3.0 Y40 0.0 30.0 10.0
0 4.0 7.0 5.0 a1 0.0 300 100
i1 0.0 0.1 0.0 Y42 50.0 60.0 54.0
T2 1.5 3.0 2.0 Y43 -0.10 -0.05 -0.07
T3 0.7 0.8 0.788 Y44 0.160 0.170 0.165
T4 0.0005 0.0015 0.0010 Yis 0.0 1.0 0.5
15 -0.27 -0.25 -0.263 Y46 1.0 100.0 10.0
T8 0.8 0.9 0.890 Yar 10.0 10000.0 200.0
TT -0.0015 -0.0005 -0.0010 Y48 10.0 10000.0 200.0
o .0.35 -030 -0.322 49 0 1 0
713 1.0 5.0 3.0 Y50 0.5 15 L0
Y20 25.0 35.0 30.0 51 0.0001 0.0020 0.0010
ya1 300 700 500 452 0.0001 0.0020 0.0010
Y22 30.0 70.0 50.0 53 0.0001 0.0020 0.0010
Y23 30.0 70.0 50.0 Y54 0.75 1.00 0.80
Y24 1.0 5.0 3.0 Y55 0.35 0.40 0.385
Y25 270.0 274.0 2725 56 0.1 10.0 2.0
Y26 0.5 3.5 1.5 Y57 0.0 1.0 0.5
a7 270.0 273.0 273.0 s 0.0 1.0 05
Yor 0.15 0.25 0.20 Y59 0.0 0.5 0.2
Y28 0.1 0.3 0.2 8 (i10] 0.9 1.0 0.95
~a0 0.1 1.0 0.20 Y61 1.0 1.2 1.05
ya1 0.0 1.0 0.5 62 1750 195.0 180.0
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4.5 Evaluation Criteria

A number of statistical criteria, in addition to NSE of daily discharge and
the logarithmic transformed daily discharge, were used to assess and compare
the performance of models. These criteria include: Bias, Root Mean Square
Error (RMSE) and Pearson correlation coefficient (r). They can be formally
estimated as:

> (G- @) (46)

1
=T
T
RMSE = d Z ) (4.7)

53 (E2) ((Qts; ) o

where T is the total number of observations, t accounts for the time steps, and

@; and @Q; are simulated and observed variables respectively (e.g. either daily
streamflow or monthly values). @: and @Q; are the mean of the simulated and
observed variables over the period of T, respectively. S@ and Sg denote the
standard deviation of the simulated and observed variables, respectively.
Additionally, the Spearman’s rank correlation coefficient (p), was also used
to assess the performance of model. p is a non-parametric statistic that does
not requires any assumption about the frequency distribution of the underlying
variables. This statistic can be calculated with the same mathematical formula
used for estimating r (Eq. 4.8), but with the series of the ranks of variables.

4.6 Application of mHM in the Upper Neckar River
Basin

mHM with MPR parameterization were implemented in the study basin to
simulate the observed streamflow time series at the Plochingen gauging sta-
tion and the other state variables and water fluxes such as the spatio-temporal
evolution of the root zone soil moisture distribution over the whole catchment,
snow covers, amongst others. The distributed nature of the model also facil-
itated to generate streamflow time series at various interior locations within
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the catchment. T'wo interior gauging stations, as described before, were used
to cross-validate the model performance. Note that the discharge data of these
two locations were not used during the model calibration process.

Applications of mHM presented in this chapter were performed with the spatial
discretization of 1 km x 1 km for both level-2 (meteorological forcings) and
level-1 (modeling scale) of the model runs. The level-0 data was set at the res-
olution of 100 m x 100 m. The model runs were carried out at the hourly time
step. Consequently, the required meteorological variables were statistically dis-
' aggregated into hourly time steps based on their long-term daytime/nighttime
fluctuations, as described before. The hourly simulated discharge series pro-
duced at each grid node were aggregated to the daily values to compare them
with the observed gauged data. It may be noted, however, that the spatial
resolution at level-1 can vary from 2 km x 2 km to as big as 32 km x 32 km.
The detailed applications of mHM for the coarser resolution are presented in
the next chapter.

The upscaled cell to cell flow routing network derived using the flow direction
and flow accumulation information of level-0 input data scale to the modeling
scale (say, level-1 at 2 km) matched quite well with the observed river network.
As an example, Fig. 4.14 shows the upscaled river network for the upper por-
tion of the study area. Furthermore, the upstream drainage area belonging to
a particular discharge gauging station obtained after upscaled river network
were also in the range of the reported official drainage area. (hydrological year-
books, LUBW). It is worthwhile to emphasize here that this delineation of flow
routing network at a modeling scale was automatically carried out during the
initialization of mHM, and therefore requires no manual adjustments.

The standard split-sampling model calibration procedure was subsequently fol-
lowed. The madel calibration was performed during the period from 1979-11-01
to 1988-10-31 using the daily discharge data of the outlet (i.e. Plochingen gaug-
ing station) of the catchment. Six months spin up time was used to establish
reliable initial conditions for the state variables. This period, however, was not
accounted for in the overall objective function. The subsequent period until
2001-10-31 was used as the evaluation period.

An adaptive version of simulated annealing algorithm was used to generate
50 000 global parameters sets which were ranked according to their overall
performance index (Eq. 4.4). It is worth noting that the very best parame-
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Figure 4.14: Upscaling of river network on modeling scale at 2000 m from
100 m flow direction and flow accumulation data. The upscaled flow routing
network for the upper portion of the study area is depicted in left portion of
this figure. '

ter sets (®; > 0.8) seems to share the same locus on the parameters space
(Fig. 4.15). The probability density functions obtained for each parameter v
are skewed and in some cases exhibited large ranges of variation (Table 4.2).

4.6.1 Streamflow Prediction

The usual way to verify the output from a hydrologic model is to plot observed
versus simulated discharge. Due to the equifinality of many good parameter
sets (Fig. 4.15), however, it is more appropriate to estimate the mean value
of an ensemble of simulations carried out with the best parameters sets. In
this study, the best thousand sets were used for this purpose. Using these
parameter set, the deterministic model prediction was given by the mean of
the ensemble and the variability of model outputs were estimated by the 5%
and 95% percentile ranges (Ps — Pgs). It may be noted, however, that so-
derived variability bounds are not confidence bounds in a statistical sense,
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Table 4.2: Statistics of the good sets of transfer function parameters.

Param Min Max  Mean Std. Dev. || Param Min Max  Mean Std. Dev.

T 0.150 0.271 0.165 0.023 a2 0.436 0.600 0.577 0.020
2 -0.997 -0.473 -0.938 0.072 33 0.886 0970  0.961 0.010
T3 1.003 3.872  2.565 1.042 Y34 0.101 0.207 0.182 0.063
Y4 2.664 3.978 3.705 0.215 Y35 0.823 1.000 0.983 0.021
s 2.645 3.949 3.614 0.224 V36 0.601 0.722  0.639 0.022
Y6 0.348 0.798 0.744 0.046 var 13.450 20.800 18.258 0.915
¥7 3.000 7.891 @ 6.559 1.318 Y38 1.218 3.683  2.218 0.281
8 6.179 7.080 7.828 0.124 30 10.000 29.920 25.227 3.099
Yo 5.488  7.988  T7.724 0.304 Y40 12,790 20.980 25.704 3.471
T10 4.029 6993  5.757 0.941 Y41 2962 20.990 22.491 4.802
M1 0.001 0.099 0052 0.020 Y42 52.000 55.960 54.400 1.018
Y12 1.530  2.966  2.410 0.195 743 -0.089 -0.050 -0.063 0.009
T13 0.700 0.750 0.705 0.008 Ya4 0.162 0.170  0.166 0.001
T4 0.001 0.001  0.001 0.000 145  0.011 0.343 0.169 0.025

s -0.270 -0.255 -0.268 0.002 a6 63.320 99.960 91.876 6.779
ye 0.818 0900 0.868 0.014 ya7  T6.140 993.800 512.559  171.763
y7 -0.001 -0.001 -0.001 0.000 yag 51.800 715.400° 230.815  83.491
vis -0.350 -0.304 -0.334 0.009 ye 0000 1.000 0.006 0.077
v 1.034 2090 1.345 0.149 450 0.852 1499  1.348 0.108
w2 27.500 33.500 30.000 2.050 51 0.001 0.002 0.002 0.000
421 44.240 69.880 64.009 4.050 sz 0.000  0.001 0.001 0.000
42z 30270 67.360 50.127  11.349 ys3  0.000 0.001 0.001 0.000
vz 30.700 69.880 55.799  12.379 54 0.802 0.999  0.949 0.040
y24 2010 4551  2.736 0.414 455 0351  0.400 0.384 0.008
v25 272,000 273.000 272.500 0.050 ys6  1.022  9.985  6.871 2.906
vz 0.501  3.498  1.870 0.902 ys7  0.018 0998  0.702 0.165
a7 270.000 272.300 270.510 0.359 vss 0118  1.000  0.646 0.196
ves 0180  0.220  0.200 0.005 yse 029 0370 0.274 0.036
420 0100 0.300 0.176 0.062 ve0 0840 1.000  0.992 0.008
vao 0116 0.964  0.458 0.153 ye1  1.000 1073  1.007 0.010
31 0.017 0.908 0.314 0.179 ve2 175.100 104.800 187.485 4.183

i.e. they are not expected to include in all cases a given percentage of the
observations. Fig. 4.16 and Fig. 4.17 shows the performance of mHM for daily
discharge simulations at the Plochingen gauging station for couple of water
years in the calibration and the validation periods. The ensemble mean and the
(Ps — Pgs) variability bounds of the simulations indicated that mHM is able to
reproduce quite well the dominant process océurring in the Upper Neckar basin.
Table 4.3 presents the summary statistics for the daily discharge simulations.
The NSE obtained during the calibration and evaluation period were 0.89+0.02
and 0.87+0.03, respectively, at the (Ps — Pgs) variability bounds. The bias
during the calibration period is approximately -0.03 m® /s, whereas the root
mean squared error (RMSE) is 18 m®/s, i.e. approximately one third of the
mean streamflow. As a result of the satisfactory fit, most of the observed values
fall within these (P5 — Pgs) variability bands.
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Figure 4.15: Variability of a subset of transfer function parameters y. All
parameters were standardized with the statistics reported in Table 4.2. Sets
of good parameters are those whose NSE values are greater than 0.85 (in red
colour).
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Figure 4.16: Comparison of the observed and the ensemble values for the
streamflow at Plochingen during the selected calibration water years. The
ensemble mean and the (Ps — Pgs) percentile limits of the simulations were
estimated with the best thousand solutions.
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Figure 4.17: Comparison of the observed and the ensemble values for the
streamflow at Plochingen during the selected evaluation water years. The
ensemble mean and the (Ps — Pgs) percentile limits of the simulations were
estimated with the best thousand solutions.
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Table 4.3: Ensemble mean value and 5% and 95% percentile ranges (P5 —
Pgs) obtained for six estimators for daily discharge simulations at Plochingen
during the calibration and evaluation periods. Best thousand parameter sets
were used for estimating these statistics.

Estimator Unit Calibration Evaluation
: Mean P5 = Pg5 Mean' P5 == P95

Bias m’s— -0.03 (-1.05-1.05) -0.1 (-1.2-0.8)
RMSE m3s~! 18.06 (17.53 — 19.08) 13.86 (13.21 — 15.36)
NSE (Q) - 0.89 (087-091) 0.87 (0.86—0.90)
NSE (InQ) - 0.88 (0.85-0.90). 0.86 ( 0.84 —0.89)
T - 095 (094-0.96) 094 (0.92-0.95)
rho - 094 (093-096) 094 (0.92-0.95)

The results provided above were based on the performance(e.g. NSE) of the
model over the whole modeling period. The model performance generally varies
over the modeling period from one year to another. To gain more insight into
the model performance, the NSE between observed and simulated discharge as
well as for their logarithmic transformation were estimated year wise for the
best sets of global parameters. Fig. 4.18 depicts the results for these simula-
tions. In general the model performance with respect to both statistics were in
the range of 0.70 to 0.95, which indicates a quite good correspondence between
observed and simulated values. However, the performance during the water
years of the evaluation period were, on average, inferior than that obtained
during the calibration period. This is quite normal and generally noticed in
many hydrological modeling studies. The reason for this is that the model was
trained to match the observed streamflow during the calibration period, and
as a result it performed better in this period. A sharp decrease in the model
performance was noticed during the water year 1996, which was relatively a
dry year as compared to other years. For other years the model performance
were quite satisfactory since both statistics were on average greater than 0.80.

Monthly and annual water balances were also closed significantly well. The
Pearson’s correlation coefficient (r) between the monthly observed and calcu-
lated discharges at the Plochingen station during the evaluation period was on
average equal to 0.95 + 0.025 at the (P5 — Pgs) bounds (Fig. 4.19). Other runoff
characteristics like total seasonal drought-spell duration (TDD), frequency of
high flows, and volume of peak flows were also effectively reproduced by this
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Figure 4.18: Yearly evolution of the NSE obtained between ohserved and simu-
lated discharge (left panel) as well as between for their logarithmic transforma-
tion (right panel) during whole modeling period at Plochingen. Gray shaded
region represents (Ps — Pgs) percentile limits of NSEs whereas, dotted line with
filled circle denotes their ensemble mean.

model. For example, the Pearson’s correlation coefficient r for the TDD char-
acteristic was on average equal to 0.60 & 0.11 at the (P5s — Pgs) bounds. The
in-depth analysis of these extreme flow characteristics will be reported in next
chapters.
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Figure 4.19: Monthly discharge and seasonal total drought duration in the
evaluation period at Plochingen.



The cross-validation results obtained for the streamflow predictions at an in-
terior Horb gauging station showed a good match between observed and sim-
ulated values. Both ensemble NSE (Q) and NSE (InQ) mean values obtained
for the daily discharge simulation during the modeling period (1979-2001) were
above 0.80 (Table 4.4). Other statistics were also in reasonably good range. For
instance, both the Pearson’s correlation coefficient 7 and the Spearman Rank
correlation coefficient p were above 0.90. A positive bias of approximately 1
m®/s was noticed. Monthly simulated discharge also showed a good correspon-
dence with the observed values since the ensemble mean NSE values was greater
than 0.90. The performance of mHM for this interior location were slightly in-
ferior than that obtained for the outlet gauging station. This was expected
as the discharge data of this station were not used for the model calibration.
However, the NSE (Q) and NSE (InQ) values obtained for the daily discharge
simulations at this interior location were at most 10% lower than that obtained
at the outlet station. It shows the robustness of mHM to provide reliable and
reasonable estimate on streamflow at interior un-gauged locations, once cal-
ibrated with information from a catchment outlet. The visual inspection of
discharge hydrograph also confirmed the above results (Fig. 4.20).

Table 4.4: Ensemble mean value and 5% and 95% percentile ranges (Ps — Pgs)
obtained for six estimators for daily discharge simulations at an interior Horb
gauging station during the modeling period (1980-2001).

Estimator Unit Mean Ps — Pgs

Bias m’s— 1.08 (0.74-1.41)

RMSE m3s~! 7.01 (6.79 - 7.28)

NSE (Q) - 086 (0.83-0.87)
NSE (InQ) -  0.84 (0.82-0.87)
: - 092 (091-0.94)
D - 093 (0.91-0.95)
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Figure 4.20: Comparison of the observed and the ensemble values for the
streamflow at an interior Horb gauging station during the selected water years.
The ensemble mean and the (P5 — Pgs) percentile limits of the simulations were
estimated with the best thousand solutions.
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4.6.2 Prediction of Spatial Patterns of Soil Moisture and Snow
Cover

Due to the large uncertainty of input data, model structure and in the esti-
mation of model parameters at a mesoscale, it is advisable to evaluate or at
least perform a plausibility test of a model for not only with the streamflow
time series data, but also with other relevant state variables such as the spatio-
temporal distribution of the soil moisture, snow covers, groundwater table lev-
els. Direct measurement of state variables in a mesoscale river basin at a finer
spatial resolution is very costly and time consuming. Remotely sensed data
offers a cost-effective source of data. In this study, two state variables namely:
top thin root zone soil moisture and snow cover, simulated by mHM were cross-
checked against the indirect proxies data obtained from remotely sensed data.
Although the spatial pattern of model simulated snow cover can be directly
compared with the remote sensing data sets such as snow cover products ob-
tained from the Moderate Resolution Imaging Spectroradiometer (MODIS),
evaluation of the soil moisture patterns is very difficult task since it is often
partially related with the remotely sensed data. In this study, the land sur-
face temperature (LST) derived from observations of the MODIS (data freely
available at https://wist.echo.nasa.gov) was used for plausibility tests of the
spatial patterns of model simulated soil moisture content in the top root zone
horizon. This MODIS product along with the normalized difference vegetation
index (NDVI) are often employed as predictors of soil moisture in the so-called
“triangle method” (Carlson, 2007).

The daily time series of snow cover and LST data for the year 2001 were
obtained from the MODIS server. These data were subsequently geo-referenced
and extracted for the study area using an ArcGIS toolbox. It may be noted
that the MODIS data are generally affected by the presence of clouds. It
means that in cloudy day or parts of study area covered by cloud, there are no
observation for both MODIS products. Although there exist several algorithms
to filter cloud covers [see e.g. Parajka and Bloschl (2008)], no attempts were
made in this study to filter the cloud covers. This was mainly because MODIS
is in operational from mid 2000 and the present study was conducted only up
to the year 2001. In the overlapping period of this study with the MODIS
operational period there is only one winter season when snow-fall was noticed.
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4.6.2.1 Soil Moisture Simulation

Soil moisture is a crucial state variable for the appropriate representation of
hydrologic as well as land-atmosphere processes at the meso and/or macro
scales because of its long temporal memory (Vinnikov et al., 1996; Bastidas
et al., 2005). Accordingly, it influences not only runoff generation mechanisms
but also the vegetation growth and other various near-surface atmospheric pro-
cesses such as cloud formation, parton of latent and sensible heat energy (Vin-
nikov et al., 1996). Experiments with regional and global climate models have
also corroborated that the evolution of the weather and climate strongly de-
pend on the initial soil moisture conditions (Fennessy and Shukla, 1999).

A quite strong negative correlation was found by comparing the series of im-
ages of LST and the mHM simulated soil moisture fraction in the top soil
horizon (i.e. the ratio between the actual to maximum water content) as de-
picted in Fig. 4.21. One of the good set of global parameters (y) was used
for these simulations. It can be observed from Fig. 4.21 that the areas within
the study basin where LST is higher, the model simulated soil moisture is
smaller and vice-versa. The range of the pearson correlation coefficient (r)
calculated between soil moisture fraction and LST on daily time scale for 30
summer consecutive days in the year 2000 varied between (-0.85,-0.30). The
ensemble mean and variability bounds (Ps — Pgs) of r values between MODIS
derived LST data and the mHM simulated daily spatial dynamics of soil mois-
ture patterns obtained with all good parameter sets are depicted in Fig. 4.22.
It can be noted that during the investigation period there was no observation
available from MODIS derived LST data, due to cloud cover. Consequently
these days or the cloud affected areas were not accounted in the calculation of
the 7 values. This figure depicts a quite good negative correlation r between
model simulated soil moisture patterns and MODIS derived LST, with average
ensemble mean 7 value of approximately 0.62. These results also indicated the
existence of strong coupling between the top thin root zone soil moisture and
the streamflow generation. The corresponding daily discharge simulations for
these investigation period are provided in Fig. 4.23. For most of the investi-
gated days, the observed discharge was covered within the model simulated
(Ps — Pgs) variability bounds. And the NSE values during this period was at
least 0.90.
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Figure 4.21: Panels (a)-(e): Plausibility test of soil moisture patterns for five
summer days in year 2000. LST patterns are depicted as a proxy of soil mois-
ture.
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Figure 4.22: Ensemble model simulation of soil moisture patterns compared
with MODIS derived LST during 30 summer days in year 2000. The ensemble
mean and the (Ps — Pgs) percentile limits of the simulations were estimated
with the best thousand solutions.
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Figure 4.23: Daily discharge simulations at Plochingen during the plausibility
test of soil moisture patterns in year 2000. The ensemble mean and the (P —
Pgs) percentile limits of the simulations were estimated with the best thousand
solutions.



4.6.2.2 Snow Cover Simulation

An another important component of hydrologic balance is a spatio-temporal
dynamics of snow cover that effects the basin response during the winter and
spring seasons in many regions of the world, in particular in mountainous
regions (Parajka and Bloschl, 2008). The spatio-temporal pattern of the mHM
simulated snow covers was compared with the MODIS derived snow covers for
three winter days for the year 2001 (Fig. 4.24). One of the good set of global
parameter (7) was used for this plausibility test. A threshold of 1.0 mm for
model simulated snow accumulation was used for the identification of snow
covered pixels. Below this threshold limit all modeling cells was categorized
under non-snow cover pixels.

The visual inspection between model simulated spatial pattern of snow cover
and the MODIS imageries on snow covers, as depicted in Fig. 4.24 revealed
that mHM, albeit having simple algorithm (i.e based on the temperature in-
dex method) for snow accumulation and melting process, catches reasonably
well the spatial patterns of snow cover that are observed by MODIS. The model
simulated daily discharge time-series also matched quite well with their corre-
sponding observed values. The NSE value for this discharge simulations during
this period was above 0.90. However, most of the days in this investigated pe-
riod, MODIS data were affected by the cloud cover. The in-depth analysis
regarding cloud removal algorithms is out of scope of the present study and
therefore left for the future investigation.

4.6.3 Effects of Frozen Soil on Streamflow Predictions

Ground surface temperature play a significant role in the streamflow generation
during freezing-spells in winter. To study the effect of frozen soil on model
responses, in particular streamflow, model simulations were performed out at
the Horgen-Klaranlage gauging station. The drainage area of this gauging
station belongs to the Eschach river which is located in vicinity of Black Forest
(Fig. 4.13). In these regions during the winter season the air temperature stays
below 0°C for several days. As a result, soil freezing can occur in these areas.
The results of the model simulations shows that the freezing spells during the
winter has the impact on the streamflow simulations, in particular during the
recession phase of the hydrograph (Fig. 4.25). Streamflow variations of up to
50% less than the observed value were obtained if the freezing and thawing
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Figure 4.24: Plausibility test for the mHM simuilated snow cover with the
MODIS derived snow cover data on the selected days of year 2001 for the
study area.
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process was not included in the model. The spatial distribution of the semi-
impermeable areas during a typical freezing-thawing cycle in winter was rapidly
changing from day to day in accordance with the spatial distribution of the
antecedent temperature index (Fig. 4.26). The later was derived from the air
temperature and used as a proxy for the soil temperature. It is worth mention-
ing that the discharge series shown in Fig. 4.25 constitute a cross-validation
test because the observations at the gauging station “Horgen-Kldranlage” were
not taken into account during the calibration phase. The NSE values between
observed and simulated values as well as for their logarithmic transformed val-
ues of 0.83 and 0.82, respectively were obtained for the evaluation period at
this gauging station. This result further indicated the robustness of the mHM
model with multiscale parameter regionalization technique in the sense that
the model might also be quite suitable for streamflow prediction in ungauged
locations. However no attempts have been made in this study to evaluate the
model for streamflow predictions outside of the study area.
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Figure 4.25: Effect of the frozen soil algorithm on the daily discharge hydro-
graph of the Eschach river at Horgen-Klaranlage gauging station.
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Figure 4.26: Spatial variation of the fraction of semi-impervious area due to
frozen soil conditions in the Eschach river basin.

4.6.4 Effects of Canopy Interception on Streamflow Predic-
tions

Several studies underline the importance of interception as one of the key pro-
cesses affecting the water balance at the mesoscale (Fenicia et al., 2008). Often
this process in hydrologic models is either disregarded or taken as a fixed per-
centage of the precipitation, so as to reduce the model complexity in terms
of number of calibration parameters. With the increasingly availability of re-
motely sensed data on the vegetation cover (e.g. LAI, NDVI), it become pos-
sible to easily incorporate the interception processes in a spatially distributed
hydrologic model (mHM).



A simple but an effective numerical experiment was conducted to study the
effect of canopy interception storage on the streamflow simulations. The mHM
model runs were performed with and without interception process for the water
year 2001 with modeling spatial scale (level-1) of 4 km x 4 km. The lower
scale (level-0) for the regionalization of the maximum interception capacity
parameter (i.e. 81 multiplied by LAI) for different land cover classes was fixed
at the spatial resolution of 100 m x 100 m.

The results of this experiment clearly demonstrated the impact of neglecting
the interception process and thereby not considering the spatio-temporal vari-
ability of canopy storage. Fig. 4.27 shows the model performance for daily
discharge simulation during the summer season of the year 2001. It can be
noticed from this figure that if canopy interception process is not accounted
in modeling process a systematic bias between daily observed and simulated
discharge can be produced, in particular overestimation of simulated discharge
values. Whereas, when the interception process is accounted it ¢an reduce the
bias and the simulated values can match better the observed discharge values.
The NSE values obtained for the daily discharge simulations during this season
with interception process was, on average, 5% higher than that obtained with-
out taking the interception process into the account. The reason for this poor
performance, when not accounting the interception process, can be attributed
to not accounting the spatio-temporal variability of canopy interception stor-
age (Fig. 4.27), which in the full vegetation growth period can be very high (e.g.
in months of May to July).

4.6.5 Comparison of mHM with the HBV model

Although there are several similarities between the HBV model (Lindstrom
et al., 1997) and the proposed mHM model, the main differences are the inclu-
sion of top-thin root zone soil layer, the soil freezing and thawing process and
most importantly the parameterization approach. The question than normally
arises wether the inclusion of these modules help to improve the predictions
of streamflow and also the spatio-temporal patterns simulated water fluxes
and state variables such as soil moisture. For this purpose, the simulations of
the HBV model were compared with those obtained from the proposed mHM
model.

The distributed version of the HBV model (i.e. HBV-IWS) used in this study is
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Figure 4.27: Spatio-temporal variability of daily mean maximum canopy inter-
ception storage during three summer months (i.e. May, July and September)
of the year 2001. Additionally the model performance during these period
for daily discharge simulations with and without interception process at the
Plochingen is also shown.

based on the study of Das (2006). In summary, the HBV-IWS model also uses
a grid cell (1 km x 1 km) as a primary hydrological unit to simulate different
hydrological processes such as snow accumulation and melting, soil moisture,
infiltration. The runoff generation is, however, estimated on the sub catchment
level and the flow generated from each sub-catchment are routed through the
river network using the Muskingum algorithm. The model parameterization for
the hydrological processes is based on the hydrological response units (HRU)
method, whereas the runoff generation parameters are lumped to the sub-
catchment level. A total 28 HRUs based on 7 soil type and 4 land cover classes
were used to describe the spatial dynamics of hydrological processes and a total
13 sub-catchments depending on the available gauging stations were used to
set up the HBV-IWS model (Das, 2006). Detail description of this model is,
however, out of scope of this thesis, interested readers may refer to Das (2006).
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It is worthwhile emphasizing here that the following comparison between mHM
and HBV-IWS (hereafter denoted as only HBV) is not aimed at pointing out
the deficiencies in the HBV model, since the HBV model has been used for
last several decades in many catchments throughout the world (Lindstrém
et al., 1997). The comparison done in this study was to specifically observe
the effects of the inclusion of new modules in mHM. It may be also noted that
the basic conceptualization of hydrological processes in HBV is quite robust,
and therefore was also adopted in the basic formulation of mHM.

Both models were first tested for the streamflow predictions at Horb gauging
station. In general, the mHM model significantly improves the streamflow
predictions compared with those obtained with a distributed implementation
of the HBV model (Fig. 4.28). In the evaluation period, yearly evaluated NSE
values obtained with mHM are usually greater than those obtained with HBV.
The mean NSE obtained for both models in this period was 0.86 and 0.79,
respectively.

—0— mHM

--—3--- HEBV
0.
0
e
%
=
0.
0.
0‘ : 2 e i
1980 1985 1990 1995 2000
Year

Figure 4.28: Evolution of annual NSEs between observed and models (i.e.
mHM and HBV) simulated daily discharge at the Horb gauging station during
the modeling period.

Comparing the simulation results of both models it can be appreciated that
mHM is better than the standard HBV model at predicting the recession phase
of the hydrograph after a freezing-spell has occurred during the winter season
(Fig. 4.29). In summer, it was also noticed that HBV tended to under predict
peak flows, and quite often; a decoupling between observed and simulated _
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values during the recession phase of the hydrograph was detected afterwards
(Fig. 4.29).

The model performance (e.g. NSE) varies over the modeling period for both
models (Fig. 4.28). However, this variability is quite small in case of the mHM
model as compared to the HBV model performance. A possible reason for the
variability of the NSE is likely related to the quality of the precipitation data
in summer. During this season, the occurrence of convective events are often
not registered by the climatological network due to their small spatial scale.
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Figure 4.29: Comparison between HBV and mHM during selected winter (a)
and summer (b) seasons at Horb gauging station.

The proposed modifications of the soil moisture accounting routines (e.g. in-
clusion of .ped&tra.nsfer functions, regionalization at sub-grid scale, amongst
others) in mHM produced much better results with respect to the soil moisture
distribution that are obtained by HBV with the HRU parameterization method
as depicted in Fig. 4.30. The pearson’s correlation coefficient between the LST
patterns and the saturation fraction for both approaches (i.e. the HRU and
the proposed MPR) are -0.36 and -0.72 on the day 255 of year 2000. The
performance of mHM for the soil moisture simulations in terms of r statistics
between it and MODIS-LST data were, on average, at least 50% higher than
those obtained through the HRU method including all investigated days, when
MODIS data were available. The relatively poor performance of HRU is mainly
because it uses a categorical classification to identify HRU and their related
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parameters within a basin. Since the geographic locations of modeling cells in
the HRU method are not explicit, the neighboring cells can have very different
soil parameters even though the soils properties were same. More in-depth
analysis on this aspect and the influence of other regionalization techniques on
the soil moisture patterns will be presented in next chapter.

}.
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Figure 4.30: Comparison of the top-layer soil moisture distribution for the day
255 of the year 2000. From left to right: LST (MODIS), soil moisture obtained
with HBV and mHM, respectively.

4.6.6 Model Time Complexity and Coding

Before concluding this chapter, a short summary on the computational require-
ments of mHM and its coding are presented here. The heavy computational
time can hinders the application of any spatially distributed hydrologic model
in a mesoscale catchment. Several thousands of iteration are required to search
a “good” set of model parameter in an automatic calibration process. More-
over, for real time flow forecasting an efficient model would be required that
have lower running time complexity and at the same time model can provide a
reasonable estimate on required information. For mHM, the total time required
to carry out the simulation shown in Fig.4.19 was on average 6 min using a
single node of a Linux cluster with 32 AMD Dual Core OpteronT™885, 64-bit
Processors. This implies an average of 7x1073 s/cell/year. The source code of
mHM was entirely written on the standard Fortran 2003 computer language
using the PGI Visual Fortran™compiler. The code is written in a modular
approach, which offers the flexibility to easily incorporate new processes.
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Chapter 5

Comparison of
Regionalization Methods !

“Buery theory is based on physical concepts expressed through mathematical
idealizations. They are introduced to give an adequate representation of the
physical phenomena. No physical concept is sufficiently defined without the
knowledge of its domain of validity”

Leon Rosenfeld

5.1 Introduction

This chapter mainly presents the results of a comparison of the proposed multi-
scale parameter regionalization (MPR) with the standard regionalization (SR)
method. Both parameterization methods were implemented in the mHM model
and several numerical experiments were designed to test the efficiency of a
particular parameterization method for the transferability of model parame-
ters across scales and locations other than that used for model calibration, the
preservation of spatial patterns of relevant state variables and water fluxes, the
conservation of mass balance on a given control volume, amongst others. This
chapter is divided into two main sections. First section deals with the design
of numerical experiments, following to which in the next section results of the
systematic comparison between the MPR and SR methods is presented.

!This chapter is a modified and extended versicn of the manuscript: Samaniego, L.,
Kumar, R., and S. Attinger (2010). Multiscale parameter regionalization of a grid-based
hydrologic model at the mesoscale. Water Resour. Res., 46, W05523.
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5.2

Numerical Experiments and Evaluation Criteria

Various numerical experiments were carried out to evaluate the performance

of a parametrization technique with respect to the following criteria.

8

Sensitivity of model efficiency measures to the spatial resolution of basin
predictors at level-0,

Sensitivity of model efficiency measures to global parameters «y calibrated
at modeling scales and/or locations different from that currently used.

Degree of disruption of the mass balance in a control volume at level-
1 caused by the transfer of global parameters v from modeling scales
and/or locations different from that currently used.

Preservation of spatial patterns of the state variables at various modeling
scales (Le. level-1).

5.2.1 Effect of the Sub-grid Variability

The purpose of this numerical experiment was to assess the effect of the sub-

grid variability of predictors (i.e. level-0) on model efficiency, given a predefined

modeling level-1. Aggregated statistics based on streamflow only [e.g. the root
mean squared error (RMSE) or the Nash Sutcliffe Estimator (NSE)] may not be
sufficient to identify these effects mainly due to the nonlinearity of the system.

For this reason, the spatial variability statistic ¥ based on water fluxes or state

- variables was also estimated in the following algorithm.
Algorithm 2:

1.

2.

Set the spatial resolution of level-1, e.g. £; = 2 km

Set a spatial resolution for level-0 data, £p.

. Calibrate the model at level-1 based on level-0 information using Algo-

rithm 1.

. Estimate model efficiency at level-1 (e.g. bias, RMSE, NSE).
. Estimate the spatial variability statistic 7 [Eq. (5.1)].

. Repeat (2) to (5) for various spatial resolutions of input data or basin

predictors, e.g. £y = (100, 500, 1000, 2000) m.

102



Here 7 denotes the expectation of r estimated as
P E[r(xgm“) £), (1)), Vi € Q] vt (5.1)

where r is the spatial correlation of two fields in time £. It should be noted
that, the correlation coefficient v is estimated over the space for each point
in time £. XEJ}(t) denotes the value of a state variable or a water flux at cell
i (level-1) in time point ¢ estimated with effective parameters obtained with
level-0 information at a spatial resolution £y = J. J is the level-0 discretization
with J = (100, 500, 1000, 2000) m. The simulation with £, = 100 m was used
as a baseline for the estimation of 7. It may be noted that this particular
experiment is only valid for testing the MPR. method.

5.2.2 Transferability of Global Parameters across Modeling Scales

The transferability of global parameters may introduce bias either because of
the unaccounted spatial heterogeneity of basin predictors or because of the
assumptions required to define the regionalization functions and the upscal-
ing rules. The procedure depicted in Fig. 5.1 was employed to test the mass
conservation on a given control volume.

Algorithm 3:

1. Set the spatial resolution of level-0 (¢p x fy) and level-1 (£; x £1). The
latter is denoted as the control scale. Level-2 scale is set equal to that
of level-1. E.g. £, = 100 m and ¢; = 8 km.

2. Find global parameters y“1) at the control scale (use Algorithm 1), e.g.
if #, = 8 km then find 4® as shown in Fig. 5.1.

3. Set a new modeling level-1’ for evaluation such that £; < ¢, e.g. £ =
2 km.

4. Simulate fluxes at level-1’ using the set of global parameters obtained for
the control scale in (2) (e.g. ¥®).

5. Estimate global efficiency measures of the model at level-1’ (e.g. RMSE,
NSE).

6. Integrate water fluxes obtained in (4) [Eq. (5.2)] from level-1’ to level-1
and estimate the statistic r; [Eq. (5.3)].
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Figure 5.1: Evaluation scheme for the evaluation of the continuity principle
between two modeling scales. In this example, level-1 is the control scale at
8x8 km whereas the level-1' is the simulations scale at 2x2 km. Here (8
denote global parameters (scalars) calibrated at level-1. W;(t) and w;(t) is the
estimated water fluxes at each scale, respectively. '

7. Repeat (3) to (7) for various spatial resolutions of level-1.

It is worth noting that in MPR, model parameters 8' are not transferred from
one modeling scale £; to a different one at level-1, but the global parameters
(@), Based on them, regionalized fields of parameters 8° at level-0 can be
upscaled to any modeling scale (level-1) as indicated in step (4) of Algorithm 3
(Fig. 3.2). This algorithm basically consists in finding the absolute deviations
between fluxes of every cell i at a control scale defined a priori (e.g. £; = 8 km)
and the corresponding integral of water fluxes obtained at the finer scale (e.g.
¢, = 2 km). In this case, both simulations (i.e. at coarser and finer modeling
scales) have to be forced by the same meteorological drivers and employ the
same global parameters 7, which can be obtained at the coarser resolution via
calibration. This implies that model parameters at level-O (,BD) are common
for both modeling scales. Formally, the absolute deviations at point in time £
can be calculated by

‘H&(t)—fwis(t)l 0 i€i VieQ (5.2)
i
where W;(t) and wy (¢) denote the fluxes at time ¢ estimated at the coarser and
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finer cells i and 7 respectively. () represents the domain of a simulation.

A possible estimator for the conservation of mass at every grid i over a time
interval is the NSE between the water fluxes obtained at the coarser scale W;(t)
(used as baseline values since no observations exist) and the aggregated flux
at grid ¢ denoted as j;wir(t). In this case, a negative NSE value indicates a
complete mismatch between these two variables. If the principle of continuity
is fully satisfied, then the expectation of the NSE statistic denoted by r; would
tend to one, formally,

rp= E[NSE(m—(t), (wy[t)))i] = (5.3)

where E is the expectation of the NSE evaluated at every cell i. Larger devia-
tions of rs from its ideal value (i.e. 1) would indicate that the global parameters
obtained with a given regionalization technique can not be transferred to other
modeling scales.

5.2.3 Preservation of Spatial Patterns

The spatial similarity of two fields at two different scales can be estimated with
the averaged spatial correlation coefficient 7, given by

Ty =T, (x_gg“),xggl}) Viei VieQ (5.4)

where x%%) and x&)

; ;" two fields at scale £y and ¢;, respectively.

5.3 Implementation of MPR and SR within mHM

Both MPR and SR were used to parameterize mHM model parameter and
the study was performed in the Upper Neéckar river basin (for details, refer
to Chapter 4). The detail deseription for the implementation of MPR within
mHM was previously presented in Chapter 3. The main difference between
both methods is their upscaling sequence. In the SR method, basin predictors
were first upscaled from level-0 to required modeling scale at level-1 and than
the regionalization of mHM model parameters was performed. Whereas, in
the MPR method the regionalization was first performed at the level-0 and
than upscaling operators were used to estimate the effective value of model
parameters at level-1. To make a fair comparison between both methods, model
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parameters in SR were regionalized with the same functional relationships as
those used in MPR (see Chapter 3: Table 3.2). As a result, both methods have
in total same number of global parameters = 62, which have to be estimated
by the calibration process.

This case study was performed during the period from water year of 1980 to
2001. This period was divided into two parts: 1980 to 1988 as a calibration
period and 1989 to 2001 as an evaluation period. Good sets of model pa-
rameters v for both MPR and SR were identified using simulated annealing
algorithm following the Algorithm-1, as described in previous chapter.

All above mentioned numerical experiment includes several different spatial
discretization at all three levels which can be summarized as

Level-0: To test the influence of the sub-grid variability on the parametriza-
tion scheme, four spatial resolutions were selected: £o = (100, 500,1000,
2000) m.

Level-1: Several modeling resolutions were considered to test the performance
of mHM with both regionalization techniques (i.e. MPR and SR). The
selected modeling resolutions were: £1 = (2, 4, 8, 16, 32) km.

Level-2: In this study, the meteorological data was derived at the same reso-
lution as the modeling scale (i.e. £ = ;).

The EDK interpolated 1 km x 1 km meteorological variables were upscaled to
the required modeling resolution (2, 4, 8, 16, 32) km. The spatial similarity
of the meteorological fields (i.e precipitation, temperature, and PET) across
spatial resolutions was analyzed with the averaged spatial correlation coefficient
F = E[‘r(u?)(t), ug)(t))], vt, i€ Q@ i € Q) j e ¢, where J denoting the
discretization £; of the spatial domain Q, and J = {2,4,8,12,32} km. Based
on this statistic it can be concluded that the relationship of the cross-scale
spatial variability ¥ with the spatial discretization is nonlinear. Additionally,
its variance increases with the discretization (Fig. 5.2). Fig. 5.3 depicts an
example of the reduction of the spatial variability of the precipitation fields for
a particular day.
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Figure 5.2: Mean and Pys — P5 quantile range of the spatial correlation (7)
between 2 km resolution of (a) daily total precipitation, (b) daily average
temperature, and (c) daily total potential evapotranspiration with their corre-
sponding ones at coarser resolutions (shown on the horizontal axis) during the
modeling period (1980-2001)
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- Figure 5.3: Spatial distribution of precipitation on day 21-09-2000 at the spatial resolutions of (a) 2 km, (b) 4 km, (¢)
8 km, (d) 16 km, and (e) 32 km.
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5.4 Analysis of Numerical Experiments

The following sections presents the results obtained from the numerical experi-
ments for the MPR and the SR method. Since the model structure, input data
and number of free parameters estimated through calibration process are kept
same, any differences in performance may only arises from the parameterization
method.

5.4.1 Sensitivity of Model Efficiency to the Sub-grid Variabil-
ity

The results of the numerical experiment obtained with Algorithm 2 support
the hypothesis that the sub-grid variability of the basin predictors played an
important role both in the prediction of daily streamflow and the spatial dis-
tribution of water fluxes. For instance, the RMSE between observed and sim-
ulated streamflow increased by 12 %, if the £y resolution varied from 100 m to
2000 m, with a fixed modeling scale of £; = 2 km (Table 5.1). Correspondingly,
the NSE and the Pearson correlation coefficient r showed a decrement of 2 %.

Table 5.1: Effect of the sub-grid variability £, = (100, 500, 1000, 2000) m on
three model efficiency statistics (RMSE, NSE, and r) obtained for the daily
discharge simulation for a given modeling scale (£, = 2000 m). These statistics
were evaluated during themodeling period (1980-2001).

6 ¢4 RMSE NSE r
m m mm/d - -
100 2000 0.38 0.88 0.94
500 2000 0.41 0.87 0.92
1000 2000 0.41 0.86 0.91
2000 2000 0.42 0.86 0.91

The variability of the spatial distribution of soil moisture in the top soil layer,
as well as the actual evapotranspiration and runoff, exhibited a reduction up
to 40 % of 7 (Eq. (5.1)) with respect to their corresponding baseline sim-
ulation (Fig. 5.4). It is worth mentioning that MPR simulations in which
fp = £; = 2000 m are equivalent to those determined with the SR method. As
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a result, input data with a resolution £y = 100 m was used for the remaining
numerical experiments employing the MPR technique.
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Figure 5.4: Mean and Po; — Ps quantile range of the spatial correlation () of (a)
daily soil moisture, (b) daily total evapotranspiration, and (c) runoff between
simulations obtained with a fixed modeling scale £; = 2 km but varying input
data resolution £y = (100, 500, 1000, 2000) m. The baseline values correspond
to the simulations obtained with the smallest resolution. These statistics were
estimated for the period for the modeling period (1980-2001).
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5.4.2 Sensitivity of Streamflow Simulations to Global Param-
eters

Results obtained with Algorithm 3 are presented in Table 5.2. Both statistics, ‘
RMSE and NSE, shown in this table were estimated with the daily streamflow
simulations at the outlet of the basin (i.e. Plochingen gauging station) for
a given scale. Both parametrization methods were not significantly different
from each other, with respect to the RMSE and the NSE, when the model.-
was calibrated and evaluated at a given modeling scale as shown in Table 5.2
(values in boldface on the diagonal). In this case, MPR performed marginally
better than SR (approximately 2 % for both statistics). This implies that there
exist various levels of discretization and thus parameterizations that provide
equally acceptable solutions for modeling streamflow. These results agreed
with those obtained by the Distributed Model Intercomparison Project, phase
1 (DMIP-I) (Reed et al., 2004) with respect to the performance -of lumped
versus distributed hydrologic models. The performance regarding other state
variables, however, may be unacceptable as will be shown afterwards.
Deficiencies of the regionalization methods, nevertheless, became apparent
when global parameters were shifted across modeling scales as can be ap-
preciated in the off-diagonal values in Table 5.2. The performance of SR,
as compared to MPR, showed a significant deterioration when the global pa-
rameters were calibrated for a coarser modeling scale (say £; = 8 km) and
subsequently applied in a finer one (1 = 2 km) as shown in the upper trian-
gular matrices of Table 5.2. The RMSE obtained with MPR and SR was, on
average, 0.46 mm/d and 0.62 mm/d, respectively. This means that the error
of the daily streamflow simulations obtained with SR was, on average, 34 %
higher than that estimated with MPR. The NSE, as expected, exhibited the
opposite relationship. Mean NSE, in this case, was 0.80 and 0.64 for MPR
and SR, respectively. Moreover, the average reduction of NSE with respect to
the baseline simulations (i.e. no shift of global parameters) was 53 % for SR,
whereas, this statistic only exhibited 12 % reduction for MPR.

Shifting global parameters calibrated for a given modeling scale to its immedi-
ate lower one (e.g. from 8 km to 4 km), however, does not induce a significant
decrease in the performance of MPR. as compared to that of SR. The increment
of the RMSE was, on average, 1.1 % and 30.7 % for MPR and SR, respectively
(Table 5.2). The decrement of NSE for MPR was at most 3%, whereas, SR

111



Table 5.2: RMSE and NSE obtained with both the multiscale (MPR) and the
standard (SR) parameter regionalization techniques at various modeling scales
obtained with daily streamflow values. Values on the diagonal (bold) refer to
the statistics obtained for a model calibrated and evaluated at a given scale,
whereas off-diagonal values denote statistics obtained with global parameters
«v calibrated at other modeling scales. Results were obtained at Plochingen
(basin outlet) during the modeling period (1980-2001).

Simulation Calibration Scale
Scale 2km[4km|[8km[16 km|[32 km|[2 km |4 km |8 km | 16 km | 32 km
’ RMSE [mm/d]
MPR SR

2km |0.38] 0.38 | 0.45 | 0.53 | 0.72 ||0.42[0.46 ] 0.64 | 0.78 | 0.90
4km |0.35)|0.33|0.35| 0.41 | 0.57 || 0.38 |0.34 | 0.46 | 0.63 | 0.77
8km |0.39|0.39|0.33| 0.36 | 0.49 || 0.41 | 0.37 | 0.34| 0.46 | 0.63
16km | 046|047 |039| 0.35 | 0.38 || 0.47 | 0.46 | 0.40 | 0.35 | 0.45
32km | 0.54 | 0.55 | 0.50 | 0.42 | 0.39 || 0.53 | 0.56 | 0.50 | 0.42 | 0.38
NSE []
MPR. SR
2km |0.88] 087 0.82 ] 0.76 | 0.56 || 0.86] 0.81 | 0.64 | 0.46 | 0.29
4km |0.89|0.90|089| 0.85 [ 0.73 || 0.87 |0.90 0.81 | 0.65 | 0.48
8km |0.86|0.87 |0.90| 0.89 | 0.80 || 0.85|0.88 |0.90 | 0.81 | 0.66
16km |[0.82|082|087| 0.89 | 0.87 || 0.81 | 0.81 | 0.86 | 0.89 | 0.82
32km |0.75|075|0.78 | 0.84 | 0.88 || 0.75 | 0.72 | 0.78 | 0.84 | 0.88

exhibited reductions in NSE up to 11%.

Transferring global parameters calibrated for a finer modeling scale (say ¢; =
2 km) to a coarser one (£; = 8 km) was not so significant with both regionaliza-
tion techniques as it was described above for the opposite case. In those cases,
the RMSE obtained with MPR were only 1 % lower than those obtained by
SR. NSE estimated with both methods was, on average, 0.83 and 0.82 for MPR
and SR, respectively (based on the lower triangular matrices of Table 5.2). The
same tendency for both methods was observed when global parameters were
shifted to its immediately higher scale (e.g. from 4 km to 8 km).

The interpretation for this behavior of both methods is related with the amount
of information used for regionalization. As a consequence, shifting global pa-
rameters from finer to coarse resolutions, for both methods, provide higher
stability rather than the other way around. For the same reason, MPR per-
formed significantly better than SR, when global parameters were shifted from
coarser to finer modeling scales. Model parameters estimated with MPR, at any
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modeling scale, are intrinsically linked with their sub-grid variability (Fig. 3.2).
The average performance for both regionalization schemes at a given simula-
tion scale obtained only with transferred global parameters is shown in Fig. 5.5.
- The average and the range of NSE depicted in this figure for a given scale were
estimated based on their respective values of Table 5.2 (i.e. along rows). In
general, model performance tends to increase as the simulation scale increases,
regardless of the regionalization scheme (Fig. 5.5). However, there seems to
be an upper limit, which for this study basin is around ¢; = 8 km. After
this threshold scale is reached, further spatial discretization tends to decrease
model performance.
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Figure 5.5: Mean and range of NSE obtained between observed and simu-
lated daily streamflow simulations using MPR and SR. at various modeling
scales. Both statistics were determined with global parameters shifted from
both coarser and finer scales to a given simulation scale. Simulations were
carried out during the modeling period (1980-2001).
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The range of NSE for both regionalization schemes tends to decrease towards
the threshold scale. SR exhibited larger ranges than MPR for all simulation
scales, though. Furthermore, the mean of NSE obtained with MPR was, on
average, 12% higher than that of SR (Fig. 5.5).

The monthly water balance for both regionalization schemes exhibited sim-
ilar behavior with respect to shifting global parameters as mentioned above
(Fig. 5.6). The deterioration in performance, nevertheless, was not as higher as
that estimated with daily streamflow simulations. The NSE between monthly
‘observed and simulated streamflow during the period from 1979-11-01 to 2001-
10-31 was at least 0.92 and 0.70 for MPR and SR, respectively. The specific
long-term mean annual discharge at the outlet of the basin obtained with MPR,
and SR was quite close to the observed long-term mean of 407 mm/y for all
spatial resolutions employed. The bias between the observed and simulated
long-term annual discharge for both regionalization techniques, with or with-
out shifting global parameters, was smaller than 7 mm/y. As an example, Ta-
ble 5.3 presents the mean annual water balance over the whole basin obtained
at different scales using global parameters transferred from a given modeling
scale (¢; = 4 km) with both the MPR and the SR methods.

Table 5.3: Mean annual water balance over the whole basin obtained at dif-
ferent scales using global parameters transferred from a given modeling scale
(61 =4 km) with the MPR and SR methods for the modeling period (1980-
2001). Fluxes accounted: precipitation (P), runoff at the outlet (Q), actual
evapotranspiration (E) [* = estimated from raingauges, ** = Estimated from
streamflow gauge, *** = Estimated from literature (Samaniego, 2003)]

Method Flux Mean Standard Deviation
[mm] Scale [km] Scale [km]
2|4|8116|32 2|4|8|16|32

Estimated* P [938]939)|940(952 (958|126 | 126 | 126 | 128|128
Estimated®* | Q [407(407|407|407|407(93 | 93 | 93 | 93 | 93
Estimated***| E |560|560|560|560|560( - | - | - | - | -
MPR Q |407)|405(404(413{414|101|101|102|104|104

E |564|566|567|569|570| 24 | 24 | 24 | 23 | 23
SR Q |409(405 (400|409 408|100 |100(100|102|102

E | 560|564|567|568|570| 25 | 26 | 25 | 25 | 24
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Figure 5.6: Sensitivity of the monthly water balance obtained by shifting global
parameters from the calibration to the simulation scales for both regionalization
schemes (MPR and SR). Baseline for the NSE are the monthly streamflow
observations from the modeling period (1980-2001).
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5.4.3 Effects of the Sub-grid Variability on Model Parameters

Model parameters (') varied considerably depending on the regionalization
method employed (Fig. 3.1), which denote the large degree of equifinality chai-
acterizing the model parameter space. A good example of this can be appre-
ciated in Fig. 5.7, which depicts the spatial distribution of the porosity of the
top (k = 1) soil layer B2, obtained at various modeling scales e 6 =(2,4,
8) km] with both parametrization methods.

Comparison of the sub-grid distribution of A2 (fp = 100 m) with the cor-
responding effective parameters 3 obtained with MPR and SR respectively,
showed that the MPR method preserved the spatial pattern significantly better
than the SR method (Fig. 5.7). The spatial correlation coefficient r5 (Eq. (5.4))
between S at level-0 and the corresponding field obtained with MPR. at level-1
was, on average, 25 % greater than that obtained with SR.

The larger deviations observed in the SR technique can be mainly attributed
to the upscaling mechanism (Fig. 3.1), in which input data are upscaled first to
the modeling scale and than regionalization is performed. As a result, these, in
turn, led to the emergence of significantly different spatial patterns at different
scales. MPR, on the contrary, did not exhibit such large deviations because of
the two step regionalization procedure which inherently accounts for sub-grid
variability (Fig. 5.7).

5.4.4 Sensitivity of the Mass Balance to Global Parameters
Calibrated at Various Modeling Scales

Two important water fluxes and one state variable were selected to carry out
the continuity test: (a) actual evapotranspiration, (b) total discharge, and (c)
the soil moisture of the top soil layer (depth 5 cm). Since no observations
are available for any of these variables, simulated values obtained with global
parameters calibrated at each control scale were used as a baseline for the
estimation of NSE. Moreover, to ensure comparability, all simulations were
driven by the same meteorological factors, which were estimated at the smallest
modeling scale (£; = 2 km) and then aggregated to the required one. Deviations
from the optimal value (i.e. no difference between fluxes or state variables) were
quantified as indicated in Algorithm 3 with the statistic r; (Eq. (5.3)) for every
simulation and for both regionalization approaches independently.

The Pgs — P5 quantile range and the mean of NSE (ry), between a simulated
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Figure 5.7: Spatial variability of the porosity (mm mm ™ of the top-soil layer
(i-e. 6&1)) estimated at three different modeling scales, ¢; = (2, 4, 8) km, and
for both regionalization techniques (SR and MPR) is depicted in panels (a),(b),
and (c) respectively. The porosity of the top soil layer at £o = 100 m (i.e. ,Béo))
is provided in panel (d) as a reference.
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flux from a given control scale (#;) and the corresponding areal aggregated flux
from a selected simulation scale (£}) are shown in Figs. 5.8, 5.9 and 5.10, as an
error bar with continuous line and solid circle, respectively. Each simulation, in
this case, employed independently calibrated global parameters. For instance,
if £ = 4 km and £ = 2 km are selected as control and simulation scales,
respectively, then global parameters 74 and v(?) need to be determined via
calibration. Based on them, r; between fluxes W;(t) and (wy(t)) (Eq.5.3) was
‘estimated taking the former as baseline (Fig. 5.1). In the same Figure, dashed
lines and empty circles depict also the Pgs — P5 quantile range and the mean
of NSE, but in this case, fluxes at the finer scale ({wy(t))) were estimated with
global parameters obtained at the control scale. For the previous example, this
would imply that both fluxes W;(t) and (wy (t)) have to be estimated with (4.

It was determined based on these three variables that the soil moisture of
the top soil layer exhibited the highest sensitivity to the spatial resolution
{1, whereas the actual evapotranspiration (AET) was the less sensitive vari-
able (Fig. 5.8). These results also corroborated a previous study of Liang et al.
(2004), in which the AET obtained with VIC-3L model was found to be less
sensitive as compared to soil moisture and runoff based on simulations with

transferred parameters.

SR exhibited systematic deficiencies as compared with MPR. (Figs. 5.8, 5.9
and 5.10). For instance, the NSE obtained with SR was, on average (r;), not
only much less than that obtained with MPR, but also exhibited a considerably
larger range of variability as compared with MPR. Furthermore, MPR was less
sensitive to the modeling scale than SR, specially when global parameters were
calibrated at a given control scale (level-1) and then applied in other simulation
scales (level-1’).

It was also determined that ry between soil moisture fields of the top soil
layer obtained with the SR method was in most cases less than zero when
the global parameters were calibrated at the control and simulation scales
independently (Fig. 5.10). For the same simulations, however, 7¢ was greater
than 0.85 (Fig. 5.9), which indicates that the total discharge flux Q(t) was
quite insensitive to both the scale and the regionalization method employed.

The spatial variability of the NSE [Eq. (5.3)] depicted in Fig. 5.11 based on a
simulation performed at £] = 2 km with global parameters obtained at the con-
trol scale #1 = 4 km clearly shows the degree of influence that a regionalization
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Figure 5.8: Evaluation of the conservation of mass for actual evapotranspira-
tion at various control scales based on MPR and SR parameterizations. Filled
circles and continuous lines denote the mean and Pgs — Ps quantile range of the
NSE (Eg. (5.3)) between the fluxes obtained at a given simulation scale com-
pared with those obtained at the respective control scale (assumed as baseline
for NSE). Empty circles and dotted lines indicate the same statistics but using
global parameters obtained at the given control scale (i.e. no shift).
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Figure 5.9: Evaluation of the conservation of mass for total discharge at various
control scales based on MPR and SR parameterizations. Filled circles and
continuous lines denote the mean and Pgs — Ps quantile range of the NSE
(Eq. (5.3)) between the fluxes obtained at a given simulation scale compared
with those obtained at the respective control scale (assumed as baseline for
NSE). Empty circles and dotted lines indicate the same statistics but using
global parameters obtained at the given control scale (i.e. no shift).
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Figure 5.10: Evaluation of the conservation of mass top thin root zone soil
moisture at various control scales based on MPR and SR, parameterizations.
Filled circles and continuous lines denote the mean and Pys — P5 quantile
range of the NSE (Eq. (5.3)) between the fluxes obtained at a given simulation
scale compared with those obtained at the respective control scale (assumed as
baseline for NSE). Empty circles and dotted lines indicate the same statistics
but using global parameters obtained at the given control scale (i.e. no shift).
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technique may have on the dynamics and the mass balance of relevant water
 fluxes and state variables. This simulation indicated that global parameters
obtained with SR are scale specific, thus not transferable, since almost 53 % of
the grid cells did not conserve the mass balance (say NSE < 0.95) as compared
with the 2.5 % of the grid cells with MPR. The locations at which the NSE is
less than this threshold are mostly karstic formations.

5.4.5 Preservation of Spatial Patterns

Daily time series of LST during the year 2000 were used as a proxy for the
spatio-temporal variability of the top-layer soil moisture fields at the scale -
of 44 = 2 ki. A strong negative correlation between the volumetric water
content of this layer and the LST (MODIS) is expected (Chauhan et al., 2003;
Wang et al., 2007). As an example, a short sequence of LST and top layer
soil moisture fields obtained with both regionalization methods is depicted in
Fig. 5.12 to visualize the dynamics of these variables.

Based on these results, it was noticed that the soil moisture patterns calculated
with MPR and the LST were closely related to each other. The dynamics of the
moisture pattern obtained with SR, on the contrary, did not exhibit a strong
dependence. As a result, the Spearman’s rank correlation coeflicient between
the LST and the soil moisture of the top-layer obtained with the MPR and the
SR technique varied between [-0.82,-0.57] and [-0.69,-0.07], respectively. The
maximum difference observed between the Spearman’s p estimated with MPR
and SR was as high as 41 %.

5.4.6 Transferability of Global Parameters to Ungauged Loca-
tions :

For this case study, nine gauging stations within the Upper Neckar basin were
selected as cross-validation locations to test the efficiency of mHM to reproduce
streamflow at interior locations. Fig. 5.13 shows the location of these stations
within the study area and drainage area corresponding to these locations is
provided in Table 5.4.

For these simulations, the modeling scale was set to £; = 4 km because this
discretization covers all internal stations. Sets of global parameters for MPR
and SR were obtained at this discretization as well as three coarser scales,
namely: ¢; = (8, 16, 32) km.
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Figure 5.11: Discrepancy between fluxes simulated at two different modeling
scales (the control scale £; = 4 km and the finer scale £; = 2 km) during the
modeling period (1980-2001). The NSE was used as a measure of correspon-
dence between fluxes simulated at the control scale — assumed as baseline —
and the areal aggregation of fluxes obtained from the finer scale, as depicted
in Fig. 5.1. Global parameters were estimated at the control scale. The spatial
distribution of the NSE for daily evapotranspiration, total discharge, and soil
moisture of the top soil layer is depicted in panels (a), (b), and (c), respectively.
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Figure 5.12: Land Surface Temperature (°C) from MODIS and simulated vol-
umetric water content (mm mm™!) in the top-soil layer estimated with SR
and MPR.. Both variables are depicted for various days during year 2000 at the
modeling scale £; = 2 km.
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Figure 5.13: Location of interior locations within the Upper Neckar river basin.
The basin’s outlet corresponds to gauge Nr. 10. at Plochingen

The NSE obtained for daily streamflow simulations during the evaluation pe-
riod using MPR was, on average, 6 % greater that those obtained with SR
(Table 5.4). This result corresponds to simulations obtained with global pa-
~ rameters estimated at the modeling scale of £; = 4 km. The median reduction
of NSE for internal gauging stations with respect to the performance obtained
at the outlet (gauge Nr. 10) was 15 % and 20 % for MPR and SR, respec-
tively. Simulations obtained with global parameters calibrated at £ = 4 km
were used as reference. This was expected as both methods don’t account for
the discharge data of these internal stations in calibration process.

In the case that global parameters were estimated at the other modeling scales,
then the NSE for SR was, on average, 18 % lower than that obtained with MPR
(Fig. 5.14). Here, the median reduction was 16 % and 28 % for MPR and SR,
respectively. This implies that MPR is more robust than SR for streamflow
predictions at internal locations. Both methods, however, showed relatively
poor performance for internal stations located within karstic formations (e.g.
gauge Nr. 1 and 3, Fig. 5.13). For those locations, the NSE obtained with
MPR was, on average, 62 % greater that that obtained with SR.
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Table 5.4: Performance of MPR and SR for the daily streamflow predictions at
the interior locations during the evaluation period (1989-2001). Global param-
eters were calibrated only with discharge information from the outlet gauging
station (Nr. 10). Model runs were performed at modeling scale £;=4 km.

Gauge | Area MPR SR
Nr. | km? [Bias [RMSE [NSE| r | Bias | RMSE [NSE| r
mm | mm - - | mm| mm -

1 134|036 | 064 |0.44|0.81| 0.41 | 0.73 |0.41 |0.79
2 152| 0.09 | 0.56 |0.72 |0.83]| 0.09| 0.63 |0.71 |0.84
3 168 0.09| 093 |0.34 |0.78| 0.07 | 098 |0.21 |0.76
4 346] 0.16 | 0.71 |0.67 |0.79]| 0.15 | 0.73 | 0.67 |0.81
5 3501 0.33 | 070 [0.77 |091| 0.38 | 0.77 |0.71 | 0.89
6 467|0.00 | 0.58 |0.78 |0.87| 0.17 | 0.63 | 0.75 |0.87
7 698 0.16 | 0.58 |0.83|0.91|0.19 | 0.63 |0.79 |0.90
8 716 | 0.11 | 050 |0.76 [0.88| 0.16 | 0.58 |0.73 (0.8%
9 1132 | 0.05 | 046 |0.88 |094]| 0.08 | 0.51 |0.86 |0.92
10 3969 |-0.01| 0.29 |0.90)0.95|-0.01| 0.36 | 0.88 |0.94

T T I 1 | I T T T T
0.9~ = |
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r & H i [e] Y from Bkm to 4km
&l i
0.8 - g i ol ;;IL ; ool T ¢ Y from 16km to 4km
F E o *i )?(‘L : 1 O f from 32km to 4km
B Lloosel 48w SRR R |
L 8 U - S G T — MR
TR EE &
Lo £
- 0.6 |- o= ; : : : ] Gauge | Area
@ I ¢ i B¢ 4 1 id [ km? ]
igl % - T O R 1 134 :
o . S 2 152 i
- g - : N - 3 168 |
% i 5] b 4 346 |
0.4 I3 5 350 |
| : | 6 467 !
: ) 698
0.3 : ~< 8 716
i 9 1132
F 0 1 10 3969
X
0.2 | [ | ] 1 I | i 1 —

Gauge Id

Figure 5.14: Performance of MPR and SR for daily discharge simulations at
internal locations of the study area during the evaluation period. Simulations
were carried out at ¢; = 4 km using global parameters <y obtained from different
scales: £1 = (4, 8, 16, 32) km.
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Chapter 6

Predictions of Streamflow

Characteristics: High and

Low flows 1

“Water is a good friend but also a bad enemy”

Anonymous

6.1 Introduction

The aceurate and the reliable prediction of streamflow as well as their related
extreme characteristics, such as magnitude and frequency of high- and low-
flows, in a mesoscale river basin has always been a major objectives of the
hydrological studies mainly because of their implication in various water re-
sources planing and management purposes including the design and operation
of hydraulic structures, municipal or industrial water supply systems. This
need for opportune and reliable estimates of hydrological extremes has further
intensified during the last decades with compelling evidence [see e.g. Parry
et al. (2007)] that climate change, induced either due to natural causes or
anthropogenic activities such as afforestation, deforestation, may significantly
modify the likelihood of the occurrences of the high- and low-flows events. Ev-
idently, both hydrological extreme events entail substantial sociceconomic and

'This chapter is a modified version of the manuscript: Kumar, R., Samaniego, L. and
S. Attinger (2010). The effects of spatial discretization and model parameterization on the
prediction of extreme runoff characteristics. J. Hydrol. 392 (1-2}, pp. 54-69
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environmental consequences and, in the worst case, bears an enormous risk for
life.

Water balance models are increasingly used for these prediction purposes. The
performance of these models, however, depends on various factors. The aim of
this case study was to explore some of these factors, in particular, the effects
of objective function formulated for the calibration purpose, spatial discretiza-
tion (e.g. lumped, distributed) used to model different hydrological processes,
and the parameterization techniques. These effects were studied here to assess
the model performance for the predictions of daily streamflow and their re-
lated high and low flow characteristics. For these purposes mHM was applied
in the study area at two spatial resolutions: lumped and distributed. The
distributed version of mHM was in-turn parameterized based on hydrological
response unit (HRU) and multiscale parameter regionalization (MPR). The
calibration of free parameters in each case (i.e. for lumped and distributed
and within distributed for the HRU and the MPR paramterization methods)
were carried out with a dynamically dimensioned search (DDS) algorithm (Tol-
son and Shoemaker, 2007) instead of the simulated annealing (SA) algorithm.
It is worthwhile pointing out here that the DDS algorithm was available at
the latter stage of the present research work and therefore no attempts were
made to compare its efficiency with those of the SA algorithm. It had been
left for the future study. The sensitivity of model performances to the calibra-
tion objective functions was assessed by formulating three objective functions:
an error statistic focusing only on high flows, only on low flows, and a com-
bination of above. Subsequently, different high and low flow characteristics,
such as frequency of high flows, total drought duration, amongst others, were
derived from the daily discharge data on a seasonal time scale (winter and
summer). Model performances were accordingly assessed for the prediction of
these characteristics.

6.2 Implementation of mHM in Upper Neckar River

Basin

The mHM model being a process based conceptual hydrologic model offers a
flexibility to run not only at different grid resolutions but also in a spatially
lumped mode. To utilize this property and to study the effect of spatial dis-
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cretization on model performance, mHM was set up in a spatially lumped and
distributed version. The lumped version of the model represents a catchment
as a single and homogeneous unit and thus ignoring the spatial variability of
both the meteorological forcings and the basin physical characteristics. The
lumped model simulates daily streamflow at the basin outlet using the basin
averaged meteorological variables as input data. It may be noted that the cell
to cell routing process of the distributed model version was not included in the
lumped model. Instead the runoff routing process in the streams was modeled
as a triangular unit hydrograph. The formulation of this process is similar to
a parameter MAXBAS of the HBV model (Lindstrém et al., 1997).

For the distributed mHM version, the spatial resolutions of level-2 and level-
1 were both kept at 4 km x 4 km. Whereas, level-0 resolution was set at
100 m x 100 m. The MPR parameterization method was implemented in the
same way as described in previous chapters. The implementation of the HRU
method within the distributed mHM model is described below.

6.2.1 HRU Parameterization

A HRU is a distributed, heterogeneously structured identity having a com-
mon pedo-topo-geological basin characteristic controlling its hydrological dy-
namics (Fligel, 1995). ‘While HRU is one of the most common methods for
parameterizing the spatially distributed models (Leavesley et al., 1983; Fliigel,
1995; Bléschl et al., 2008; Das et al., 2008), there are no hard and fast rules
as to the delineation of HRUs. A k-means clustering algorithm (Lloyd, 1982)
was used to group all modeling cells at level-1 into fifteen HRUs. Catchment
characteristics used for the delineation of HRU were: elevation, slope, aspect,
soil textural data, land cover classes (fraction of forest, impervious and imper-
meable cover), and geological information (fraction of karstic and non-karstic
area). Mean values of these characteristics for each grid at level-1 were esti-
mated from their corresponding input data at level-0. Each HRU was assigned
to one of the three land cover classes (i.e. forest, impervious and permeable
cover) based on the dominant land cover class. Table 6.1 shows the catchment
characteristics of the HRUs delineated for the study area, and Fig. 6.1 shows
the locations of delineated HRUs within the study area. It can be noticed
from this figure that the geographic locations of modeling cells are not explicit
because of the categorical classification scheme used in the delineation of HRU.
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Table 6.1: Physiographical characteristics used for the delineation of HRUs in
the study area.

HRU z® o 3 xq9 £5° zgh 78 zgh
Id (m) {£) *) ) ) ) (mm) (-}
1 439.9 5.6 160.2 0.18 0.09 0.73 155.2 0.00
2 412.7 111 159.2 0.65 0.04 0.31 132.0 0.58
3 695.9 11.4 158.9 0.29 0.03 0.67 100.1 0.80
4 T84.9 6.4 115.6 0.70 0.02 0.28 1.4 0.02
5 8465.0 8.4 255.1 0.81 0.03 0.16 112.9 0.00
6 516.8 9.6 166.4 0.71 0.04 0.25 100.3 0.00
7 419.3 6.4 1842 017 0.13 0.70 109.1 0.00
8 870.5 3.1 1995  0.00 0.05 0.95 64.5 0.94
9 735.7 6.0 2219 0.20 0.01 0.79 119.1 0.87
10 626.5 16.9 193.4 0.42 0.06 0.52 81.3 0.06
11 468.9 6.6 1833 0.19 0.37 0.48 57.4 0.00
12 667.5 6.0 143.8 0.29 0.03 0.67 102.1 0.01
13 727.4 19.8 184.4 0.52 0.04 0.44 76.4 0.65
14 T87.8 9.7 204.3 0.54 0.02 0.44 93.6 0.95
15 507.1 9.7 190.2 0.40 0.06 0.54 109.2 0.00

2 Elevation

b Mean slope

¢ Aspect

d Fraction of the forest cover

¢ Fraction of the impervious cover

[ Fraction of the permeable cover

E Maximum water holding capacity of the soil profile
h Fraction of karstic aguifers

ML Jkm EEw
0 10 20 s

Figure 6.1: Location of modeling cells at level-1 (£1 = 4 km) within a particular
HRU for the study area.
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Three parameter allocation methods were used in the HRU parameterization
method to obtain the parameter fields of the distributed mHM model. First
allocation method consisted of assignment of those model parameters (e.g.
threshold tempérs.ture for conversion of precipitation into snow or liquid rain)
which were assumed to be spatially invariant. These set of parameters were
equally assigned to all modeling cells at level-1, irrespective of the HRUs lo-
cation. The second allocation was related to those parameters which were
assumed to be dependent on a particular catchment characteristic (e.g. snow
accumulation and melting parameters depends only on the land cover clasé).
These parameters were first weighted according to their respective catchment
characteristics (e.g. land cover fraction) of particular HRU and than assigned
equally to all modeling cells belonging to that HRU. And, finally the third
allocation method was related to those parameters which were assumed to be
dependent on more than one catchment characteristics (e.g. soil related and
runoff response parameters). These groups of parameters were first allotted in-
dependently to each HRU through calibration, and than assigned to all those
modeling cells having similar HRU irrespective of their geographic location.
The detail description of these allocations for all 28 mHM model parameters
with their appropriate maximum and minimum ranges, used during the cali-
bration process, is shown in Table 6.2. These allocation schemes were mainly
to reduce the model over-parameterization problem, and also to being consis-
tent with the MPR pa.fam'eterization method as far as possible to make a fair
comparison between them. Moreover, the HRU allocation method used in this
study is consistent with the previous study of Das et al. (2008) conducted in
the same region.

6.3 Parameter Identification

Good sets of free parameters for both the lumped version and the distributed
version of mHM, and for the HRU and the MPR, parameterization methods
were identified using a DDS algorithm Tolson and Shoemaker (2007). DDS is
a robust and parsimonious downhill global optimization algorithm that mimics
the manual calibration by dynamically and probabilistically reducing the num-
ber of parameters during the search procedure. The search algorithm requires
only one parameter i.e. the maximum number of model evaluations. During
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Table 6.2: Range of mHM model parameters for the HRU parameterization
method during the calibration process. Three allocation schemes to obtain
spatial fields of model parameters are abbreviated as: E = assigned to all cells
irrespective of the HRU class, W = weighted according to fraction of landcover
class or aspect, and S = HRU specific parameters assigned to each modeling
cells independently. Landcover is grouped in three different classes: Forest (F),
Impermeable (I) and Permeable (P) cover.

Param. Min. Max. Alloc. || Param. Min. Max. Alloc.

Id Method Id Method
B 0.1 0.5 W Bis 0.05 0.3 S
Ba =1.0 1.0 E bis 0.8 1.0 S
Ba 1.0 4.0 W {7 0.1 0.3 w

Bis 0.8 1.0 w

ﬁf—r 0.6 0.8 w
Ba 0.1 0.8 Bis 1.0 40.0 S
Bs 4.0 8.0 Ba 1.0 10.0 5

1 10.0 100.0
52 100.0 500.0
B7 1.0 5.0
Bs 30.0 70.0
Ba 1.0 5.0
Bio  270.0 274.0
A1 270.0 273.0
Bi2 0.2 0.5
Bia 0.1 1.0
B4 01 10

B2 50 100.0
B21 0.0 1.0
Bos 1.0 100.0
B2a  10.0 10000.0
B4 0.5 1.5
Bas 1.0 3.0
Bae 0.1 10.0
Ba7 0.0 0.5
Baz 0.9 1.2

Sunnnnnnnn

TEEmnunuunn

the course of search, a new set of model parameters is generated by perturb-
ing some of randomly selected parameters from their best values identified so
far. In a case of a minimization problem this newly generated set is selected
only if an objective function (or an aggregated error statistic) associated with
this set is less than that of the so far found best solution. Recently the study
conducted by Tolson and Shoemaker (2007) had shown the effectiveness of
the DDS algorithm over other existing optimization algorithms for searching
a good parameter set of a computationally expensive hydrological model in
relatively less model runs. Readers interested in more details about the DDS
algorithm may please refer to Tolson and Shoemaker (2007).

6.3.1 Formulation of Calibration Objective Function

The DDS algorithm was implemented in this study as a single objective op-
timization algorithm. It requires the formulation of an objective function (or
error statistic or cost function) that is either maximized or minimized depend-
ing on the problem. The formulation of a proper objective function is quite
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crucial for the successful calibration process. The usage of different objective
function may finally lead to a different set of model parameters and thus a
different model simulation (Oudin et al., 2006). For instance, a parameter
sets obtained with an objective function that have emphasis on the high flow
simulations may produce a bias result for the low flow simulations, and vice
versa (Boyle et al., 2000; Oudin et al., 2006).

Three different variations of an objective function were tested to better un-
derstand the sensitivity of a model performance to the different formulation
of objective functions. These variants were derived from the daily time series
of observed and simulated discharge, emphasizing separately either the high
flows or the low flows or a combination of above two. Additionally, the sea-
sonal extreme runoff characteristics ( described in detail in the next sections)
were used as a penalty term to improve the model predictions for the runoff
characteristics at the seasonal scale. The overall objective function @ to be
minimized can be given as:

C
3= (J[(2-09)a-E) (6.1)
e=1
where, C' denotes the total number of penalty terms and ©. is the pearson
correlation coefficient between the observed and the simulated seasonal runoff
characteristic ¢. The seasonal specific volume of high flows and the seasonal
cumulative specific deficit were used as penalty terms for the high flow and low
flow calibrations, respectively. Both penalty terms were used in the combined
calibration case. E is the Nash Sutcliffe efficiency (NSE) which for different
objective functions can be formulated as:

1- %:%5%3; for high flow

1-— Zo(logQ;~109Q,)* for low flow

E:(@Qr@;}? B
Eoiogg = 0.5(Eg + Eioy0) for combined high and low flow

(6.2)
where, Eg is NSE between the daily observed (@) and simulated (@) discharge
time series. This error statistic puts more emphasis matching the high flow sim-
ulation (Oudin et al., 2006). Ej,y0, on the contrary, is the NSE value between
the logarithmic transformed time series of observed and simulated discharge

Eq

B =

Elogq
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time series. This error statistic puts relatively higher emphasis on matching of
recessions and low flow spells (Oudin et al., 2006). The third calibration case
consists of an objective function Egjoq that equally weight the previous two
error statistics (i.e. Eg and Ejyg ) to obtain a balanced simulation (Oudin
et al., 2006). @ and logQ are the mean values of the daily observed and its
logarithmic transformed discharge time series over the calibration period, re-
spectively.

6.3.2 Parametric Uncertainty Analysis

The “equifinality” of parameters sets has been long recognized as one of the
common problems in hydrological modeling (Beven and Binley, 1992). This,
in turn, induces some degree of uncertainty in model outputs. Equally good
model simulations can be obtained from different sets of model parameter.
A DDS-approximation of uncertainty (DDS-AU) method (Tolson and Shoe-
maker, 2008) was used in this case study to quantify the variability of model
outputs due to different equally good parameter sets. In this method, several
independent trials of the DDS algorithm are performed for searching several
equally good sets of model parameter. A total 200 DDS trials were performed
for both lumped and distributed models with their respective parameterization
schemes, independently for all three objective functions. The best parameter
set obtained at the end of each trail were termed as a behavioral or accept-
able parameter set. Fach trial was initialized with a different random initial
solution and a different random seed so that the each DDS trail can follow a
different search path. The maximum number of model evaluations per DDS
optimization trail was set in advance. This number for the distributed model
with the HRU parameterization method was set to 500 due to the large number
of free parameters, and for the MPR. method and for the lumped model were
set to 300 and 200, respectively. Note that the maximum model runs per DDS
optimization trial conducted in this study are two to five times higher than
those of the previous study by (Tolson and Shoemaker, 2008) for quantifying
uncertainty in model outputs using the DDS-AU algorithm.

Based on the 200 different good parameter set, the deterministic model pre-
diction was estimated as the median of the ensemble. The variability of model
outputs were given by the 5% and 95% percentile ranges or (P5 — Pgs) variabil-
ity bounds. It may be noted that the so-derived variability bounds are note
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confidence bounds in a statistical sense that is they are not expected to include
in all cases a given percentage of observations.

6.4 Seasonal High and Low Flow Characteristics

River flows in many river basins around the world and particularly in the study
area exhibits a seasonal behavior mainly because these hydrological responses
are governed by the climatic conditions such as precipitation and temperature,
which shows a strong seasonality. High and low flows in a river can occur in
both summer and winter season but extreme runoff characteristics, such as
magnitude or frequency of high and low flows, may have different behavior in
different seasons. Consequently, to gain more understanding on the seasonal
behavior of model simulations several high and low flow characteristics were
estimated separately for the winter and summer seasons?.

Three seasonal high flow characteristics namely, specific volume (@), total
duration (Q2), and frequency (Q3) of high flows were estimated from the daily
discharge time series using a peak over threshold (POT) method (Stedinger
et al., 1993; Robson and Reed, 1999). The POT method uses all peak dis-
charges that exceed some threshold value such as maximum within-bank dis-
charge. This threshold value in this study was set to the 95" percentile (Fp.gs)
of the observed daily discharge (@ (t)). The threshold limit Fp g5 was kept fixed
for deriving all seasonal high flow characteristics during both winter and sum-
mer. Fig. 6.2 shows the schematic representation of high flows characteristics
used in this study. Table 6.3 presents the mathematical formulation of these
characteristics, based on the previous study of Samaniego (2003).

Similarly, three seasonal low flow characteristic namely, cumulative specific
deficit (Q4), total drought duration (@Qs) and maximum drought intensity (Qs)
were estimated from the daily discharge time series using a truncation level
method (Smakhtin, 2001; Tallaksen et al., 1997). This method defines all flows
as low flows that are below a certain threshold limit. The threshold level

0" percentile (Fp.10) of the daily observed dis-

in this study was set to the 1
charge (Q(¢)) values. Fp 1o kept same for deriving all low flow characteristics

during both seasons. Fig. 6.3 shows the schematic representation of low flows

?In study area, hydrological water year is divided into summer and winter water seasons.
Summer from hydrological point of view, starts on the 1%! of May and ends on the 31 of
October, whereas winter spans from the 1°* of November to the 30" of April.
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characteristics, and Table 6.3 presents their mathematical formulations. Read-
ers may refer to Samaniego (2003) for more in-sight into the estimation details
on extreme runoff characteristics.

800
600

¥ a00

200

0 50 100 150 200
Day

Figure 6.2: Schematic representation of high flow characteristics: specific vol-
ume (QY), total duration (Q%), and frequency (Q3) of high flows during the
water year y.

0 50 100 150 200
Day

Figure 6.3: Schematic representation of low flow characteristics: specific cu-
mulative deficit (QY), total drought duration (Q%), and maximum drought
intensity (Q¥) during the water year y.
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6.5 Results and Discussion

Both mHM model versions with their respective parameterization methods
were set up in study area to simulate the observed streamflow at the Plochingen
gauging station during the period from 1980 to 2001. This period was split
into two parts, 1980-1988 for the calibration, and 1989-2001 for the validation
purposes. Six months of data prior to the calibration period were used as the
spin up time to establish reliable initial conditions of modeled state variables.
The interior Horb gauging station was selected as a cross-validation site mainly
to explore the effects of two distributed model parametrization methods (i.e.
HRU and MPR method) on the discharge simulations. It may be noted that
discharge data of this station were not used for the model calibration, and
therefore it constitutes a cross-validation location.

The threshold values of high flows (Fp.g5) and low flows (Fp.10) at the Plochin-
gen gauging station were estimated as 130 m®s~! and 13 m3s™1, respectively.
For the interior Horb gauging station these values were 42 m3s~! and 4 m3s™1,
respectively. These estimates were derived from the daily observed discharge
. time series of the whole modeling period.

6.5.1 Daily Discharge Simulations

This section presents the results of model performances for the daily discharge
simulation which provides the base for deriving simulated seasonal runoff char-
acteristics. Furthermore, in this section the results for the sensitivity of the
different objective functions on the daily discharge simulations of the lumped
and the distributed mHM versions parameterized with different methods (ie.
HRU and MPR).

The performance of lumped and distributed mHM for daily discharge simu-
lation at the Plochingen gauging station in the calibration and the validation
periods based on the 200 best parameter sets found for three different objective
functions (Eq. 6.1) are graphically summarized in Fig. 6.4. As a complemen-
tary to this figure, the median statistics corresponding to these simulations are
presented in Table 6.4. These results clearly indicated that the dependency of
model simulations on the objective functions. A clear trade-off between high
and low flow simulations can be clearly observed in both calibration and val-
idation periods, irrespective of the model structure and the parameterization
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scheme. For example, when models were calibrated using Fg as.an objective
function statistic, their performances were, on average, higher for the same effi-
ciency measure than those obtained with the cross-validation efficiency measure
Ejog0 (i.e. one which was not used for the calibration purpose), and vice-versa.
This was expected as models were tuned to minimize errors computed with the
same objective function in their calibration phase. Same behaviors have been
also observed using other models in previous studies [e.g. Boyle et al. (2000),
Oudin et al. (2006), Yilmaz et al. (2008)].

Table 6.4: Ensemble median statistics of daily discharge simulations at Plochin-
gen (outlet) during calibration and validation periods for lumped and dis-
tributed versions of the mHM. The distributed mHM was parameterized with
the HRU and the MPR methods. For both models, three different variants
of objective function were used that includes Eq focusing on only high flows,
Ejogq focusing on only low flows and Egjeeq combination of them. Additionally
RMSE statistic for all three cases is also presented.

Calibration Validation
Model Objective | BEq FElogg RMSE | B PBigp RMSE
function | (=) (=) (m¥s )| (=) (=) (m3s7Y)
1)
Lump 0.83 0.73 23.67 [0.80 O0.71 18.53
Dist.-HRU 0.80 0.85 19.78 |0.86 0.83  15.11
Dist.-MPR 0.90 0.87 18.17 |0.8¢ 0.86  14.20
Eleaq
Lump 0.74 079 29.07 |0.73 0.75 21.26
Dist.-HRU 0.84 0.87 22.73 |0.81 0.84 17.40
Dist.-MPR 0.88 0.89 19.03 |0.87 0.80  14.47
Eqiogq
Lump 0.84 0.83 2245 |0.84 0.82  16.60
Dist.-HRU 0.8 090 19.74 (0.85 0.88 15.06
Dist.-MPR 0.90 091 18.04 (090 090  13.73

However, the percentage decrease in the cross-validation efficiency were differ-
ent for different model versions. The lumped model showed the higher sensitiv-
ity to the objective function as compared to the distributed model, irrespective
of the parameterization methods used. The average decrease in cross-validation
median statistics (either Ej,,0 or Eg) for the distributed model with the HRU
and the MPR. parameterization methods were 4.1% and 2.2% in the calibration,
and 3.0% and 3.1% in validation periods, respectively. Whereas, the lumped
model for such results showed the decrease of 11% and 8% in the calibration
and the validation periods, respectively (Table 6.4).

Moreover, the distributed model with both parametrization methods showed
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Figure 6.4: Performance of the lumped and the distributed models for daily
discharge simulations at Plochingen for different objective functions. Left pan-
els [(a-I) and (b-I)] shows the performance of the lumped model and the dis-
tributed model with the HRU parameterization method, whereas right pan-
els [(a-II) and (b-IT)] shows the performance of the HRU and the MPR pa-
rameterization methods employed in the distributed model. For both models,
simulations were conducted with the 200 best parameter sets found separately
for different objective functions.

140



better performances than that of the lumped model for both high and low
flow calibration cases (Table 6.4). For instance, the ensemble median Ejoy0
values of the distributed model with the HRU and the MPR parameterization
methods were 12.0% and 18.7%, respectively, higher than those obtained with
the lumped model for the low flow calibration case during the validation period.

The distributed model performance for the above results also varied depending
on the parameterization method employed. The MPR method was not only less
sensitive to the changes in the objective function, but also it provided better
performance for daily discharge simulations than the HRU method (Table 6.4).
Furthermore, the variability within good solutions for the HRU method was
also higher than those obtained for the MPR method (Fig. 6.4; right panels).

Another significant observations drawn from Fig. 6.4 and Table 6.4 was that the
performance of both models, for both high and low flows error statistic, using
the combined objective function was on average superior than those obtained
with the separate objective function (i.e. focusing on either high or low flows).
This result was quite surprising as one would expect that a given model would
perform better for high flows, if the emphasis during calibration was given
only to match high flows, as compared to those obtained with an emphasis
to both high and low flows together. We believe that this improvement in
the model performance for the combined objective function is related to the
fact that the daily discharge hydrograph is a sequence of high and low flows,
thus focusing on only one of them may produce biased results for the other
one and this bias can significantly effects the model simulation for next events.
The variability within the final solutions obtained with both models for the
combined objective function was also, on average, lower than those obtained
for the separate objective function (Fig. 6.4).

On average, the highest improvement for the combined calibration case was
found for the lumped model and the least for the distributed model with the
MPR parameterization method. This result further supports the claim regard-
ing the higher sensitivity of the lumped model performance to the objective
function. However, in-spite of this gain, the lumped model performance for
daily discharge simulations was again lower than those obtained with the dis-
tributed model with both parameterization methods. For example, the en-
semble median value of RMSE for the distributed model with the HRU and
the MPR. parameterization method were 10.2% and 20.8% lower than those
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obtained with the lumped model, respectively, in the validation period. Other
statistics also supported the above findings (Table 6.4).

Nevertheless, the ensemble median values of Eg and Egj,q obtained with
both model versions for the combined calibration were greater than 0.80. This
result commonly indicates a good agreement between observed and simulated
streamflow. Tt may be noted that these results obtained in this study are quite
consistent with previous findings of Das et al. (2008) using different spatial
representation of HBV model for the same study area.

The visual inspection of daily discharge hydrograph (Fig. 6.5) revealed that the
lumped model had difficulties in simulating the observed hydrograph recession
as well as the low flow spells during summer season. A plausible explana-
tion for this behavior is the fact that the recessions are mainly controlled by
basin physical characteristics (e.g. soil properties, land covers, geological for-
mations), which are not considered in formulation of the lumped model. This
results clearly shows an advantage of distributed model over their lumped coun-
terparts, since the recession parts simulated by the distributed model with both
parameterization scheme are fitting much better than those simulated by the
lumped model (Fig. 6.5).

The distributed model parameterization based on the MPR. method exhibited
higher predictive performance as compared to the HRU method. The (P5 -
Pgs) variability bounds of the daily discharge simulations obtained with the
MPR method were narrower than that obtained with the HRU method, in
particular for the recession part of hydrographs (Fig. 6.5). The deviation in
the distributed model performance can only be attributed only to the param-
eterization method since that is only the difference between these simulation
results. The larger variability of model outputs in case of the HRU method
might be related to either an ignorance of the sub-grid variability or due to
the higher variability of the good parameter sets found (Fig. 6.4). Another
reason may be related to the larger number of free calibration parameters in
case of the HRU parameterization method as compared to the MPR method,
since the higher the dimensionality of parameter search space is, the harder it
becomes for the optimization algorithm to find consistently good solutions. It
may be also noted that these results were obtained with the DDS optimization
algorithm which is one of the most efficient algorithm available, in particu-
lar for the compufational]y expensive models (Tolson and Shoemaker, 2007).
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However, all results presents above are based on model runs using the DDS
algorithm.
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Figure 6.5: Ensemble of daily streamflow simulations at Plochingen during the
evaluation water year 1989 using the lumped model (a) and the distributed
model with the HRU (b) and the MPR, (¢) parameterization methods. The
ensemble median and variability range (5% - 95% percentile range) of the
modeled streamflow were estimated with the best 200 parameter sets. These
sets were obtained with the combined objective function (i.e. high and low
flows together).

The cross-validation results of the distributed model with both parameteri-
zation methods at Horb showed similar trade-offs between high and low flow
simulations, and also for the sensitivity of the calibration objective function on
the model performance (Table 6.5). The best model simulations for both high
and low flows during the entire modeling period (1980-2001) were again ob-
tained with the use of combined objective function amongst all three variants
of objective functions. Comparing the performance of both distributed model
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parameterization schemes revealed that the MPR method is superior in its per-
formance than the HRU method for daily discharge simulations at this internal
location (Table 6.5). For instance, the median Eqg and Ejqq values obtained
with the MPR method were, on average, 5.5% higher that those obtained with
the HRU method. Other statistics shown in Table 6.5 also corroborated the
above result.

Table 6.5: Ensemble median statistics of daily discharge simulations at Horb
during the modeling period (1980-2001). Simulations were carried out with the
distributed mHM model with HRU and MPR. parameterization methods. For
both methods, three different objective functions: Eg focusing on only high
flows, Ej,0 focusing on only low flows and Egjo.q a combination of them,
using the discharge data of Plochingen (outlet) were used.

Parameteriz. | Objective| RMSE r [Eg Egg
method function |(m3*s—1) (=) (=) (=)
Bq

HRU 8.83 0388 0.81 0.75

MPR 7.09 093 0.86 0.84
ElagQ

HRU 9.08 0.89 0.79 0.82

MPR. 7.14 093 0.85 0.87
EQlogq

HRU 8.51 0.90 0.82 0.83

MPR 6.85 0.94 0.87 0.87

Both parameterization methods showed a deterioration in their performances -
when cross-validated at Forb (Table 6.4 and 6.5) as compared to those obtained
at the calibration station (i.e. Plochingen gauging station). This was expected
as the data of this station were not used during calibration. However, this
decrement in efficiency measures for the HRU method was, on average, higher
than those for the MPR method. For instance, the median Eg obtained during
the modeling period for the HRU method decreased by 8.7% while the MPR
method exhibited a decrease of only 2.8%. This relatively poor cross-validation
performance of the HRU method compared to that obtained with the MPR
method may also be attributed to the over-fitting problem. This effect be-
comes more evident by visual inspection of the daily streamflow simulations as
shown in Fig. 6.6. The (P5 — Pgs) variability bounds of daily discharge sim-
ulations with the HRU method were at least 10% wider than those obtained
with the MPR method. These results clearly demonstrated the robustness and
the reliability of the MPR method over the HRU method for daily discharge
predictions at the interior location.
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Figure 6.6: Ensemble of daily streamflow simulations at Horb gauging station
(internal) during the water year 1988 using the HRU (a) and the MPR (b)
parameterization methods. The ensemble median and variability range (5% -
95% percentile range) of the modeled streamflow were estimated with the best
200 parameter sets. These sets were obtained with the combined objective
function and the discharge data of Plochingen (outlet).

6.5.2 Prediction of the Seasonal High and Low Flow Charac-
teristics

In this section, simulation results for the prediction of seasonal runoff character-
istics and their sensitivity to the calibration objective functions are presented.
Fig. 6.7 illustrates the sensitivity of the lumped and distributed models for
the prediction of seasonal specific volume of high flows (Q1) and cumulative
specific deficit (Q4) during the modeling period at the Plochingen gauging
station. It should be noted that the seasonal characteristics @7 and the @4
were used as penalty terms for the high and the low flow objective functions,
respectively, while both of these characteristics were used as a penalty term
in the combined calibration case. Both model versions showed the sensitivity
to the chosen objective function on the predictions of extremes runoff char-
acteristics. The lumped model showed the highest sensitivity, whereas the
distributed model with the MPR parameterization method the least (Fig. 6.7).
Furthermore, the performance of both model versions for the combined ob-
jective function were consistently better than that obtained from the separate
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objective function used during calibration (either high flows or low flows). In
particular, the performances of both models for the low flow characteristic
with the combined objective function showed a significant improvement over
those obtained with an objective function that focus only on low flows during
the calibration process. The in-depth analysis of model simulation results for
different seasonal runoff characteristics are presented below. Note that all re-
sults presented, hereafter, are obtained from model runs which use combined

objective function in their calibration process.
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Figure 6.7: Sensitivity of the lumped and the distributed models performance
for the prediction of seasonal specific volume of high flows (a) and cumulative
specific deficit (b) to the objective functions. The distributed model was pa-
rameterized with the HRU and the MPR methods. Simulations were carried at
Plochingen during the modeling period (1980-2001) with 200 best parameter
sets found separately for different objective function.
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6.5.2.1 High Flow Characteristics

The results obtained for seasonal high flow characteristics at the Plochingen
gauging station for both lumped and distributed mHM and for the MPR and
the HRU parameterization methods are summarized in Table 6.6. It can be
noticed from this table that the distributed model, regardless of the parame-
terization scheme, during the winter season performed better than the lumped
model. For instance, the median RM SE values for the distributed model with
both HRU and MPR regionalization methods in this season were, on average,
10% and 32% lower than those obtained with the lumped model, respectively,
considering all high flow characteristics. However, the other two efficiency mea-
sures [i.e. Pearson correlation coefficient (r) and Spearman rank correlation
coefficient (p)] do not showed big difference between the lumped and the dis-
tributed model simulations for the high flow characteristics. These efficiency
measures (7 and p) obtained for the distributed model were, on average, less
than 5% higher than those obtained for the lumped model.

Table 6.6: Ensemble median statistics between observed and simulated seasonal
high flow characteristics at Plochingen during the modeling period from 1980 to
2001. Simulations were conducted with the lumped and the distributed mHM
model. The distributed model was parameterized with two methods: Hydrolog-
ical Response Unit (HRU) and Multiscale Parameter Regionalization (MPR).

RMSE T P

Season/ Lump Dist. Dist. | Lump Dist. Dist. | Lump Dist. Dist
Character. HRU MPR HRU MPR HRU MPR
Winter

@y (rmm) |13.34 12,11 993 | 097 098 099 | 096 0.96 0.98
Q2 (d) 349 3.04 2.61 | 0.95 0.96 0098 | 0.93 0.94 097
Qs (y~1) | 1.37 121 107 | 085 0.80 0.91 | 0.84 0.87 0.92
Summer )

@ (mem) | 9.01 B8.05 796 | 090 0.90 0.91 | 0.89 0.90 0.93
Qs (d} 201 193 1.87 | 089 0.89 090 090 0.90 091
Qs (y™1) 1.05 096 086 | 0.86 0.88 0.89 | 0.89 0.90 0.92

Both lumped and distributed models showed relatively poor performances for
the predictions of frequency of high flows (Qs) during winter season as com-
pared to the other two characteristics (i.e. specific volume (Q;) and total
duration (Q2) of high flows). For example, the Pearson correlation coefficient
(r) obtained with both models for Qg3, were at least 10% lower than those ob-
tained for the other two characteristics (Table 6.6). This behavior was observed
regardless of the parameterization method employed in the distributed model.
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The visual inspection of both models simulation for high flow characteristics
also corroborated the above findings (Fig. 6.8).

The efficiency of distributed model simulations regarding high flow charac-
teristics during summer was as good as that obtained by the lumped model,
since both models were able to explain between 86% to 91% of the observed
variance (r). Other efficiency measures for both models also showed minor dif-
ferences in accordance with the previous result (Table 6.6). The performance
of both models for the frequency of high flows (Q3) during this season were
also relatively lower than those obtained for the other two characteristics (Ta-
ble 6.6).

The predictive efficiency of both models, irrespective of the parameterizations
method, for high flow characteristics in summer was lower than that obtained
in winter (Table 6.6). This lack of predictability of high flows in summer is
mainly related with the occurrence of convective precipitation events, whose
short time of occurrence and limited spatial extent is often not captured by
the coarser network climatological stations available in the area.

The performance of the distributed model for the simulations of high flow char-
acteristics was dependent on the parameterization method employed. Results
indicated that the MPR, method performed, on average, better than the HRU
method (Table 6.6). For example, the ensemble median RM SE value obtained
with the latter method were, on average, 24% and 5% greater than those ob-
tained with the former method during winter and summer, respectively.
Cross-validation test conducted at Horb (Table 6.7) further corroborated the
robustness and reliability of the MPR method over the HRU method. For
instance, the median RM SE values between observed and simulated high flow
characteristics obtained with the MPR method were, on average, 45% and 18%
lesser than those obtained with the HRU method during winter and summer,
respectively. Additionally, the median values of both correlation coefficients r
and p obtained with the MPR method were also higher than those obtained
from the model runs of the HRU method (Table 6.7).

6.5.2.2 Low Flow Characteristics

The efficiency of the distributed model with respect to the low flow character-
istics was significantly better than those obtained by the lumped model (Ta-
ble 6.8). This results were obtained irrespective of parameterization method
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Table 6.7: Ensemble median statistics between observed and simulated seasonal
high flow characteristics at Horb during the modeling period from 1980 to
2001. Simulations were conducted with the distributed mHM model with two
parameterization methods: Hydrological Response Unit (HRU) and Multiscale
Parameter Regionalization (MPR). _

Season/ RMSE r P

Character. [HRU MPR |HRU MPR |HRU MPR
Winter

Q1 (mm) |29.73 20.94]| 095 097 | 0.96 0.97
Q2 (d) 6.69 4.65 | 0.94 0.96 | 0.95 0.96
Qs (y~1) | 1.65 1.07 | 0.83 0.87 | 0.84 0.89
Summer

Q; (mm) | 7.80 7.03 | 0.85 0.88 [0.92 097
Q2 (d) 1.38 1.11 | 0.84 0.90 | 0.88 0.92
Q3 (y~') | 083 069|082 080|084 091

employed in the distributed model. For example, the median RMSE values
obtained with the distributed model for the MPR. method were, on average,
at least 50% lower than those obtained with the lumped model in both winter
and summer. The values of ensemble median correlation coefficients (r and
_ p) obtained with the latter model were also significantly lower than those ob-
tained with the former model version. The same results was observed when
the distributed model was parameterized with the HRU method. The main
reasons behind the poor performance of the lumped model is due to significant
mismatch between the season time series of observed and simulated low flow
characteristics (Fig. 6.9). Moreover, the (P5s — Pgs) variability bounds of the
simulated low flow characteristics obtained with the lumped model were also
significantly wider than those obtained from the runs of the distributed model.

The relatively poor performance of the lumped model compared to spatially
distributed model clearly shows the effects of spatial discretization to model
various components of hydrological process. This in-turn also shows an impor-
tance of accounting the spatial heterogeneity of the catchment characteristics
which have a large impact on the simulation of low flow characteristics.

The performance of the distributed model were also different depending on the
parameterization method employed. For instance, the median value of Pearson
correlation coefficient (r) obtained with the MPR method were, on average,
6% and 4% higher than those obtained by the HRU method during winter
and summer, respectively. Other statistics also corroborated the above result.
It was also observed that the simulations of low flow characteristics obtained
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Table 6.8: Ensemble median statistics between observed and simulated seasonal
low flow characteristics at Plochingen during the modeling period from 1980 to
2001. Simulations were conducted with the lumped and the distributed mHM
model. The distributed model was parameterized with two methods: Hydrolog-
ical Response Unit (HRU) and Multiscale Parameter Regionalization (MPR).

RMSE ; 2
Season,/ Lump Dist. Dist. [ Lump Dist. Dist. [ Lump Dist. Dist
Character. HRU MPR HRU MPR HRU MPR
Winter
Q4 (mm) 058 041 032 | 0.80 0.82 0.86| 0.83 0.98 0.99
Qs (d) 814 5.57 b5.03| 0.76 0.85 0590 | 0.82 0597 0.98
Qs (mmy=1)| 060 7.16 6.51| 0.78 087 093 | 0.80 098 0.99
Summer
Q4 (mm) 056 045 037 | 0.82 093 096 | 0.81 095 0.98
Qs (d) 851 7.62 464 | 0.81 0092 094 | 0.83 095 0.99
Qs (mm 'y_l) 703 421 387 | 069 O0.88 092 | 0.82 0.96 0.89

with the HRU method exhibited a larger variability as compared to the MPR
method. For example, the (P — Pgs) variability bounds of the median r values
obtained for the simulation of the maximum drought intensity (Qs) in summer
was (0.73—0.91) and (0.86—0.94) for the HRU and MPR. methods, respectively.

Cross validation tests conducted at Horb gauging station (Table 6.9) further
corroborated the robustness of the MPR method over the HRU method. For
instance, the median RM SFE value obtained with the MPR. were at least 50%
lesser than that obtained with the HRU method. Both correlation coefficients
obtained with the latter method were also significantly lower than those ob-
tained with the former method. The HRU method also exhibited a significantly
larger variability for the simulations of low flow characteristics than those ob-
tained with the MPR method (Fig. 6.10). The variability bounds of simulated
low flow characteristics for the HRU method were, on average, at least 30%
higher than those obtained with the MPR method. However, the coverage of
observed values within variability bounds for both methods were approximately

similar.

In general, it can be stated that both model versions (i.e. lumped and dis-
tributed) exhibited a larger uncertainty in the simulation of low flows charac-
teristics as compared to the simulation of high flow characteristics (Fig. 6.8,
and Fig.6.9). This results for the distributed model were also obtained regard-
less of the parameterization method employed. The lack of predictability for
low flows are due to various reasons which include, for instance, a non-inclusion
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of human induced discharge fluctuations (e.g. outlets of treatment plants or
water supply intake facilities) in the modeling framework , structural errors
of the model (e.g. exclusion of regulation structures in the model conceptual-
ization), measurement errors (e.g. discharge measurement during the extreme
low flow conditions), amongst other error sources.

Table 6.9: Ensemble median statistics between observed and simulated sea-
sonal low flow characteristics at Horb during the modeling period (1980-2001).
Simulations were conducted with the distributed mHM model with two pa-
rameterization methods: Hydrological Response Unit (HRU) and Multiscale
Parameter Regionalization (MPR).

Season/ RMSE r p
Character. HRU MPR|HRU MPR|HRU MPR
Winter

Q4 (mm) 0.41 0.23 | 084 096|095 0.99
Qs (d) 9.06 5.21 | 0.88 0.95 | 0.94 0.99
Qe (mmy1)| 6.23 570|092 097 | 096 0.98
Summer '

Q4 (mm) 0.92 0.63 | 0.89 0.93 | 0.88 0.95
Qs (d) 11.49 6.58 | 0.86 0.92 | 0.90 0.96
Qg (mmy')| 8.27 4.13 | 0.83 0.95 | 0.87 0.96
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Figure 6.10: Performance of the HRU (a) and the MPR (b) parameterization
methods employed in the distributed model for the prediction of seasonal low
flow characteristics at Horb in the modeling period (1980-2001).
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Chapter 7

Summary and Outlook

7.1 Summary

Water resources planning and management under changing environmental con-
ditions require, amongst other things, a robust and efficient hydrologic model
that can not only provide a reliable estimate on streamflow at a gauged and
ungauged location within a river basin, but also can provide a reliable estimate
on spatio-temporal dynamics of different state variables and water fluxes. Dis-
tributed hydrologic models which are developed for these purposes exhibits
deficiencies in their implementation on a mesoscale such as overparametriza-
tion, the lack of an effective technique to integrate the spatial heterogeneity
of basin physical characteristics, the non-transferability of parameters across
scales and locations, amongst others. The aim of this study was to address
these issues simultaneously. The research questions that have motivated and

guided this work, as posed in Chapter 1, are reiterated below:

1. How to formulate a robust and computationally efficient spatially dis-
tributed hydrologic model for a mesoscale river basin, which can not only
reproduce the discharge hydrograph at any point within a basin but also
able to provide a reasonable estimate of the spatio-temporal dynamics of

soil moisture, snow cover, amongst other state variables?

2. How to obtain spatial fields of model parameters robust enough to reduce
the overparameterization problem but still adequate enough to incorpo-
rate the sub-grid basin heterogeneity, while ensuring the transferability of
model parameters to scales other than that used during model calibration?
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To address these questions, the present study was aimed at developing a spa-
tially distributed hydrologic model and its parameterization technique which
can be suitable for both scientific and operation purposes at a mesoscale river
basin. A summary of research works performed for this study is detailed below.

In Chapter 2, a detail formulation of spatially distributed mesoscale hydrologic
model (mHM) was presented. In summary, mHM is a fully distributed process
based water balance model that uses grid cells as a primary hydrologic unit and
simulates the following dominant hydrologic processes: canopy interception,
snow accumulation and melting, soil moisture dynamics, infiltration and sur-
face runoff, evapotranspiration, surface and subsurface storage and discharge
generation, deep percolation and baseflow, and discharge attenuation and flood
routing. mHM is based on numerical approximations of dominant hydrological
processes that have been tested in the well known HBV model (Bergstrdm,
1995). The mHM model, however, includes also a number of new features
such as soil freezing and thawing process, near surface root zone soil moisture
process, canopy interception processes, cell to cell routing process, module for
automatic upscaling and delineation of flow routing network, as well as the
new parameterization technique. Moreover, since in mHM the discharge gen-
eration process is modeled at each grid cell, as apposed to the HBV model in
which this process is modeled at a predefined sub-basin level, mHM can be
effectively used to estimate discharge hydrograph at any point along the river
network within a basin. It can also efficiently incorporate remote sensing data
sets. One of the significant features of mHM is that it uses different levels of
spatial information to better incorporate and represent the spatial variability
of hydrological processes and input data.

The theme of Chapter 3 was dedicated to present a detail review on the
state-of-art regionalization approaches used for the parameterization of a dis-
tributed hydrologic model . After pointing out certain deficiencies in current
approaches, a Multiscale Parameter Regionalization (MPR) was proposed to
reduce the overparameterization problem while incorporating the sub-grid vari-
ability of basin physical characteristics within the parameterization framework.
In summary, the proposed MPR method follows two step procedure. In first
step, the regionalization is performed at a finer resolution (i.e. at the data
input level) to account for the sub-grid variability of basin characteristics.
Subsequently in the second step, effective parameter parameter fields required
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to describe spatial variability of hydrological processes at a coarser grid are ob-
tained with appropriate upscaling operators. MPR differs with the currently
used standard regionalization approach in the way that it does not focus on
estimating “aggregated basin characteristics” having little or no information
regarding the spatial variability of the natural factors that regulate the hydro-
logical process at the sub-grid scale, but rather in estimating “effective fields
of model parameters” that capture the emergent properties of these processes.
" One significant advantage of using the two step MPR technique is that it al-
ways have the information of parameter fields at finer sub-grid scale that can
efficiently used to generate effective parameters fields at any modeling scale
using upscaling operators, but without further calibration. MPR, when imple-
mented within mHM reduced significantly the number of free parameters over
which calibration is made, while retaining model capability to represent the
sub-grid variability of basin characteristics.

In Chapter 4, a detailed application of mHM with the MPR parameteriza-
tion method was presented for the study area. Modifications of the standard
conceptual model structure such as the frozen soil algorithm, the inclusion of
two-top soil layers, incorporation of satellite data such as weekly leaf area in-
dex, and the usage of distributed driving forcings obtained via external drift
krigging interpolation scheme, as well as the new multiscale parameterization
method, were fundamental to improve the model performance. The low time
complexity of the resulting model did, in turn, speed up the convergence of the
optimization algorithm.

The proposed multiscale parameter regionalization (MPR) technique not only
reduced the complexity of the model, but also led to a fast and robust hydro-
logic model which was able to reproduced quite well the discharge hydrograph
not only at outlet of the basin but also at the interior locations discharge data
of which were not used for model calibration. Furthermore, the plausibility
test carried out to compare the spatial patterns of snow cover and near sur-
face soil moisture also matched quite well with the direct and proxies daté
obtained from MODIS ( i.e. snow cover and land surface temperature (LST),
respectively). ‘

The inclusion of new soil freezing module and canopy interception module
showed improvements in the discharge simulations. The mHM implementa-
tion in the study are has significantly improved streamflow predictions (e.g.
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NSE =~ 0.85 to 0.90) as compared with those obtained with the HBV model
(NSE = 0.79 to 0.84). Moreover, the spatial patterns of soil moisture obtained
from the mHM model simulation with the MPR parameterization were much
more realistic than those obtained through the HRU method, when compared
with LST data of MODIS imageries. These results suggested that commonly
used HRU based parameterization method is not efficient for providing the re-
alistic patterns of spatio-temporal dynamics of state variables, mainly due to
their static categorical method to classify HRUs that not necessarily preserves
the local relationships between basin characteristics and model parameters.
However, further research is still required in this aspect to compare model

simulated soil moisture patterns with real data sets instead of proxy data (i.e.
LST).

In Chapter 5, several numerical éxperiments were designed to study the impact
of incorporating sub-grid variability of basin characteristics in regionalization
framework. MPR. was compared with the standard regionalization (SR) tech-
nique. Both methods were implemented within mHM with similar regional-
ization functions. The mHM model runs with both methods were performed
at various modeling scales (2 km to 32 km). Results of this study indicated
that both regionalization techniques do not exhibit significant differences in
global efficiency measures (e.g. NSE) for daily discharge simulations as long as
the model is calibrated and evaluated at a given modeling scale. These results
pointed out the extent of the equifinality of global parameter sets and a sub-
stantial shortcoming of the calibration procedure when the objective function
does not consider components other than observed and simulated streamflow.

Substantial differences, however, became apparent when the global parameters
were calibrated at a coarser modeling scale and then transferred to a finer one.
In such a case, MPR exhibited a clear superiority with respect to SR. Running
the model at coarser scale, as compared to the finer scale, in given modeling
domain have many advantages such as significant reduction in computational
time required for tedious task of calibration, which requires several thousands of
search iteration. In such cases MPR is quite advantageous as global parameters
obtained at coarser scale with MPR can be transferred to finer scale with
reasonable performance.

The dynamics of state variables such as soil moisture and water fluxes var-
ied significantly depending on the regionalization method employed as well as
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the modeling scale used for the calibration of global parameters. Therefore,
it is crucial for the evaluation of any regionalization technique to assess the
error induced into the mass balance, at a given control volume when global
parameters are shifted across modeling scales.

Compelling evidence have been presented in this study with respect to the ef-
fect of accounting for the sub-grid variability in the regionalization method, as
well as the importance of the upscaling sequence (i.e. either predictors in SR
or parameters in MPR) to satisfy the continuity principle. MPR consistently
performed better than SR. Cross-scale experiment results bring us to the con-
clusion that upscaling regionalized model parameters (i.e. MPR), instead of
performing.para,meter regionalization with upscaled basin predictors (i.e. SR),
lead to significantly different spatio-temporal distributions for both state vari-
ables and water fluxes due to the nonlinearity of the system. Transferring the
parameter across scales for conserving spatial mass balance of water fluxes and
state variables with MPR was much more feasible than SR mainly because of
its two step regionalization procedure.

Another advantage of MPR over SR, as shown in this study, was its capability
to produce better streamflow simulations in cross-validated interior locations,
discharge data of which were held out from the calibration process. This prop-
erty of the distributed model with robust parameterization method is of great
importance for the prediction in ungauged basins (PUB).

Finally, in Chapter 6, a case study was performed to assess the mHM capa-
bility to reproduce seasonal runoff characteristics. The specific objectives, in
this case were to assess the effects of spatial discretization, model parameteri-
zation and calibration objective function on the prediction of daily streamflow
as well as seasonal high and low flow characteristics. Here, mHM was run
at two different spatial resolutions: lumped and spatially distributed versions.
The distributed mHM version was, in turn, parameterized with the HRU and
the MPR methods. For both model versions with their respective parame-
terizations, calibration were performed with three objective functions with an
emphasis on high flows, low flows, and a combination of them.

The results of this case study indicated that performances of the lumped and
the distributed models for the simulations of daily discharge as well as seasonal
high and low flow characteristics were sensitive to the choice objective function
used for calibration. The lumped model showed the highest sensitivity and the
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distributed model with the MPR parameterization the least. For both models,
the objective function that accounts for both high and low flows together con-
sistently performed better than other individual objective functions. Based on
these results it can be said that the formulation of objective function in the
calibration process is one of the crucial aspect for the successful implementa-
tion of hydrologic model, but degree of sensitivity can vary depending on the
spatial discretization and model parameterizations.

Regarding the seasonal high flow characteristics no significant differences in the
performance of lumped and distributed model were found in this study. Winter
high flow characteristics predicted by the distributed model were, however,
slightly better than those obtained by the lumped model. Consequently it can
be stated that the spatial discretization may not play a significant role on the
prediction of high flow characteristics at seasonal time scale. It is worthwhile
emphasizing here that the spatial discretization may have the impact on peak
flow characteristics such as volume and timing, on daily or hourly time scale.
Further research is needed in this aspect.

On the contrary, for the simulation of low flow characteristics, distributed
model with both parameterization methods performed significantly better than
those obtained from the lumped model simulation. It was also observed that
the lumped model has a ‘difficulties in simulating the recession part of the
abserved daily hydrograph. Distributed model with both i)arameterization_
methods for simulating such parts of daily hydrograph showed relatively bet-
ter fit. These result supported the hypothesis that the spatial discretization
and thereby accounting for the spatial heterogeneity of basin physical char-
acteristics (e.g. soil and land cover properties, geological formations) plays a
significant role on the prediction of seasonal low flow characteristics as well as
recession part of the daily hydrograph. In this case, a clear gain was observed
for the usage of a distributed model over its lumped counterpart.

Results of the same case study also highlighted the importance of robust param-
eterization technique in case of a distributed hydrologic modeling in a mesoscale
river basin. The MPR method not only reduced the complexity of mHM, but
also exhibited better efficiency for the simulations of both the daily discharge
and the seasonal runoff characteristics as compared to those obtained with the
HRU parameterization method. Moreover, the results of cross-validation tests
conducted for the predictions at internal site, revealed that the MPR method
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was more robust and reliable than the HRU method. These results again
indicated the effect of sub-grid variability of basin characteristics on model
performance since the HRU method does not account for these variability.

In summary, this thesis has presented an efficient spatially distributed hydro-
logic model (mHM) with a robust multiscale parameter regionalization (MPR)
technique that can be applicable for solving problems related to water resources
at a mesoscale. The two-step MPR parameterization method introduced in
this work not only reduced the model overparameterization problem, but also
provided a way to explicitly incorporate the sub-grid variability within the pa-
rameter regionalization framework. As a result it ease the transferability of
global parameters to other scales and locations other than that used during
calibration, without inducing statistical significant bias in either streamflow
predictions and/or simulated water fluxes. The distributed model parameter-
ization based on the MPR method proved to be more robust and reliable in
various aspects in comparison to the currently used standard regionalization
method and the commonly hydrological response units method. Finally, it
must be mentioned that the model and the parameterization technique devel-
oped in this study is general and can be applied elsewhere, if required data are
- available.

7.2 QOutlook

All applications of the developed model (mHM) and the parameterization (MPR)
scheme presented in this work was applied for the case study area which is the
Upper Neckar river basin. For proving its further robustness and reliability,
mHM need to be applied in several other river basins. In this regard the author
of this thesis is currently applying mHM in several mesoscale river basins in
and outside of Germany. Moreover, in this study the performance of the mHM
model was only compared with the HBV model. It would be interesting to test
the mHM performance with other existing spatially distributed models.
Regarding regionalization technique, experiences of working with upscaling
techniques have shown that there are no explicit simple averaging rules for
various model parameters. In this direction further investigation regarding up-
scaling operators and their fundamental properties, required to describe dom-
inant processes in a mesoscale control volume, is still needed.
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The MPR. method, as shown in this study, reduced considerably the parameter
search space over which existing optimization algorithms can efficiently search
for good sets of global parameter. However, it had not led to find to an optimum
global parameter set. This implies that their is still a considerable amount of
uncertainty that arises from various sources of error. In this study, attempts
were made only to quantify variability in model outputs due to the good sets
of global parameter. The future study should carry out detailed uncertainty
analysis associated with model outputs due to various sources of error, which
include, for instance, model structural uncertainty, uncertainty due to errors
in input data, amongst others.

One key area where regionalization techniques can be effectively explored is
for the predictions in ungauged basins. Although not presented in this thesis
the MPR. technique had been effectively used for the predictions in ungauged
basins (Samaniego et al., 2010a). However, still much research efforts have to
be devoted in this respect to test both mHM and MPR at several ungauged
sites.

Finally, as shown in this thesis adding some new processes in existing model
have improved model performance. It is worthwhile to extend the model struc-
ture so to incorporate other relevant processes. In this regard investigations
can be conducted towards the inclusion of a vegetation growth model which
may be able to simulate not only leaf area index but also ensuring that the
soil-plant-atmosphere interactions are accounted expiiéitly in the hydrologic
model. Second possibility would be to include an explicit low-complexity en-
ergy balance model coupled to mHM so to improve further the spatio-temporal
dynamics of soil moisture, evapotranspiration, radiation fluxes, amongst other
key state variables and water and energy fluxes. These inclusion of new mod-
ules could make the mHM model favorable for coupling it with a regional
climate model.
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