

Passive acoustic monitoring (PAM) and automated species detection – ready-to-use technologies for landscape ecology?

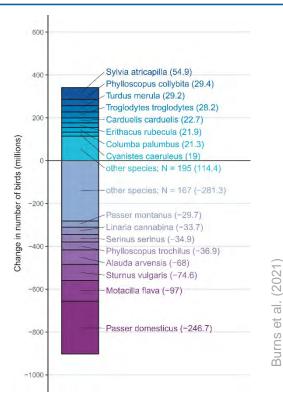
Department Computational Landscape Ecology
Helmholtz Centre for Environmental Research - UFZ

anne.paulus@ufz.de

A. Paulus, A. Böhme, M. Frenzel, R. Höhne, M. Beckmann

Introduction - Technological innovations for biodiversity monitoring

- Novel biodiversity monitoring techniques are emerging rapidly
- Ecology is becoming a "data rich" discipline
- We can ask different questions
- We can design studies differently
- Overcome expert bottle neck with upscaling
- Standard observation in eLTER
- Advantages and limitations still to be evaluated
- Can the methodological switch be done without collateral damage?



Introduction - Birds as sensitive and widely-studied ecological indicators

- Birds are among the most widely-monitored taxa
- EU: abundance decline and changes in community composition
- Ecological indicators (Farmland Bird Index)
- Agricultural land use as main driver

Introduction - Scope of our study

Passive acoustic monitoring (PAM)

 Recording soundscapes to monitor sonant animals, glaciers, anthropogenic noise,...

- Deriving acoustic indices
- Evaluation by listening experts

Automated species ID

 Neural network identifying species from audio files

- Test the combination of low-cost recorders and freely available ID software in a real-world setting
- Validate the BirdNET IDs
- Compare them to a wellestablished monitoring approach

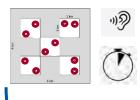
Methods - Study Sites and Data Collection

Point Counts	PAM
40 sites	20 sites
2 visits à 5 min	2 months of daily AudioMoth recording
Sunrise	Sunrise, Sunset, Night
Audible and visible species identified by ornithologist	Audible species identified by BirdNET Analyzer

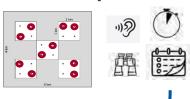
TERENO
TERRESTRIAL ENVIRONMENTAL OBSERVATORIES

LTER-D
German Long-Term Ecosystem Research Network

Methods - Data Analysis



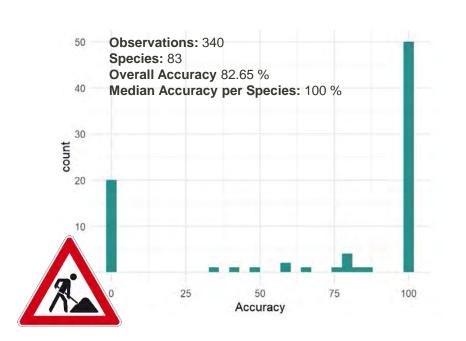
1) Validation

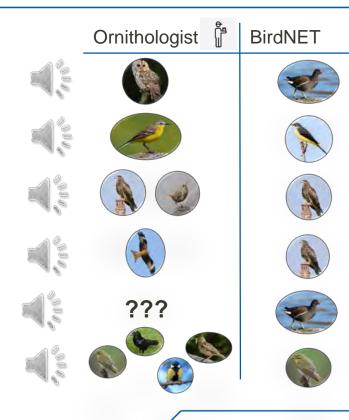

- Random sample: at least 10 BirdNet detections per species (≥ 10 detections x 105 species = 752 sound files of 3 s each)
- Expert observer listened to sound files and determined the species
- BirdNet accuracy determined as agreement with observer (%)

2) Comparison

2a) Exact comparison

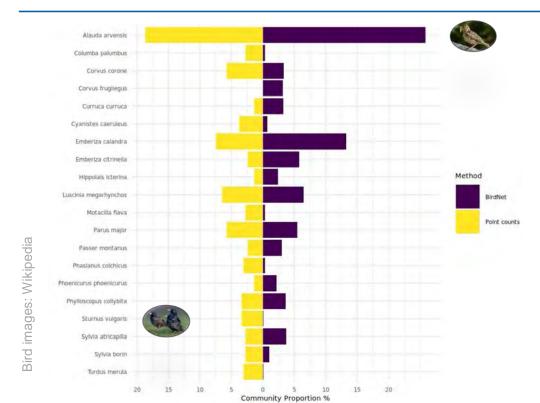
2b) Overall comparison




- Species richness
- Diversity
- Evenness

- Bray-Curtis similarity
- Jaccard index
- Simpson similarity

Results - Validation



Paulus et al. (in prep.)

Bird images: Wikipedia

Results - Exact Comparison

Species Richness: 45 **Shannon Diversity:** 3.25

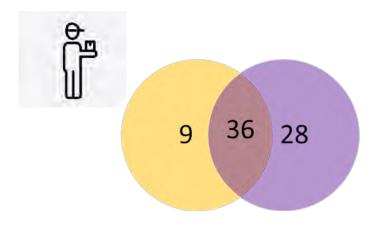
Evenness (0-1): 0.85

5 6

Species Richness: 64

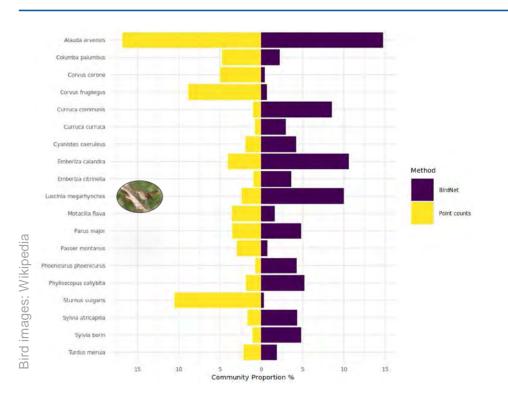
Shannon Diversity: 2.92

Evenness (0-1): 0.7



Paulus et al. (in prep.)

Results - Exact Comparison



Bray-Curtis = 1 = no shared species Jaccard = 1 = all species shared Simpson = 1 = all species shared

Bray-Curtis dissimilarity (0-1): 0.31 Jaccard index (0-1): 0.49 Simpson similarity (0-1): 0.80

Results - Overall Comparison

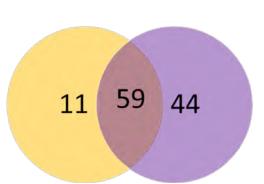
Species Richness: 70 Shannon Diversity: 3.36

Evenness (0-1): 0.79

Species Richness: 103

Shannon Diversity: 3.13

Evenness (0-1): 0.67



Paulus et al. (in prep.)

Results – Overall Comparison

Bray-Curtis = 1 = no shared species Jaccard = 1 = all species shared Simpson = 1 = all species shared

Bray-Curtis dissimilarity (0-1): 0.004

Jaccard index (0-1): 0.52

Simpson similarity (0-1): 0.84

Synthesis & Take Home Messages

- Validation proved high accuracy of BirdNET Analyzer: 80 % agreement with human expert
- PAM + automated species ID detect higher number of species than point count survey
- Few species "missed" (especially rare species less training records available?)
- Possible bias towards highly vocal species
- Postprocessing/filtering of BirdNet detections to make results comparable to point count surveys

Thank you!

Elisabeth Rahmsdorf for fieldwork support

Toni Harzendorf for help with EVE

Drawn bird icons © Elina Takola

