
QuantIm

C/C++ Library
for Scientific image processing

Copyright c©H. J. Vogel, 1999-2008 Version 4.01β 20.10.2008

Legal Considerations
QuantIm is free software; which means that you are free to use
it and to redistribute free and verbatim copies of the source code.
QuantIm is not in the public domain, however, it is protected by
copyright.
• You are free to modify the source of QuantIm for your own,
private use.
• You may distribute modified, non-commercial versions which re-
tain the name “QuantIm”, provided that (i) you indicate these
modifications clearly in the file “quantim4.h” under “modifications”
as well as at the beginning of every single file that you modified or
added, (ii) you distribute it under the same legal terms as Quan-
tIm is distributed, and (iii) you include the copyright notice and
the first paragraph of the file “quantim4.h” without any change.
• You may incorporate parts or all of QuantIm into your own
non-commercial software and distribute it, provided that (i) you
incorporate the QuantIm copyright notice at a prominent place in
your software and documentation, and (ii) you distribute it under
the same legal terms as QuantIm is distributed.
• You are not allowed to include QuantIm nor any part of it in
any product that is sold commercially, i.e. whose cost exceeds that
of media, shipping and handling, without prior written consent of
Hans-Jörg Vogel.

QuantIm is licensed free of charge. Therefore all
the files which in their entirety constitute Quan-
tIm, are provided “as is”, without warranty of any
kind, whether expressed or implied. You are respon-
sible for ascertaining the fitness of QuantIm for any
specific use, and consequently you assume all the re-
sponsibilities and cost that may arise from using it.

Hans-Jörg Vogel
UFZ - Helmhotz Center for Environmental Research
Department Soil Physics
Theodor-Lieser-Str. 4
D-06120 Halle
GERMANY

e-mail: hans-joerg.vogel@ufz.de

1 Introduction and concepts 1

2 Installation and Use in a LINUX/UNIX Environment 2
2.1 Creating the QuantIm Library 2
2.2 Using QuantIm . 2
2.3 New features of the actual QuantIm version 2

3 Reference Manual 3
3.1 Basic image structure . 3
3.2 Image types . 3
3.3 Basic image handling (all types) 4
3.4 Image conversions . 8
3.5 Image filtering . 10
3.6 Grey scale images (8 and 16 bit)8,16 (2D and 3D)2D,3D 15
3.7 Binary images . 20
3.8 RGB color images . 27
3.9 Graphics . 29
3.10 Special routines . 31
3.11 Useful stuff . 34
3.12 Functions of previous versions (still active) 37

1 Introduction and concepts
QuantIm was created for analyzing 2-dimensional and 3-dimensional images.
When using commercial or free software, it is often hard to understand what is
going on exactly when pushing buttons which is unacceptable from a scientific
point of view and is why the QuantIm project was started. An other motivation
for the ongoing development of QuantIm is that it can be used on any computer
system, the only requirement is a C/C++ compiler. There is no fancy GUI so you
will need some basic knowledge of C/C++ - which actually is not too difficult.
To communicate with the rest of the world, the input and output format of
QuantIm is TIFF which is the most common bitmap format. This is established
in QuantIm by using the standard library libtiff and the development files
libtiff-dev which are available for any computer platform using a standard
package manager or an external file server. It should be installed somewhere in
the search path of your computer. 3D-images are handled by QuantIm as grey
level or binary data using an own format but can be converted to vgi or dx (data
explorer). The only restriction for the size of images is the RAM of your system.
The few routines to produce eps-graphics are based on the excellent library
PSgraf3 of Kurt Roth which which is automatically installed alongside Quan-
tIm.

The main features of QuantIm are:

• Algorithms for 2D/3D grey scale image processing for image filtering and
segmentation.

• Algorithms for the quantification of 2D/3D binary images, including meth-
ods of mathematical morphology, topological analysis and image intersec-
tion.

• Tools to generate 2D/3D random fields with predefined properties.

Contributors: Thanks to Uli Weller and Steffen Schlüter for adding some
highly useful functions.

1

2 Installation and Use in a LINUX/UNIX

Environment
To use the functions of QuantIm in your own programs, you may directly in-
clude the corresponding source files. The preferable way, however, is to link the
QuantIm library to your programs.

2.1 Creating the QuantIm Library
• Copy the directory quantim4 distribution.tgz from the distribution medium

to a convenient place in your file system.
• Extract the archive using
> tar -xvzf quantim4 distribution.tgz

• Make sure that the libtiff and libtiff-dev packages are installed. These
are standard package that you can retrieve from your prefered package manager
or directly in a terminal (Debian or Ubuntu) by:
> sudo apt-get install libtiff4 libtiff4-dev

• Create the library by
> cd quantim distribution

> sh install.sh

This will create the file libQuantim4.a in your source directory and move
the library libQuantim4.a and the header file quantim4.h to the standard
search path directories /usr/local/lib and /usr/local/include. This step
requires root privileges.

• Good luck!

2.2 Using QuantIm
To use QuantIm include the header quantim4.h into your program. Then, if
the library libQuantim4.a has been copied to a place in the search path of the
compiler, compile the program with the option -lQuantim4 -ltiff -lPSgraf3

-lm, for example
g++ -o program myProgram.c -lQuantim4 -ltiff -lPSgraf3 -lm

If the compiler cannot find the library and/or the header file, you must include
the paths explicitly. Assuming that you have copied the library to /a/b/c/d, and
the header file to /x/y the program can be compiled as

g++ myProgram.c -L/a/b/c/d -I/x/y -lQuantim4 -ltiff -lPSgraf3 -lm

2.3 New features of the actual QuantIm version
QuantIm4 has been modified substantially so that programs written for previous
versions may not compile with this version of QuantIm. This has been sacrificed
for a more intuitive structure of image variables, the possibility to handle 16-bit
images and the usage of the same functions for different image types (2D, 3D,
grey scale, color-rgb). Especially GetImage and SaveImage is now LoadImage

and StoreImage, while most of the old function are still included.

2

3 Reference Manual

3.1 Basic image structure
All images are identified by a structure of variables defined in quantim4.h:

typedef struct
{
char name[127];
char itype[5];
unsigned char *pix;
unsigned int ndim;
unsigned int nchannel;
unsigned int *dim;
double *res;
unsigned int numbits;
unsigned int numbytes;
} image cc;

name Image name without any extension.
itype Image type gry=grey scale, gry16=16bit/pixel grey scale,

rgb=RGB-image, ddd= 3D grey scale, ddd16= 3D grey scale
16bit/pixel, btd= 3D binary, doub= double precision 2D (only
for internal use), doub3= double precision 3D (only for inter-
nal use).

*pix Pointer to the image data stored sequentially row by row.
ndim Number of dimensions.
nchannel Number of channels per pixel.
*dim Array of ndim elements containing the size of the image in

each dimension.
*res Array of ndim elements containing the size of a pixel in each

dimension.
numbits Number of bits per pixel.
numbytes Number of bytes per pixel.

Note that QuantIm can only handle data in little Endian byte order (Intel
byte order), i.e. where the most significant bit arrives last. Moreover, QuantIm
assumes an index order in which x changes fastest. 16-bit data has to be unsigned,
i.e. the gray values are only allowed to be in the range [0;65535].

3.2 Image types
QuantIm handles the following types of images:

• 2D grey-scale *.tif 8 bits/pixels or 16 bits/pixels

• 2D binary *.tif also 8 bit/pixels but the pixel values are typically only
0 (black) or 255 (white).

3

• 2D rgb-images *.tif 3 channels á 8 bit/pixels, byte1=red, byte2=green,
byte3=blue.

• 3D grey scale *.ddd 8 bit/voxel [0,255] (internal format of QuantIm).

• 3D grey scale *.ddd16 16 bit/voxel [0,255] (internal format of Quan-
tIm).

• 3D grey scale *.raw 16 bit/voxel unsigned int with *.vgi or *.mhd
description file.

• 3D grey scale *.vol 32 bit/voxel float with *.vgi description file. This
type is internally converted to 16-bit integer.

• 3D binary *.btd 1 bit/voxel [0,1] (internal format of QuantIm)

3.3 Basic image handling (all types)

image cc *LoadImage(char *buf)
Loads images of any type.

buf Name of the image to be loaded (with or without extension).
return value: pointer to the loaded image.

image cc *LoadMetaImage(char *buf)
Loads 3D images in the standard file format of ITK, where *.mhd contains the

meta data and *.raw contains the binary block of raw data.

buf Name of the image to be loaded (with or without .mhd ex-
tension).

return value: pointer to the loaded image.

image cc *LoadRaw(char *buf, int cols, int rows, int layers, int offset,
int nbyte)

Loads 3D raw images, where the meta information is given by arguments. Little
Endian byte order and unsigned data required.

buf Name of the image to be loaded (with extension).
cols Number of columns (voxels in x dimension).
rows Number of rows (voxels in y dimension).
layers Number of layers (voxels in z dimension).
offset Byte offset to the first voxel, e.g. 64 for *.ddd images.
nbytes Number of bytes per voxel (1 for 8-bit, 2 for 16-bit).
return value: pointer to the loaded image.

void StoreImage(image cc *im, char *buf)
Saves the images of any type.

im Pointer to the image.

4

buf Name of the image to be saved.

void StoreMetaImage(image cc *im, char *buf)
void StoreMetaImage(image cc *im)
Saves a 3D image of any type in ITK MetaImage format (*.mhd and *.raw).

Images with btd format (1-bit) are converted into ddd images (8-bit).

im Pointer to the image.
buf Name of the image to be saved. When function is used with

*buf, im-¿name is used as file name instead.

void StoreRaw(image cc *im, char *buf)
void StoreRaw(image cc *im)
Saves a 3D image of any type in raw format (*.mhd and *.raw). Images with

btd format (1-bit) are converted into ddd images (8-bit). Important meta
information is stored in a textfile with the same name.

im Pointer to the image.
buf Name of the image to be saved. When function is used with

*buf, im-¿name is used as file name instead.

void SavePaletteImage(image cc *im, char *buf)
Saves an 8-bit image (only 2D grey scale) to a Palette Color TIFF-file.

im Pointer to the image.
buf Name of the tiff-image to be saved.

void SavePrinciplePlanes(image cc *im, char * name)
Saves the central 2D planes (xy, xz, yz) of a 3D image using the given name.

im Pointer to the 3D image.
name Name of resulting 2D images: ’plane [xy,xz,yz] name’

image cc *InitImage(int x, int y, int val, char *type)
image cc *InitImage(int x, int y, int z, int val, char *type)
image cc *InitImage(image cc *im, int val)
image cc *InitImage(image cc *im)
Initiates a new image and allocates the required memory.

x,y,(z) Number of pixels in x, y, and z direction.
val Initial value of each pixels.
im image whose structure (dimensions aso) is copied.
type Type of image (optional): gry=grey scale, gry16=16 bits grey

scale, rgb=RGB-image, ddd= 3D grey scale, , xxd= multi-
dimensional grey scale, btd= 3D binary. The default type is
8-bit grey scale for 2D and 3D.

return value: Pointer to the new image.

image cc *InitRandImage(int col, int row, double rx, double ry, double
cx, double cy, int mode, double *cdf)

5

image cc *InitRandImage(int col, int row, int dep, double rx, double
ry, double rz, double cx, double cy, double cz, int mode, double
*cdf)

Returns a random 2D or 3D image optionally with defined grey distribution
function (equal distribution, Gauss or predefined by a given cdf), defined
correlation length and defined correlation model (Gauss, Lorentz, Exponential,
von Karman).

col, row, dep dimensions of the generated image
rx, ry, rz size of pixel in x, y, z
cx, cy, cz correlation lengths (number of pixel) in x, y, z
mode 0: equal distribution without any correlation (cx,cy,cz and cdf

have no meaning here)
1: equal grey distribution with gaussian correlation
2: predefined grey distribution (cdf) and gaussian correlation
3: Gaussian correlation (cdf have no meaning here)
4: Lorentz-Correlation model (cdf have no meaning here)
5: Exponential-Correlation model (cdf have no meaning here)
6: von Karman-Correlation model (cdf have no meaning here)

*cdf cdf of grey levels
return value: pointer to the generated image

image cc *CopyImage(image cc *im)
Makes a copy of an image.

*im Pointer to the original image.
return value: Pointer to the copy.

void DeleteImage(image cc *im)
Delete an image and deallocate memory.

im Pointer to the image.

int rPixel(unsigned long i, image cc *im)
int rPixel(int x, int y, image cc *im)
int rPixel(int x, int y, image cc *im, unsigned char *value, unsigned

char *value, unsigned char *value)
int rPixel(int x, int y, image cc *im, unsigned char *value)
int rPixel(int x, int y, int z, image cc *im)
Reads the value of a pixel.

i offset of the pixel within the stored 1-D array of image data
(for 2d and 3d images).

x, y, z Coordinates of the pixel.
im Pointer to the image.

6

*value Address to which the pixel values are written. For RGB im-
ages a pointer to a 3-element array containing the RGB values
is also possible.

return value: Value of the pixel, or 1/3(R+G+B) for rgb-images.

void wPixel(unsigned long i, image cc *im, int value)
void wPixel(int x, int y, image cc *im, int value)
void wPixel(int x, int y, image cc *im, int value, int value, int value)
void wPixel(int x, int y, image cc *im, int *value)
void wPixel(int x, int y, int z, image cc *im, int value)
Write a value to a pixel.

i offset of the pixel within the stored 1-D array of image data
(for 2d and 3d images).

x, y, z Coordinates of the pixel.
im Pointer to the image.
value value(s) to be written, number of given values corresponds to

the number of channels per pixel
*value For RGB images a pointer to a 3 element array containing the

RGB values.

void InvertImage(image cc *im)
Inverts an image.

im Pointer to the image.

void FlipImage(image cc *im, int mode)
Flips an image (only 2D).

im Pointer to the image.
mode 0=horizontal, 1= vertical flip.

void RotateImage(image cc *im, int mode)
Rotates an image (only 2D) by 90◦ or 180◦.

im Pointer to the image.
mode -1= 90◦ counter clock wise, 1= 90◦ clock wise, 0=180◦.

void TurnImage(image cc *im, double grad)
Rotates an image (only 2D) by a given angle.

im Pointer to the image.
grad angle in degrees.

image cc *ImageSegment(image cc *image, int ulx, int uly, int dx, int
dy)

image cc *ImageSegment(image cc *image, int ulx, int uly, int ulz, int
dx, int dy, int dz)

Cut a rectangular segment out of an image.

image Pointer to the image.

7

ulx,uly,(ulz) x,y,z coordinates of the upper left corner of the segment.
dx,dy,(dz) size of the segment in x,y,z direction (number of pixels).
return value: Pointer to the segment.

image cc *GetPlane(image cc *im, int plane, int mode)
Extracts a 2D plane from a 3D image

im Pointer to the 3D image.
plane x,y or z coordinate of the plane.
mode direction of the plane 0=xy, 1=yz, 2=xz.
return value: Pointer to the 2D image.

void SetFrame(image cc *im, int value)
Writes the edges of an image to a certain value.

*im Pointer to the image.
value Value to be written at the edges

image cc *ChangeResolution(image cc *image, int newx, int newy)
Rescales an image to the new dimensions newx and newy. (Only for 2D images,

rgb and grey).

*image Pointer to the original image
newx, newy new dimensions in x and y direction

return value: pointer to a rescaled image

image cc *Diff(image cc *wnd1,image cc *wnd2)
Returns an image of the absolute differences between two images.

*wnd1,*wnd2 Pointer to the original images of any type.
return value: Pointer to the resulting image.

3.4 Image conversions

image cc *bit16to8(image cc *image)
Converts a 16-bit grey scale image to a 8-bit image

*image Pointer to the original image.
return value: Pointer to the resulting image.

image cc *Btd2Ddd(image cc *image)
Converts a btd-image (1 bit/voxel) to a ddd-image (1 byte/voxel).

*image Pointer to the binary image
return value: Pointer to the corresponding ddd-image

image cc *RGBtoGray(image cc *image)
Converts a RGB-3byte-color image to a 8bit-grey scale image.

image Pointer to the RGB-image
return value: pointer to the converted grey scale image.

8

void DDD2Dx(image cc *image, char *buf);
Generates a description file for DX named toto.general. The file name (toto)

which is provided through buf must be the same name as was used to save the
ddd image using StoreImage(). Note that the image resolution should be set
correctly.

*image Pointer to the ddd-image
*buf name of the ddd images (without extension)
return value: no return value, a dx description file *.general is produced.

image cc *Ddd2Btd(image cc *im);
Converts a ddd-image to a btd-image. All non-zero voxels are set to 1 the others

stay at 0.

*image Pointer to the ddd-image
return value: pointer to the resulting btd-image.

9

3.5 Image filtering

void Mean(image cc *im, int size)
Mean filter using a squared window

im Pointer to the image.
size sidelength of squared filter: 2·size+1 pixel.

image cc *MeanVar(image cc *im, int size)
Same as Mean but the variance within the squared window is returned as a new

image

im Pointer to the image.
size sidelength of squared filter: 2·size+1 pixel.
return value: Pointer to the image of variances

void Gauss(image cc *im, int size, double sig)
Gauss filter using a squared window with side length 2·size+1 pixel.

im Pointer to the image.
size Sidelength of squared filter: 2·size+1 pixel.
sig Variance of Gauss filter.

void DiffGauss(image cc *im, int size, double sig, double sig2)
Difference of Gaussian (DoG) filter using a squared window with side length

2·size+1 pixel. At the same time the image is smoothed by a Gauss filter
with low sig while edges are enhanced by adding the difference to a strongly
smoothed image sig2 at each location (The difference is highest at edges).

im Pointer to the image.
size Sidelength of squared filter: 2·size+1 pixel.
sig Small variance of Gauss filter.
sig2 Big variance of Gauss filter.

void UnsharpMask(image cc *im, int size, double sig)
Edge enhancement filter using a squared window with side length 2·size+1 pixel.

Same rationale as a Difference of Gaussian filter (see above) but here the local
grey value difference due to convolution with Gaussian kernel of sig is directly
added to the image. This is faster but may enhance noise at the same time.

im Pointer to the image.
size Sidelength of squared filter: 2·size+1 pixel.
sig Variance of Gauss filter.

void MinMax(image cc *im, double size, int mode)
Minimum-Maximum filter for grey scale images with a circular/spherical kernel

where size is in length units of the image according to im− >res[0]. This
filter corresponds to grey scale erosion/dilation

im Pointer to the image.
size Radius of the circular/sherical filter

10

mode 0 is minimum filter, else maximum.

void Luul(image cc *im, double size)
Combined Minimum-Maximum filter: lower-upper-upper-lower for grey scale im-

ages with a circular/spherical kernel where size is in length units of the image
according to im− >res[0]. This filter corresponds to grey-scale opening, the
result is similar to the median but Luul is more efficient.

im Pointer to the image.
size Radius of the circular/sherical filter in pixel

void Ullu(image cc *im, double size)
Combined Minimum-Maximum filter: upper-lower-lower-upper for grey scale im-

ages with a circular/spherical kernel where size is in length units of the image
according to im− >res[0]. This filter corresponds to grey-scale closing, the re-
sult is similar to the median but Ullu is more efficient (The result of the Median
filter is between Luul and Ullu).

im Pointer to the image.
size Radius of the circular/sherical filter in pixel

void pseudoMad(image cc *orig, double size)
void pseudoMad(image cc *orig, image cc **pMed, double size)
pseudo Median absolute deviation The median absolute deviation is the median

of the absolute differences towards the median. For reason of speed the median
is replaced by the luul filter.

orig pointer to original image
pMed pointer to pointer to image containing the luul filtered image.

If NULL, this will be created (and the pointer set to the new
image).

size radius of spherical window to use.

image cc *MajorityFilter(image cc *im, int nr, int wnd, double maj,
double rel)

image cc *MajorityFilter(image cc *im, image cc *roi, int nr, int wnd,
double maj, double rel)

The current label is replaced by the most representative label among all neighbors
in a cubic kernel, if (i) the most representative label exceeds a certain majority
and (ii) the number exceeds that of the current label at the central voxel by a
certain percentage

im Pointer to the image.
roi Pointer to the binary image that represents the region of in-

terest (optional).
nr Number of labels in the image
wnd sidelength of cubic window: 2·wnd+1 pixel.
maj majority [0-1]
rel relative majority with respect to current label

11

return value: Pointer to the filtered image

void FastMedian(image cc *im, int size)
Median filter using a cubic window with fast updating of entries when the window

is moved by one position. The running median method is adapted from Ashelly
and distributed under the MIT License (MIT) (https://gist.github.com/
ashelly/5665911)

im Pointer to the image.
size sidelength of cubic filter: 2·size+1 pixel.

void TotVarFilter(image cc *im, double timestep, double lambda, int
maxstep, int interval, int function)3D

This filter minimizes the total variation while keeping a maximal fidelity to the
original image (only 3D). The strength of fidelity is given by lambda. Method
is according to Rudin, Fatemi, Osher (1992): Physica A,60,259-268.

im Pointer to the image.
timestep timestep for each filtering. If negative, will be handled dy-

namically. -0.1 normally works well.
lambda fidelity parameter. 5 is a good start.
maxstep maximal number of filtering steps.
interval number of steps after which the image in memory will be

updated.
function kernel functions for filtering. 0: classical Total variation, 1:

Entropy, 2: Enhanced entropy

void AnisoDiffFilter(image cc *im, int maxstep, double threshold, dou-
ble sigma)3D

Anisotropic (or non-linear) diffusion filter according to Catté et. al (1992) SIAM
Journal on Numerical Analysis, 29(1), 82-193.

maxstep maximal number of filtering steps.
threshold diffusion stop criterion - gradients larger than this are con-

served
sigma standard deviation of the Gaussian kernel for smoothing prior

to edge evaluation

void Bin(image c *im, int thresh)
void Bin(image cc *im, int thresh, int lower, int upper)
Binarization of an image according to a threshold value. Grey values ≤ thresh

are set to lower the others to upper. If no explicite values for lowerand upper

are given, this is equivalent to lower=0 and upper= maximum grey level. If
the value of upper is larger than the maximum possible grey value, the original
grey values above thresh are maintained.

im Pointer to the image.
thresh Threshold value
lower Value written to pixel ≤ thresh

12

upper Value written to pixel > thresh

.

void BinBand(image cc *im, int lthresh, int uthresh)
Binarization of an image according to 2 threshold values. Values ≥ lthresh and
≤ uthresh are set to 0, the others to the maximum grey level.

im Pointer to the image.
lthresh Lower threshold value
uthresh Upper threshold value

void BinBilevel(image cc *im, int lower, int upper)
Segmentation of an image according to 2 thresholds which are regarded to be

the limits of a fuzzy region within which the ’true’ threshold is expected. The
threshold is chosen locally according to the values of the neighboring pixel
values. All pixel of a grey level ≤ lower are written to 0 as well as all pixel
≤ upper having at least one direct neighbor ≤ lower. The other pixel keep
their original values. This rule is applied iteratively until no pixel has to be
changed anymore.

im Pointer to the image.
lower Lower threshold.
upper Upper threshold.

image cc *DddBin(image cc *im, int thresh)
Binarization of a ddd-image according to a single threshold values. The result is

converted to a btd-image voxels are set to 0 for values ≤ thresh and t 1 else.

im Pointer to the ddd-image.
thresh threshold value
return value: Pointer to the binary btd-image

image cc *Sobel(image cc *im)
image cc *Sobel(image cc *im, image cc *maskim)
Sobel filter (first derivative of local grey levels). The image border is set to 0. If an

additional binary image maskim of same dimensions is provided, the evaluation
is only done for regions where maskim is non-zero.

*im Pointer to the image.
return value: Pointer to the filtered image

image cc *Laplace(image cc *im, int mode)
image cc *Laplace(image cc *im, int mode,image cc *maskim)
Laplace filter (second derivative of local grey levels). The image border is set to 0.

For mode=1 only positive Laplacians are stored, for mode=2 only negative and
for mode=3 both. If an additional binary image maskim of same dimensions is
provided, the evaluation is only done for regions where maskim is non-zero.

*im Pointer to the image.

13

mode indicates which sign is to be considered (bit1=positive, bit2=negative).
return value: Pointer to the filtered image

14

3.6 Grey scale images (8 and 16 bit)8,16 (2D and 3D)2D,3D

double *Histo(image cc *im)8 2D,3D

double *Histo(image cc *im, image cc *mask)
Returns the histogram (pdf) of an image (16-bit images are converted to 8-bit

prior to the evaluation). Optionally, a histogram is only calculated for locations
where the mask image is white.

*image Pointer to the grey image.
*mask Pointer to the mask image
return value: Pointer to the histogram (256 element array).

double *GreyCdf(image cc *im)8 2D,3D

double *GreyCdf(image cc *im, image cc *mask)
Returns a 256 element array containing the cdf (cumulative histogram) of grey

levels. Optionally, a cdf is only calculated for locations where the mask image
is white.

*im Pointer to the grey image
*mask Pointer to the mask image
return value: cdf array (256 elements)

void StretchHisto(image cc *image, int Low, int High)
void StretchHisto(image cc *image, double th)
void StretchHisto(image cc *image)
Scales the histogram of a grey scale images (2D and 3D, 8-bit and 16-bit). Grey

values between Low and High are mapped on a grey scale between 0 and the
maximum value 28 or 216 for 8-bit or 16-bit images respectively. Values lower
than Low are set to 0, values higher than High are set to the maximum value.
If the parameters Low and High are replaced by th the limits are set to lower
and upper th percent of existing values. If no additional argument is given,
the histogram ist rescaled according to the minimum and maximum value of
the original image (corresponding to th=0). To match the grey values to a
smooth histogram a suitable random value is added to rescaled values.

*image Pointer to the image
Low lower threshold
High upper threshold

void HistoMatch(double *cdf, image cc *image)8

Transforms the histogram of an image according to a predefined cdf, typically
optained from a source image using the function GreyCdf().

*cdf predefined cdf of grey levels
*image Pointer to the 2D grey scale image
return value: no return value

15

int UnimThresh(double *histo, int mode);
Threshold detection in a unimodal histogram typically obtained by Histo via tri-

angulation according to Rosin(2001):Pattern Recognition,34,2083-2096. The
threshold is located at the characteristic knee of the histogram, which has the
largest perpendicular distance to an imaginary line connecting the mode with
the brightest grey value (mode=1) or the darkest grey value (mode=0).

*histo 8bit grey value frequency distribution
mode 0=right tail, 1=left tail
return value: threshold value

int KMeansThresh(double *histo, int nr);
Iterative Threshold Selection Method according to Ridler & Calvard (1978):

IEEE Transactions on Systems, Man, and Cybernetics,8(8),630-632. Start-
ing from an arbitrary set of thresholds, the arithmetic mean of adjacent class
means is iteratively set as a new threshold until all thresholds converge to a
stable values.

*cdf 8bit grey value frequency distribution
return value: threshold value

int *ShapeThresh(double *cdf, int nr, double tau)
int *ShapeThresh(double *cdf, int nr, double tau, double perc)
Multilevel thresholding by local minima search according to Tsai (1995): Pattern

Recognition ,16(6),653-666. Local maxima of histogram curvature are detected
in addition, if there are less peaks than the specified number of classes.

*cdf 8bit cumulative grey value frequency distribution
nr number of classes
perc percentile that sets a fuzzy region around the optimal grey

threshold
return value: pointer to vector of nr-1 thresholds or 3(n-1) thresholds if

perc is set

int *FuzzyCMeansThresh(double *cdf, int nr, double tau)
int *FuzzyCMeansThresh(double *cdf, int nr, double tau, double perc)
Multilevel thresholding by fuzzy c-means clustering according to Jawahar et al.

(1997): Pattern Recognition ,30(10),1605-1613.

*cdf 8bit cumulative grey value frequency distribution
nr number of classes
tau fuzzyness index [1,∞). Method equals k-means clustering if

τ = 1.
perc percentile that sets a fuzzy region around the optimal grey

threshold
return value: pointer to vector of nr-1 thresholds or 3(n-1) thresholds if

perc is set

16

int *MaxVarThresh(double *cdf, int nr);
int *MaxVarThresh(double *cdf, int nr, double perc)
Multilevel thresholding by maximizing between-class variance (Otsu method) ac-

cording to Liao et al. (2001):Journal of Information science and Engineering,17,713-
727.

*cdf 8bit cumulative grey value frequency distribution
nr number of classes
perc percentile that sets a fuzzy region around the optimal grey

threshold
return value: pointer to vector of nr-1 thresholds or 3(n-1) thresholds if

perc is set

int *MaxEntroThresh(double *cdf, int nr)
int *MaxEntroThresh(double *cdf, int nr, double perc)
Multilevel thresholding by maximizing the sum of histogram entropy of each

class according to Kapur et al. (1985):Computer Vision, Graphics and Image
Processing,29,273-285.

*cdf 8bit cumulative grey value frequency distribution
nr number of classes
perc percentile that sets a fuzzy region around the optimal grey

threshold
return value: pointer to vector of nr-1 thresholds or 3(n-1) thresholds if

perc is set

int *MinErrThresh(double *cdf, int nr)
int *MinErrThresh(double *cdf, int nr, double perc)
Multilevel thresholding by minimizing the overlap error of fitted Gaussians ac-

cording to Kittler & Illingworth (1986): Pattern Recognition ,19(1),41-47.

*cdf 8bit cumulative grey value frequency distribution
nr number of classes
perc percentile that sets a fuzzy region around the optimal grey

threshold
return value: pointer to vector of nr-1 thresholds or 3(n-1) thresholds if

perc is set

int *GradMaskThresh(image cc *image, double alpha)
int *GradMaskThresh(image cc *image, double alpha, image cc *mask)
Thresholding with gradient masks according to Schlüter et al. (2010): Computers

& Geosciences,36,1246-51. Only locations along edges are taken into consid-
eration for detection of an upper threshold. The lower threshold is calculated
subsequently from simple histogram statistics.

*image Pointer to the grey value image

17

alpha defines the width of a fuzzy threshold range. Usually set be-
tween one and two.

*mask Pointer to the mask image (optional)
return value: pointer to vector of two thresholds (lower and upper thresh-

old)

image cc *WaterShed(image cc *image, int conmode)8 2D,3D

Calculates the watershed lines for a grey image (only 8-bit images). The different
basins separated by the watershed lines are marked by different grey values
(2D) or by a single grey value (3D) , the watershed line is 0. This may be
applied to a distance map of a binary image to separate overlapping grains.

*image Pointer to the grey image
conmode Connectivity mode: either 4 or 8 (2D) and 6 or 26 (3D).
return value: Pointer to the image containing the watershed and the basins

double *Acov(image cc *im, double *corl, int lag, int mode)8 2D,3D

Returns the autocovariance function of a 2D grey image

*im Pointer to the image
*corl address to write the correlation length as result
lag maximum distance to evaluate (# pixels)
mode indicates which directions are to be considered (bit1=x, bit2=y,

bit3=z)
return value: pointer to an array of dimension lag where the autocovariance

function is stored

double *SemiVar(image cc *im, int lag, int mode)8 2D,3D

Returns the semi-variance function of a grey scale image.

*im Pointer to the image
*corl address to write the correlation length as result
lag maximum distance to evaluate (# pixels)
mode indicates which directions are to be considered (bit1=x, bit2=y,

bit3=z)
return value: pointer to an array of dimension lag where the semi-variance

function is stored

long *GreyConFunc(image cc *image, int mode)8 2D,3D

Returns the connectivity function of a grey scale image. The image is binarized for
all possible thresholds [0,255] and the corresponding Euler number is dermined
which is returned as a vector of 255 elements. The Euler numbers are not
normalized by the size of the image.

*image Pointer to the grey image
mode Connectivity mode for values < grey threshold: 4 or 8 (2D),

6 or 26 (3D)

18

return value: array of 255 Euler numbers

image cc *CircMask(image cc *im, int xmid, int ymid, int rad)8,16 2D,3D

Cuts out a circular (2D) or cylindrical (3D) image with center xmid, ymid and
radius rad. All pixels outside the circle are set to the maximum grey level.

*image Pointer to the grey image
xmid, ymid center coordinates of the circle
rad radius of the circle
return value: Pointer to the resulting image

19

3.7 Binary images

image cc *ErodeCirc(image cc *image, double rad, int mode)
image cc *ErodeDist(image cc *image, double rad, int mode)
Performs an erosion or dilation of a binary image using a circular/spherical struc-

turing element. The radius of this element is given in number of pixels in x-
direction (this might be relevant for unisotropic pixel geometry). The function
ErodeDist is based on the entire distance map of the image and is more effi-
cient for large structuring elements, while ErodeCirc evaluates only individual
structuring elements which is more efficient for small rad

*image Pointer to the image.
step radius of the structuring element (in x-pixel)
mode 0 = erosion, 1 = dilation of the black phase
return value: Pointer to the resulting image

image cc *OpenCirc(image cc *im, double rad, int mode)
image cc *OpenDist(image cc *im, double rad, int mode)
Performs a morphological opening or closing of a binary image using a circu-

lar/spherical structuring element. The radius of this element is given in number
of pixels in x-direction (this might be relevant for unisotropic pixel geometry).
The function OpenDist is based on the entire distance map of the image and
is more efficient for large structuring elements, while OpenCirc evaluates only
individual structuring elements which is more efficient for small rad

*image Pointer to the image.
step radius of the structuring element
mode 0 = opening of the black phase, 1 = closing of the black phase
return value: Pointer to the resulting image

image cc *GetDistMap(image cc *image)
Generates the distance map of a binary image, which is a grey scale image where

the grey value of each pixel indicates the orthogonal distance to the black-white
interface. The resulting image is in 16bit grey scale. The Euclidian distance
is calculated in number of pixels in x-direction and is rounded up to the next
integer x. Hence the distance map has values of 32768+/-x while the value
32768 representing the black-white interface does not exist. This function can
also be used for anisotropic pixel geometry (different resolution in x,y,z). In
this case the calculated distances are always in units of number of pixel in
x-direction.

*image Pointer to the binary image.
return value: Pointer to the resulting image (16bit grey)

image cc *GetOpenMap(image cc *distmap, int smax)
Generates the ’opening map’ for the black phase of a binary image. This is a grey

scale image where the grey value of each pixel indicates the maximum size of

20

a circle (2D) or a sphere (3D) which is a complete subset of the black phase.
The size of the circle/sphere is in number of pixels in x-direction. As input
the distance map is used which is generated by GetDistMap(). The generated
opening map can be used to calculate the ’opening size distribution’ using the
function MinkowskiOpenFunctions

*distmap Pointer to the distance map (16bit grey).
smax number of opening steps
return value: Pointer to the resulting opening map

void MinkowskiFunctions(image cc *image, char *outfile)
Calculates all Minkowski-Functions, i.e. Minkowski functionals in dependency of

the grey threshold. All possible thresholds are evaluated. This function is
typically used for the evaluation of distance maps generated by GetDistMap.
The results are written to the file outfile.

*image Pointer to the input image.
outfile file name where the results are written to

void MinkowskiOpenFunctions(image cc *image, char *outfile)
void MinkowskiOpenFunctions(image cc *image, image cc *maskim,

char *outfile)
Calculates all Minkowski-Functions for an opening map generated by GetOpenMap,

i.e. Minkowski functionals in dependency of the opening size. If an additional
binary image maskim of same dimensions is provided, the evaluation is only
done for regions where maskim is non-zero. The results are written to the file
outfile.

*image Pointer to the input image.
gstep scaling of the grey levels of the opening maps
pixstep evaluated sizes in unit of pixel
outfile file name where the results are written to

long int *m2Quant(image cc *image)
long int *m2Quant(image cc *image, image cc *maskim)
Calculates the frequency distribution of 16 different pixel configurations in a 2x2

square. The returned pointer is input for the routines to calculate Minkowski
functionals: volume density, surface density, length density, and Euler number.
If another binary ’mask’ is provided (maskim) having the same dimensions as
image, the evaluation is done only for regions where maskim is not zero.

*im Pointer to the binary 2D-image.
*maskim Pointer to the image containing a mask.
return value: Pointer to the 16-element array containing frequencies of pixel

configurations

long int *m3Quant(image cc *image)

21

long int *m3Quant(image cc *image, image cc *maskim)
Calculates the frequency distribution of 256 different voxel configurations in

a 2x2x2 cube. The returned pointer is input for the routines to calculate
Minkowski functionals: volume density, surface density, curvature density and
Euler number. If another binary ’mask’ is provided (maskim) having the same
dimensions as image, the evaluation is done only for regions where maskim is
not zero. NOTE THAT 3-dimenional Minkowski functionals treat the white
phase (btd values = 1) as foreground which is in contrast to the 2-dimensional
version (just to keep you flexible).

*im Pointer to the binary 3D-image in btd-format.
return value: Pointer to the 256-element array containing frequencies of

voxel configurations

double m2areadens(image cc *image, long int *h);
Returns the area density of a 2D binary structure (black phase) which corresponds

to the volume density of a 3D structure as estimated from the 2-dimensional
section.

*h Pointer to the array of pixel configurations obtained by m2Quant()
return value: Volume density [L2/L2]

double m2lengthdens(image cc *image, long int *h);
Returns the length density BA [L/L2] of the boundary per area of a 2D bi-

nary structure. The units of L are given in the units of image resolution
(image− >res[]).

*h Pointer to the array of voxel configurations obtained by m2Quant()
*image Pointer to a 2D binary image (0=black, 255=white)
return value: Length density [L/L2]

double m2surfdens(image cc *image, long int *h);
Returns the surface density SV [L2/L3] of the black-white interface of a 3D binary

structure. The evaluated image is considered to be a 2-dimensional section
through that 3D structure. The units of L are given in the units of image
resolution (image− >res[]).

*h Pointer to the array of pixel configurations obtained by m2Quant()
*image Pointer to a 2D binary image (0=black, 255=white)
return value: Surface density [L2/L3]

double m2euler4(image cc *image, long int *h);
Returns the Euler number χA [1/L2] of a 2D binary structure considering 4-

connectivity of the black phase. The units of L are given in the units of image
resolution (image− >res[]).

*h Pointer to the array of pixel configurations obtained by m2Quant()
*image Pointer to a 2D binary image (0=black, 255=white)

22

return value: Euler number [1/L2]

double m2euler8(image cc *image, long int *h);
Returns the Euler number χA [1/L2] of a 2D binary structure considering 8-

connectivity of the black phase. The units of L are given in the units of image
resolution (image− >res[]).

*h Pointer to the array of pixel configurations obtained by m2Quant()
*image Pointer to a 2D binary image (0=black, 255=white)
return value: Euler number [1/L2]

double m3voldens(long int *h);
Returns the volume density of a 3D binary structure (white phase).

*h Pointer to the array of voxel configurations obtained by m3Quant()
*image Pointer to a 3D binary image in btd-format (0=black, 1=white)
return value: Volume density [L3/L3]

double m3surfdens(image cc *image, long int *h);
Returns the surface density SV [L2/L3] of the black-white interface of a 3D bi-

nary structure. The units of L are given in the units of image resolution
(image− >res[i]).

*h Pointer to the array of pixel configurations obtained by m3Quant()
*image Pointer to a 3D binary image in btd-format (0=black, 1=white)
return value: Surface density [L2/L3]

double m3meancurv(image cc *image, long int *h);
Returns the mean curvature density CV [L/L3] of the black-white interface of a

3D binary structure. The units of L are given in the units of image resolution
(image− >res[]).

*h Pointer to the array of pixel configurations obtained by m3Quant()
*image Pointer to a 3D binary image in btd-format (0=black, 1=white)
return value: Curvature density [L/L3]

double m3euler6(image cc *image, long int *h);
Returns the Euler number χV [1/L3] of a 3D binary structure considering 6-

connectivity of the white phase. The units of L are given in the units of image
resolution (image− >res[]).

*h Pointer to the array of voxel configurations obtained by m3Quant()
*image Pointer to a 3D binary image in btd-format (0=black, 1=white)
return value: Euler number [1/L3]

double m3euler26(image cc *image, long int *h);
Returns the Euler number χV [1/L3] of a 3D binary structure considering 26-

connectivity of the white phase. The units of L are given in the units of image
resolution (image− >res[]).

23

*h Pointer to the array of voxel configurations obtained by m3Quant()
*image Pointer to a 3D binary image in btd-format (0=black, 1=white)
return value: Euler number [1/L3]

image cc *LogAnd(image cc *wnd1, image cc *wnd2)
Logical AND relation (intersection) of two binary images.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the second image description structure.
return value: Pointer to the resulting image

image cc *LogOr(image cc *wnd1, image cc *wnd2)
Logical OR relation (unification) of two binary images.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the second image description structure.
return value: Pointer to the resulting image

image cc *Intersection(image cc *wnd1, image cc *wnd2, int gv1, int
gv2)

Intersection of two binary images. The black phase of the two images is set to
gv1 and gv2 respectively, their intersection is set to black.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the second image description structure.
gv1 grey level to be set for phase in wnd1.
gv2 grey level to be set for phase in wnd2.
return value: Pointer to the resulting image

void bThinning(image cc *im);
Thinning of 0-phase of a binary image, considering 4-connectivity.

*im Pointer to the image.

void bThinning8(image cc *im);
Thinning of 0-phase of a binary image, considering 8-connectivity .

*im Pointer to the image.

void bConCom(image cc *im,int xv,int yv,int val)
Marking of th connected component which includes the seed point xv yv in a

binary image.

*im Pointer to the image.
xv yv Seed point of the component.
val Grey value to mark the conected component.

24

int bConCom2(image cc *image,int xv,int yv);
Determines the size of the connected object identified by greylevel 0 around point

xv/yv considering 8-connectivity. Return value is the number of pixels at-
tributed to the object. The original image is not changed.

*image Pointer to the binary image
xv, yv coordinates for seed point of the connected component
return value: number of pixels attributed to the object considering 8-connectivity

int isPercol(image cc *image, int backbone, int mode);
returns 1 if the 0-values of a binary structure percolate in the directions indicated

by mode (bit1=x, bit2=y, bit3=z). if backbone is not 0 the backbone (or in case
of no percolation the continuous part with respect to plane x/y/z=0 indicated
by mode) is stored as additional image named ’backbone’ if backbone is 0 the
calculation is interupted as soon as percolation was detected (which is faster).

*image Pointer to the binary image
backbone if not 0 an image of the continuous part is stored (file name

’backbone’)
mode direction in which percolation is tested
return value: 1 if the structure percolates, 0 else

image cc *Cluster(image cc *image, int *nr)
Fast object detection with the Hoshen-Kopelman algorithm, as implemented by

Tobin Fricke and distributed under GNU public license (http://www.ocf.
berkeley.edu/~fricke/projects/hoshenkopelman/hoshenkopelman.html).
Each isolated white objects gets a different grey value label and the label image
is returned.

*image Pointer to the binary image
*nr Pointer to integer where number of objects is written
return value: image with object labels

void RemoveObjects(image cc *image, int size, int mode)
void RemoveObjects(image cc *image, image cc *mask, int size, int

mode)
Removes objects or fills holes smaller than a certain size limit. Objects are

internally labeled with the Hoshen-Kopelman algorithm.

*image Pointer to the binary image
*mask Pointer to the binary mask for region of interest (optional)
size size limit in number of voxels
mode fill holes [0] or remove objects[1]

double ConLength(image cc *image, int phase, int every, char *outfile);
Calculates the pair connectivity as a function of distance considering 8-connectivity.

Return value is the mean connectivity length. The step size has be higher than
one, especially in 3D, because the evaluation of voxel pairs is rather slow.

25

*image Pointer to the binary image
phase black [0] or white[1]
every step size
*outfile file name where the pair connectivity data is written to
return value: mean connectivity length

26

3.8 RGB color images

unsigned char Red(image cc *image, int x, int y);
Reads the red value at given coordinates.

*image Pointer to the image
x, y coordinates
return value: red value

unsigned char Green(image cc *image, int x, int y);
Reads the green value at given coordinates.

*image Pointer to the image
x, y coordinates
return value: green value

unsigned char Blue(image cc *image, int x, int y);
Reads the blue value at given coordinates.

*image Pointer to the image
x, y coordinates
return value: blue value

void WRed(image cc *in, int x, int y, unsigned char val);
Writes the red value val at given coordinates.

*image Pointer to the image
x, y coordinates
val written red value
return value: no return

void WGreen(image cc *in, int x, int y, unsigned char val);
Writes the green value val at given coordinates.

*image Pointer to the image
x, y coordinates
val written green value
return value: no return

void WBlue(image cc *in, int x, int y, unsigned char val);
Writes the blue value val at given coordinates.

*image Pointer to the image
x, y coordinates
val written blue value
return value: no return

27

void StretchRGBHisto(image cc *in, int Rlow, int Rhigh, int Glow, int
Ghigh, int Blow, int Bhigh)

Stretches the color histogram according the given limits. The source-image is
overwritten.

in Pointer to the RGB-image.
Rlow, Rhigh Lower and upper limit for the red channel.
Glow, Ghigh Lower and upper limit for the green channel.
Blow, Bhigh Lower and upper limit for the blue channel.

void StretchRGBBright(image cc *in, int Low, int High)
Stretches the brightness of a RGB-color image between Low and High ∈ [0, 255].

The source-image is overwritten.

Low,High Lower und upper limit of brightness

28

3.9 Graphics
The following routines use the library PS graf to generate nice postscript graph-
ics.

void psPlot(char *fname, int n, double *xdat, double *ydat, int mode)
Draws a x-y graphic and stores it to fname.eps.

*fname Name of output file.
n Number of data points.
*xdat, *ydat Arrays of x- and y-data.
mode Draws symbols for mode=0 and lines else.

void psPlotTit(char *fname,char *xtitle,char *ytitle, int n, double *xdat,
double *ydat, int mode)

Draws a x-y graphic and stores it to fname.eps.

*fname Name of output file.
*xtitle title for x axis.
*ytitle title for y-axis.
n Number of data points.
*xdat, *ydat Arrays of x- and y-data.
mode Draws symbols for mode=0 and lines else.

void psMultiPlot(char *fname, int *ndat, int nplot, double **xdat,
double **ydat, int mode)

Draws a x-y graphic of multiple data sets and stores it to fname.eps.

*fname Name of output file.
*ndat Array of size nplot containing the number of data points of

each data set.
nplot Number of data sets.
**xdat, **ydatArrays of size nplot of pointers to the x- and y-data sets.
mode Draws symbols for mode=0 and lines else.

void psMultiPlotTit(char *fname,char *xtitle,char *ytitle, int *ndat,
int nplot, double **xdat, double **ydat, int mode)

Draws a x-y graphic of multiple data sets and stores it to fname.eps.

*fname Name of output file.
*xtitle title for x axis.
*ytitle title for y-axis.
*ndat Array of size nplot containing the number of data points of

each data set.
nplot Number of data sets.
**xdat, **ydatArrays of size nplot of pointers to the x- and y-data sets.
mode Draws symbols for mode=0 and lines else.

29

void psDddCircHisto(image cc *im, char *buf, int prec);
Draws the histogram of a 3D greylevel image considering only the central cylinder

of the image.

*im Pointer to the image.
*buf Name of output file.
*prec Only a fraction (1/prec) of the total number of voxels are

considered.

void psHisto(image cc *im, char *buf, int prec);
Draws the histogram of a 2D greylevel image.

*im Pointer to the image.
*buf Name of output file (eps format).
*prec Only a fraction (1/prec) of the total number of voxels are

considered.

void ps3Dview(char *fname, image cc *image, double min, double max);
Draws a 3D colored view of a ddd-image and write an eps-file.

*fname name of the resulting eps-file
*image Pointer to the ddd-image.
min, max miniumum and maximum greylevel inbetween which the color

is scaled.

30

3.10 Special routines

void DLine(int x1,int y1,int x2,int y2,image cc *image, int val)
Draws a line from x1/y1 to x2/y2.

x1,y1 Coordinates of one end of the line . . .
x2,y2 . . . and the other.
image Pointer to the image.
val Pixel value of the line ∈ [0, 255].
return value: p

ointer to the new image.

image cc *GetVoronoiTes(int Xdim, int Ydim , int Nump)8

Generates a Voronoi tesselation based on NumP random seed point. In the resulting
image the Voronoi-cells are marked by different grey levels [1-254], the edges
between the cells are white [255].

Xdim x-size of resulting image
Ydim y-size of resulting image
Nump number of seed points
return value: pointer to the resulting image

image cc *GetPercolClus(int width, int height, double lamx, double
lamy, int mode)8

Returnes a percolation cluster based on the excursion set of a random greyscale
image

width, height size of image
lamx, lamy Correlation length in x and y
mode 0: random (correlation lengths have no meaning)

1: gaussian covariance with correlation lengths
return value: pointer to the binary image of resulting percolation cluster

void bObjects(image cc *image,unsigned long *o,unsigned long *l)
Counts the number of objects (disconnected parts) and the number of loops (holes

within the objects for the dark phase (0) of a binary image.

image Pointer to the image description structure.
o Pointer to the number of objects.
l Pointer to the number of loops.

The edges of the image should be set to non phase (255)

int bContour(int x, int y, unsigned char mark, image cc *image)
Marks the edge of an object of the dark phase (0) of a binary image and determines

if it is the outer edge of an object or the edge of a hole within the object.

x x coordinate at the edge of an object.
y y coordinate at the edge of an object.

31

mark value to mark the edge 0 <mark< 255.
image Pointer to the image description structure.
return value: n

egativ if the marked edge is a hole, positiv else.

int bContourCent(int x, int y, int mark, image cc *image, int *xx, int
*yy)

Determines the geometrical center of an object or a hole within an object, where
an object is defined by a values < mark. The value of the center is set to
mark+1, the pixels at the borders to mark.

x,y Coordinates at the border of an object.
mark Threshold defining the objects.
xx, yy Adresses to which the coordinates of the object are written.
return value: > 0 for real objects, <= 0 if the contoured border line de-

scribes a hole in an object.

double pDisector(image cc *wnd1, image cc *wnd2)
Calculates an unbiased estimate for the volumetric 3D Euler number [L−3] of the

dark phase (0) from a pair of parallel binary images (a disector). Note that
the resolution of the images must be set. The separation of the parallel images
should be smaller than the objects considered.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the image description structure of a parallel image.
return value: v

olumetric Euler number.

double BtdDiffusionZ(image cc *in, FILE *dif, unsigned long max, un-
signed long min, int fluxstep, double sens);

Calculates diffusion through phase [1] in z-direction. The concentration at one
side is kept fixed, C(z = 0) =const, while the opposite side is fixed at zero
C(z = zmax) = 0. Diffusive flow across the plane zmax is calculated iteratively
using explicite finite differences.

*in Pointer to the 3D binary image
*dif Pointer to the file where the diffusive flow is stored in intervals

indicated by fluxstep

max Maximum number of iterations (depends on sample size, may
be 50.000 to 1.000.000)

min Minimum number of iterations
fluxstep Interval of iterations to store the diffusive flux at z=zmax (e.g.

100)
sens Interupt criteria: stop iterations if flux[j]-flux[j-1]< flux[j]*sens
return value: Relative apparent diffusion coefficient Ds/D0

32

void BtdSkelet(image cc *im, int mode, int deadends);
Transform the image to its 3D skeleton.

*im Pointer to the 3D binary image.
mode 0 = 6 neighbors are considered to be connected, 26 else
deadends 0 = the minimum skeleton without any dead ends is calcu-

lated, else, dead ends are preserved

void BtdContinuity(image cc *im,int mode)
Filter for the continuous part of the phase coded by [1] within a binary 3D-

image. The bit-sequenze ofmode determins the faces of the 3D-image to which
the phase must be connected. (mode=1: face at x=0; mode=63: any face).

im Pointer to the 3D image
mode bitposition:face 1:x=0, 2:x=xmax, 3:y=0, 4:y=ymax, 5:z=0,

6:z=zmax

void BtdDrawSphere(image cc *image, int xmid, int ymid, int zmid,
int rad, int val);

Draws a sphere at center xmid/xmid/zmid with radius rad and value 0 if val=
0 and 1 else.

*image Pointer to the 3d binary image
xmid, xmid, zmidcoordinates of sphere center

rad radius of sphere
val value to be written for the sphere

33

3.11 Useful stuff
. . . typically for internal use

image cc *LoadRaw(char *buf, int cols, int rows, int layers, int offset,
int nbyte)

Loads grey images of 8-bit or unsigned 16bit. Byte order has to be little Endian
and data index is assumed to be x-fastest.

buf Name of the image to be loaded (with extension).
cols Number of voxels in x-direction.
rows Number of voxels in y-direction.
layers Number of voxels in z-direction.
offset Header size in bytes.
nbyte Number of bytes per voxel - 1 for char, 2 for unsigned int.
return value: pointer to the loaded image.

void StoreRaw(image cc *im)
Saves a 3D grey image to a raw file and writes file information to a txt file.

im Pointer to the image.

char *GetCircElement(int rad, double rx, double ry)
Generates a 2D circular structuring element with radius rad [pixel]. Returns

a pointer to an array, a (char), containing the structuring element: a[0] =
radius in x-direction [pixel], a[1] = radius in y-direction. a[2...] contains all
pixel of the smallest square containing the structuring element with dimension
(2a[0] + 1)× (2a[1] + 1). Each pixel is coded by 1 bit which has the value 1 if
it is part of the stucturing element and 0 else. The position of a pixel (x,y) is
identified by pos = y ∗ (2a[0] + 1) + x. For a given pos you find its value by
∗(a+ 2 + pos/8) & 1 << pos%8.

rad radius of the structuring element [voxels]
rx, ry Resolution (pixel size) in different dimensions [L]
return value: pointer to the structuring element

char *GetSphereElement(int rad, double rx, double ry, double rz)
Generates a spherical structuring element with radius rad [voxels].

rad radius of the structuring element [voxels]
rx, ry, rz Resolution in different dimensions [L]

return value: pointer to an array, a (char), containing the structuring el-
ement: a[0] = radius in x-direction [voxel], a[1] = radius in y-
direction, a[2] = radius in z-direction. a[3...] contains all voxels of
the smallest cube containing the structuring element with dimen-
sion (2a[0] + 1) × (2a[1] + 1) × (2a[2] + 1). Each voxel is coded
by 1 bit which has the value 1 if it is part of the stucturing el-
ement and 0 else. The position of a voxel (x,y,z) is identified by

34

pos = z ∗ (2a[0] + 1) ∗ (2a[1] + 1) + y ∗ (2a[0] + 1) + x. For a given
pos you find its value by ∗(a+ 3 + pos/8) & 1 << pos%8.

char *GetSphereElementDouble(double rad, double rx, double ry, dou-
ble rz, int *vol)

Same as GetSphereElement but with non-integer radius rad [voxels].

rad radius of the structuring element [voxels]
rx, ry, rz Resolution in different dimensions [L]
vol the size of the structuring element [number of voxels] is writ-

ten to this address

return value: same as GetSphereElement.

long int *bQuantMask(image cc *image, int xm, int ym, char *mask)
Calculates the frequency distribution of 2x2 pixel configurations for a region iden-

tified by mask. The format of mask corresponds to that returned by Get-
CircElement. The returned pointer is input for the routines to calculate the
Minkowski functionals.

*im Pointer to the binary 2D-image.
int xm, ym Coordinates of the center of the region described by mask.
*mask Mask for the region to be analyzed.
return value: Pointer to the 16-element array containing the frequencies of

pixel configurations

float ran3(long *idum);
Genetrates a random number ∈[0,1].

*idum Pointer to the initialization value.
return value: Random number.

void GetMinMax(image cc *image, int *max, int *min);
Determines the maximum and the minimum value of an image.

*image Pointer to the image.
*min, *max The resulting minimum and maximum values.

int GetMaxGrey(image cc *im)
Determines the maximum grey value of an image not considering the absolut

possible maximum of the image type.

*image Pointer to the image.
return value: maximum grey value.

int GetMinGrey(image cc *im)
Determines the minimum grey value of an image not considering the value zero.

*image Pointer to the image.

35

return value: minimum grey value.

void MinMaxf(double *ar, int n, double *min, double *max);
calculates the minimum and maximum value of a double array

*ar Pointer to the array
n dimension of the array
*min addresse to store minimum
*max addresse to store maximum
return value: Euler number [1/L3] in units of image-¿rcol

double **dmatrix(int n, int m);
allocates a 2D double array with dimensions n x m

n, m dimensions of the array
return value: pointer to the allocated memory

int **imatrix(int n, int m);
allocates a 2D int array with dimensions n x m

n, m dimensions of the array
return value: pointer to the allocated memory

36

3.12 Functions of previous versions (still active)

void gBin(int LOW, int value1,int value2,image cc *image)
Segmentation of a 8-bit grey scale images according to a threshold. The grey levels

smaller or equal to LOW are written to value1 the others are written to value2. If
value2 is larger than 255 the original values are maintained for grey levels > LOW.

LOW Threshold
value1 grey level [0-255]
value2 grey level [0-255]
image Pointer to the image

void gBibin(int LOW,int HIGH,image cc *image)
Segmentation of a 8-bit grey scale image according to 2 thresholds which are regarded to

be the limits of a fuzzy region of the grey scale histogram where the true threshold is
expected. The threshold is chosen locally according to the values of the neighboring
pixel values (Conditional Dilation).

LOW lower threshold.
HIGH upper threshold.
image Pointer to the image.

All pixel of a grey level smaller or equal than LOW are written to 0 as well as all pixel
having values smaller than HIGH and at least one direct neighbour smaller than LOW.
This algorithm is repeated iteratively until no pixel has to be changed anymore. The
other pixel keep their original value.

int gBilevel(int *th high,int *th low,image cc *image)
Calculates the limits of a fuzzy region on the grey scale of an 8-bit grey level image as

required by gBibin for thresholding. The image should have a bimodal grey level
histogram where the different modes are not clearly separated (a typical case).

th high pointer to the upper limit.
th low pointer to lower limit.
image Pointer to the image.
return value: -

1 if the histogram is not bimodal, 1 if sucessful

The bimodal grey level histogram h(x) is analysed to get the lower and upper max-
ima max1 and max2 as well as the minimum min in between. Then a Gaussian
distribution ĥ(x) is fitted to the upper mode. The lower limit is calculated as
(max1 +min)/2, the upper limit as (p+min)/2 where p is the location on the grey
scale where ĥ(p) = h(min). The resulting values th high and th low may be used
in the function gBibin for conditional dilation.

image cc *GetDddSegment(image cc *im, int ulx, int uly, int ulz, int nx,
int ny, int nz)

Cuts out a segment of a 3D grey level image.

*im pointer to the original image.
ulx, uly, ulz coordinates of the upper left corner of the Segment.

37

nx, ny, nz number of voxels of the segment in different directions.
return value: pointer to the segment.

double *GetGreyCdf(image cc *im)8

Returnes a 255 element array containing the cdf of grey levels

*im Pointer to the 2D grey image
return value: cdf array (255 elements)

image cc *gWaterShed(image cc *image, int conmode)8;
Calculates the watershed lines for a grey image (only 8-bit images). The different basins

separated by the watershed lines are marked by different grey values, the watershed
line is 0. This may be applied to a distance map of a binary image to separate
overlapping grains.

*image Pointer to the grey image
conmode Connectivity mode: either 4 or 8.
return value: Pointer to the image containing the watershed and the basins

double *GetAcov(image cc *im, double *corl, int lag, int mode)8

Returnes the autocovariance function of a 2D grey image

*im Pointer to the image
*corl address to write the correlation length as result
lag maximum distance to evaluate (# pixels)
mode indicates which directions are to be considered (bit1=x, bit2=y)
return value: pointer to an array of dimension lag where the autocovariance

function is stored

double *GetSemiVar(image cc *im, int lag, int mode)8

Returnes the semivariogram of a 2D grey image

*im Pointer to the image
lag maximum distance to evaluate (# pixels)
mode indicates which directions are to be considered (bit1=x, bit2=y)
return value: pointer to an array of dimension lag where the semivariogram is

stored

void gErode(image cc *image,int step, int mode)
Minimum/maximum filter for 8-bit grey scale images.

image Pointer to the image.
step radius of the considered environment
mode 0 = minimum, 1 = maximum filter

Each pixel is set to the minimum/maximum value of its direct neighbours. This is
iteratively done step times considering the 4 and 8 nearest neighbours alternant
starting with 4. The edges of the image are written to 255.

image cc *gMean2(image cc *image, int mode)
As Mean but returns an image of the variance at each pixel within the defined window

of size mode× mode

38

image Pointer to the image.
mode side length of the squared operating window (number of pixel)
return value: Pointer to the image of variances

image cc *gSobel(image cc *im, int mode)
Sobel filter (first derivative of local grey levels). The image border is set to 0. For

mode=1 the histogram of the resulting image is rescaled to the entire grey scale [0 -
max-grey]. (only for 2D images).

*im Pointer to the image.
return value: Pointer to the filtered image

image cc *gLaplace(image cc *im, int mode)
Laplace filter (second derivative of local grey levels). The image border is set to 0. For

mode=1 the histogram of the resulting image is rescaled to the entire grey scale [0 -
max-grey]. (only for 2D images).

*im Pointer to the image.
mode Rescaling of the result if non-zero.
return value: Pointer to the filtered image

double *gHisto(image cc *im, int precision);
Calculates the grey level histogram (pdf).

*im Pointer to the image.
precision only a fraction (1/precision) of pixels is considered
return value: Pointer to a 255-element array containing the histogram

image cc *GetRandImage(int col, int row, double rx, double ry, double cx,
double cy, int mode)8

Returnes a random 2D image with defined correlation lengths in x and y direction

*cdf cdf of grey levels
col, row dimensions of resulting image
rx, ry size of pixel in x and y
cx, cy correlation lengths (# pixel) in x ynd y
mode 0: Gaussian correlation

1: Lorentz-Correlation model
2: Exponential-Correlation model
3: von Karman-Correlation model

return value: pointer to the created image

image cc *GetCorImage(double *cdf, int col, int row, double rx, double ry,
double cx, double cy, int mode)8

Returnes a random 2D image optionally with defined grey distribution function (equal,
Gauss or predefined cdf), defined correlation length and defined correlation model
(Gauss, Lorentz, Exponentila, von Karman).

*cdf cdf of grey levels

39

col, row dimensions of reulting image
rx, ry size of pixel in x and y
cx, cy correlation lengths (# pixel) in x ynd y
mode 0: equal distribution without any correlation (cx,cy,cz and cdf

have no meaning here)
1: equal grey distribution with gaussian correlation
2: predefined grey distribution (cdf) distribution and gaussian
correlation
3: Gaussian correlation (cdf have no meaning here)
4: Lorentz-Correlation model (cdf have no meaning here)
5: Exponential-Correlation model (cdf have no meaning here)
6: von Karman-Correlation model (cdf have no meaning here)
**acov covariance in x and y direction (acov[2][lag])

return value: pointer to the created image

long *gConfunc(image cc *image)8

Returns the connectivity function of a 2D grey image. The image is binarized for all
possible thresholds [0,255] and the corresponding Euler number is dermined which
is returned as a vector of 255 elements. The Euler numbers are not normalized by
the size of the image.

*image Pointer to the grey image
return value: array of 255 Euler numbers

image cc *gCircMask(image cc *im, int xmid, int ymid, int rad, int val)8,16

Cuts out a circular image with center xmid, ymid and radius rad. All pixels outside
the circle are set to grey level val. The size of the returned image is reduced to
2*rad+1.

*image Pointer to the grey image
xmid, ymid center coordinates of the circle
rad radius of the circle
val grey level written to the background
return value: Pointer to the resulting image

void gHistoMatch(double *cdf, image cc *image)8

Transforms the histogram of an image according to a predefined cdf, typically optained
from a source image using the function GetGreyCdf().

*cdf predefined cdf of grey levels
*image Pointer to the 2D grey scale image
return value: no return value

void bRemObjects(image cc *image, int size);
Removes all objects (grey level=0) smaller than ’size’ (number of pixels)

*image Pointer to the binary image
size maximum size of objects (number of pixels) to be removed
return value: no return value, the original image is changed

40

long int *bQuant(image cc *image);
Calculates the frequency distribution of 16 different pixel configurations in a 2x2 square.

The returned pointer is input for the routines to calculate volume density, surface
density, length density, curvature and Euler number.

*im Pointer to the binary 2D-image.
return value: Pointer to the 16-element array containing frequencies of pixel

configurations

double bVoldens(image cc *image, long int *h);
Returnes the Area density of a 2D binary structure (0 phase) which corresponds to the

Volume density of a 3D structure as estimated from the 2-dimensional section

*h Pointer to the array of pixel configurations obtained by bQuant()
return value: Volume density [-]

double bSurfdens(image cc *image, long int *h);
Returnes the Surface density SV [cm2/cm3] of the boundary of a 3D binary structure,

as estimated from a 2-dimensional binary section.

*h Pointer to the array of pixel configurations obtained by bQuant()
return value: Surface density [L2/L3] in units of image-¿rcol

double bEuler4(image cc *image, long int *h);
Returnes the Euler number of a 2D binary structure considering 4-connectivity of phase

[1]

*h Pointer to the array of voxel configurations obtained by bQuant()
return value: Euler number [1/L2] in units of image-¿rcol

double bEuler8(image cc *image, long int *h);
Returnes the Euler number of a 2D binary structure considering 8-connectivity of phase

[1]

*h Pointer to the array of voxel configurations obtained by bQuant()
return value: Euler number [1/L2] in units of image-¿rcol

double bLengthdens(image cc *image, long int *h);
Returnes the Lengthdensity BA [cm/cm2] of the boundary of a 2D binary structure

*h Pointer to the array of voxel configurations obtained by bQuant()
return value: Lengthdensity [L/L2] in units of image-¿rcol

double b2DEuler(image cc *image)
Calculates the 2D Euler number [-] of the dark phase (0) of a binary images.

image Pointer to the first image description structure.
return value: d

imensionless Euler number.

void bErode(image cc *image,int step, int mode)
Performs an erosion or dilation of a binary image (0/255).

41

image Pointer to the image description structure.
step radius of the hexagonal structuring element
mode 0 = erosion of the dark phase (0), 1 = dilation

Erosion or dilation is iteratively performed step times considering the 4 and 8 nearest
neighbours alternant starting with 4. Note that the original image is replaced and
the outer shell (1 pixel) is written to 255.

void bErodeMir(image cc *image,int step, int mode)
as bErode but the outer shell of width step is mirrored so that the complete image is

treated.

image Pointer to the image description structure.
step radius of the hexagonal structuring element
mode 0 = erosion of the dark phase (0), 1 = dilation

image cc *bErodeMirCirc(image cc *image,int step, int mode)
as bErodeMir but optimal circles are used as structuring elements for erosion. The

original image is not replaced, the pointer to the resulting image is returned.

image Pointer to the image description structure.
step radius of the hexagonal structuring element
mode 0 = erosion of the dark phase (0), 1 = dilation
return value: Pointer to the eroded image

image cc *bGetDistMap(image cc *image, int *n, int gval, int gstep);
Converts a binary image to its distance map: Each pixel in the white phase (255) is

written to a grey value which corresponds to the distance of that pixel to phase 0.
The closest distance gets grey value
tt gval which increases ba steps gstep with distance. The phase 0 is not changed.
The total number of distance classes is written to n. Note that it is a good idea to
chose the parameters such that n
cdotgstep > 255 − gval. The resulting distance map can be used as input to a
watershed segmentation e.g. to separate sintered grains or to calculate Minkowski
functions.

*image Pointer to the binary image
*n Number of detected distance classes
gval Grey level for the first distance class
gstep Grey level step between adjacent distance classes
return value: Pointer to the image containing the distance map

image cc *bGetFullDistMap(image cc *image, int *nblack, int *nwhite, int
gstruc, int gval, int gstep);

Converts a binary image to its full distance map: Each pixel in the white phase (255)
is written to a grey value which corresponds to the distance of that pixel to phase 0
and each pixel in the black phase (0) is written to a grey value which corresponds
to the distance of that pixel to the white phase (255). The boundary of the black
phase is set to gstruc, the closest distance gets grey value gstruc+/-gval where
the sign depends on whether the distance is in the white or in the black phase. It

42

is increased by steps gstep with distance. The total number of distance classes is
written to nblack and nwhite respectively. Note that it is a good idea to chose the
parameters such that nwhite·gstep < 255 -(gstruc+gval) and nblack·gstep<gstruc-
gval. The maximum number of classes is limited by MAXDILAT=100 (parameter
can be changed in quantim4.h). The resulting distance map can be used to calculate
Minkowski functions.

*image Pointer to the binary image
*nblack Number of detected distance classes in the black phase
*nwhite Number of detected distance classes in the white phase
gstruc Grey level written to the boundary of the black phase
gval Grey level for the first distance class
gstep Grey level step between adjacent distance classes
return value: Pointer to the image containing the distance map

int bGetDistOpenMap(image cc *image, image cc *distance, image cc *opened,
int gval, int gstep)

As bGetDistMap(), this function converts a binaryimage to its distance map. Addition-
ally a ’granulometry map’ is calculated where each pixel in phase 1 (255) is written
to a grey value which corresponds to the diameter of the maximum circle that can
be placed inside phase 1 at that location (corresponding to the ’opening size’). The
smallest circle is marked by the grey value
tt gval which increases by steps
tt gstep with the size of the ball.

*image Pointer to the binary image
*distance Must initially be a copy of

tt image and contains the resulting distance map after execution
*opened Must initially be a copy of

tt image and contains the resulting granulometry map after exe-
cution

gval Grey level for the smallest size class
gstep Grey level step between subsequent size classes
return value: Number of detected size classes

image cc *GetDistOpenCloseMap(image cc *im, double gstep)
image cc *GetDistOpenCloseMap(image cc *im, double gstep, int maxdist)
Generates an opening-map (black phase) and a closing-map (white phase) of a binary

image, which is a greyscale image where the grey value of each pixel indicates the
’opening size’ (’closing-size’) of the black (white) phase. gstep is the difference in
grey level for the opening/closing of 1 pixel. This function is valid for isotropc pixel
geometry. This function requires considerable computation time, so the maximum
size for openings(closings) can be limited by maxdist.

*image Pointer to the binary image.
gstep scaling of the grey levels of the opening/closing map
maxdist maximum opening size to be considered
return value: Pointer to the resulting image

43

unsigned long bErodeMark(image cc *image, int mark, int step);
Performs a dilation (0-phase) of a binary image with a circular structuring element of

radius step. The dilated area is marked with the greylevel mark. The number of
marked pixel is returned.

*image Pointer to the binary image
step Radius of structuring element
mark Greylevel to mark dilated pixel
return value: Number of marked pixel

void bLogAnd(image cc *wnd1, image cc *wnd2)
Logical AND relation (intersection) of two binary images.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the second image description structure.

The result is written to wnd1

void bLogOr(image cc *wnd1, image cc *wnd2)
Logical OR relation (unification) of two binary images.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the second image description structure.

The result is written to wnd1

void bAddition(image cc *wnd1, image cc *wnd2, int gv1, int gv2)
Addition of two images.

wnd1 Pointer to the first image description structure.
wnd2 Pointer to the second image description structure.
gv1 grey level to be set for phase in wnd1.
gv2 grey level to be set for phase in wnd2.

the 0-values of the two images are set to gv1 and gv2 respectively, their intersection is
set to 0. The result is written to wnd1

void bHitMiss(image cc *im, int Mx, int My, long MP, long MNP)
Hit or Miss Transform of a binary image. Structuring elemnts are still restricted to a

size <= 5 × 5 pixel (Mx, My ∈ [1,2]).

*im Pointer to the image.
Mx My Operating window of the structuring element in x and y direction,

(2Mx+1)×(2My+1)
MP Each nonzero bit of MP indicates membership to the structuring

element at position x = bitpos/(2Mx+1) and y = bitpos modulo
(2Mx+1) .

MNP Each nonzero bit of MNP indicates explicit non-membership to the
structuring elemnt at position x = bitpos/(2Mx+1) and y = bitpos
modulo (2Mx+1). Coordinates which are neither described by MP

nor MNP (the corresponding bits are zero in both variables) are not
significant.

44

long int *bQuantRecMask(image cc *image, int xdim,int ydim, int xul, int
yul);

Calculates the frequency distribution of 16 different pixel configurations within a 2x2
square for a rectangular region. The returned pointer is input for the routines
to calculate volume density, surface density, length density, curvature and Euler
number.

*im Pointer to the binary 2D-image.
int xdim, ydimmExtension of the rectangular region [pixel].
int xul, int yulCoordinates of the upper left corner.
return value: Pointer to the 16-element array containing frequencies of pixel

configurations

void SaveRGBImageSeg(image cc *image, char *buf, int ulx, int uly, int
drx, int dry)

Saves a rectangular segment of a RGB image.

image Pointer to the image description structure.
buf Name of the tif-image to be saved without extension.
ulx x coordinate of the upper left corner of the segment
uly y coordinate of the upper left corner
drx x coordinate of the lower right corner
dry y coordinate of the lower right corner

ddd stuff ddd images

void SetDddShell(image cc *im, int thick, int val);
Writes the complete shell of thickness thick to val

thick Thickness of the shell
val Value written to the shell
return value: no return value

image cc *DddResRed(image cc *image, int mode)
Reduces image size and herewith resolution by averaging over regions of size (2mode+1)2.

*im pointer to the original image.
mode mode of reduction.
return value: pointer to the resulting image.

image cc *GetRandDDDImage(int col, int row, int dep, double rx,, double
ry, double rz)

Creates a 3D grey scale image in which the values of voxels are set randomly.

col,row,dep Size of the image (x,y,z).
rx,ry,rz Resolution (size of voxels) in different dimensions (x,y,z).
return value: pointer to the created image.

void DddMinMax(image cc *im,int mode);
Minimum/Maximum filter for a 3D grey scale image which operates within a 3x3x3

window.

45

*im pointer to the image.
mode if 0 minimum, else maximum.

image cc *DddBin(image cc *im, unsigned char thresh);
Converts a 3D grey scale image to a 3D binary image (btd-format) according to a

threshold. Values <=thresh are coded by 0 and by 1 else.

im Pointer to the 3D grey scale image.
thresh Threshold on the grey scale.
return value: pointer to the 3D binary image (btd-format).

void DddBibin(int LOW,int HIGH,image cc *im);
Segments an 3D grey scale image according to 2 thresholds which are regarded to be

the limits of a fuzzy region of the grey scale histogram of the image (Conditional
Dilation). All pixel of a grey level smaller or equal than LOW are written to 0 as well
as all pixel having values smaller than HIGH and at least one direct neighbour smaller
than LOW. This algorithm is repeated iteratively until no pixel is to be changed. The
other pixel keep their original value. This function overwrites the original image.

LOW lower threshold.
HIGH upper threshold.
image Pointer to the image.

image cc *DddWaterShed(image cc *image, int conmode);
Calculates the watershed lines for a 3D grey image. The different basins separated

by the watershed lines are marked by different grey values, the watershed is writ-
ten to 0. This may be applied to a distance map of a binary image to separate
overlapping grains. The distance map is obtained by BtdGetDistOpenMap() or
BtdGetDistMap().

*image Pointer to the grey image
conmode Connectivity mode: either 6 or 26.
return value: Pointer to the image containing the watershed and the basins

void DddClas(image cc *im, int Nclas, unsigned char *th, unsigned char
*gval);

Transforms a 3D grey scale image by dividing the grey scale into a number (Nclas)
of discrete classes. The upper limits of the grey values of the different classes are
provided by *th and the values to be written for each class by gval.

im Pointer to the 3D grey scale image.
Nclas Number of different classes.
*th Array of Nclas thresholds ∈[0,255] starting with lower values at

th[0].
*gval Array of Nclas greylevels ∈[0,255] to be written for the corre-

sponding classes.

double *DddHisto(image cc *im, int precision);
Returns the grey-histogram of a 3D grey scale image.

46

*im Pointer to the image.
precision Only a fraction (1/precision) of the total number of voxels are

considered.
return value: Array with 255 elements containing the relative frequency of the

corresponding grey value.

double *DddCircHisto(image cc *im, int precision, int rad);
Same as DddHisto but only consideres a central cylinder of radius rad.

*im Pointer to the image.
precision Only a fraction (1/precision) of the total number of voxels are

considered.
rad Radius of the central cylinder to be considered (number of pixel).
return value: Array with 255 elements containing the relative frequency of the

corresponding grey value.

double *GetDddGreyCdf(image cc *im)
Returns the cdf of grey levels for a 3D-grey scale image. This cdf can be used by

GetCorDDDImage to generate a random structure accordingly.

*im Pointer to the image.
return value: Array with 256 elements describing the cdf

void DddEulerFunc(image cc *im, int *num, double **xdat, double **ydat,
int prec)

Calculates the connectivity function of a 3D grey scale image.(Take care that resolution
of the image is set correctly!)

*im Pointer to the image.
*num Adress where the number of function value are written to.
**xdat, **ydat Pointer to the adress where the function values are written to

(xdat[i]=threshold of greylevel, ydat[i]= Euler number).
prec Step of grey thresholds for which the Euler number is calculated.

Number of function values: 255/prec.

image cc *GetCorDDDImage(double *cdf, int col,int row,int dep,double
rx,double ry, double rz,double cx,double cy, double cz, int mode)

Generates a random 3D greylevel structure with predefined grey-histogram, correlation
length and correlation model. The maximum size is restricted to 643. The struc-
ture is periodic only for this maximum size. UNDER CONSTRUCTION!! NOT
EVERYTHING WORKS!! USE WITH CARE!!

*cdf Pointer to the 256-element array containing the cdf of grey levels.
col, row, dep Size of the image (number of voxels in x, y and z).
rx, ry, ry Size of the voxels in x, y and z.
cx, cy, cz Correlation lengths (number of voxels in x, y and z).
mode Correlation model: 0 = completely random without correlation

(cx, cy, cz are ignored); 1 = Gaussian model; 2 = Mirrored gaus-
sian (just try and you will get an idea or check the source to dig

47

out that strange guy); 3 = Lorentz; 4 = Exponential, 5 = von
Karman.

return value: pointer to the generated image.

image cc *GetCorDDDImage2(double *cdf, int col, int row, int dep, double
rx, double ry, double rz, double cx, double cy, double cz, int mode);

Returns a random 3D grey image with predefined grey histogram and/or correlation
lengths. The image is periodic only for dimensions = power of 2 UNDER CON-
STRUCTION!! NOT EVERYTHING WORKS!! USE WITH CARE!!

*cdf Pointer to the 256-element array containing the cumulative density
function of grey levels.

col, row, dep Size of the image (number of voxels in x, y and z).
rx, ry, ry Size of the voxels in x, y and z.
cx, cy, cz Correlation lengths (number of voxels in x, y and z).
mode Correlation model:

0 = equal grey distribution without any correlation (cx,cy,cz and
cdf have no meaning here)
1 = equal grey distribution with correlation (correlation lengths
of resulting image will be different from cx, cy, cz!)
2 = predefined greylevel (cdf) distribution and gaussian correla-
tion (correlation lengths of resulting image will be different from
cx, cy, cz!)
3 = Gaussian covariance (cdf have no meaning here and in the
following modes)
4 = Lorentz covariance
4 = Exponential covariance
5 = von Karman covariance

return value: pointer to the generated image.

double *GetDddAcov(image cc *im, double *corl, int lag, int mode)
Calculates the autocovariance function and the correlation length of a 3D greylevel

image the correlation length is written to *corl. The first 3 bits of mode indicate
which directions (x,y,z) are to be considered.

*im Pointer to the image.
*corl Adress where the correlation length is written to.
lag Maximum distance considered (number of pixel).
mode indicates which directions are to be considered (bit1=x, bit2=y,

bit3=z)
return value: pointer to an arry of dimension lag where the autocovariance func-

tion is stored.

void DddDrawCylinder(image cc *image, int xmid, int ymid, int rad, int
len, int val);

Draws a cylinder at center tt xmid/xmid with length len and radius rad and value
val.

*image Pointer to the 3d binary image

48

xmid, xmid coordinates of cylinder center
len length of cylinder
rad radius of cylinder
val value to be written for the cylinder

btd stuff btd images

void BtdErodeFilter(image cc *im, int step, int mode)
Performs an erosion of the phase mode by a spherical structuring element of radius

step. Note that an erosion of phase 1 corresponds to a dilation of phase 0. The
outer shell of the eroded image (where the structuring element cannot be placed
entirely into the image volume) is set to 0. This function is a filter, meaning the
original image is lost after this operation (see *BtdErode()).

im Pointer to the 3D image
step radius of the structuring element [voxels]
mode phase to be eroded [0,1]

image cc *BtdErode(image cc *im, int step, int mode)
Performs an erosion of the phase mode by a spherical structuring element of radius

step. Note that an erosion of phase 1 corresponds to a dilation of phase 0. The
outer shell of the eroded image (where the structuring element cannot be placed
entirely into the image volume) is cut off.

im Pointer to the 3D image
step radius of the structuring element [voxels]
mode phase to be eroded [0,1]

return value: p
ointer to the 3D image containing erroded subvolume.

image cc *BtdErodeMir(image cc *im, int step, int mode)
Same as BtdErode except that the shell is not cut off. To calculate the erosion at the

border of the image, it is enlarged by mirroring the structure at the boundaries.

*im Pointer to the 3D image
step Radius of the structuring element[voxels]
mode Phase to be eroded [0,1]
return value: Pointer to the image containing the eroded structure

image cc *BtdErodeMirDouble(image cc *im, double step, int mode)
Same as BtdErodeMir except that the radius of the structuring element is of type

double (typically 0.5).

*im Pointer to the 3D image
step Radius of the structuring element[voxels]
mode Phase to be eroded [0,1]
return value: Pointer to the image containing the eroded structure

49

image cc *BtdOpen(image cc *im, int step, int mode)
Performs an opening (erosion followed by dilation) or closing (dilation followed by

erosion) of a binary 3D image using a spherical structuring element of radius step.
The outer shell of the eroded image (where the structuring element cannot be placed
entirely into the image volume) is cut off.

im Pointer to the 3D image
step radius of the structuring element [voxels]
mode opening or closing [0,1]

return value: p
ointer to the 3D image containing opened (closed) 3D-image.

image cc *BtdGetDistMap(image cc *image, int *n, int gval, int gstep);
Converts a binary 3d image (btd-format) to its distance map (ddd-format): Each voxel

in phase 1 is written to a grey value which corresponds to the distance of that
voxel to phase 0. The closest distance gets grey value gval which increases ba steps
gstep with distance. The phase 0 is not changed. The total number of distance
classes is written to n. Note that it is a good idea to chose the parameters such
that n · gstep < 255 − gval. The resulting distance map can be used as input to a
watershed segmentation e.g. to separate sintered grains.

*image Pointer to the 3D binary image (btd-format)
*n Number of detected distance classes
gval Grey level for the first distance class
gstaep Grey level step between adjacent distance classes
return value: Pointer to the ddd-image containing the distance map

int BtdGetDistOpenMap(image cc *image, image cc *distance, image cc
*opened, int gval, int gstep)

As BtdGetDistMap(), this function converts a binary 3d image (btd-format) to its
distance map (ddd-format). Additionally a ’granulometry map’ is calculated where
each voxel in phase 1 is written to a grey value which corresponds to the diameter of
the maximum ball that can be placed inside phase 1 at that location (corresponding
to the ’opening size’). The smallest ball is marked by the grey value gval which
increases by steps gstep with the size of the ball.

*image Pointer to the 3D binary image (btd-format)
*distance Must be a copy of image in ddd-format and contains the resulting

distance map after execution
*opened Must be a copy of image in ddd-format and contains the resulting

distance map after execution
gval Grey level for the smallest size class
gstep Grey level step between subsequent size classes
return value: Number of detected size classes

int BtdGetDistOpenMapDouble(image cc *image, image cc *distance, im-
age cc *opened, int gval, int gstep, double step)

As BtdGetDistOpenMap(), but the diameter of the spherical structuring element is
incremented by steps of 0.5 to get a better resolution of the size distribution. This

50

function converts a binary 3d image (btd-format) to its distance map (ddd-format).
Additionally a ’granulometry map’ is calculated where each voxel in phase 1 is
written to a grey value which corresponds to the diameter of the maximum ball that
can be placed inside phase 1 at that location (corresponding to the ’opening size’).
The smallest ball is marked by the grey value
tt gval which increases by steps
tt gstep with the size of the ball.

*image Pointer to the 3D binary image (btd-format)
*distance Must be a copy of

tt image in ddd-format and contains the resulting distance map
after execution

*opened Must be a copy of
tt image in ddd-format and contains the resulting distance map
after execution

gval Grey level for the smallest size class
gstep Grey level step between subsequent size classes
step increment for structuring element (typically 0.5)
return value: Number of detected size classes

void SetBtdShell(image cc *im, int dx , int dy, int dz, int mode)
Writes the shell of a 3D image with the thickness of dx, dy, dz [voxels] to the value

mode.

im Pointer to the 3D image
dx, dy, dz thickness of the shell in different dimensions [voxels]
mode Value to be written to the shell [0,1]

double BtdEuler(image cc *im);
Claculates the volumetric 3D Euler number. Note that the resolutions im− >ncol,

im− >nrow and im− >nbits must be set to a meaningful value. The result is given
in the corresponding unit [1/L3].

*im Pointer to the 3D binary image.
return value: Volumetric Euler number L−3)

double BtdVolSurf(image cc *im, double *vv, double *sv);
Claculates the volume density (vv) and surface density (sv).

*im Pointer to the 3D binary image.
*vv, *sv Addresses where the results are written to
return value: Volume of the sample in units of im-¿rcol

long int *BtdQuant(image cc *image);
Calculates the frequency distribution of 255 different voxel configurations in a 2x2x2

cube. The returned pointer is input for the routines to calculate volume density,
surface density, mean curvature and Euler number.

*im Pointer to the binary 3D-image.

51

return value: Pointer to the 255-element array containing frequencies of voxel
configurations

long int *BtdQuantMask(image cc *image, int xm, int ym, int zm, char
*mask);

Calculates the frequency distribution of the 255 different voxel configurations within a
2x2x2 cube for a region identified by mask. The format of mask corresponds to that
returned by GetSphereElement. The returned pointer is input for the routines to
calculate volume density, surface density, mean curvature and Euler number.

*im Pointer to the binary 3D-image.
int xm, ym, zm Coordinates of the center of the region described by mask.
*mask description of the region to be analyzed.
return value: Pointer to the 255-element array containing frequencies of voxel

configurations

double BtdVoldens(long int *h);
Returns the volume density of the phase coded by [1]

*h Pointer to the array of voxel configurations obtained by BtdQuant()
return value: volume density [-]

double BtdSurfdens(image cc *image, long int *h);
Returns the surface density of a binary structure

*h Pointer to the array of voxel configurations obtained by BtdQuant()
return value: surface density [L2/L3] in units of image-¿rcol

double BtdMeancurv(image cc *image, long int *h);
Returns the mean curvature of a binary structure

*h Pointer to the array of voxel configurations obtained by BtdQuant()
return value: mean curvature in units of image-¿rcol

double BtdEuler6(image cc *image, long int *h);
Returns the volumetric Euler number of a 3D binary structure considering 6-connectivity

of phase [1]

*h Pointer to the array of voxel configurations obtained by BtdQuant()
return value: Euler number [1/L3] in units of image-¿rcol

double BtdEuler26(image cc *image, long int *h);
Returns the volumetric Euler number of a 3D binary structure considering 26-connectivity

of phase [1]

*h Pointer to the array of voxel configurations obtained by BtdQuant()
return value: Euler number [1/L3] in units of image-¿rcol

RGB stuff RGB images

52

image cc *ChangeResolutionRGB(image cc *image, int newx, int newy);
Returns the pointer to a rescaled RGB-image. The new dimensions are newx and newy

in x and y direction respectively.

*image Pointer to the original image
newx, newy new dimensions in x and y direction

return value: pointer to the rescaled image

image cc *TurnRGBImage(image cc *im, double grad)
rotates a RGB image by the angle grad

*image Pointer to the original image
grad angle to be turned (degree)

return value: pointer to the rescaled image

image cc *FlipRGBImage(image cc *im);
Flip the RGB-image in x direction.

*image Pointer to the original image
return value: pointer to the fliped image

void WRGBPixel(image cc *in, int x,int y,unsigned char rval,unsigned char
gval,unsigned char bval);

Writes the RGB values at given coordinates.

*image Pointer to the image
x, y coordinates
rval, gval, bvalwritten rgb values
return value: no return

53

