Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration

Walter Durka1,2*, Stefan G. Michalski1†, Kenneth W. Berendzen3, Oliver Bossdorf4, Anna Bucharova4, Julia-Maria Hermann5, Norbert Hözel6 and Johannes Kollmann5

1 Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research – UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; 2 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz Se, 04103 Leipzig, Germany; 3 ZMBP – Central Facilities, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany; 4 Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany; 5 Restoration Ecology, Department of Ecology & Ecosystem Management, Technical University Munich, Emil-Ramann-Str. 6, 85354 Freising, Germany; and 6 Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany

Summary

1. Ecological restoration of grasslands is increasingly based on regional seeds derived from predefined seed transfer zones. However, the degree and spatial pattern of genetic differentiation among provenances of different seed transfer zones is largely unknown.

2. We assessed the genetic differentiation among eight out of 22 German seed transfer zones for seven common grassland species (Arrhenatherum elatius, Centaurea jacea, Daucus carota, Galium album, Hypochaeris radicata, Knautia arvensis and Lychnis flos-cuculi) using AFLP markers. We analysed genetic population structure with AMOVA and Bayesian cluster analysis and tested for isolation by distance and isolation by environment.

3. In all of the investigated species, almost all pairs of provenances were genetically differentiated. Bayesian cluster analysis revealed species-specific numbers and spatial patterns of gene pools, with between two (Arrhenatherum) and eight clusters (Lychnis). Most investigated seed transfer zones represented a unique gene pool in the majority of the species.

4. We found isolation by distance in four species, isolation by environment, driven by climatic seasonality, in three species, and a lack of both in three species. Thus, the observed genetic differentiation appears to be caused by both neutral and adaptive processes.

5. Synthesis and applications. Our study shows that grassland plants are indeed strongly genetically differentiated across Germany supporting the strategy of seed transfer zones for ecological restoration. Although the predefined seed transfer zones are unlikely to match the exact genetic structure of many species, they serve their purpose by capturing a substantial amount of intraspecific genetic variation across species.

Key-words: amplified fragment length polymorphism, ecological restoration, genetic differentiation, genetic diversity, grasslands, isolation by distance, isolation by environment, Knautia arvensis, local provenancing, polyploidy, seed transfer zone

Introduction

Semi-natural, extensively used grasslands in Europe are threatened by habitat destruction and fragmentation, land-use intensification, climate change and biological invasions (MEA 2005). Because of their biodiversity, aesthetic value and the ecosystem services they provide, semi-natural grasslands are an important target of conservation and ecological restoration (Bakker et al. 2012; Kiehl et al. 2014).

The identity of the seed sources is a major issue in practical grassland restoration. The use of local or regional...
seeds is often advocated because they are considered to be better adapted to local site conditions which are expected to increase restoration success (Sackville Hamilton 2001; Millar, Byrne & Coates 2008) compared to potentially maladapted non-local plant material (Bischoff, Steinger & Müller-Schärer 2010; but see Sgrò, Lowe & Hoffmann 2011). The use of local seed sources is also an important means to conserve genetic biodiversity (Krauss et al. 2013), and it reduces the risks of genetic swamping and of outbreeding depression (Hufford & Mazer 2003).

The use of local seed provenances is usually implemented through a geographic delineation of seed transfer zones within which seeds are to be collected, propagated and used in restoration. Ideally, as the use of local seed sources is motivated by the existence of intraspecific genetic differentiation (McKay et al. 2005), the seed transfer zones should reflect the spatial genetic structure of plant species (Hufford & Mazer 2003). In forestry, there is a long history of using seed transfer zones for trees based on either trait divergence or genetic differentiation in molecular markers (FoVHgV 2003; De Kort et al. 2014). However, for herbaceous plants, the first attempts to delineate seed transfer zones have been made only recently based on trait variation (e.g. Miller et al. 2011; St Clair et al. 2013) or molecular markers (Malaval et al. 2010; Jorgensen et al. 2014).

While seed transfer zones for individual species can be based on their trait or molecular variation, generalized seed transfer zones are sometimes also defined based on climate, geology and other biophysical and biogeographic criteria (Vander Mijnsbrugge, Bischoff & Smith 2010; Bower, Clair & Erickson 2014). Such generalized seed transfer zones for grassland species are implemented, for example, in Germany (ErMiV 2011) and Switzerland (SK EW 2009), implicitly assuming that the criteria for delineation and the patterns of genetic differentiation are largely similar among species. However, while genetic differentiation and local adaptation are common in plants and have been demonstrated in a large number of individual species and case studies (Leimu & Fischer 2008), few attempts have been made to compare these characteristics for multiple species in the same geographic context (but see Malaval et al. 2010; Miller et al. 2011). Thus, it is largely unknown how similar genetic differentiation patterns are among species across seed transfer zones.

The factors that affect genetic population structure in plants are generally well understood. Genetic differentiation among populations builds up due to the joint influences of dispersal limitation, adaptation and colonization history (Orsini et al. 2013). Dispersal limitation reduces gene flow among populations and results in isolation by distance (IBD), that is an increase in genetic differentiation with increasing geographic distance. Adaptation to local or regional environmental conditions results in a pattern of isolation by environment (IBE: Sexton, Hangartner & Hoffmann 2014), where genetic differentiation increases with increasing environmental distance, for example climatic differences. However, the lack of IBD and IBE is also a common pattern and can indicate whether gene flow or genetic drift is more influential (Hutchison & Templeton 1999). Finally, the colonization history of a species can strongly affect its genetic structure, often through founder effects. Particularly in areas affected by previous glacial cycles, pronounced phylogeographic patterns are found (e.g. Fjellheim et al. 2006), which to a certain extent are generalizable across species (Taberlet et al. 1998).

Another important factor that can affect the genetic population structure of species is polyploidy. Because of breeding barriers between cytotypes (e.g. Köhler, Mittelsten Scheid & Erilova 2010), the existence of multiple cytotypes within species can drastically affect their population structure. However, both the large-scale distribution and the degree of small-scale coexistence of different cytotypes are unknown for many species and geographic ranges (Kolár et al. 2009). Therefore, such different cytotypes need to be recognized and taken into account when interpreting the patterns of genetic differentiation.

All of the above-mentioned factors affecting genetic differentiation are to some degree species-specific, and it is therefore an important question whether generalized seed transfer zones make sense across many species. To address this question, we investigated the patterns of genetic variation among seed transfer zones in Germany for seven grassland species. For each species we asked: (i) Are seed provenances genetically differentiated? (ii) If yes, is genetic differentiation related to spatial and/or climatic distance? (iii) How consistent are the patterns of genetic differentiation among seed transfer zones across the seven species?

Materials and methods

STUDY SPECIES AND SEED SOURCES

In Germany, a system of seed sourcing, propagation and marketing for common species used in grassland restoration has recently been established (Prasse, Kunzmann & Schröder 2010; ErMiV 2011). It defines 22 seed transfer zones (‘Herkunftsregionen’, Fig. 1) using the system of physiographic regions of Germany based on climate, geological substrate and soil types (Meynen & Schmithüsen 1953-1962). For each zone, a specific list of native plant species has been defined that can be collected, propagated and marketed. Seeds must be collected in their typical habitat in Natura 2000 areas protected by EU legislation or in sites of similar quality, that is natural or semi-natural habitats in which no sowing has taken place for at least 40 years. Mixing of several source sites within a seed transfer zone is advocated. Seeds can be propagated for a maximum of five generations within eight larger regions (‘Produktionsränder’) to which several seed transfer zones have been merged (Fig. 1).

For our study, we selected seven common grassland species: Arrhenatherum elatius (L.) P.B. ex J. et C. Presl, Centaurea jacea L., Daucus carota L., Galium album Mill., Hypochaeris radicata L., Knautia arvensis (L.) Coult. and Lycnthis flo-cuculi (L.) Greuter & Burdet (genera used as abbreviation hereafter). Because the 22 seed transfer zones have only recently been established and are not fully functional yet and only eight major...
regions were informally distinguished previously, we focused, if possible, on one particular seed transfer zone in each of the eight regions. For each species, we purchased seeds from one provenance within each of the eight regions from Rieger-Hoffmann GmbH (Blaufelden, Germany) and affiliated seed producers (Fig 1, Table S1 in Supporting Information). Out of the 56 provenances, 44 originated from a single source site and 12 were mixtures from 2 to 5 source sites. Seeds had been propagated for up to four generations. For the molecular analyses, we grew plants in standard soil and collected, when possible, leaf material from 12 plants per provenance and species (see Bucharova et al. 2016 for details).

PLOIDY

To identify possible multiple cytotypes within species, we used flow cytometry. The analyses were carried out on leaves from plants grown for this purpose from the same seed material that was used for the DNA analysis. For each provenance, we sampled five random plants. For methodological details, see Appendix S1.

GENOTYPING

For each species, we performed amplified fragment length polymorphism analysis (AFLP) following the protocol of Kloss, Fischer & Durka (2011). We extracted DNA with DNeasy 96 kits (QIAGEN) and performed restriction ligation in 11 μl with 6 μl of DNA (~150 ng DNA) and MseI and EcoR1 restriction enzymes at 37 °C for 2 h. After 1 : 5 dilution, we used 4 μl for preselective amplification, which again was diluted between 1 : 5 and 1 : 20, depending on species, for selective amplification. After screening 32 primer combinations, we selected three or four primer combinations per species for genotyping (Table S2). The fragments were separated on an ABI 3130 genetic analyser and binned manually in GeneMapper 5.0. After exporting peak-height data, we calculated the frequency distribution for each band and, if possible, used it to define the genotyping threshold (default value = 100 rfu) to optimize presence-absence calling. To estimate error rates, we analysed between 3 and 30 (mean: 17) duplicate samples per species. AFLP bands with large individual error rates, that is non-reproducible bands, and bands with a unimodal frequency distribution were excluded from the analysis. Eventually, we retained between 153 and 268 AFLP loci per species with a mean genotypic error rate of 2.4% (Table S2).

DATA ANALYSIS

Unless otherwise stated, all data analyses were done with R 3.1.2 (R Core Team 2015). Genetic population structure was assessed and quantified in several steps. First, we used principle coordinates analysis (PCoA) to illustrate Euclidian genetic distances between individuals. Next, we used analysis of molecular variance (AMOVA: Excoffier, Smouse & Quattro 1992) to quantify overall and pairwise genotypic differentiation (FST) among provenances, as implemented in GenALEX 6.5 (Peakall & Smouse 2012).

To further assess the relationships between individuals and provenances, we applied a Bayesian clustering approach in which we did not use population origin or spatial coordinates as prior. We used structure 2.3.4 (Falush, Stephens & Pritchard 2007) in the recessive allele mode advocated for dominant markers. For each species we ran, for assumed cluster numbers ranging from $K = 1–10$, ten independent runs of an admixture model with 150 000 MCMC (Markov chain Monte Carlo) iterations, discarding the first 50 000 as burn-in. When model likelihood showed a large variation across runs in the range of particular Ks, we repeated the analysis with 400 000 MCMC iterations (200 000 burn-in). In order to identify the most probable number of genetic clusters, we scrutinized whether maxima were reached for both the model likelihood $L (K)$ and the parameter ΔK (Evanno, Regnaut & Goudet 2005). This is particularly important since the Evanno method is unable to identify a lack of structure ($K = 1$). As Structure may detect only an upper hierarchical level of population structure, we repeated the analyses with subsets of the data. Provenances were assigned to clusters when the mean assignment probability was >0.5. Consensus results across replicate runs were obtained with CLUMPP (Jakobsson & Rosenberg 2007).

To test for IBD and IBE, we calculated a matrix of geographic and climatic distances among the original source sites. For climatic distance, we extracted data from WorldClim (http://www.worldclim.org/, Hijmans et al. 2005) in 2.5 arc-min resolution, carried out a principle component analysis on all 19 scaled bioclimatic variables and extracted the first two PCs which together explained 64% of variation. The first climatic PC (Clim1) represents a dry/hot-wet/cool cline, that is a temperature
and precipitation gradient, with significant loadings by most minimum, mean and maximum values of temperature (negative loading) and by all precipitation variables. The second climate PC (Clim2) mostly represents climate seasonality, with high loadings by temperature range as well as temperature and precipitation seasonality. Using the provenance scores of Clim1 and Clim2, we constructed two Euclidian climatic distance matrices, one for each of the two climate PCs. We then correlated the matrices of genetic differentiation (AMOVA-derived pairwise F_{ST} for each species with the matrices of geographic and climatic distances, and tested for significance with (partial) Mantel tests.

Finally, we tested for signatures of selection and regional adaptation at the level of individual AFLP loci in each species through genome scans that tested for departure from a neutral model, while accounting for population structure, using BAYESCAN v2.1 (Fischer et al. 2011). We used default parameter settings except for the F_{IS} beta prior, which was collected from the literature (Table S3).

Results

DIFFERENTIATION AMONG PROVENANCES

The only species in which we detected different ploidy levels was *Knautia*, where three provenances (4, 7, 8) were diploids, while all other provenances were tetraploids. We therefore treated 2x- and 4x-*Knautia* separately in some of the subsequent analyses.

Principal coordinate analysis (PCoA) of AFLP markers indicated strong separation of provenances in *Galium*, *Hypochaeris*, *Knautia* and *Lychnis*, whereas there was much more overlap among provenances in *Arrhenatherum*, *Centaurea* and *Daucus* (Fig. 2). In *Knautia*, there was a strong separation between the diploid and tetraploid provenances.

Overall population differentiation was significant ($P < 0.001$) in all species as revealed by AMOVA.
The percentage of molecular variance among provenances ranged from 4% in *Arrhenatherum* to 25% in *Lychnis*. In *Knautia*, differentiation amounted to 34% in an overall analysis, but decreased to 14% (in each cytotype) when cytotypes were analysed separately. Pairwise differentiation between provenances was significant (*P* < 0.05) in almost all cases except for five pairs in *Arrhenatherum* (2/3, 2/5, 3/4, 5/7 and 6/7) and two pairs in *Daucus* (5/6 and 7/8; Table 2).

Bayesian cluster analysis with structure revealed species-specific patterns (Table 2, Appendix S2). In *Arrhenatherum* and *Daucus*, we found only two clusters, and in both cases, the second cluster was represented by only one provenance. Four species (*Galium*, *Hypochaeris*, *Knautia* and *Lychnis*) showed a hierarchical genetic structure with two main clusters that contained further subclusters, resulting in a total of six to eight clusters. The two main clusters generally separated northern from southern provenances, albeit with a different line of separation for each species (Table 2, Fig. 3). In *Knautia*, the two main clusters corresponded to the two ploidy levels. In *Centaurea*, we found seven clusters. Although not all regions represented unique clusters for all species, each of the eight regions represented a unique cluster of at least some of the species (Table 2). This uniqueness ranged from two times in region 2, which thus was the least genetically distinct region, to six times in region 4. The separation of provenances into gene pools was not clear-cut in some cases (see Appendix S2), with admixture or mixture occurring mostly between adjacent regions (*Centaurea*: regions 2/5, 4/7, 7/8; *Galiun*: 4/5, 6/7; *Hypochaeris*: 1/3, 4/5; *Knautia* (4x): 3/5, *Lychnis*: 3/6), and for *Arrhenatherum* across all regions.

Population differentiation followed an isolation-by-distance pattern in *Arrhenatherum*, *Galium*, *Hypochaeris* and *Knautia* (4x), but not so in the other species (all *P* > 0.3; Fig. 4). We found no isolation by environment with Clim1, the temperature and precipitation gradient, in any of the species (Table 3). However, there were significant isolation-by-environment patterns with Clim2, that is climate seasonality, in *Arrhenatherum* and *Hypochaeris*, and a marginally significant correlation in *Galium* (Fig. 4). However, Clim2 was significantly correlated with geographic distance, and partial Mantel tests revealed that only in *Arrhenatherum*, a statistically independent effect of Clim2 remained after controlling for geographic distance (Table 3). For *Centaurea*, *Daucus* and *Lychnis*, we detected neither IBD nor IBE.

The genome scans detected loci putatively under selection in five species (Table S4). No outlier loci were identified in *Arrhenatherum* and *Hypochaeris*, one locus was found in *Centaurea* and *Daucus*, two in *Galium* and three in *Lychnis*, indicating differential selection among regions. While 17 loci were found in a combined analysis of diploid and tetraploid *Knautia*, none were detected in the single cytotypes.

Discussion

Genetic Differentiation Among Provenances

All of the seven investigated species showed a significant genetic differentiation among most provenances. Species-level differentiation ranged between F_{ST} = 0.04 and 0.25, a range expected based on reviews of dominant marker diversity (Nybom 2004; Reisch & Bernhardt-Römermann 2014), with lowest values in the wind-pollinated grass (*Arrhenatherum*), intermediate levels in insect-pollinated outcrossing herbs and highest levels in the self-compatible and insect-pollinated *Lychnis*.

The study species showed species-specific patterns of provenance clustering. However, in at least four species, there was a separation between northern and southern provenances, resembling phylogeographic patterns found in other species (Balfourier, Imbert & Charmet 2000;...
Harter, Jentsch & Durka 2015). Although such phylogeographic structure is likely related to post-glacial colonization history, it can be paralleled by local adaptation (Frei et al. 2012).

Isolation by distance was more common than isolation by environment. We found IBD in four out of seven species, at scales of 200–800 km. At such large scales, IBD likely mirrors dispersal limitation during long periods of time, including post-glacial recolonization (Treier & Müller-Schärer 2011). Interestingly, in a previous study on Hypochaeris within a fragmented landscape, IBD extended only up to 3–5 km, and beyond that populations were effectively isolated (Mix et al. 2006). This discrepancy, however, is no contradiction as such small-scale patterns may be due to more recent and local anthropogenic changes such as habitat fragmentation.

The observed predominance of IBD across the investigated species is in line with Sexton, Hangartner & Hoffmann (2014) who found that in plants IBD is more common than IBE. We found IBE driven by climate seasonality in only three species. However, because of the cross-correlation of climate and geographic distance, it is difficult to disentangle IBE from IBD (but see Wang & Bradburd 2014). Similarly, clinal variation of other environmental factors such as topography and geology, with pleistocene lowlands in the north of Germany and geologically older uplands in the south, co-varies with geographic distance. Arrhenatherum showed both IBD and IBE, which is surprising because it had the lowest overall level of genetic differentiation. This strongly suggests that we must be cautious with interpreting overall levels of genetic differentiation and that there can be local adaptation despite seeming genetic homogeneity (McKay et al. 2001).

Three of our study species – Centaurea, Daucus and Lychnis – did not show IBD at all, indicating that they were not in gene flow–drift equilibrium (Hutchison & Templeton 1999). For Daucus, pairwise F_{ST} values were small and generally rather similar, which indicates small relative drift effects, efficient gene flow and/or large population sizes that are not prone to drift (but see below). In contrast, for Centaurea and especially Lychnis, the large scatter of F_{ST} values indicates that the effects of random genetic drift are not outweighed by gene flow, resulting in unpredictable and strong genetic isolation among provenances.

Fig. 3. Clusters and subclusters as identified in the Bayesian cluster analysis mapped onto the eight regions. Note, however, that only one seed transfer zone per region was studied (see Fig. 1). For detailed individual-level results, see Appendix S2.

The grass *Arrhenatherum* showed low overall genetic differentiation, which is not unexpected for an outcrossing and wind-pollinated species (see also Michalski et al. 2010). However, another possible cause of this genetic homogeneity is that *Arrhenatherum* became abundant in Europe only quite recently. Although the species was hypothesized to be not native at all to Central Europe (Poschlod & WallisDeVries 2002), *Arrhenatherum* appears to be native, but was rather rare prior to the increase in fertilized hay meadows in the early 18th century (Hejcman et al. 2013). Since then, however, *Arrhenatherum* and other forage grass species were likely managed by on-farm propagation of local landraces, or by sowing of commercial seed stock (Kauter 2001). The most important cultivation area for *Arrhenatherum* seeds was in south-east France (e.g. Young 1792 cited in Kauter 2001), and such genotypes of ‘French Ryegrass’ were marketed across Europe and could have contributed to the rather homogeneous current gene pools (Kauter 2001). Note, however, that we only used seeds collected from conservation sites without seed addition for at least 40 years and likely much longer. Therefore, even if seeds had been sown historically, there was some time for regional genetic differentiation and adaptation.

![Fig. 4. Genetic differentiation (F_{ST}) as a function of geographic (isolation by distance [IBD]) or environmental (isolation by environment [IBE]) distance among provenances from different seed transfer zones of common grassland plants in Germany. In (a) both IBD and IBE are shown for species that show a significant IBE; in (b) only IBD patterns are shown for the other species.](image-url)

SPECIES-SPECIFIC PATTERNS WITH GENERAL IMPLICATIONS

The grass *Arrhenatherum* showed low overall genetic differentiation, which is not unexpected for an outcrossing and wind-pollinated species (see also Michalski et al. 2010). However, another possible cause of this genetic homogeneity is that *Arrhenatherum* became abundant in Europe only quite recently. Although the species was hypothesized to be not native at all to Central Europe (Poschlod & WallisDeVries 2002), *Arrhenatherum* appears to be native, but was rather rare prior to the increase in fertilized hay meadows in the early 18th century (Hejcman et al. 2013). Since then, however, *Arrhenatherum* and other forage grass species were likely managed by on-farm propagation of local landraces, or by sowing of commercial seed stock (Kauter 2001). The most important cultivation area for *Arrhenatherum* seeds was in south-east France (e.g. Young 1792 cited in Kauter 2001), and such genotypes of ‘French Ryegrass’ were marketed across Europe and could have contributed to the rather homogeneous current gene pools (Kauter 2001). Note, however, that we only used seeds collected from conservation sites without seed addition for at least 40 years and likely much longer. Therefore, even if seeds had been sown historically, there was some time for regional genetic differentiation and adaptation.
In *Daucus*, one provenance turned out to be differentiated from all others. This could either indicate strong effects of genetic drift, for example, a population bottleneck in this outlier provenance. However, as *Daucus carota* is also a cultivated species, for which gene flow into natural populations has been observed (Iorizzo et al. 2013), introgression from cultivated carrot might be possible. However, preliminary AFLP analyses showed no indications of introgression of carrots (data not shown), suggesting a demographic cause. This case, however, shows that it is important to carefully select and scrutinize source populations used for seed collection.

The observed two cytotypes of *Knautia* were known before, but their geographic distribution within Germany is still little understood. Our results indicate that diploids are more widespread than previously hypothesized (Kolár et al. 2009). However, more detailed studies are needed to assess the distribution of cytotypes at smaller scales and the presence of mixed ploidy populations. More generally, these results show that species with several cytotypes can show stronger and more complex patterns of genetic differentiation, which further stresses the importance of appropriate seed transfer zones for their management.

MOLECULAR MARKERS VS. ADAPTIVE TRAITS

Molecular markers such as AFLP are anonymous and mostly neutral and thus do not represent the functional genome. They have been criticized as ineffective for studying local adaptation, which is best analysed at the phenotypic level (McKay et al. 2005). However, first, we found a number of genetic markers that departed from a neutral model, indicating a potential role in regional adaptation. Secondly, phenotypic differentiation and local adaptation may also be affected by drift or constrained by gene flow (Lenormand 2002), resulting in neutral phenotypic divergence. On the other hand, local adaptation may lead to neutral divergence and patterns of IBE (Nosil, Funk & Ortiz-Barrientos 2009), even at small spatial scales (Shi et al. 2011). While a comparative analysis of molecular marker divergence and adaptive phenotypic divergence in our study species is out of the scope of this paper, there is a reasonable match. Across species, the overall phenotypic divergence of biomass production among provenances expressed as F_{ST} (see Bucharova et al. 2016) is significantly correlated with overall genetic differentiation (F_{ST}, $r^2 = 0.72$, $P = 0.016$). This indicates that trait divergence and genetic differentiation are at least partly driven by the same processes. Ultimately, only a combined analysis of neutral and adaptive divergence will allow for a more nuanced understanding of genetic and evolutionary processes.

PRACTICAL IMPLICATIONS FOR SEED TRANSFER ZONES

The current system of regional seed use in Germany (Prasse, Kunzmann & Schröder 2010; ErMIV 2011) combines, to some degree, both sides of the ‘Mix or Match’ debate (Lesica & Allendorf 1999) that is related to various other seed-sourcing strategies, such as ‘composite’ or ‘predictive’ seed sourcing that are currently discussed (Williams, Nevill & Krauss 2014). First, the use of seeds is restricted to within one of 22 seed transfer zones, because species are supposed to be regionally adapted. Secondly, within each seed transfer zone, the mixing of seeds from several source populations is pursued (or at least recommended), to encompass different locally adapted populations and to increase genetic variation and restoration success. So it is in fact a ‘Mix within Match’ strategy. Our results of genetically differentiated provenances, often showing isolation by distance or isolation by climate, clearly support this strategy. However, in fact only 21% of the provenances used in our study were mixed from more than one source site, indicating the necessity for the seed producers to broaden the spatial and genetic basis of propagated populations. Notwithstanding such regional differentiation, the studied species likely harbour additional, more local adaptive differentiation, for example related to different levels of soil pH or soil moisture (Bischoff et al. 2006; Raabova, Münzbergova & Fischer 2007). Thus, because the eight investigated seed

Table 3. Mantel statistics r of Mantel or partial Mantel tests examining the association between genetic differentiation among provenances (F_{ST}) and geographic distance (Geo), or one of two climatic distances (Clim1 and Clim2).

<table>
<thead>
<tr>
<th>Test</th>
<th>Arrhenatherum</th>
<th>Centaurea</th>
<th>Daucus</th>
<th>Galium</th>
<th>Hypochaeris</th>
<th>Knautia (2x + 4x)</th>
<th>Knautia (4x)</th>
<th>Lychnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{ST} – Geo</td>
<td>0.419*</td>
<td>0.911</td>
<td>0.142</td>
<td>0.841***</td>
<td>0.597**</td>
<td>0.086</td>
<td>0.904**</td>
<td>0.091</td>
</tr>
<tr>
<td>F_{ST} – Clim1</td>
<td>0.141</td>
<td>–0.083</td>
<td>–0.282</td>
<td>–0.099</td>
<td>–0.199</td>
<td>0.002</td>
<td>–0.133</td>
<td>0.058</td>
</tr>
<tr>
<td>Geo – Clim1</td>
<td>0.086</td>
<td>0.112</td>
<td>0.016</td>
<td>0.187</td>
<td>–0.191</td>
<td>–0.041</td>
<td>–0.069</td>
<td>–0.238</td>
</tr>
<tr>
<td>F_{ST} – Geo (Clim1)</td>
<td>0.413*</td>
<td>0.121</td>
<td>0.153</td>
<td>0.842***</td>
<td>0.581**</td>
<td>0.086</td>
<td>0.905**</td>
<td>0.108</td>
</tr>
<tr>
<td>F_{ST} – Clim1 (Geo)</td>
<td>0.116</td>
<td>–0.096</td>
<td>–0.287</td>
<td>–0.109</td>
<td>–0.108</td>
<td>0.006</td>
<td>–0.166</td>
<td>0.083</td>
</tr>
<tr>
<td>F_{ST} – Clim2</td>
<td>0.539*</td>
<td>0.063</td>
<td>0.007</td>
<td>0.407</td>
<td>0.415*</td>
<td>–0.016</td>
<td>0.133</td>
<td>0.102</td>
</tr>
<tr>
<td>Geo – Clim2</td>
<td>0.499</td>
<td>0.083</td>
<td>0.653**</td>
<td>0.583*</td>
<td>0.492*</td>
<td>0.498</td>
<td>0.358</td>
<td>0.602**</td>
</tr>
<tr>
<td>F_{ST} – Geo (Clim2)</td>
<td>0.195</td>
<td>0.106</td>
<td>0.193</td>
<td>0.814***</td>
<td>0.495*</td>
<td>0.109</td>
<td>0.926**</td>
<td>0.038</td>
</tr>
<tr>
<td>F_{ST} – Clim2 (Geo)</td>
<td>0.445*</td>
<td>0.054</td>
<td>0.133</td>
<td>0.192</td>
<td>0.174</td>
<td>–0.068</td>
<td>–0.478</td>
<td>0.059</td>
</tr>
</tbody>
</table>

***$P < 0.001$, **$P < 0.01$, *$P < 0.05$, $P < 0.1$. Bold values are considered significant.

F_{ST} – Clim1 (Geo) denotes a partial Mantel test in which the partial correlation between F_{ST} and Clim1 is tested after accounting for geographic distance.
transfer zones per species only represent a part of the system, the other, geographically intermediate, seed transfer zones, as well as multiple source populations within each zone, likely add more complexity to the patterns of genetic variation and will help to conserve a substantial part of intraspecific genetic variation.

Across the studied species, the patterns of genetic differentiation were species specific, as was also found in other cross-species analyses of plant population structure (Jorgensen et al. 2014). This indicates that, in theory, each species could be managed with a species-specific number and extent of seed transfer zones. However, with over 150 species that are currently commercially produced for ecological restoration in Germany (Rieger, Feucht & Wieden 2014), such species-specific management seems unfeasible. Legally, the seed transfer zones are identically defined for all grassland species (ErMiV 2011; but see Wieden 2015 for practical considerations). We found that most of the studied seed transfer zones representing a region in fact also represented a unique gene pool in many species. This indicates that although individual species could be managed with a smaller number of zones, across multiple species a larger number of zones are appropriate for maintaining genetic variation in the majority of species. Given the species-specific patterns of genetic differentiation, it is likely that for the 150 grassland species currently managed, not only eight regions as investigated here, but also the current number of 22 seed transfer zones is justified. However, although we covered the whole of Germany through the eight regions, our study included only about one-third of the seed transfer zones and less than 10% of the currently marketed species. Thus, we cannot discuss the geographic extent of individual seed transfer zones and differentiation patterns within regions or even within seed transfer zones. This would require a much more in-depth analysis. Ideally, several source populations within each seed transfer zone applying a grid-based sampling would have to be analysed across several species for a thorough assessment of the spatial scales of genetic differentiation (Malaval et al., 2010; Michalski & Durka 2012). Thus, it would also be very desirable to conduct similar analyses as presented here for all of the 150 grassland species used, to put the entire seed provenancing system on a solid empirical basis.

In conclusion, our study shows that grassland plants are indeed strongly genetically differentiated across Germany, supporting the strategy of seed transfer zones for ecological restoration. Although the predefined seed transfer zones are unlikely to match the exact genetic structure of many species, they serve their purpose by capturing a substantial amount of intraspecific genetic variation across species.

Acknowledgements

We are grateful to Ernst Rieger, Hans Krimmer, Matthias Stolle and Markus Wieden for providing seeds and accession details, to Yaleska Vees for laboratory work and to Dirk Kunzmann for GIS data.

Data accessibility

References

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Table S1. Collection sites in the eight regions and seed transfer zones.

Table S2. Primer combinations used in AFLP analysis, number of loci, mean error rate and number of duplicates analysed.

Table S3. Mean inbreeding coefficients used as Beta prior in outlier locus analysis with BayeScan.

Table S4. AFLP outlier loci identified by BayeScan.

Appendix S2. Detailed results of the STRUCTURE analysis.