Introduction

Persistent and mobile organic contaminants (PMOC) are able to penetrate natural and artificial barriers, spread along the water cycle, and potentially even reach drinking water. Many PMOC are assumed to be highly polar and thus outside the well investigated polarity range in environmental chemistry\(^1\). As a consequence a large fraction of PMOC may still be unknown. Recent non-targeted\(^2\) and suspect screenings\(^3\) for very polar substances led to the discovery of several novel water contaminants. To further extend our knowledge of potentially drinking water relevant PMOC in preparation of an extended monitoring campaign, we studied the transformation of predicted PMOC precursors with a high chance of emission into the environment and included the transformation products (TPs) in a previously developed UHPLC-HILIC-sMRM method.

- Hydrolisis of 4-MTSC was investigated and hydrolisis procedure adopted from OECD 311 but test period extended to study stability of TPs
- TP92 not stable against further hydrolisis \(\rightarrow\) low priority for monitoring

Conclusion

- Prioritized TPs were isolated by fractionation with HILIC (if necessary)
- Isolated TPs were included into a UHPLC-HILIC-sMRM method\(^6\)
- Enriched\(^2\) environmental water samples were spiked with isolated TPs and analyzed
- Suitable transitions were selected

References:

5. Schulze, S. et al. in preparation

Acknowledgement:
This work has been funded by the BMBF (02WU1347B) in the frame of the collaborative international consortium WATERJPI2013 - PROMOTE of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call.

For more information about the project or a copy of this poster please visit:
www.promote-water.eu or use this QR code.