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| WILL DISCUSS:

Impacts of crop residue removal and dedicated energy
crops on:

- Soil physical processes and properties.
- Water erosion.

- Wind erosion.

- Soil carbon sequestration.




WHY NOT USE
CROP RESIDUES
AS BIOFUEL?
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Excessive crop residue
removal may:
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Positive impacts of crop residue removal

In some soils, crop residue removal may
promote soil warming, increase seed
germination, and reduce pest infestations.

pollution =
Increase wind erosion and air pollution %
Remove nutrients, increase fertilizer use
and increase N,O emissions
Reduce microbial biomass and activity
Remove C and reduce soil C storage
Reduce water storage

Blanco-Canqui, H. and R. Lal. 2009. Crop residue removal effects on soil,
productivity and environmental quality. Crit. Rev. Plant Sci. 28:139-163.

Blanco-Canqui, H. and R. Lal. 2009. Corn stover removal for expanded uses
reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 73:418-426.



Data from Crop Residue Removal Experiments in the
Midwestern States

Precipitation: Annual Climatology (1971-2000)
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Sediment Loss (Mg ha')

Sediment and Nutrient Loss In Runoff: Risks of Water
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Mean Weight Diameter (mm)

Organic C Pool (Mg ha™)

Crop residue removal and soil properties: Data from three soils in
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Infiltration Rate (cm min '1)

Infiltration Rate (cm min '1)
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Biofuels from crop residue can reduce soil carbon
and increase CO, emissions

Adam ). Liska®™®™, Haishun Yang?, Maribeth Milner?, Steve Goddard®, Humberto Blanco-Cangui,
Matthew P. Pelton', Xiac X. Fang’, Haitac Zhu® and Andrew E. Suyker®
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Crop Residue Removal for Bioenergy Reduces Soil Carbon
Pools: How Can We Offset Carbon Losses?

Humberto Blanco-Canqui

L) Springer Science+Business Media, LLC 2002

Abstract Crop residue removal for bioenergy can deplete
soil organic carbon (SOC) pools. Management strategies to
counteract the adverse effects of residue removal on SOC
pools have not been, however, widely discussed. This paper
reviews potential practices that can be used to offset the
S0C lost with residue removal. Literature indicates that
practices including no-till cover crops, manure and compost
application, and return of biofuel co-products increase SOC
pools and may thus be used to offset some SOC loss. No-till
rotations that include semi-perennial grasses or legumes also
offer a promise to promote soil-profile C sequestration and
improve soil resilience after residue removal. Mo-till cover
crops can sequester between 0,10 and 1 Mg ha™" per year of
S00C relative to no-till without cover crops, depending on
cover crop species, soil type, and precipitation input. Ani-
mal manure and compost contain about 15 % of C and thus
their addition 1o soil can enhance SOC pools and boost soil
biological activity. Similarly, application of biofuel co-
products such as biochar, which contain between 45 % and
85 % of C depending on the feedstock source and process-
ing method, can enhance long-term O sequestration, These
mitigation strategics may maintain SOC pools under partial
residue removal in no-till soils but are unlikely to replace all
the SOC lost if residue is removed at excessive rates, More
field research and modeling efforts are needed to assess the
magnitude at which the different mitigation strategies can
overcome SOC loss with crop residue removal.

Contribution no. 12-318-J from the Kansas Agricultural Experiment
Station.
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Introduction

Bioenergy production is expected to increase exponentially
in the near future [72]. Potemial feedstock sources for bio-
energy production include com (Zea mays L.) stover and
wheat { Triticum aestivam L) straw [72, 74, 84], Com stover
is considered the main feedstock for cellulosic ethanol pro-
duction, but crop residues from small grains can also be
used as bioenergy feedstock [84], In Europe, generation of
electricity from wheat straw is expected to rapidly increase
[74]. Crop residues will probably be harvested at large
scales in the near future as bioenergy industry develops [72].

While production of energy from renewable resources is
a plavsible initiative, the potential implications of crop
residue removal on soil organic carbon (SOC) pools and
dynamics deserve attention. Crop residues remaining on
agnculiural fields are not a waste but provide numerous
ecosystem services including SOC sequestration, nutrient
eycling, control of water and wind erosion, and crop pro-
duction. Particularly, crop residues are a direet source of
SOC pool. Large-scale removal of crop residuwes at high
rates can deplete S0C pools [9]. The SOC is needed for
maintaining or improving soil physical, chemical, and bio-
logical properties, reducing soil’s susceptibility o erosion,
filtering non-point source pollutants in runoff, and sustain-
ing crop production [4].

The impacts of erop residue remaval on SOC pools have
been reviewed [1, 9, 74, 93], but management strategies that
can be used to counteract the SOC lost with residue removal
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Strategies to ameliorate possible
negative effects of residue removal
effects on soil and environment
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Mark M. Claassen, K-State Research and Extension)
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Studies indicate that residue removal (250%)
may adversely affect soll properties, particularly
In the long-term.

The magnitude of effects are site-specific.

Crop residue removal may not be the best
option in the long term.

The threshold levels of removal have to be
established before residue removal.

How about alternative cellulosic feedstocks?



Energy Crops and Their Implications on 50il and Environment

Humberto Blanco-Cangui®

ABSTRACT
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BIOFUELS NEED TO BE
DONE RIGHT

Need to develop biofuels from
systems that:

e Reduce net emissions of
GHG.

e Maintain or increase solil C
pools.

e Reduce soil erosion

« Do not compete with food
crops

 Improve wildlife habitat and
diversity.



Potential Alternatives

1. Growing energy crops (i.e., perennial grasses)
In marginal lands?.

2. Warm season grasses and short-rotation woody
crops may have beneficial effects on soil and
environment.

3. Some perennial grasses can grow in nutrient-
depleted, compacted, poorly drained, and acid,
soils.

Blanco-Canqui. H. 2010. Energy crops and their implications on soil and
environment. Agronomy Journal. 102:403-419.
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Soil Carbon Accumulation under Switchgrass Barriers

Humberto Blanco-Cangui,* John E. Gilley, Dean E. Eisenhauer, Paul |. Jasa, and Alan Boldt

ABSTRACT

The benefits of grass barriers or hedges for reducing offsite transport of non-point-source water pollutants from croplands ace well
recognized, but their ancillary benefits on soil properties have recoived less attention. We studied the 15-yr cumulative effects of
narrow and perennial swirchgrass (Fesfowon eirgaties 1) barelers on sall arganic O (S00), voral N, parddculase arganic mareer
(POM ), and assoclared soil sor | prapereies as compared with the cropped ares on an Aksarben siley clay boam (fine, smecritie,
mesic Typic Argindoll) with 5.4% slope in eastern Nebraska. Five switchgrass barriers were established in 1998 at ~38.m intervals
paralbel to the crop rows in a Geld woder a conventional cillage and so-ill grain sorghum [Sorpfas biceler (L) Moeach]-soybean
[GFlpine mwax (L) Merr]-corn (Zea ssape L) rotation. Compared with the cropped area, switchgrass barriers accumulated aboue
(151 M'B- ha™! y!_lnf!‘iﬂllf nndﬂl‘rlrg ha™? _w-" of roral sall N ar che 0 o 15 om 'H\“dtPl'h.H’th‘lsl.l.il harrlers alsa inceeased onarse
POM b:.' GG, Mean Irei!j:.t diameter of water-stable aggregates increased 'bf T At 0 e 15 cm and I:-:|.' 40% at 15 to G0cm, ind ir.a.ting
that switchgrass barriers improved soil aggregation at deeper depths. Large (4.75-8 mm) macroaggregates under switchgrass
barviers contained 30% more 500 than those unsder the arepped ara. Switchgras-induced changes in $00C concutration were
pomitively asociated with apgregate stabilivy (v = 0.89*"") and pormity (r = 047" Overall, switchgrass barrien inegraied with

Inrensively managed agroecosysrems can increase the 504 poal and Improve soil strocoural properries.

Grass barriers, also called grass hedges, arc narrow (21.5 m)
and permancat strips of dense, tall, amd salfstemmed perenmal
prasses e tablished on the contour within cooplusds o control
soil erosion (Kemper eral, 1992; NROS, 2003). Grass harriers
differ from other grass strips (c.g., vegetative fltcr strips, riparian
buttcrs) becanse they arc cstablished within croplands ae short
untervals (<20 m) i parallel rows and ar commenly planted wo
mative prerennial warm gras specics such as swarchgrass, Unlike
vegeeative fleer serips, which are relarively wide serips (515 m)
normally planeed to shore-growing and cool-scason grasscs at the
baottom perimctor of croplands, switchgrass barricrs anc intcgrae-
e alony the dope profile with crops in paralle rows.

‘The bensfirs of swirchgrass barriers for reducing warer erasion
are well documensed ( Kemper eral., 1992; Gilley ee al., 204,
2011; Blanco-Canquice al., 2004; Rachman ctal, 200:4;
Dabuey ctal. 2002), Switchygrass barricrs intercepe, retard,
ansd pond runoff {Dabney et al., 1999); incrcase runofl water
infilerarion appormunicy cime {Rachman eral, 2004} promaore
sediment deposition: filter sediment and nutricnts; and reduce
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losscs of posticides and other pollutants in surface runctt (Gilley
ot al. 2000, ZO11), Switcligrass barrwes may also deccase the fickd
slope lengeh by fenning mini-termces upslope of the barncos
with rime as resule of sedimenr depasivion (Dabney eral ., 1999).
Cirass barricrs can thercfore sorve as an important coological and
biclogical practice for managing agriculewral soils.

Switclygrass barnicrs are multifunstonal systems and san
provide samc o ancillary benchies, inchsding improvemcnes
in wildlife habirar, as well as providing forage For liveseock.
A additional ancillary benchie associated with switchgrass
barricrs could be the accumulation of $O0C with timec and an
umprovement i assocmted soil structunal properties within the
harriers. Such improvemenes in soil properries could explain
rhe mechanisms by which swirchgrass barriers increase warer
infileration within barricrs and reduce runoff from croplands.
Huowever, switchgrass barcerinduced changes in 500
commentration ansd soil structurmal propectics have not been
widely documented. Previous research an grass barriers has often
focuscd on asscssing their cffoctivencss in reducing water crosion
and improving associated water qualicy paramcters [Dabney
et al. 1999 Gilley <t al., 2000 Blanco-Cangui ot al., 2004;
Gilley ex al,, Z011; Dabney er al., 2001 2). Because swirchgrass
harriers are under perennial vegerarion and are nor subjecr o
culrivarion or rillage operarions relarive to the cropped area, they
iy sagnificantly faver scoumulation of $OC and improve soil
strwctural provesses comparsd with row crops,

Switelygrass barricrs vould increase SOC wnentration

in shoping lands by trapping sedimentassociated C and by

Alsbroviatirn: POM; partivulate crganic nustees S0, wil viganic carbon.
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SOIL ORGANIC C

e Crop residue removal may
REDUCE soil organic C
concentration by 1 to 3 Mg ha
yrtin the top 10 cm in the long
term.

« Warm season grasses can
INCREASE soil organic C
concentration between 0 and 3
Mg C ha! yr-! for similar depth
while providing biofuel
feedstocks

 Woody rotations can INCREASE
soil organic C concentration
between 0 and 1.6 Mg halyrtin
the top 100 cm.
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In eastern Nebraska,
switchgrass sequestered about
2 Mg/halyr of C at the 0- to 150-
cm soil depth and ~50% of the
Increase in C was below 30 cm
(Follett et al., 2012).

Across 10 on-farm fields in
North Dakota, South Dakota, and
Nebraska, increases in soil
organic C after switchgrass
establishment varied among
locations (Schmer et al., 2011).

In Indiana, warm-season grasses
Increased soil Cin 4 out of 10
soils compared with croplands
(Omonode and Vyn, 2006).
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Nebraska,
spring 2014
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Data from
Nebraska,
spring 2014
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BIOMASS YIELD: Eastern Kansas

Crop Yield (Mg/ha)
Continuous Corn 12.16 bc
Photo Period Sorghum 34.61 a

Big Bluestem 3.79 d
Miscanthus 9.68 C
Switchgrass-Kanlow 7.90 cd

SOIL PROPERTIES

Perennial grasses reduced
soll erosion risks but had
no effects on C.




Studies done by others

. Warm
_ Duration .
Location 5k Soil Property Cropland Season Reference
(yr) Grasses
Minnesota, North -
Dakota, and 2-19 L EF2a 1.07b Liebig et al. (2005)
South Dakota
lowa 10 1.28a 1.22b Rachman et al. (2004a)
i -3

lowa SN BUECSheIMOIme Lo 1.12b  Bharati et al. (2002)
Texas 10 1.18b 253 Schwartz et al. (2003)
Missouri 12 1.41a LS Udawatta et al. (2008)

o Acosta-Martinez et al.
lowa 5 21b 39a

Water-stable B (2004)
aggregates (%)
lowa 6 70.1a 73.6a Anderson et al. (1997)
Missouri 1 Macroporosity (m3 m-3 0.005b 0.027a  Udawatta et al. (2008)
Saturated hydraulic

lowa 10 y 115b 668a Rachman et al. (2004a)

conductivity (mm h-1)



%ex= High input
ke system

Switichgrass or
other perennial
grass

Low input
system

Mixed prairie
grass






SHORT-ROTATION WOODY CROPS

Photos by R.O. Miller, Upper Penl,-sula

Six tree taxa
1. European larch (Larix deciduas Mill.),

. 2. Hybrid aspen (P. tremula x P.

tremuloides)

3. Four poplar taxa: NE-222 (P. deltoids
X P. nigra var. caudina), DN-5 (P. x
euramericana, cv. “Gelrica”), DN-34
(P.x euramericana, cv. “Eugenel”),
and NM-6 (P. nigra x P. maximowiczii).
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Soil Response to Short-
Rotation Woody Crops ~19 ]
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Cropland Aspen DN-34 DN-5 Larch NE-222 NM-6

. POPLAR TAXA POPLAR TAXA
] LSD(O 05)

Blanco-Canqui, H., R. Lal, F. Sartori, and R.O. Miller.

! 2007. Changes in soil aggregate properties and

organic carbon following conversion of agricultural
CrOplaﬂd Aspen DN-34  DN-5 Larch NE-222 NM-6 lands to fiber farming. Soil Sci. 172:553-564.

POPLAR TAXA POPLAR TAXA




Can marginal lands
meet biofuel demands? CHALLENGES

What is the definition
of marginal lands?

Large variability in
biomass yield among
soil types and climate

Z0Nnes. Precipitation 4%%'3' ’ D\ C\l
e 465mm® ‘j _—— ha
\ [ ]a81-444 .;;ay o (
EStab“Shment [ |us-572 (\L 9
[ ]s573-782 g ﬁ_|>ﬂﬁ
Y [ ] 783-880 ram (
FGI"[I“ZEF use I 8o0-1080 | o \ o | \ G

Slow or small increase
INn soil C In some soills.



TAKE HOME MESSAGE

Dedicated energy crops such as perennial grasses
maintain or improve soil properties and
environmental quality compared with crop residue
removal.

Growing warm season grasses and short rotation
woody crops can be potential alternatives to crop
residue removal.

Regional-and site-specific management strategies are
required to further develop sustainable biofuel
production systems.

The existing challenges must be addressed.






