
MSAP_calc.r - R-functions for transformation and analysis of MSAP data 

 

 

 

Walter Durka 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSAP_calc.r   v. 1.3, 07.02.2017 

Updated version available online at http://www.ufz.de/index.php?en=816 

walter.durka@ufz.de 



MSAP_calc  2 

Introduction 

Methylation sensitive amplification polymorphism (MSAP) is a method to identify 

methylation polymorphisms. It is similar to amplified fragment length polymorphism (AFLP), 

i.e. two restriction enzymes are used to produce DNA fragments which are PCR-amplified 

with selective primers. MSAP uses EcoRI as rare cutter and HpaII and MspI as frequent 

cutter. HpaII and MspI differ in their susceptibility to DNA methylation. Essentially, two 

analyses are performed for each sample, one with EcoRI + HpaII and one with EcoRI + MspI. 

After fragment analysis, fragments are scored as present (“1”) or absent (“0”). Thus, 

depending on presence of a fragment in both analyses, a combined score for the HpaII / MspI 

analyses is obtained: 1/1, 1/0, 0/1 and 0/0.  

 

 condition I condition II condition III condition IV 

HpaII/MspI - fragments 1/1 0/1 1/0 0/0 

methylation state of 

fragment 
unmethylated 

HMe
CG & 

Me
CG 

HMe
CCG 

full methylation 

of external or 

both cytosines or 

fragment absence 

primary coding (Paun et 

al. 2010) 
2 -1 1 0 

 

In order to analyse such data, these MSAP epigenotypes are usually transformed into a data 

matrix of dominant (1/0) markers that is amenable for traditional population genetic analysis. 

Various transformation schemes have been developed (Herrera & Bazaga 2010; Lira-

Medeiros et al. 2010; Paun et al. 2010; Salmon et al. 2008; Vergeer et al. 2012) and others 

are possible, all of which are discussed in detail in the accompanying paper (Schulz et al. 

2013). One of the newly proposed scoring schemes (“Mixed 2”) is used (Schulz et al. 2014).  

 

MSAP_calc offers functions to transform primary MSAP data into binary epigenetic loci and 

to calculate descriptive parameters of epigenetic variation using the R environment (R Core 

Team 2012).  
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Input data format 

MSAP_calc expects data formatted as tab-delimited ASCII txt file. The first line must contain 

the names for the variables and the data are given in lines 2 to N_sample+1. In each line, the 

three first columns contain population-ID, sample-ID, restriction enzyme (“H” or “M”) and 

columns 4 to N_markers+3 contain presence (“1”) or absence (“0”) of fragments.  

For each sample, two lines of data are expected, with identical population-ID and sample-ID, 

one with “H” and one with “M”-data (if this is not the case, the function will not work 

properly). Missing values are not allowed and characters other than ”0” and “1” will lead to 

false results. An example data set is given in “MSAP_data.txt”. 

 

MSAP_calc input file for two individuals from two populations and two markers 

populationID sampleID restriction_enzyme AAC_CA_135 AAC_CA_163 

1 1 H 1 0 

1 1 M 0 0 

1 2 H 1 1 

1 2 M 1 0 

2 1 H 1 1 

2 1 M 1 1 

2 2 H 0 0 

2 2 M 0 1 
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Functions 

Extract_MSAP_epigenotypes 

Extract_MSAP_epigenotypes <- function( inputfile="MSAP_data.txt", 

Epicode = "Mix1", 

outputfile="MSAP_out.txt", 

MinPoly=1, 

delete.monomorphic.loci=TRUE)  

This function reads the data from inputfile, and transforms the data into a 0/1 matrix 

according to various transformation schemes (Epicode, see Table 1). Transformed data are 

delivered and written to a file outputfile.  

From the primary data matrix, loci are deleted if they have less then MinPoly 

polymorphisms in the whole data set. From the final matrix, monomorphic loci are deleted if 

delete.monomorphic.loci=TRUE.  

All loci are renamed by adding a one-character prescript (“e”) to the original locusID to 

indicate that data is different from the original HpaII/MspI scores. For those transformations 

(“Paun”, “Mix1”, “Mix2”) that extract multiple epiloci from one original fragment, the locus 

prescript indicates the type of epilocus: “u” for unmethylated, “m” for 
HMe

CG & 
Me

CG, “h” 

for 
HMe

CCG, “M” for methylation (either “m” or “h”). 

Note that this function runs slow and may take a few minutes for large datasets. 

 

Table 1. MSAP data transformation schemes 

Epicode Types of loci condition I II III IV Locus Ref 

 H/M 1/1 0/1 1/0 0/0 prescript  

“Salmon“ epigenetic 0 1 1 0 e 1 

“Vergeer“ epigenetic 0 1 1 NA e 2 

“Herrera“ 
meth.sensitive 

(epigenetic) 
0 1 1 NA e 3 

“Lira-M1“ epigenetic 1 0 
loci 

excluded 
0 e 4 

“Lira-M2“ epigenetic 1 0 0 0 e 5 

“Paun“ unmethylated 1 0 0 0 u 6 

 
HMe

CG & 
Me

CG 1 1 0 0 m  

 
HMe

CCG 1 0 1 0 h  

“Mix1“ unmethylated 1 0 0 0 u 5 

 methylated total 0 1 1 0 M  

“Mix2“ unmethylated 1 0 0 0 u 5 

 
HMe

CG & 
Me

CG 0 1 0 0 m  

 
HMe

CCG 0 0 1 0 h  

Ref.: 
1
Salmon et al. 2008; 

2
Vergeer et al. 2012; 

3
Herrera & Bazaga 2010 ; 

4
Lira-Medeiros et al. 2010; 

5
Schulz et al. 2013; 

6
Paun et al. 2010 
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descriptive_parameters 

descriptive_parameters <- function ( inputfile="MSAP_Mix2.txt", 

outputfile="MSAP_Mix2_descr.txt", 

AppendOutput=FALSE) 

This function reads a file inputfile produced by Extract_MSAP_epigenotypes 

and calculates descriptive parameters at the population level, which are delivered and written 

to outputfile as tab-delimited ASCSII file (which is appended or overwritten, depending 

on AppendOutput). The following parameters are calculated: 

 

0. PopID population identifier 

1. N_samples  number of samples per population 

2. N_markers_total  total number of markers in data set 

3. N_markers_pop  number of markers present (with at least one “1”-score) per 

population 

4. N_markers_poly  number of markers polymorphic per population 

5. Pc_markers_poly  percentage markers polymorphic per population 

6. Mean_N_1scores  mean number of “1”-scores per population 

7. N_private_markers  number of private markers per population, i.e. markers that only 

occur in this population 

8. Shannon_diversity Mean across loci of the Shannon index of phenotypic diversity 

iiepi ppH 2log   

 

For all epigenetic transformations that distinguish between different types of epigenetic loci 

(see Tab. 1), parameters 2 to 8 are additionally analyzed for each of these groups separately. 

The parameter names are amended with a prescript indicating the type of epiloci: “u” for 

unmethylated, “m” for 
HMe

CG & 
Me

CG , “h” for 
HMe

CCG, “M” for methylation-variable loci. 
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Table 2. MSAP_calc output file for Mixed Scoring 2 with four different sets of descriptive 

parameters for all, 
HMe

CCG, 
HMe

CG & 
Me

CG and unmethylated loci. 

Descriptive parameters of populations calculated from  MSAP_Mix2.txt                
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R7 22 286 184 143 50 7.8 44 0.27 53 32 30 57 5 11 0.32 105 71 58 55 9.1 16 0.28 128 81 55 43 8 17 0.24 

R8 24 286 172 110 38 9.2 15 0.19 53 26 25 47 2.9 5 0.25 105 63 43 41 9.4 4 0.19 128 83 42 33 12 6 0.16 

R9 21 286 212 181 63 7.9 44 0.34 53 35 34 64 2.9 10 0.31 105 78 73 70 9.1 18 0.38 128 99 74 58 8.8 16 0.32 

 

All loci HMeCG & MeCGHMeCCG unmethylated
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A session with MSAP_calc.r 

################################################################################ 

rm(list=ls()) 

setwd('E:/A/MSAP')       # go to working directory 

source("MSAP_calc_1_2.r")    # load functions from MSAP_calc_1_2.r 

 

# Read primary MSAP data from MSAP_data.txt and transform according to "Mixed 

# Scoring 2" scheme of Schulz et al. 

# Transformed data are available as data.frame "d" and output to "MSAP_Mix2.txt" 

# --> be patient ! Takes 1 minute 

d<-Extract_MSAP_epigenotypes ("MSAP_data.txt","Mix2", "MSAP_Mix2.txt",1,TRUE) 

 

# Read transformed MSAP data and calculate population level descriptors 

# Results are available as data.frame "p" and output to  "MSAP_Mix2_descr.txt" 

p<-descriptive_parameters    ("MSAP_Mix2.txt","MSAP_Mix2_descr.txt") 

 

################################################################################ 

# Principle coordinates analysis 

library(labdsv)                                #load library for PCoA analysis 

d.pco<-pco(dsvdis(d[,-c(1:2)],index="sorensen"),k=10) # perform PCoA 

 

# simple PCoA plot 

plot(d.pco) 

 

# plot population IDs instead of symbols 

plot(d.pco$points[,2]~d.pco$points[,1], type="n", 

     xlab=paste("PCO1 (",format(d.pco$eig[1]/sum(d.pco$eig)*100,digits=3),"%)", 

                sep=""), 

     ylab=paste("PCO2 (",format(d.pco$eig[2]/sum(d.pco$eig)*100,digits=3),"%)", 

                sep=""), 

     main="Epigenetic variation of 3 pops") 

text(d.pco$points[,1],d.pco$points[,2],d[,1],cex=0.6) 

 

# simple barplot of overall Shannon diversity 

barplot(p$Shannon_diversity,beside=T,names.arg=p$PopID, 

          ylab="Mean Shannon diversity", xlab="Population", 

          ylim=c(0,max(p$Shannon_diversity)*1.2), main="Mixed2 scoring") 

 

# barplot of Shannon diversity of different types of epi-loci 

barplot(t(rbind(p$u_Shannon_diversity,p$m_Shannon_diversity, 

                p$h_Shannon_diversity)), 

        beside=T,names.arg=p$PopID, 

        ylab="Mean Shannon diversity", xlab="Population", 

        ylim=c(0,max(cbind(p$u_Shannon_diversity,p$m_Shannon_diversity, 

              p$h_Shannon_diversity))*1.4), 

        legend.text= c("unmeth.","Me-CG","HMe-CCG"),args.legend=list(horiz=T)) 

################################################################################ 
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…. produces these figures 
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R code is available at: http://www.ufz.de/index.php?en=816 

 

 

 

How to cite 
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Upgrades 

 

 

From MSAP_calc 1.0 to MSAP_calc 1.1: 

- Identical sample-IDs are allowed in different populations. This lead to meaningless 

results in v. 1.0 

- Bug corrected caused when only 1 subepilocus had to be extracted. 

From MSAP_calc 1.1 to MSAP_calc 1.2: 

- Another bug for identical sample-IDs in different populations. Bugs in 

MSAP_calc_session.R 

From MSAP_calc 1.2 to MSAP_calc 1.3: 

- Correcting bugs in previous versions for identical sample-IDs in different populations.  

 


