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Abstract: 

The deployment of onshore wind power is an important means to mitigate climate change. 

However, wind turbines also produce local disamenities to residents living next to them, mainly 

due to noise emissions and visual effects. Our paper analyzes how the presence of local 

disamenities affects the socially optimal siting of onshore wind power. The analysis builds on 

a spatial optimization model using geographical information system (GIS) data for Germany. 

Our results indicate a major spatial trade-off between the goals of minimizing electricity 

generation and disamenity costs. Considering disamenity costs substantially alters – and in 

fact dominates – the socially optimal spatial allocation of wind power deployment. This is 

because in Germany a) the spatial correlation between generation costs and disamenity costs 

is only moderately positive, and b) disamenity costs exhibit a larger spatial heterogeneity than 

the generation costs. These results are robust to variations in the level and slope of the 

disamenity cost function that we assume for the modeling. Our findings emphasize the 

importance of supplementing support schemes for wind power deployment with approaches 

that address local disamenties, e.g., compensation payments to local residents or minimum 

settlement distances.  
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1. Introduction 
Onshore wind power is one of the key renewable energy sources that need to be developed 

at large scale to decarbonize the energy sector (Rogelj et al., 2018). An important question 

that arises in this context is how to site wind power generation capacity in order to attain 

deployment targets cost-effectively. This question has been discussed extensively for energy 

system costs. In this respect, siting decisions typically involve trade-offs between minimizing 

the levelized costs of electricity generation and other energy system costs (e.g., related to the 

extension of networks and storage). Such trade-offs have been studied for the European 

electricity system (Eriksen et al., 2017; Fürsch et al., 2013; Hagspiel et al., 2014; Schaber et 

al., 2012a; Schaber et al., 2012b; Schlachtberger et al., 2017; Schmid and Knopf, 2015) as 

well as for single countries like Germany (Agora Energiewende, 2013; Bucksteeg, 2019; 

Drechsler et al., 2017). 

However, these studies largely ignore the fact that the deployment of onshore wind power also 

causes external environmental costs. These costs may be spatially heterogeneous, and may 

thus affect the optimal siting of wind power generation capacity. One important category of 

external environmental costs is related to local disamenities for residents living in the vicinity 

of wind turbines (for overviews, see Mattmann et al., 2016; Tabassum-Abbasi et al., 2014; 

Zerrahn, 2017). Local disamenities of onshore wind power include noise emissions, flicker 

effects, light reflections as well as changes to landscape aesthetics. There is a growing strand 

of empirical studies analyzing costs associated with local disamenities of onshore wind power. 

Studies rely on hedonic pricing models analyzing impacts on property values (e.g., Dröes and 

Koster, 2016; Dröes and Koster, 2021; Frondel et al., 2019; Gibbons, 2015; Heintzelmann and 

Tuttle, 2012; Jensen et al., 2014; Lang et al., 2014; Sunak and Madlener, 2016), life 

satisfaction approaches (Krekel and Zerrahn, 2017; von Moellendorff and Welsch, 2017), as 

well as willingness-to-pay analyses (e.g., Betakova et al., 2015; Brennan and van Rensburg, 

2016; Drechsler et al., 2011; Guo et al., 2015; Jones and Eiser, 2010; Ladenburg and 

Dubgaard, 2007; Meyerhoff et al., 2010; Wen et al., 2018). There are two overarching insights 

from this literature. First, most studies find that the costs of local disamenities may be 

substantial. Second, local disamenities are often found to decline with increasing distances to 

wind turbines. Both insights point to costs of local disamenities being spatially heterogenous, 

depending on the distance to and the size of the affected population at a specific site. This 

suggests that costs of local disamenities should be included in spatial optimizations that aim 

to minimize the social costs of wind power deployment. 

Against this background, our paper analyzes how the presence of local disamenities affects 

the optimal siting of onshore wind power. We particularly investigate the trade-off between 
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minimizing local disamenities and electricity generation costs. We also aim to derive a spatial 

allocation that minimizes social costs, which we consider as the aggregate of both costs.  

We apply our analysis to the case of Germany. Germany has experienced a vast growth of 

onshore wind power deployment in the past (Lauf et al., 2020). Onshore wind power is also 

considered as one of the key technologies for Germany’s ongoing transition towards carbon 

neutrality (Agora Energiewende, 2020). Several studies using different empirical strategies 

provide evidence that wind power deployment produces significant disamenities in Germany 

(Drechsler et al., 2011; Frondel et al., 2019; Krekel and Zerrahn, 2017; Meyerhoff et al., 2010; 

Sunak and Madlener, 2016; von Moellendorff and Welsch, 2017). Based on this insight, we 

investigate how the consideration of local disamenties affects the socially optimal spatial 

allocation of wind power generation capacity in Germany. 

Our analysis builds on a spatial optimization model using geographical information system 

(GIS) data. Using this model, we evaluate more than 100,000 potential sites, which are 

available for installing wind turbines in Germany if geographical and legal land-use constraints 

are considered. Each site is evaluated with respect to its potential electricity generation costs 

and local disamenities. Subsequently, we derive wind turbine allocations that are minimize 

electricity generation cost and local disamenities individually as well as the aggregate of both 

costs. We carry out this optimization for different deployment targets. Our results indicate that 

the consideration of local disamenities may significantly alter the socially optimal spatial 

allocation of onshore wind power. In fact, the socially optimal spatial allocation is close to the 

one that minimizes local disamenities. This is due to two reasons. First, the spatial correlation 

between generation and disamenity costs is only moderately positive in Germany. Second, 

disamenity costs exhibit a larger spatial heterogeneity in Germany than generation costs. 

Sensitivity analyses show that this result is fairly robust to variations in the calibration of the 

assumed cost function for local disamenities.  

Our paper adds to a limited literature incorporating local disamenities into the spatial 

optimization of renewable energy deployment. The majority of existing assessments has been 

carried out using multi-criteria decision analyses. These assessments abstain from monetizing 

local disamenities. Instead, they solve the optimization problem by making rigid assumptions 

regarding the weights of different criteria. Some studies attach the same weights to all criteria 

(Baban and Parry, 2001; Eichhorn et al., 2019; Eichhorn et al., 2017). If differentiated weights 

are used, these are often chosen explicitly or implicitly by the authors themselves (Baban and 

Parry, 2001; Hanssen et al., 2018; Janke, 2010; Rodman and Meentemeyer, 2006; Tegou et 

al., 2010), or by a small group of experts (Ecer, 2021; Gigović et al., 2017; Höfer et al., 2017; 

Sánchez-Lozano et al., 2016; Watson and Hudson, 2015). Consequently, these studies do not 

allow for deriving spatial allocations that explicitly minimize social costs.  
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Only few studies incorporate external costs of local disamenities into a truly economic 

assessment of wind power deployment. Hevia-Koch and Jacobsen (2019) analyze how the 

levelized costs of electricity change for onshore wind power if local disamenity costs are 

considered next to generation costs. However, they do not carry out a spatial optimization, and 

are silent about spatial trade-offs. Several studies consider disamenity costs to determine 

socially optimal uniform minimum distances between wind turbines and human settlements in 

Germany. Drechsler et al. (2017) find that minimum distances should be as small as legally 

possible (800 m in their case). This result might suggest that local disamenities are not 

particularly important for the socially optimal siting of wind turbines. In contrast, Drechsler et 

al. (2011) and Salomon et al. (2020) find moderate minimum settlement distances (between 

1,000 and 1,200 m) to be socially optimal. These outcomes indicate that local disamenities 

can matter for the socially optimal allocation of wind turbines to some extent. Yet, all three 

studies do not allow for a comprehensive understanding of spatial trade-offs and optimal spatial 

allocations because they do not carry out unconstrained optimizations. Looking only at different 

options for uniform minimum distances significantly reduces the solution space. This is a 

particular problem because uniform minimum distances are a fairly inefficient instrument to 

address local disamenities. They do not allow accounting for differences in the number of 

residents affected at a specific site. Moreover, they treat residents living within (outside) the 

minimum distance equally, irrespectively of how far away from a wind turbine they actually live. 

Implicitly, these studies thus attach a relatively high shadow price to internalizing local 

disamenities. As a consequence, they may underestimate the importance of local disamenities 

for an optimal spatial allocation of wind turbines. Their contribution to assessing spatial trade-

offs and optimal spatial allocations of wind power deployment is thus limited. 

Grimsrud et al. (2021) integrate local disamenity costs into a spatially explicit, unconstrained 

optimization of wind power deployment in Norway. They find that the integration of local 

disamenity costs substantially alters the socially optimal allocation of wind power deployment. 

They explain that this result is primarily due to the local disamenities produced by the grid 

extensions necessary to accommodate wind power deployment. Grimsrud et al. (2021) use a 

simplified disamenity cost function. This function differs between sites depending on the 

population of the municipality in which the wind turbine is located. However, they ignore the 

actual distance between a wind turbine site and a household. 

We go beyond the study by Grimsrud et al. (2021) by determining a local disamenity cost 

function which is specific for each of the more than 100,000 potential sites in Germany, 

depending on the exact size of and distance to the affected population nearby. Our approach 

thus allows for a much more precise spatial assessment of optimal wind power deployment 

and related trade-offs. Our results for Germany are in line with the basic finding of Grimsrud et 
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al. (2021) for Norway that the consideration of local disamenity costs substantially affects the 

optimal spatial allocation of wind turbines. This is despite the fact that we, in contrast to their 

study, ignore local disamenities produced by grid extensions necessary for wind power 

deployment. In our study, local disamenties dominate the optimal spatial allocation because 

heterogeneity of local disamenities across individual sites is much more pronounced than for 

generation costs. Our analysis also adds to the existing studies because we do not only look 

at a specific deployment target which is to be attained at least cost. Instead, we also investigate 

how spatial trade-offs and the optimal spatial allocation develop with increasing deployment 

levels. 

The remainder of the paper is organized as follows: Section 2 introduces our methodological 

approach and data in more detail. Section 3 presents the quantitative results of our spatial 

optimization. Section 4 discusses the results critically. Section 5 concludes. 

2. Model 

2.1 Optimization approach 

The analysis is conducted with the General Algebraic Modeling System (GAMS) to solve three 

different kinds of optimization problems: Spatial allocations of wind turbines are determined 

which minimize total 1) local disamenity costs, 2) generation costs, and 3) social costs, defined 

as the sum of disamenity and generation costs, across all wind turbines that need to be 

deployed for attaining an exogenously set generation target. The corresponding objective 

functions for the three optimizations are: 

min
�����,…,�����

� 𝐶�
���

�

���

∗ 𝑊𝑇𝑖  (1) 

 

min
�����,…,�����

� 𝐶�
���

�

���

∗ 𝑊𝑇𝑖  (2) 

 

min
�����,…,�����

�( 𝐶�
���

�

���

+ 𝐶�
��� ) ∗ 𝑊𝑇𝑖  (3) 
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each subject to 

𝐺𝑇 ≤  � AEP𝑖 ∗ WT𝑖

�

���

  (4) 

𝐶�
��� are the local disamenity costs arising if a turbine is installed at site 𝑖. 𝐶�

��� are the 

respective generation costs. 𝑊𝑇� is a binary selection variable for installing a wind turbine at 

site 𝑖: It is unity (𝑊𝑇� = 1) if a site is selected for installing a wind turbine to solve the 

optimization problem, and zero (𝑊𝑇� = 0) otherwise. 𝐺𝑇 is the exogenously set generation 

target. The sum of the annual energy production AEP𝑖 of the wind turbines installed at all sites 

selected under the respective optimization problem must be equal to (or larger than) this 

generation target. Thus, the generation target 𝐺𝑇 defines the level of total electricity generation 

and thereby allows for a comparison of the results for the different objective functions that are 

subject to the same generation target. We increase 𝐺𝑇 stepwise for consecutive model runs, 

ranging from zero (meaning that no site needs to be selected for installing a wind turbine) up 

to the maximum level of electricity generation (meaning that wind turbines are installed at all 

potential sites). 

In addition, we calculate ‘isoquants’ for each generation target. An isoquant for a given 

generation target represents optimal multi-criteria solutions that are associated with objective 

functions which lie between the mono-criterial optimizations calculated with equations (1) and 

(2). For this, an additional weighting factor 𝛽 with  𝛽 ∈ (0; 0.1; . . . ; 1) is introduced to the 

objective function shown in eq. (3) so that a stepwise shifting in the weight from one cost 

criterion to the other is set up:  

min
�����,…,�����

�[ 𝛽 ∗ 𝐶�
���

�

���

+ (1 − β ) ∗ 𝐶�
��� ] ∗ 𝑊𝑇i  (5) 

Equation (5) is also solved subject to the constraint (4). 

2.2 Data and calibration 

2.2.1 Potential sites for onshore wind energy 

For the identification of the potential sites for wind turbines across Germany, we utilize the 

results of a green field allocation performed and published by Masurowski (2016). He first of 

all identified potential areas suitable for the installation of wind turbines. For this purpose, he 

considered GIS data for a comprehensive set of land-use constraints. He included techno-

physical constraints (e.g., areas occupied by settlements, roads and other infrastructure, and 

areas with excessive slopes), as well as legal constraints (e.g., nature reserves and safety 
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distances to airports). Subsequently, a GIS-based application called “MaxPlace” distributed 

potential wind turbines to specific sites within the identified potential areas so that a maximum 

number of wind turbines could be allocated (Masurowski, 2016). A single site is thus eligible 

for installing one wind turbine. This data set has been used by a range of other studies 

published in recent years (Drechsler et al., 2017; Eichhorn et al., 2017; Masurowski et al., 

2016). 

Potential areas and sites also depend on the turbine specifications, namely the noise 

emissions of the turbine type and the total height of the turbine. Both characteristics determine 

minimum distances to settlement areas in Germany to comply with legal requirements for the 

protection of residents. For our analysis, we use the turbine type E101 manufactured by 

Enercon, which is a widely used wind turbine in the 3 MW class with a hub height of 135 m 

and a rotor diameter of 101 m (Enercon, 2015). This turbine is certified for operation under all 

wind conditions in Germany. It may be noted that in practice the selection of turbine types 

commonly depends on the wind conditions onsite as wind turbines have been especially 

developed for low and high wind speeds (Hirth and Müller, 2016; Johansson et al., 2017). Yet, 

in order to enable our modeling, we simplify by assuming only one wind turbine type. To comply 

with standards for the protection of residents from noise emissions, we exclude all sites from 

our analysis that are placed within a distance of 800 m to a settlement structure. This value is 

also assumed by Drechsler et al. (2017) as minimum settlement distance in Germany for the 

reference turbine (E101) that we consider.  

Eventually, this procedure yields 106,497 potential sites for wind turbines in Germany (see 

Figure 1). Throughout our analysis, we will primarily look at trade-offs and optimal allocations 

for Germany as a whole. In the sensitivity analyses, we will also investigate how trade-offs and 

optimal allocations vary if only individual German states are considered. Table 1 illustrates how 

potential sites are spread across Germany’s states. For each site, annual energy production 

𝐴𝐸𝑃�, generation costs 𝐶�
���, and local disamenity costs 𝐶�

��� are calculated as described in the 

following. 
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Figure 1: Potential sites for wind turbines in Germany 

State No. of potential sites Potential annual energy 
production (in TWh) 

Baden Württemberg 7,711 36.74 

Bavaria 13,928 65.66 

Berlin 4 0.03 

Brandenburg 16,973 126.74 

Bremen 6 0.06 

Hamburg 3 0.03 

Hesse 6,465 44.21 

Lower Saxony 11,912 107.87 

Mecklenburg Western Pomerania 13,104 119.05 

Northrhine Westfalia 1,479 11.67 

Rhineland Palatinate 3,905 23.25 

Saarland 121 0.67 

Saxony 4,637 36.50 

Saxony Anhalt  17,433 136.05 

Schleswig Holstein 2,503 23.91 

Thuringia 6,313 45.55 

Total 106,497 777.72 
Table 1: Potential sites for wind turbines and resulting potential annual energy 

production by German states 
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2.2.2 Annual energy production 

Based on the power curve of the Enercon E101 3.0 MW wind turbine (Enercon, 2015) and high 

resolution wind climate data provided by DWD (2014), we calculate the theoretical annual 

energy production 𝐴𝐸𝑃� for each potential site (Eichhorn et al., 2017). The actual 𝐴𝐸𝑃� under 

realistic operation conditions is likely below this the theoretical level. Inter alia, this may be due 

to generation losses at specific sites resulting from wake turbulences induced by the operation 

of other wind turbines in close proximity, as well as downtimes for maintenance and repairs. 

In our analysis, we account for these factors by reducing the 𝐴𝐸𝑃� uniformly by 15% for every 

potential site and turbine (a similar approach is used, e.g., by McKenna et al., 2014; Sliz-

Szkliniarz et al., 2019). 

The total annual energy production when wind turbines are installed at all potential 106,497 

sites across Germany amounts to 778 TWh. This is more than seven times the production 

provided by onshore wind power in Germany in 2020 (Fraunhofer ISE, 2021). Table 1 also 

differentiates the possible total annual energy production between Germany’s states. The 𝐴𝐸𝑃� 

is not only relevant for the subsequent assessment of specific generation costs and local 

disamenity costs. It is also required to carry out the different optimizations subject to specific 

generation targets 𝐺𝑇. 

2.2.3 Generation costs 

Following the approach of Kost et al. (2018), generation costs 𝐶�
��� for a wind turbine at site 𝑖 

are computed as the present value of investment costs and operation and maintenance costs 

over the typical economic lifetime of a wind turbine of 20 years: 

𝐶�
��� = 𝐼� + �

𝐴��
(1 + 𝑟)�

�

���

+ �
𝐴��

(1 + 𝑟)�

��

���

  (6) 

 
𝐼� is the investment costs in the first year of operation (assumed value: 1,567 EUR/kW). 𝐴��   is 

the annual total operation and maintenance costs per year 𝑡 for the first 5 years in operation 

(assumed value: 30 EUR/kW), 𝐴�� the annual total operation and maintenance costs per year 

𝑡 for the remaining 15 years in operation (assumed value: 50 EUR/kW). The annual discount 

rate 𝑟 is assumed to be 3%. The utilized parameter values are taken from Wallasch et al. 

(2015). The resulting present value of generation costs amounts to 7.1 million EUR per wind 

turbine. These generation costs are assumed to be the same for all sites. Dividing 𝐶�
��� by 

∑ ����
(���)�

��
���  yields the site-dependent specifc generation costs per unit of generation (i.e., the 

levelized cost of electricity). 
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2.2.4 Disamenity costs 

To determine the local disamenity costs 𝐶�
��� of installing a wind turbine at a site 𝑖, we first 

assess a disamenity cost function 𝑐�
��� for an individual household ℎ as a function of the 

distance of the household to the wind turbine site. This function is assumed to be identical for 

all sites under consideration and reflects increasing marginal disamenity costs with decreasing 

resident-turbine-distances as they are typically observed in willingness-to-pay analyses (see 

the review by Wen et al., 2018). The chosen functional form for 𝑐�
��� is a hyperbola, as, e.g., in 

Drechsler et al. (2011). The shape of the used hyperbolic cost function is determined drawing 

on different values found in the literature for Germany. 

First, the findings of a life-satisfaction study by Krekel and Zerrahn (2017) suggest that a wind 

turbine does not cause local disamenities for households if the distance between the turbine 

and the household is larger than about 4,000 m. Using a hedonic pricing approach, Gibbons 

(2015) finds a similar value for England and Wales. Therefore, we assume that the hyperbolic 

cost function runs to zero at 4,000 m. Second, for determining the slope of 𝑐�
���, the hyperbolic 

function is fitted to the results of an economic valuation study carried out in Germany by 

Meyerhoff et al. (2010). They conducted choice experiments and derived monthly values for 

the willingness to pay (WTP) of people for different marginal changes of buffer distances (from 

750 m to 1100 m, and from 750m to 1500m) between wind turbines and settlements. Third, 

we scale the hyperbolic cost function drawing on the more recent data by Krekel and Zerrahn 

(2017). They estimate for Germany that on average a household experiences disamenity costs 

of 258 Euro per year, or 21.50 Euro per month, if a wind turbine is located within a radius of 

4,000 m to the household. Therefore, we scale the assumed hyperbolic function such that it 

has a value of 21.50 Euro at 2,500 m. The distance of 2,500 m is chosen here because it is 

the mean value of the 4,000 m cut-off and 1,000 m. The value of 1,000 m is considered here 

because at many places in Germany wind turbines are not sited closer to settlements than 

1,000 m due to regional minimum distance requirements (FA Wind, 2020). 

Altogether, the aforementioned study values are cast into the following hyperbolic function: 

𝑐�
���(𝑑�) = 90 Euro �

1054 m
𝑑� − 543 m

− 0.3�  (7) 

for the monthly disamenity costs 𝑐�
��� (measured in Euro) accruing to household ℎ due to a 

wind turbine installed in distance 𝑑 (measured in m). The function is shown in Figure 2 (bold 

solid line A). 
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Figure 2: Assumed monthly disamenity costs 𝑪𝒉
𝐝𝐢𝐬 (in Euro) accruing to a household 𝒉 from a 

wind turbine depending on the turbine-household-distance 𝒅 (in m) as assumed for the base 
case (bold solid line) and the sensitivity analyses (dashed, dotted, and thinner solid lines) 

The present value of the total local disamenity costs imposed on an individual household by 

an individual wind turbine over its economic lifetime of 20 years, 𝑐���
��� , can be computed by 

aggregating and discounting the monthly disamenity costs 𝑐�
���(𝑑�) for a time period of 20 

years: 

𝑐���
��� = �

12 ∗ 𝑐�
���(𝑑�)

(1,03)�

��

���

 (8) 

As before, we assume a discount rate of 𝑟 =  0.03 (see, e.g., Drechsler et al., 2011).  

Finally, the local disamenity costs over 20 years of installing a wind turbine at site 𝑖, 𝐶�
���, is 

determined by aggregating the distance-dependent disamenity costs for 20 years 𝑐���
���  of each 

household located in the 4,000 m-radius around this site. The resulting local disamenity cost 

estimate is site-specific as it depends on the amount of and distance to households living in 

the vicinity of the wind turbine site. The estimate can be transferred into a specific disamenity 

cost per unit of electricity generated at site 𝑖 by dividing 𝐶�
��� by ∑ ����

(���)�
��
���  (as for specific 

generation costs above).  
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Apart from the described hyperbolic cost function, we also consider further disamenity cost 

functions in sensitivity analyses to account for uncertainties in monetizing local disamenity 

costs. We are aware that our calibration may overestimate local disamenity costs for various 

reasons. First, this may be due to the fact that we scale the household disamenity cost function 

𝑐�
��� based on life-satisfaction data. As Krekel and Zerrahn (2017) point out, this approach 

tends to deliver higher monetary estimates of external costs than, for example, hedonic pricing 

approaches. Moreover, we assume annual local disamenity costs to remain constant over the 

lifetime of a wind turbine. However, there is some evidence of habituation effects: Over time, 

people may feel less disturbed by existing wind turbines. For example, Krekel and Zerrahn 

(2017) find that local disamenities may decay five years after the installation of a wind turbine. 

Overall, empirical evidence on habitation effects is inconclusive, though (see the review by 

Zerrahn, 2017). Similarly, local disamenities arising over the lifetime of a wind turbine may be 

less important if a higher discount rate is assumed. More generally, the results of monetary 

estimations of disamenity costs tend to vary a lot across studies (see the reviews by Mattmann 

et al., 2016; Wen et al., 2018; Zerrahn, 2017). To account for these uncertainties, we reduce 

all values of the disamenity cost function 𝑐�
��� as provided in eq. (7) evenly by 50% and 90%, 

respectively (see the thinner solid lines B and C in Figure 2). The effects of theses variations 

for the hyperbolic cost function are twofold: first, both variations generally lead to lower cost 

levels. Second, they also result in less bended curves, reflecting lower increases in marginal 

costs with decreasing distances than in the base case of eq. (7). Thus, spatial heterogeneity 

of local disamenity costs is also reduced. 

In order to further control for the spatial heterogeneity constructed by the assumed hyperbolic 

function form, we also assume two linear household-specific disamenity cost functions. The 

first linear variation assumes that the disamenity costs have rather a high level. It has the same 

value as the hyperbolic cost function of eq. (7) at 800 m and a value of zero at 4,000 m (see 

dashed line D in Figure 2): 

𝑐�
���(𝑑�) =

17
160

Euro/m (4000 m − 𝑑�)     (9) 

The second linear variation assumes a much lower cost level than in the linear function of eq. 

(9). For this, we assume a linear function which has the same value as the hyperbolic cost 

function of eq. (7) at 2,500 m (21.50 Euro) and a value of zero at 4,000 m (see dotted line E in 

Figure 2): 

𝑐�
���(𝑑�) =

43
3000

Euro/m (4000 m − 𝑑�)   (10) 
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3. Results 

3.1 Results with basic assumptions 

3.1.1 Spatial trade-offs between minimizing total generation costs and total disamenity costs 

We will first shed light on the trade-off between minimizing total generation costs and total 

disamenity costs for Germany under our basic assumptions. Figure 3 illustrates the results of 

our analysis for our basic assumptions. The dashed blue curve depicts how the present value 

of total generation costs (x-axis) and of total disamenity costs (y-axis) evolve with increasing 

levels of wind power deployment if the spatial allocation is chosen such that total generation 

costs are minimized. The dotted yellow curve depicts the same relationship if total disamenity 

costs are minimized for increasing generation targets. Both curves thus represent optimal 

deployment trajectories with respect to either cost criterion. By definition, the values of both 

curves coincide if no wind power is deployed (point of origin in Figure 3), or if wind turbines are 

installed at all potential sites (upper right point of the graph in Figure 3 with a generation of 778 

TWh/a). There would be no spatial trade-off between minimizing total generation costs and 

total disamenity costs if the curves overlapped perfectly between both points. No matter which 

criterion was chosen for optimization, the same sites would then be selected for a given 

generation target. In turn, the larger the gap between both curves, the larger is the trade-off 

between minimizing either cost in absolute terms.  

 

Figure 3: Total generation costs, total disamenity costs, and isoquants for different 
optimization criteria and generation targets: a) full range of possible generation targets, b) 

detail for rather low generation targets 

a) b) 
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Our model results depicted in Figure 3 therefore suggest a substantial trade-off between 

minimizing total generation and total disamenity costs for wind power deployment in Germany. 

Take, for instance, a generation target of 200 TWh/a. This is slightly below the generation from 

onshore wind power which is projected to be necessary in 2040 to achieve carbon neutrality 

in Germany by 2050 (Agora Energiewende et al., 2020). If total generation costs are minimized, 

this generation target involves total generation costs of 148 billion Euro and total disamenity 

costs of 108 billion Euro. Choosing a spatial allocation that attains the same generation target 

at minimum total disamenity costs, increases total generation costs to 173 billion Euro and 

reduces total disamenity costs to 39 billion Euro.  

In absolute terms, the trade-off between minimizing total generation costs and minimizing total 

disamenity costs is small for low generation targets, i.e., near the point of origin of the graph 

in Figure 3. This is because for low generation targets, a comparatively high share of the sites 

chosen under both optimization criteria exhibit both low generation and low disamenity costs. 

Hence, the spatial allocations of wind turbines resulting from both optimizations largely overlap. 

This is illustrated in Figure 4 which depicts the spatial allocations minimizing either total 

generation costs or total disamenity costs for a generation target of 200 TWh/a. Both 

allocations are largely clustered in the North of Germany. Yet, minimizing total disamenity costs 

(Figure 4b) instead of total generation costs (Figure 4a) leads to a shift of wind turbines from 

the windier Northwest to the less densely populated Northeast of Germany. This observation 

notwithstanding, the trade-off may already be substantial in relative terms for the generation 

target of 200 TWh/a. In fact, switching from minimizing total generation costs to minimizing 

total disamenity costs increases total generation costs by 17% and more than halves total 

disamenity costs.  

Figure 4: Spatial allocation of wind turbines for a deployment level of 200 TWh/a if total 
generation costs are minimized (map a), if total disamenity costs are minimized (map b), and if 

total social costs are minimized (map c). 

a) b) c) 
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The overlap between windy sites and sites with low disamenities at first declines with 

increasing generation targets. Therefore, the trade-off between both optimization criteria 

initially increases in absolute terms (illustrated by the increasing gap between the dashed blue 

and the dotted yellow curve in Figure 3). It peaks for a generation target of around 500 TWh/a. 

Beyond this peak, the trade-off decreases again in absolute terms with further increasing 

generation targets. This is due to that fact that the degrees of freedom for choosing sites vanish 

if very high generation targets need to be reached.  

The trade-off between both cost criteria can also be illustrated by the ‘isoquants’ derived for 

specific generation targets (see the grey lines in Figure 3). An isoquant illustrates how a certain 

level of generation (the ‘output’) can be reached by different combinations of generation and 

disamenity costs (the ‘inputs’). In other words, the isoquant’s slope illustrates the marginal rate 

of substitution between total generation costs and total disamenity costs for a given generation 

target. The extreme points of the isoquant are located on the dashed blue curve (indicating 

globally minimal total generation costs for a given generation target) and on the dotted yellow 

curve (indicating globally minimal total disamenity costs for a given generation target). 

3.1.2 Minimizing total social costs 

We will now turn to analyzing the spatial allocation that minimizes total social costs, i.e., the 

sum of total generation and total disamenity costs. The solid green curve in Figure 3 indicates 

the expansion path for wind power deployment which minimizes total social costs. Technically, 

this expansion path corresponds to the tangent points between the isoquants and the isocost 

lines for different generation targets (see Figure 3b).  

Notably, the socially optimal solutions (solid green curve) are relatively close to those that 

minimize total disamenity costs (dotted yellow curve). This indicates that disamenity costs 

dominate the socially optimal allocation of wind turbines. This is also visible from the ‘isoquants’ 

(grey curves) in Figure 3. For a large part, these are very steep. In these sections, disamenity 

costs can be reduced significantly at the expense of relatively modest increases in generation 

costs. In addition, comparing Figure 4b and 4c illustrates for the generation target of 200 TWh/a 

that sites chosen to minimize total disamenity costs are largely identical to those chosen if total 

social costs are minimized. 

Figure 5 visualizes total social costs for the three optimization approaches as a function of the 

generation target. As can be seen, the allocations that minimize total social costs (solid green 

curve) and the allocations that minimize only total disamenity costs (dotted yellow curve) lead 

to very similar total social costs. Both approaches clearly outperform the approach that 

minimizes only total generation costs (dashed blue curve). For a generation target of 200 

TWh/a, total social costs are 204 billion Euro if an allocation is chosen that minimizes total 
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social costs, and 212 billion Euro if only total disamenity costs are minimized. These values 

compare to 257 billion Euro if only total generation costs are minimized. Thus, considering also 

local disamenities when choosing a spatial allocation for onshore wind power in Germany may 

help to substantially reduce total social costs of wind power deployment by as much as 26%, 

compared to an allocation decision only considering generation costs. 

 

Figure 5: Total social costs of wind power deployment as a function of the generation target, 
for allocations minimizing either total generation costs, disamenity costs, or social costs 

But why do disamenity costs dominate the socially optimal allocation of wind power deployment 

in Germany? The average specific generation and disamenity costs per kWh over all potential 

sites in Germany are quite similar (see the box plots in Figure 6). Therefore, differences in the 

average magnitude of both cost types cannot explain why the spatial allocation minimizing 

social costs is to a large extent dependent on a minimization of disamenity costs in Germany. 

What differs between both types of costs, however, is the spread of possible values across 

potential sites, i.e., their spatial heterogeneity. It is much higher for disamenity costs than for 

generation costs (see also the box plots in Figure 6). The disamenity costs are driven both by 

settlement structure and population density. The application of our basic hyperbolic disamenity 

cost function (curve A in Figure 2) leads to disamenity costs as low as zero at some sites in 

very sparsely populated areas, and quite high disamenity costs close to agglomerations where 

many households may be affected by a single wind turbine nearby. In contrast, the spread in 

generation costs is less pronounced, i.e., the degree of spatial heterogeneity in wind yield is 

relatively less distinct. The differences in spatial heterogeneity combine with the fact that there 

is a substantial spatial trade-off between minimizing generation costs and disamenity costs, as 
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has been pointed out above (also illustrated by the Pearson correlation coefficient of 0.526 in 

Figure 6). When choosing socially optimal sites for wind power deployment, it is then more 

important to account for the (higher) spatial heterogeneity in disamenity costs than to account 

for the (lower) spatial heterogeneity of generation costs. This explains why the socially optimal 

spatial allocation of wind power deployment is similar to the one that minimizes total disamenity 

costs. 

Figure 6: Box whisker plot with median and quartiles and Pearson correlation coefficient r of 

specific generation costs 𝑪𝒈𝒆𝒏 and disamenity costs 𝑪𝒅𝒊𝒔 (in Euro/kWh) across all potential 
sites 

3.2 Sensitivity analyses 

The results obtained so far may respond sensitively to the basic assumptions underlying our 

model. In the following, we will analyze how variations in the form of the disamenity cost 

function and in the geographic context affect our results. 

3.2.1 Varying the form of the disamenity cost function 

The observed dominant effect of disamenity costs on the socially optimal allocation may be 

due to the calibration of our disamenity cost function. First, when scaling the disamenity cost 

function for an individual household, 𝑐�
���, we may have overestimated the monetary value level 

of the disamenities. This may be due to methodological reasons, the ignorance of habituation 

effects, or a low discount rate (see Section 2.2.4). Scaling down the disamenity cost function 

may reduce the importance of the potential sites' proximities to households and the associated 

disamenity costs for the socially optimal allocation. Second, the large spatial heterogeneity 

observed for disamenity costs (see Figure 6) may at least partially be an artefact of assuming 

a hyperbolic function. This assumption increases the disamenity produced by a wind turbine 

more than proportionally with a decreasing distance to the household. Assuming a less bended 

function may reduce the spatial heterogeneity of the sites' disamenity costs. This may also 

𝑟 = 0.526 
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lead to a weaker impact of the potential sites' proximities to households and the associated 

disamenity costs on the socially optimal allocation of wind power deployment. 

We first scale down the disamenity cost function 𝑐�
��� for an individual household by 50% and 

90%, respectively (see the two thinner solid curves B and C in Figure 2). This approach 

reduces the level of disamenity costs, and also reduces spatial heterogeneity. The results of 

the spatial optimization using these functional forms are provided in Figure 7. Halving the level 

of disamenity costs for each potential wind turbine site hardly changes the picture, if compared 

to the results with the initially made cost level assumption (compare Figure 7a with Figure 3a). 

Although the level of total disamenity costs is clearly lower than in the base case (compare y-

axes in Figure 7a and 3a), the socially optimal spatial allocation (solid green curve in Figure 

7a) is still fairly close to the one that minimizes total disamenity costs (dotted yellow curve in 

Figure 7a). The reduction of the disamenity cost level by 90% compared to the original value 

leads to a noticeable shift of the socially optimal spatial allocation towards the one that 

minimizes generation costs (Figure 7b). Yet, the spatial allocation minimizing total social costs 

(solid green curve in Figure 7b) is still clearly different from the one that minimizes total 

generation costs (dashed blue curve in Figure 7b). So even in this case, disamenity costs are 

still highly relevant for choosing optimal sites for wind turbines if total social costs are to be 

minimized. Consequently, our results seem to be fairly robust to the variations in the scale of 

the household-specific local disamenity function 𝑐�
���, which reduce both the level and the 

spatial heterogeneity of disamenity costs.  

 

Figure 7: Optimization results for disamenity costs reduced by a) 50% and b) 90%  

To further control for spatial heterogeneity induced by the choice of the functional form, we 

also optimize the spatial allocation of wind power deployment using a linear instead of a 

hyperbolic disamenity cost function for an individual household, 𝑐�
���. We consider a linear 

a) b) 
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function with high disamenity costs (dashed line D in Figure 2) and one with low disamenity 

costs (dotted line E in Figure 2). Compared to the basic calibration of the disamenity cost 

function (solid line A in Figure 2), the high-linear cost function smoothes spatial heterogeneity 

of the potential sites' disamenity costs (possibly reducing the relevance of the potential sites' 

proximities to households and the associated disamenity costs for the social cost optimization). 

Yet, it also increases the total level of disamenity costs (possibly increasing the relevance of 

the potential sites' proximities to households and the associated disamenity costs for the social 

cost optimization). The low-linear cost function, in contrast, simultaneously decreases spatial 

heterogeneity and the total level of disamenity costs (both effects possibly reducing the 

relevance of the potential sites' proximities to households and the associated disamenity costs 

for the social cost optimization), compared to the basic functional form.  

The optimization results for both linear functional forms are provided in Figure 8. If the high-

linear disamenity cost function is assumed (Figure 8a), the socially optimal allocation (solid 

green curve) even more closely overlaps with the one that minimizes total disamenty costs 

(dotted yellow curve), compared to the results with our basic assumptions (Figure 3). That is, 

disamenity costs dominate the spatially optimal allocation even more. Hence, the effect of an 

overall higher level of disamenity costs more than offsets the lower spatial heterogeneity of 

disamenity costs assumed with this functional form. If the low-linear cost function is assumed, 

the importance of disamenity costs hardly changes (Figure 8b), compared to the outcomes 

with our basic assumption (Figure 3). The socially optimal allocation (solid green curve) 

remains close to the one minimizing total disamenity costs (dotted yellow curve). 

Overall, these sensitivity analyses suggest that our results do not hinge strongly on whether 

the household disamenity cost function 𝑐�
��� is hyperbolic or linear. This implies that the spatial 

heterogeneity of disamenity costs across potential sites primarily stems from spatial 

differences in the settlement structure and population density. It is primarily these geographic 

factors which drive the remarkable differences between sites regarding their local disamenity 

costs.  
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Figure 8: Optimization results for a) a high-linear disamenity cost function and b) low-linear 
disamenity cost function  

3.2.2 Varying the geographic context 

As the previous sensitivity analyses suggest, our results may be largely driven by the spatial 

heterogeneity in disamenity costs that results from the specific characteristics of settlement 

structure and distribution of population in our case study area, Germany. To assess the role of 

the specificity of the geographical context, we also carry out separate optimization runs for 

wind power deployment in the smaller spatial units of Germany’s states. Germany’s states 

exhibit at least some variation in the spatial patterns of settlement structure and population 

density allowing us to check how relevant such structural spatial differences may be for our 

findings. 

  

a) b) 
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Baden Württemberg Bavaria Brandenburg 

   

   
Hesse Lower Saxony Mecklenburg W. Pomerania 

   

 
 
 

 
 
 

 
 
 

𝑟 = 0.471 𝑟 = 0.274 𝑟 = 0.130 

𝑟 = 0.498 𝑟 = 0.335 𝑟 = 0.026 
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Northrhine Westfalia Rhineland Palatinate Saxony 

   

   

Saxony Anhalt Schleswig Holstein Thuringia 

   

   

𝑟 = 0.263 𝑟 = 0.573 𝑟 = −0.052 

𝑟 = 0.247 𝑟 = 0.166 𝑟 = 0.241 
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Figure 9: Optimization results, box plots, and Pearson's correlation coefficients r of specific 
generation and disamenity costs across all potential sites for Germany’s states (excluding the 

small territories of Berlin, Bremen, Hamburg, and Saarland) 

Figure 9 illustrates differences between Germany’s states. Naturally, the general extensions 

of the curves vary between the states due to differences in the number of potential sites, and 

thus the potential maximum deployment of wind power. States with relatively many potential 

sites (e.g., Bavaria, Mecklenburg Western Pomerania, or Saxony Anhalt, see also Table 1) will 

typically have higher total generation and total disamenity costs if all sites are used (upper right 

point of the curves) than states with relatively few sites only (e.g., Northrhine Westfalia, 

Rhineland Palatinate, or Schleswig Holstein). Curves are flatter – i.e., total disamenity costs 

increase only slowly with increasing generation targets – if specific disamenity costs are 

relatively low compared to specific generation costs (e.g., in Mecklenburg Western Pomerania 

or Brandenburg, see the respective box plots in Figure 9).  

For all states, there is a substantial gap between the dashed blue curve (depicting the spatial 

allocation minimizing total generation costs for increasing generation targets) and the dotted 

yellow curve (depicting the spatial allocation minimizing total disamenity costs for increasing 

generation targets). This gap illustrates that the spatial trade-off between minimizing total 

generation and total disamenity costs also matters at the observed smaller spatial scale for all 

examined German states. Yet, Figure 9 also illustrates differences in the size of the trade-off 

across states. As one would expect, states with a relatively weak positive correlation between 

disamenity costs and generation costs (e.g., Brandenburg, Mecklenburg Western Pomerania, 

and Saxony Anhalt with a Pearson’s correlation coefficient smaller than 0.1) exhibit 

comparatively large trade-offs. The reverse is true for states with a relatively strong positive 

spatial correlation between both variables (e.g., Hesse and Rhineland Palatinate with a 

Pearson’s correlation coefficient of 0.5 and larger). 

Moreover, the solid green curve more or less overlaps with the dotted yellow curve in all cases. 

This indicates that the socially optimal spatial allocation of wind power is dominated by 

disamenity costs also in all examined states. This can be explained by the fact that even in 

states with a relatively small spread in specific disamenity costs (e.g., Brandenburg and 

Mecklenburg Western Pomerania, see box plots in Figure 9), this spread is still clearly larger 

than the respective spread in specific generation costs that results from differences in local 

wind conditions. As the box plots in Figure 9 show, the differences of the spreads concern not 

only the extreme values of the respective costs (indicated by the whiskers) but also the majority 

of the respective cost values (indicated by the box sizes). 

Therefore, properly considering the spatial heterogeneity in disamenity costs is key for deriving 

a socially optimal spatial allocation of wind power deployment in all German states. 
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Consequently, the results we obtained for Germany as a whole also seem to apply to all 

Germany’s states individually, despite some differences in their geographic characteristics.  

4. Discussion 
Overall, our study provides evidence that the consideration of local disamenity costs may 

substantially alter the socially optimal spatial allocation of wind power deployment, compared 

to an optimization that only considers generation costs. Our analysis goes beyond the previous 

analyses by Drechsler et al. (2017; 2011) and Salomon et al. (2020) which also integrate 

disamenity costs into the spatial analysis of wind power deployment in Germany. These studies 

determine socially optimal uniform minimum distances between wind turbines and human 

settlements to address disamenity costs. With this approach, however, they only implicitly 

assess how disamenity costs shape socially optimal allocations: The more disamenities 

matter, the larger the socially optimal minimum distances will be. Drechsler et al. (2017) find 

that minimum distances should be as small as possible. This suggests that disamenity costs 

may not be decisive for a socially optimal allocation of wind turbines. In contrast, Drechsler et 

al. (2011) and Salomon et al. (2020) show that positive minimum distances may reduce the 

social costs of wind power deployment. Yet, these approaches likely underestimate the actual 

importance of disamenity costs for socially optimal wind power deployment because uniform 

minimum distances are a fairly costly means to internalize local disamenities. They do not allow 

to account for site-specific differences in both generation and disamenity costs. Our analysis 

uses an unconstrained optimization approach and thus provides a more precise assessment 

of how disamenity costs affect the socially optimal spatial allocation of wind turbines in 

Germany. It is therefore perfectly plausible that disamenity costs are more decisive in our 

model than in previous studies analyzing optimal minimum distances between wind turbines 

and settlements.   

The observation that disamenity costs are key for identifying a socially optimal allocation of 

wind power deployment confirms the findings made by Grimsrud et al. (2021) for Norway. 

However, they argue that their result is primarily driven by the local disamenities that are 

caused by the grid extensions necessary to accommodate more wind power generation in the 

power system. Hence, wind turbines are reallocated from the windiest sites in their model to 

reduce the need for grid extensions and the respective local disamenities. In contrast, in our 

analysis (which ignores the social costs of grid extensions), disamenity costs drive the socially 

optimal allocation because their spatial heterogeneity is significantly larger than the spatial 

spread in generation costs. This effect is not fully captured in Grimsrud et al.’s model. They 

assume that all households within the municipality are equally affected by a wind turbine 

installed in that municipality. Thus, they do not consider the specific distances between a wind 

turbine site and the affected households. Since Grimsrud et al. (2021) do not fully account for 
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the spatial heterogeneity in local disamenity costs, they might underestimate importance local 

disamenities for determining a socially optimal allocation of wind power deployment.  

A variety of assumptions underlying our analysis certainly merit a critical discussion, 

particularly those regarding the assumed disamenity cost function. 

The basic disamenity cost function. Our sensitivity analyses account for possible variations in 

the level and slope of the household-specific disamenity cost function 𝑐�
���. As pointed out, 

these variations may result from different methodologies to monetize local disamenities as well 

as different assumptions regarding habituation effects and discount rates. However, we do not 

alter our assumption that local disamenity costs are irrelevant if the distance between a wind 

turbine and a household exceeds 4,000 m. This assumption corresponds to empirical findings 

by Gibbons (2015) and Krekel and Zerrahn (2017). Yet, Sunak and Madlener (2017) find that 

disamenity costs already vanish at a slightly lower distance of 3,000 m. However, wind turbines 

may also impair households at far larger distances, for example, if turbines are installed highly 

visible on mountain ranges. Frondel et al. (2019) find, for example, that negative effects of 

wind turbines on house prices only fade to zero at a distance of 8,000 to 9,000 m. Modifying 

the actual cut-off value for the local disamenity cost function could thus either weaken or 

strengthen the relevance of local disamenities for a socially optimal wind turbine allocation. 

Spatial heterogeneity. Our study is also limited by the fact that we only partly account for the 

spatial heterogeneity of disamenity costs. We do account for spatial heterogeneity determined 

by the distance to settlements and the size of population affected by a wind turbine. However, 

we assume that household-specific disamenity costs 𝑐�
��� are only a function of the distance 

between a wind turbine and a household, i.e., homogenous across households for a given 

distance. This, of course, oversimplifies the empirical problem. For instance, spatial 

heterogeneity is also driven by locally specific geographical patterns. For example, disamenity 

costs depend on the visibility of wind turbines. Visibility is not only a function of distance but 

also of landscape patterns and relief (Gibbons, 2015; Jones and Eiser, 2010; Sunak and 

Madlener, 2016, 2017). Similarly, existing disamenities from other existing infrastructure 

(roads, industrial facilities) may determine how strongly residents are affected by wind turbines. 

Moreover, an extensive strand of literature shows that the valuation of disamenities may also 

vary across households depending on their individual attitudes, local social norms, or the 

degree of procedural and financial participation in siting decisions (e.g., Boyle et al., 2019; 

Brennan and van Rensburg, 2016; Knoefel et al., 2018; Liebe et al., 2017; Lienhoop, 2018; 

Mariel et al., 2015). Finally, the actual type of wind turbines installed – and thus the 

corresponding disamenity – may vary across sites, e.g., due to differences in windiness. 

Different heights and rotor diameters of installed wind turbines might also need to be reflected 

by site-specific disamenity costs functions (e.g., Brennan and van Rensburg, 2016). The effect 
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of these neglected components of spatial heterogeneous disamenities on the optimal spatial 

allocation is hard to assess ex ante. This is due to the fact that the different components may 

partially aggregate or cancel out. 

Cumulative effects. We further assume that disamenities produced by a wind turbine at a 

specific site are independent of how many wind turbines are installed in its vicinity. This 

assumption is not implausible as many studies find a linear relationship between the 

disamenity produced by a wind farm and the number of wind turbines (e.g., Brennan and van 

Rensburg, 2016; Mariel et al., 2015; Meyerhoff, 2013; Oehlmann and Meyerhoff, 2017). 

However, some studies also show that the disamenity costs produced by a wind farm may 

increase at a decreasing rate with the number of wind turbines, indicating negative cumulative 

effects (Betakova et al., 2015; Navrud and Braten, 2007). If negative cumulative effects are 

considered, the optimal spatial allocation will become more clustered in sparsely populated 

areas, where they produce low disamenity costs. Eventually, disamenity costs may thus be 

assumed to matter even more for the spatially optimal allocation with negative cumulative 

effects. 

Geographic context. At first sight, the basic trade-off between minimizing total generation and 

total disamenity costs may be specific to the German geographic context. Considering 

disamenity costs substantially alters, and even dominates, the socially optimal optimal spatial 

allocation of wind power deployment in our analysis because 1) windy and sparsely populated 

sites do widely not coincide, and 2) the spatial heterogeneity is higher for disamenity costs 

than for generation costs in Germany. Disamenity costs may dominate the optimal spatial 

allocation of wind power deployment to a smaller extent or not at all in other geographic 

contexts if generation and disamenity costs are more positively correlated in space, or if spatial 

heterogeneity is lower for disamenity costs than for generation costs. This notwithstanding, 

there is some evidence that the spatial trade-off between minimizing total generation and total 

disamenity costs may be similarly prominent in other geographical contexts as well, e.g., the 

United Kingdom (McKenna et al., 2021). 

Additional, spatially relevant costs. Our analysis of social costs of onshore wind power 

deployment focusses on generation and local disamenity costs produced by wind turbines. 

Obviously, considering additional components of the energy infrastructure (other generation 

technologies, grids) and corresponding types of costs may also be decisive for the socially 

optimal spatial allocation of wind turbines in a more holistic sense. System integration costs 

imply that siting decisions for wind turbines should consider network constraints or balancing 

requirements. This may significantly affect the optimal spatial allocation of wind power 

deployment, as has been show, for example, for Germany (Agora Energiewende, 2013; 

Bucksteeg, 2019; Drechsler et al., 2017). Moreover, the study by Grimsrud et al. (2021) 
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highlights that considering disamenity costs of complementary infrastructure may also alter the 

optimal spatial allocation of wind power deployment. In addition, ecological external costs, e.g., 

due to adverse effects of wind turbines on bird and bat populations, require wind turbines to 

be installed away from the habitats of affected species (Drechsler et al., 2011; Salomon et al., 

2020; Schaub, 2012). Yet, while the inclusion of these costs may lead to a different socially 

optimal spatial allocation, they do not question the general relevance of local disamenities for 

choosing optimal sites for wind turbines. 

5. Conclusion 
The deployment of onshore wind power is an important means to mitigate climate change. 

However, wind turbines also produce local disamenties to residents living next to them. Our 

analysis shows that considerable spatial trade-offs materialize between allocations that 

minimize total generation costs and allocations that minimize total disamenity costs. Moreover, 

we find that the consideration of disamenity costs substantially alters – and in fact dominates 

– the socially optimal spatial allocation of wind power deployment. These results are robust to 

variations in the level and slope of the disamenity cost function assumed for our analysis. 

Our results also have policy implications. They suggest that governance mechanisms 

allocating wind power deployment in space primarily on the basis of minimum generation costs 

– such as spatially uniform feed-in tariffs or tenders for renewable energies – most likely do 

not lead to a socially optimal outcome. This is not to say that support schemes should 

necessarily be readjusted to account for local disamenity costs. Instead, complementary 

policies may be used to account for the costs of local disamenities. Such policies may include 

compensation payments to households affected by wind turbines or (moderate) minimum 

settlement distances (Salomon et al., 2020). Yet, it is important to highlight that implementing 

a spatial allocation that considers disamenity costs does not by definition lead to a higher 

acceptance of wind turbines. In fact, studies show that acceptance is a complex function of 

exposure to wind turbines, personal attitude, social norms as well as procedural and financial 

participation in wind power siting decisions (e.g., Boyle et al., 2019; Devine-Wright, 2005; 

Knoefel et al., 2018; Liebe et al., 2017). 

Three avenues for future research may be promising. First, the empirical foundation of the 

disamenity cost function used in the spatial optimization model can be further improved. 

Worthwhile extensions include a better representation of spatial heterogeneity in household-

specific disamenities as well as of possible negative cumulative effects. Also, comparative 

studies may be helpful to better understand how different spatial contexts affect the relevance 

of disamenity costs for optimization. Second, an advanced model should also account for a 

broader set of renewable energy technologies and grid infrastructure. Other technologies, like 
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solar photovoltaics or transmission lines, may exhibit different levels and patterns of local 

disamenities. An extended model could therefore allow analyzing how an optimal spatial 

allocation and an optimal technology mix might look like in the presence of a wider range local 

disamenities. For this purpose, the spatial optimization model could be coupled with a more 

complex electricity market and/or energy system model. This would additionally allow 

investigating spatial trade-offs between minimizing disamenity costs and a broader set of 

energy system costs (Grimsrud et al., 2021 provide a starting point).  
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