Interacting effects of elevated CO₂, nutrient availability and plant species on a generalist invertebrate herbivore

MARTIN SCHÄDLER*, MAREIKE ROEDER†, ROLAND BRANDL* and DIETHART MATTHIES†

*Department of Animal Ecology, University of Marburg, Karl-von-Frisch-Street, 35032 Marburg, Germany, †Department of Plant Ecology, University of Marburg, Karl-von-Frisch-Street, 35032 Marburg, Germany

Abstract

By affecting plant growth and phytochemistry elevated CO₂ may have indirect effects on the performance of herbivores. These effects show considerable variability across studies and may depend on nutrient availability, the carbon/nutrient-balance in plant tissues and the secondary metabolism of plants. We studied the responses to elevated CO₂ and different nutrient availability of 12 herbaceous plant species differing in their investment into secondary compounds. Caterpillars of the generalist herbivore Spodoptera littoralis were reared on the leaves produced and their consumption and growth rates analysed. Elevated CO₂ resulted in a similar increase of biomass in all plant species, whereas the positive effect of fertilization varied among plant species. Specific leaf weight was influenced by elevated CO₂, but the effect depended on nutrient level and identity of plant species. Elevated CO₂ increased the C/N ratio of the leaves of most species. Caterpillars consumed more leaf material when plants were grown under elevated CO_2 and low nutrients. This indicates compensatory feeding due to lower tissue quality. However, the effects of elevated CO₂, nutrient availability and plant species identity on leaf consumption interacted. Both the effects of CO₂ and nutrient availability on the relative growth rate of the herbivore depended on the plant species. The feeding rate of S. littoralis on plant species that do not produce nitrogen-containing secondary compounds (NCSC) was higher under low nutrient availability. In contrast, in plants producing NCSC nutrient availability had no effect on the feeding rate. This suggests that compensatory feeding in response to low nutrient contents may not be possible if plants produce NCSC. We conclude that elevated CO₂ causes species-specific changes in the quality of plant tissues and consequently in changes in the preferences of herbivores for plant species. This could result in changes in plant community composition.

Keywords: C/N ratio, herbivory, insect growth rate, leaf consumption, palatability, plant growth, plant secondary compounds, plant species identity, specific leaf weight, *Spodoptera littoralis*

Received 18 June 2006; revised version received 25 October 2006 and accepted 7 November 2006

Introduction

The concentration of atmospheric CO_2 is expected to increase in the next 100 years to 500–900 ppm (Houghton *et al.*, 2001). Elevated CO_2 has been shown to have a number of effects on the physiology, growth and reproduction of plants (Körner & Bazzaz, 1996; Körner, 2003). In general, plants tend to increase rates of photosynthesis, assimilation and development. However, these

Correspondence: Diethart Matthies, tel. +49 6421 282 2085, fax +49 6421 282 2093, e-mail: matthies@staff.uni-marburg.de effects vary considerably among plant species and depend on other environmental factors (Jablonski *et al.,* 2002), which makes predictions of community responses to changes in atmospheric CO₂ difficult.

Insect herbivores are an omnipresent and often rather subtle cause of vegetational change in terrestrial ecosystems (Brown & Gange, 1992; Schädler *et al.*, 2004). The intensity of feeding by insect herbivores on different host plants depends on a number of plant traits which are known to be influenced by the CO₂-content of the atmosphere, including leaf thickness, tissue C/N ratio, and the secondary compound and water content of tissues (e.g. Ayres, 1993; Lincoln *et al.*, 1993; Watt *et al.*, 1995; Poorter *et al.*, 1996; Bezemer & Jones, 1998; Cotrufo *et al.*, 1998a). The growth, fecundity and population dynamics of herbivores may, therefore, be affected by changes in host plant quality due to elevated CO_2 , potentially modifying their top-down effects on plant performance.

The carbon-nutrient balance hypothesis suggests that the allocation of resources to secondary compounds is directly controlled by the carbon-nutrient status of a plant (Bryant et al., 1983; Bazzaz et al., 1987, but see Hamilton et al., 2001). Following this hypothesis, investment in carbon-based defences increases with increasing photosynthesis and decreasing nitrogen availability, whereas the opposite should increase reliance on nitrogen-based compounds. Accordingly, plants grown under elevated CO₂ are often characterized by increased contents of carbon-based secondary compounds and nitrogen depletion (Körner, 2000). This, in turn, may cause a lowered production of nitrogen-containing secondary compounds (hereafter called NCSCs), especially if nutrient availability is low (Cotrufo et al., 1998b, Geiger et al., 1999). Other studies, however, have indicated that elevated CO₂ leads to a reallocation of nitrogen to secondary metabolism in Eucalyptus trees because of a higher efficiency of photosynthesis (Gleadow et al., 1998). Overall, this suggests that elevated CO₂ should reduce the suitability of plants, which produce NCSCs as hosts for herbivores. However, there may not be a negative effect of elevated CO₂ on the production of NCSCs if the availability of nitrogen is high (Matros et al., 2006). The general applicability of the carbon-nutrient balance hypothesis has been doubted (Hamilton et al., 2001). First, the synthesis of nitrogen-containing compounds is often costly in terms of carbon-based primary compounds, whereas the production of some carbon-based compounds may require a high investment into enzymes. Second, allocation of resources to plant growth may not always have priority over the production of secondary metabolites (Hamilton et al., 2001). However, both the secondary chemistry and the nutrient content of a plant clearly affect herbivore performance (Mattson, 1980). It is, therefore, not surprising that growth and development of insect herbivores has often been found to be negatively affected by elevated CO₂ (Bezemer & Jones, 1998), although these effects vary considerably among specific insect-plant pairings and between feeding guilds. While leaf chewers and leaf miners tended to respond negatively to elevated CO₂, some phloem-feeders and whole-cell-feeders showed positive responses. However, due to a lack of studies, it is not clear how general these conclusions are (Bezemer & Jones, 1998).

Plant responses to elevated CO₂ are often suggested to be more accentuated in nutrient-enriched conditions (Goverde et al., 2002; Körner, 2003 and references therein), because plant growth and development are often limited by the availability of nutrients. One may, therefore, expect that the influence of elevated CO₂ on plantinsect interactions is strongly modified by the nutrient status of a plant. For instance, the reduction in the concentration of tissue N in response to elevated CO₂ is more pronounced when plants are fertilized (Goverde et al., 2002). Further, the high variability of herbivore responses to plants treated with elevated CO₂ may at least partly be due to differences in the nutritive status of plants used in different experiments. While some studies did not find interacting effects of nutrients and CO₂ (Hättenschwiler & Schafellner, 1999; Goverde & Erhardt, 2003) or weak effects (Kinney et al., 1997; Williams et al., 1997), Kerslake et al. (1998) found that elevated CO₂ cancelled out positive effects of fertilization on the pupal weight of a moth.

We investigated the effects of elevated CO_2 and nutrient availability on growth and leaf quality of a set of plant species differing in their ability to invest into secondary defence compounds and their effects on the feeding and growth of a generalist herbivore, the caterpillars of the noctuid moth *Spodoptera littoralis*. We hypothesize that elevated CO_2 will decrease the quality of species which do not produce NCSCs as a host plant for the herbivore more strongly than that of species which do produce NCSCs, but only under conditions of low nutrient availability.

Methods

Experimental setup

For our experiment, we used a set of 12 plant species from a wide taxonomic range (10 families) that differed in their ability to invest into secondary compounds (see Appendix A). In January 2003, seeds were sown into pots (9 cm×9 cm×12 cm) filled with standard potting soil (TKS 1, Floragard, Oldenburg, Germany, $110 \text{ mg } \text{L}^{-1} \text{ N}$, $130 \text{ mg } \text{L}^{-1} \text{ P}_2 \text{O}_5$, $180 \text{ mg } \text{L}^{-1} \text{ K}_2 \text{O}$). Depending on the plant species, seedlings were thinned to two to seven individuals per pot to obtain approximately the same amount of biomass. Plants were grown in four closed tents (1m×1m×1m) made from translucid plastic foil in a walk-in growth chamber. Light was provided 16 h day⁻¹ by high-pressure sodium lamps (FP Riburo, Powerstar HQI-T, Osram, Germany) and highpressure mercury lamps (Evelightning, MT 400DL/BH, Eye, Japan) resulting in a light intensity of ca. 200 µmol photons $s^{-1}m^{-2}$ in the tents. The temperature in the tents was kept at 22 °C during the day and 15 °C at night. Two chambers were maintained at ambient CO_2 (375 ppm) and two at elevated CO_2 (725 ppm). Airflow was 400 L h⁻¹ in every each tent. CO_2 levels were controlled using an infra-red gas analyser (Anagas CD 98, Environmental Instruments, Learnington, UK).

After germination four pots per species were placed into each tent. Two pots per tent and species were fertilized once per week with 50 mL of a 0.3% solution of an NPK-fertilizer (8-8-6, Wuxal super, Aglukon, Düsseldorf, Germany). In total, the experiment consisted of 192 pots (12 species × two levels of fertilization × two levels of $CO_2 \times$ four replicates). Every week, the CO_2 treatment of each tent was changed, and the pots were moved accordingly. In addition, pots were randomly exchanged between the two tents that received the same CO_2 treatment to avoid pseudoreplication and tent effects.

Measurement of plant growth

After 5 weeks of growth the height and number of leaves were determined for each plant. In three of the species (*A. githago, Chenopodium bonus-henricus, Digitalis purpurea*) some of the leaves had already become yellow and we determined the proportion of yellow leaves. The chlorophyll content of three leaves of the same age per pot was measured with a hand-held chlorophyll metre (SPAD-502, Minolta, Japan). The three measures were then averaged for each pot and analysed. The values measured by the instrument are related by a second order polynomial to the actual chlorophyll content of a leaf (Richardson *et al.*, 2002) and we report chlorophyll content given by Richardson *et al.* (2002).

To investigate specific leaf weight (SLW) a predefined leaf of the tallest plant per pot (e.g. the third leave from the apex in *Nicotiana tabacum*) was harvested, scanned, dried and weighed. The area of the leaf images was determined with Adobe Photoshop 6.0. SLW was calculated as the ratio of leaf dry mass (mg) over leaf area (cm²).

Plants were cut at ground level, dried at 80 °C for 24 h, and weighed. One leaf per pot was ground in a mill and its carbon and nitrogen content was analysed with a CHNS-932 Elemental Analyzer (Leco Corporation, St Joseph, MI, USA).

Palatability trials and relative growth rate of Spodoptera *caterpillars*

Leaf palatability was assayed after 5 weeks of plant growth using the caterpillars of the cotton leafworm *S. littoralis* (Boisduval) (Lepidoptera: Noctuidae). *S. littoralis* is a serious pest of crops in North Africa, the Mediterranean and the Middle East (Sadek, 2003). The caterpillars of this moth attack host plants belonging to at least 40 plant families (Brown & Dewhurst, 1975).

Two-week-old caterpillars of *S. littoralis* (instars 2 and 3) were weighed and placed individually into plastic tubes. Two discs of 20 mm diameter were taken from one fully expanded, nonsenescent leaf per pot avoiding the midrib and weighed. One of the discs was placed together with a piece of wet filter paper into a plastic tube (diameter 4.5 cm, length 8 cm). A 2-week-old caterpillar of *S. littoralis* (instars 2 or 3) was weighed and placed into the tube. The tube was then closed by a pad of cotton wool at one end and by a perforated plastic cap at the other. The second disc taken was used for the determination of the water content of the leaves. The test ran for 24 h at 24 °C with a photoperiod of LD 16/8. After the tests, the remaining leaf material was dried at 80 °C to weight constancy.

After the feeding test, the caterpillars were provided with 200–400 mg of fresh leaf material from the same plants as in the palatability trial. After a further 6 days the experiment was terminated and the caterpillars were weighed. The leaves were dried at 80 °C for 24 h, and weighed. Relative growth rate (RGR) of the caterpillars was calculated as $RGR = (\ln(w_e) - \ln(w_i))/d$, where w_e is the mass of the caterpillar at the end of the experiment, w_i the initial mass and d the duration of the experiment in days. The leaf dry mass consumed by the caterpillars was calculated as the difference between initial dry mass (calculated as fresh mass × [1–water content]) and remaining dry mass of the leaves at the end of the palatability trials.

Statistical analyses

The effects of plant species, CO2 concentration and fertilization on plant growth and growth of caterpillars were analysed by three-way ANOVAS. The effects of the studied factors on consumed leaf material were analysed by a three-way ANCOVA with initial herbivore fresh weight as a covariate (Raubenheimer & Simpson, 1992; Horton & Redak, 1993). SLW and C/N ratio are known to influence feeding by herbivores (Schädler et al., 2003). We, therefore, initially tested the effects of both factors on leaf consumption and RGR of caterpillars by including them as covariates in the analyses. However, every covariate, which did not show a significant effect on these traits was eliminated from the analyses. All variables were tested for homogeneity of variance and normality of residuals. Only data on plant biomass has to be log-transformed to satisfy both criteria. In a further analysis, plant species were grouped into species, which produce NCSC and species, which do not. The effects of NCSC, elevated CO₂, fertilization and

	Biomass		SLW		C/N		Chlorophyll					
Source of variation	df	MS	F	df	MS	F	df	MS	F	df	MS	F
Species (S)	11	2.14	60.9***	11	17.90	7.7***	11	1699.58	63.4***	11	0.20	55.1***
ĊO ₂	1	0.44	12.5***	1	22.2	9.5**	1	908.35	33.9***	1	0.05	12.4***
Fertilizer (F)	1	8.09	229.2***	1	0.1	0.1	1	3562.71	132.8***	1	0.35	98.2***
$S \times CO_2$	11	0.04	1.2	11	10.55	4.5***	11	167.20	6.2***	11	0.01	2.6***
$S \times F$	11	0.77	21.9***	11	9.84	4.2***	11	469.00	17.5***	11	0.02	4.5***
$CO_2 \times F$	1	0.01	0.4	1	0.8	0.3	1	0.35	0.1	1	< 0.001	0.06
$S \times CO_2 \times F$	11	0.04	1.1	11	4.81	2.1*	11	33.52	1.3	11	0.002	0.6
Residual	144	0.03		143	2.32		135	26.82		140	0.004	

Table 1ANOVA results of the effects of plant species, elevated CO_2 and fertilization on aboveground biomass, specific leaf weight(SLW), C/N ratio and chlorophyll content of 12 plant species

Residual degrees of freedom differ due to different numbers of replicates. Significance levels are indicated by *P < 0.05, **P < 0.01 and ***P < 0.001.

Fig. 1 Effect of elevated CO_2 and fertilization on the specific leaf weight of 12 plant species (means \pm standard error). AG, Agrostemma githago; CB, Chenopodium bonus-henricus; CM, Conium maculatum; DP, Digitalis purpurea; LP, Lolium perenne; LA, Lupinus angustifolius; LL, Lupinus luteus; NT, Nicotiana tabacum; RA, Rumex acetosella; SJ, Senecio jacobea; SA, Sinapis alba; TP, Trifolium pratense. *Plant species that produce nitrogen-containing secondary compounds.

plant species (nested within NCSC) on leaf consumption and growth rate of caterpillars were tested using a nested general linear model in SAS 9.

Results

Plant growth

Across all species elevated CO_2 increased the aboveground biomass of the plants by 25% (Table 1). This effect did not differ significantly among species and was not influenced by fertilization. Not surprisingly, the application of fertilizer also increased the biomass, but the various studied species responded differently to this treatment (significant species × fertilization interaction, Table 1).

SLW increased with elevated CO_2 when averaged across all investigated plant species (Fig. 1, Table 1). However, magnitude and direction of this effect varied among the plant species and were also affected by fertilization (significant three-way interaction, Table 1, Fig. 1). For instance, the SLW of *D. purpurea* strongly increased under elevated CO_2 in the unfertilized treatment, whereas the SLW of *Lupinus angustifolius* decreased. With fertilization, however, these effects were much weaker.

On average, elevated CO_2 increased the C/N ratio of leaves by 23.5%, but the effect was not consistent among

Fig. 2 Effect of elevated CO_2 (left) and fertilization (right) on the C/N ratio of leaves of 12 plant species (means \pm standard error). See Fig. 1 for abbreviations of plant species. *Plant species that produce nitrogen-containing secondary compounds.

Table 2	ANOVA results of the	effects of plant species	s, elevated CO ₂	2 and fertilization	n on the number	of leaves,	plant h	eight and
proportic	on of yellow leaves							

	Number of leaves			Height			% yellow leaves		
Source of variation	df	MS	F	df	MS	F	df	MS	F
Biomass	1	9.49	1604.9***	1	15943.5	579.1***	_		
Species (S)	11	1.77	298.54***	8	7272.0	264.2***	2	0.137	10.54***
CO ₂	1	0.02	3.58(*)	1	43.1	1.56	1	0.104	8.00**
Fertilizer (F)	1	0.18	29.73***	1	36.76	1.34	1	0.022	1.70
$S \times CO_2$	11	0.01	1.71(*)	8	29.90	1.09	2	0.102	7.91***
$S \times F$	11	0.04	7.52***	8	79.82	2.90***	2	0.030	2.32
$CO_2 \times F$	1	0.01	0.03	1	12.78	0.46	1	0.002	0.16
$S \times CO_2 \times F$	11	0.004	0.61	8	17.02	0.62	2	0.075	5.80**
Residual	143	0.006		107	27.53		36	0.01	

Aboveground biomass was included as a covariate for the analyses of number of leaves and height. The residual degrees of freedom differ due to different numbers of replicates.

Significance levels are indicated with $^{(*)}P < 0.1$, $^{**}P < 0.01$ and $^{***}P < 0.001$.

species (Fig. 2, Table 1). While in some species there was a strong increase in the C/N ratio of leaves with elevated CO₂ (*D. purpurea, Senecio jacobea, Lolium perenne, Lupinus luteus*), most species did not respond. When averaged across all species, fertilization decreased C/N ratio by 34.4%. Again, this effect varied depending on plant species identity (Fig. 2, Table 1). The chlorophyll content of leaves decreased on average under elevated CO₂ by 11.6%, but increased with fertilization by 43.6%. The effect of both factors differed between the studied plant species (Table 1).

The CO₂ level also influenced the growth form of the plants. Under elevated CO₂ plants produced more leaves

(ANOVA, $F_{1,44} = 11.6$, P = 0.0008) and grew higher (ANOVA, $F_{1,108} = 4.41$, P = 0.038). The increase in leaf production was not merely an effect of increased size, because the effect of CO₂ level remained, if biomass was included as a covariate (Table 2). In contrast, the CO₂ effect on plant height was only due to a general effect on size.

Three plant species showed signs of senescence and developed yellow leaves during the experiment. Elevated CO_2 influenced the proportion of yellow leaves per plant, indicating changes in phenology, but this effect was not consistent among species (Table 2). While two plant species (*A. githago* and *C. bonus-henricus*) produced more yellow leaves under elevated CO_2 ,

Fig. 3 Effect of elevated CO_2 (left) and fertilization (right) on the leaf mass of different plant species consumed by caterpillars of *Spodoptera littoralis* (means \pm standard error). Consumed leaf mass was adjusted for the effect of initial herbivore mass. See Fig. 1 for abbreviations of plant species. Negative values can result in hardly consumed species if the water content of their leaves was slightly lower than in the reference leaf discs. *Plant species that produce nitrogen-containing secondary compounds.

D. purpurea produced less (significant species \times CO₂ interaction, Table 2).

Palatability trials and RGR of Spodoptera caterpillars

The caterpillars responded differently to each plant species (Fig. 3, Table 3). Across the investigated plant species, the amount of consumed leaf material was increased by elevated CO₂ by 24.9%, and reduced by fertilization by 22.9%). However, the effects of elevated CO₂ varied among species (CO₂ × species, Table 3), and there was also a significant CO₂ × fertilization × species interaction (Table 3).

In some plant species, leaves grown under elevated CO₂ were more consumed when the plants were unfertilized but were less consumed with fertilization (*S. jacobea, L. luteus*), whereas for other species the trend was reversed (*N. tabacum, C. maculatum*). The amount of consumed leaf material decreased with SLW (r = -0.24, P = 0.0008). Inclusion of this variable as a covariate in the analysis, however, did not change the results qualitatively.

The RGR of the caterpillars depended strongly on the plant species they were fed with (Table 4, Fig. 4). Fertilization increased RGR by 105% across all plant species. The effect differed, however, between plant species (significant fertilization × species interaction, Fig. 4, Table 4). Elevated CO_2 had no consistent effect on the RGR of the caterpillars, but influenced the RGR of caterpillars feeding on individual plant species differently. The RGR of caterpillars fed with plants of *S. jacobea* and *L. angustifolius* grown at elevated CO_2 was considerable lower than that of caterpillars fed with

Table 3ANCOVA results for the effects of initial herbivoremass, plant species, fertilization and elevated CO_2 on leafmass consumed by the herbivores

Source of variation	df	MS	F
Herbivore mass	1	5.42	10.41**
Species (S)	11	12.46	23.96***
Fertilizer (F)	1	3.30	6.35*
CO ₂	1	1.78	3.46(*)
$S \times F$	11	0.91	1.75(*)
$S \times CO_2$	11	1.19	2.29*
$CO_2 \times F$	1	0.85	1.64
$S \times CO_2 \times F$	11	1.36	2.62**
Residual	143		

Significance levels are indicated with ${}^{(*)}P < 0.1$, ${}^{*}P < 0.05$, ${}^{**}P < 0.01$ and ${}^{***}P < 0.001$.

material grown at ambient at CO₂, whereas for other species (*L. perenne, L. luteus*) the opposite was the case. Across all treatments, the RGR of caterpillars fed with a species was positively correlated with the leaf mass of this species consumed (r = 0.68, P = 0.016).

The RGR of caterpillars decreased with increasing C/N ratio of the leaf tissue (r = -0.35, P < 0.0001). When leaf C/N ratio was included as a covariate in the model, the overall effect of fertilization was no longer significant, indicating that positive effects of fertilization on RGR of the caterpillars were mediated by an increased availability of nitrogen in the food (lower leaf C/N ratio). All other effects did not change qualitatively after adjusting for the effects of leaf C/N ratio.

The nested analyses with species nested in the factor NCSC yielded very similar results. More interestingly, there was a significant interaction between the ability of a species to produce NCSC and nutrient availability on leaf consumption by caterpillars (Table 5). Caterpillars consumed less leaf material of plants grown under high nutrient availability, but only if the plants did not produce NCSC (Fig. 5).

Discussion

Effects on plant growth

Elevated CO_2 levels can be regarded as a form of 'atmospheric' fertilization and can, therefore, be expected to generally increase plant photosynthesis,

Table 4 ANOVA results of the effects of plant species, elevated CO₂ and fertilization on the relative growth rate of *Spodoptera littoralis* caterpillars

Source of variation	df	MS	F
Species (S)	11	0.082	10.49***
Fertilizer (F)	1	0.093	11.83**
CO ₂	1	0.003	0.35
$S \times F$	11	0.024	3.06**
$S \times CO_2$	11	0.028	3.57***
$CO_2 \times F$	1	0.001	0.17
$S \times CO_2 \times F$	11	0.006	0.74
Residual	141	0.008	

Significance levels are indicated with **P < 0.01 and ***P < 0.001.

growth and reproduction. Our results add to the literature, which reports positive effects of elevated CO_2 on the biomass of plant species. In contrast to the results of other authors (e.g. Goverde *et al.*, 2002; Jablonski *et al.*, 2002) this effect did not differ substantially among the 12 plant species in our study. It has been suggested (Goverde *et al.*, 2004) that positive effects of elevated CO_2 on plant biomass may be particularly strong in legumes because of their nitrogen fixation, but this was not the case in our study. The effects of elevated CO_2 and nutrient availability on the aboveground biomass of plants were also additive. This is in contrasts to the results of previous studies (e.g. Stöcklin & Körner, 1998; Matthies & Egli, 1999), which found stronger effects of elevated CO_2 on fertilized plants.

The general increase of SLW and C/N ratio and the decrease in chlorophyll content of leaves under elevated CO_2 is in accordance with the results of a number of earlier studies (Ayres, 1993; Lincoln *et al.*, 1993; Watt *et al.*, 1995; Poorter *et al.*, 1996; Bezemer & Jones, 1998; Cotrufo *et al.*, 1998a, b). It is thought that under elevated CO_2 increased photosynthesis and photosynthate production leads to the increased production of structural carbohydrates which enhance leaf toughness and, therefore, SLW (Coviella & Trumble, 1999). However, in our study this effect differed among plant species.

Elevated CO_2 can have a number of effects on plant architecture and morphology (Pritchard *et al.*, 1999). In our study, both plant height and biomass increased under elevated CO_2 and the number of leaves per unit of biomass generally increased with elevated CO_2 and nutrient availability. This may be explained by higher rates of cell division in meristems caused by an in-

Fig. 4 Effect of elevated CO_2 (left) and fertilization (right) on the relative growth rate of caterpillars of *Spodoptera littoralis* feeding on different plant species (means \pm standard error). See Fig. 1 for abbreviations of plant species. *Plant species that produce nitrogencontaining secondary compounds.

1012 M. SCHÄDLER et al.

	Consumed	leaf mass	Relative growth rate		
Source of variation	df	MS	F	MS	F
Herbivore mass	1	8.41	16.35***		
NCSC ^A	1	0.92	0.07	1.53×10^{-2}	0.17
Species (S) ^a	10	13.53	26.29***	$8.89 imes 10^{-2}$	11.37***
Fertilizer (F)	1	3.30	6.42*	9.03×10^{-2}	11.54***
CO ₂	1	1.60	3.11 ^(*)	1.86×10^{-3}	0.24
$NCSC \times F^B$	1	3.82	6.22*	1.01×10^{-3}	0.04
$S\times F^{\rm b}$	10	0.61	1.19	2.66×10^{-2}	3.40***
$NCSC \times CO_2^C$	1	2.71	2.86	$7.98 imes 10^{-3}$	0.27
$S \times CO_2^c$	10	0.95	1.85*	3.05×10^{-2}	3.90***
$CO_2 \times F$	1	0.84	1.64	1.91×10^{-3}	0.24
$NCSC \times CO_2 \times F^D$	1	0.02	0.02	$4.53 imes 10^{-5}$	0.01
$S \times CO_2 \times F^{\overline{d}}$	10	1.47	2.86**	6.37×10^{-3}	0.81
Residual	142	0.51		7.82×10^{-3}	

Table 5 Results of nested ANCOVA and ANOVA of the effects of nitrogen-containing secondary compounds (NCSC), plant species, fertilization and elevated CO₂ on consumed leaf mass und relative growth rate of caterpillars of *Spodoptera littoralis*

Plant species was nested within NCSC. Terms indicated by upper case letters were tested against the term with the corresponding lower case letter, all other terms were tested against the residual mean square.

Significance levels are indicated with $^{(*)}P < 0.1$, *P < 0.05, **P < 0.01 and ***P < 0.001.

Fig. 5 Leaf mass consumed by caterpillars of *Spodoptera littoralis* feeding on plant species that produce nitrogen-containing secondary compounds (+NCSC) or not (–NCSC) and were either fertilized or not (means \pm standard error). Effects are adjusted for initial herbivore mass. Bars with different letters indicate significantly different means (P < 0.05, Tukey's HSD).

creased availability of assimilates (Kinsman *et al.*, 1997). However, most of the studies reviewed by Pritchard *et al.* (1999) did not correct for the effects of increased plant biomass. Finally, it has been pointed out that elevated CO_2 may accelerate the development of plants (Coleman *et al.*, 1993). Accordingly, the number of senescent leaves was increased in two (*Agrostemma* githago and *C. bonus-henricus*) of the three plant species with senescent leaves in our study. However, the third species (*D. purpurea*) produced fewer senescent leaves, indicating slower development. While studies involving a few species from the same family sometimes did not find a species \times CO₂ interaction on leaf traits like SLW and C/N-ratio (Goverde & Erhardt, 2003), our study with 12 species from 10 families suggests that leaf traits of plants from the same family would respond similarly to elevated CO2 because of similar physiological traits, while SLW, C/N-ratio and chlorophyll content of less related species should respond differently despite similar trends of biomass change.

Effects on a generalist herbivore

Consumption, growth and development of phytophagous invertebrates depend strongly on the nutritional quality of plant tissue (Mattson, 1980). Given that elevated CO_2 affects the content of nitrogen and carbohydrates in plants, indirect effects on herbivores should be expected and have in fact been demonstrated by numerous studies (see Lincoln *et al.*, 1993; Watt *et al.*, 1995; Bezemer & Jones, 1998; Körner, 2003 for a review). In accordance with the nutrient balance hypothesis (Bryant *et al.*, 1983), the C/N ratio of plant tissue was generally lower under elevated CO_2 in our study and food quality for herbivores, therefore, lower. In fact, a reduction of the nitrogen concentration in leaves is a common response of a wide range of plant species to elevated CO₂ (Yin, 2002). However, in a review of available studies on plant-insect interactions under elevated atmospheric CO2, Bezemer & Jones (1998) concluded that leaf-chewing insects generally are able to compensate for a reduced quality of tissues by increasing their consumption. In accordance with this conclusion, leaf consumption was increased by elevated CO₂ and decreased by fertilization in our study. However, the effect of elevated CO₂ on leaf consumption varied depending on nutrient availability and plant species. Some recent studies have found no compensatory feeding under elevated CO₂ and suggested postingestive mechanisms to compensate for diminished food quality (Barbehenn, 2004a, b; Cleland, 2006). Herbivores may experience different concentrations of chemicals in excised leaves compared with leaves attached to plants because of induced defences which were not considered in our study (Schmelz et al., 2001).

Leaf consumption by S. littoralis was also influenced by interacting effects between the presence of NCSCs in the plant species and nutrient availability. While the feeding rate on plant species, which do not produce NCSC was higher without fertilization, no differences where observed in plant species which do so. This may indicate that compensatory feeding in response to low nutrient content is not possible if plants produce NCSCs because of a limited ability of the herbivores to deal with the toxic compounds. In plant communities, herbivores may respond to a changed host plant quality by a shift of their food preferences rather than by compensatory feeding (Peters et al., 2000; Agrell et al., 2006), although in most studies no preference shifts were observed (Arnone et al., 1995; Traw et al., 1996; Ledergerber et al., 1997, 1998; Díaz et al., 1998). However, our study was not designed to investigate the effects of CO₂ and fertilization on the food choice of larvae given a range of possible host plants, but to test the effects of changed food quality due to these factors on the feeding behaviour and growth on host plants with different defence strategies. In contrast to the expectation, we derived from the carbon-nutrient hypothesis, we did not find interacting effects between the presence of NCSC and elevated CO₂ on leaf consumption or growth rate of the herbivore, suggesting that elevated CO₂ did not change the effect of NCSC on the herbivore. From our experiment, we can, therefore, not conclude that the effect that elevated CO₂ will have on the host quality of a plant for a generalist herbivore will depend on the plant's ability to produce NCSCs, as suggested by the carbon-nutrient balance hypothesis.

Most studies did not find changes in the growth rate of leaf-chewing insects in response to elevated CO₂ (Bezemer & Jones, 1998; Barbehenn *et al.*, 2004a). In contrast, in our study elevated CO₂ influenced the RGR of second and

third instar larvae of S. littoralis, but the effects depended on the plant species they fed on. While the RGR of the insects was increased by elevated CO₂ in some species (most notably in *L. perenne* and the nonalkaloid line of L. luteus), it was reduced in others (most notably in L. angustifolius and S. jacobaea). The two first species do not produce any secondary compounds, whereas the latter two produce NCSCs. In contrast, the carbon-nutrient balance hypothesis predicts an increase of defence compounds for species that rely mainly on carbon-based defences, and negative effects on the growth of herbivores should be expected for these species. However, even within species, which are able to produce NCSC and those which are not, direction and magnitude of the effect of CO₂ on growth rate differed. Accordingly, the effect of CO_2 on the growth rate of the herbivore did not depend on the plant's ability to produce NCSC. However, effects on RGR are not necessarily indicative for effects that CO₂ and nutrient additions may have on overall fitness.

Consumption by herbivores may further be affected by associations between plants and microbes. For instance, infection by the endophytic fungus *Neotyphodium lolii* often provides the basis for acquired chemical defence against herbivores by alkaloids (Porter, 1994), and Hunt *et al.* (2005) demonstrated that alkaloid production in *L. perennne* infected with *N. lolii* is affected by both elevated CO_2 and nutrient availability.

In conclusion, the results of our study suggest that the effects of elevated CO_2 on leaf consumption and growth rate of herbivores are not predictable using the framework of the carbon-nutrient balance hypothesis. Instead, the effects of CO_2 and nutrient availability on herbivore performance depended on species identity. This may have consequences for plant community structure under elevated CO_2 . In natural systems the feeding pressure by herbivores may shift to alternative host plants whose tissue quality is not negatively affected by elevated CO_2 . The effects of invertebrate herbivory on plant community composition and diversity may, therefore, change in a high CO_2 environment, but are difficult to predict.

Acknowledgements

We thank Bernhard Schmid (University of Zürich) for making it possible to analyse leaf C/N in his laboratory and René Husi for carrying out the analyses. The comments of three anonymous referees greatly improved the quality of the manuscript.

References

Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2006) Elevated CO₂ levels and herbivore damage alter host plant references. *Oikos*, **112**, 63–72.

1014 M. SCHÄDLER et al.

- Arnone JA III, Zaller JGx>, Ziegler C, Zandt H, Körner C (1995) Leaf quality and insect herbivory in model tropical communities after long-term exposure to elevated CO₂. *Oecologa*, **104**, 72–78.
- Ayres MP (1993) Plant defence, herbivory and climate change. In: *Biotic Interactions and Global Change* (eds Kingsolver JG, Kareiva PM, Huey RB), pp. 57–74. Sinauer, Sunderland, MA.
- Barbehenn RV, Karowe DN, Chen Z (2004a) Performance of a generalist grasshopper on a C_3 and a C_4 grass: compensation for the effects of elevated CO_2 and plant nutritional quality. *Oecologia*, **140**, 96–103.
- Barbehenn RV, Karowe DN, Spickard A (2004b) Effects of elevated atmospheric CO_2 on the nutritional ecology of C_3 and C_4 grass-feeding caterpillars. *Oecologia*, **140**, 86–95.
- Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defence. *Bioscience*, 37, 58–67.
- Bezemer TM, Jones TH (1998) Plant–insect herbivore interactions in elevated atmospheric CO₂: quantitative analyses and guild effects. *Oikos*, **82**, 212–222.
- Brown ES, Dewhurst CF (1975) The genus Spodoptera (Lepidoptera: Noctuidae) in Africa and near far east. Bulletin of Entomological Research, 65, 221–262.
- Brown VK, Gange AC (1992) Secondary plant succession: how is it modified by insect herbivory? *Vegetatio*, **101**, 3–13.
- Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. *Oikos*, **40**, 357–368.
- Cleland EE (2006) Gastropod herbivory in response to elevated CO₂ and N addition impacts plant community composition. *Ecology*, **87**, 686–694.
- Coleman JS, McConnaughay KDM, Bazzaz FA (1993) Elevated CO₂ and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? *Oecologia*, **93**, 195–200.
- Cotrufo MF, Briones MJI, Ineson P (1998a) Elevated CO₂ affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. *Soil Biology and Biochemistry*, **30**, 1565–1571.
- Cotrufo MF, Ineson P, Scott A (1998b) Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Global Change Biology*, 4, 43–52.
- Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. *Conservation Biology*, **13**, 700–712.
- Díaz S, Fraser LH, Grime JP, Falczuk V (1998) The impact of elevated CO_2 on plant–herbivore interactions: experimental evidence of moderating effects at the community level. *Oecologia*, **117**, 177–186.
- Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. *Plant, Cell and Environment*, **22**, 1177–1199.
- Gleadow RM, Foley WJ, Woodrow IE (1998) Enhanced CO₂ alters the relationship between photosynthesis and defense in cyanogenic *Eucalyptus cladocalyx* f. Muell. *Plant, Cell and Environment*, **21**, 12–22.
- Goverde M, Erhardt A (2003) Effects of elevated CO₂ on development and larval food-plant preference in the butterfly

Coenonympha pamphilus (Lepidoptera, Satyridae). *Global Change Biology*, **9**, 74–83.

- Goverde M, Arnone JA, Erhardt A (2002) Species-specific reactions to elevated CO₂ and nutrient availability in four grass species. *Basic and Applied Ecology*, **3**, 221–227.
- Goverde M, Erhardt A, Stocklin J (2004) Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorus availability in calcareous grassland. *Oecologia*, **139**, 383–391.
- Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. *Ecology Letters*, **4**, 86–95.
- Hättenschwiler S, Schafellner C (1999) Opposing effects of elevated CO₂ and N deposition on *Lymantria monacha* larvae feeding on spruce trees. *Oecologia*, **118**, 210–217.
- Horton DR, Redak RA (1993) Further comments on analysis of covariance in insect dietary studies. *Entomoogia Experimentalis* et Applicata, 69, 263–275.
- Houghton JT, Ding J, Griggs DJ, Nouguer M, van der Linden JJ, Dai X, Maskell K, Johnson CA (2001) *Climate Change* 2001: *The Scientific Basis. Contribution of Working Group* 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
- Hunt MG, Rasmussen S, Newton PCD, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO₂, nitrogen and fungal endophyte-infection on *Lolium perenne* L, Growth, chemical composition and alkaloid production. *Plant, Cell and Environment*, **28**, 1345–1354.
- Jablonski LM, Wang XZ, Curtis PS (2002) Plant reproduction under elevated CO₂ conditions: a meta-analysis of reports on 79 crop and wild species. *New Phytologist*, **156**, 9–26.
- Kinney KK, Lindroth RL, Jung SM *et al.* (1997) Effects of CO₂ and NO₃-availability on deciduous trees: phytochemistry and insect performance. *Ecology*, **78**, 215–230.
- Kerslake JE, Woodin SJ, Hartley SE (1998) Effects of carbon dioxide and nitrogen enrichment on a plant–insect interaction: the quality of *Calluna vulgaris* as a host for *Operophthera brumata*. *New Phytologist*, **140**, 43–53.
- Kinsman EA, Lewis C, Davies MS, Young JE, Francis D, Vilhar B, Ougham HJ (1997) Elevated CO₂ stimulates cells to divide in grass meristems: a differential effect in two natural populations of *Dactylis glomerata*. *Plant, Cell and Environment,* **20**, 1309–1316.
- Körner C (2000) Biosphere responses to CO₂ enrichment. *Ecological Applications*, **10**, 1590–1619.
- Körner C (2003) Ecological impacts of atmospheric CO₂ enrichment on terrestrial ecosystems. *Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences*, **361**, 2023–2041.
- Körner C, Bazzaz FA (1996) Carbon Dioxide, Populations, and Communities. Academic Press, San Diego.
- Ledergerber S, Thommen GH, Baur B (1997) Grazing damage to plants and gastropod and grasshopper densities in a CO₂enriched experiment on calcareous grassland. *Acta Oecologica*, **18**, 255–261.
- Ledergerber S, Leadley PW, Stöcklin J, Baur B (1998) Feeding behaviour of juvenile snails (*Helix pomatia*) to four plant species grown at elevated atmospheric CO₂. *Acta Oecologica*, **19**, 89–95.

© 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd, *Global Change Biology*, **13**, 1005–1015

- Lincoln DE, Fajer ED, Johnson RH (1993) Plant–insect herbivore interactions in elevated CO₂ environments. *Trends in Ecology and Evolution*, **8**, 64–68.
- Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP (2006) Growth at elevated CO₂ concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. *Plant, Cell and Environment*, **29**, 126–137.
- Matthies D, Egli P (1999) Response of a root hemiparasite to elevated CO_2 depends on host type and soil nutrients. *Oecologia*, **120**, 156–161.
- Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annual Reviews of Ecology and Systematics, 11, 119–161.
- Peters HA, Baur B, Bazzaz F, Körner C (2000) Consumption rates and food preferences of slugs in a calcareous grassland under current and future CO₂ conditions. *Oecologia*, **125**, 72–81.
- Poorter H, Roumet C, Campbell BD (1996) Interspecific variation in the growth response of plants to elevated CO₂: a search for functional types. In: *Carbon Dioxide, Populations, and Communities* (eds Körner C, Bazzaz FA), pp. 375–412. Academic Press, San Diego.
- Porter JK (1994) Chemical constituents of grass endophytes. In: Biotechnology of Endophytic Fungi of Grasses (eds Bacon CW, White JF), pp. 103–123. CRC Press, Boca Raton.
- Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO₂ and plant structure: a review. *Global Change Biology*, 5, 807–837.
- Raubenheimer D, Simpson SJ (1992) Analysis of covariance: an alternative to nutritional indices. *Entomologia Experimentalis et Applicata*, **62**, 221–231.
- Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. *New Phytologist*, **153**, 185–194.

- Sadek MM (2003) Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep, Noctuidae). Journal of Applied Entomology, 127, 396–404.
- Schädler M, Jung G, Auge H, Brandl R (2003) Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. *Oikos*, **103**, 121–132.
- Schädler M, Jung G, Brandl R, Auge H (2004) Secondary succession is influenced by belowground insect herbivory on a productive site. *Oecologia*, **138**, 242–252.
- Schmelz EA, Alborn HT, Tumlinson JH (2001) The influence of intact-plant and excised leaf bioassay designs on volicitin – and jasmonic acid-induced sesquiterpene volatile release in *Zea mays. Planta*, **214**, 171–179.
- Stöcklin J, Körner C (1998) Interactive effects of elevated CO₂, P-availability, and legume presence on calcareous grassland: results of a glasshouse experiment. *Functional Ecology*, **13**, 200–209.
- Traw MB, Lindroth RL, Bazzaz FA (1996) Decline in gipsy moth (*Lymantra dispar*) performance in an elevated CO₂ atmosphere depends upon host plant species. *Oecologia*, **108**, 113–120.
- Watt AD, Whittaker JB, Docherty M, Brooks G, Lindsay E, Salt DT (1995) The impact of elevated atmospheric CO₂ on insect herbivores. In: *Insects in a Changing Environment* (eds Harrington R, Stork NE), pp. 198–217. Academic Press, London.
- Williams RS, Thomas RB, Strain BR, Lincoln DE (1997) Effects of elevated CO₂, soil nutrient levels, and foliage age on the performance of two generations of *Neodiprion lecontei* (Hymenoptera: Diprionidae) feeding on loblolly pine. *Environmental Entomology*, **26**, 1312–1322.
- Yin X (2002) Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO₂ enrichment: a retrospective synthesis across 62 species. *Global Change Biology*, 8, 631–642.

Appendix A

Table A1 List of plant species used in the experiments with information on important secondary compounds known to occur in the plant tissue (taken from Hoppe, 1958; Roth *et al.*, 1994, and the toxicological data base of the University of Zürich at www.vetpharm.unizh.ch)

Abbreviation	Host species	Family	Secondary compounds
AG	Agrostemma githago	Caryophyllaceae	Steroid saponins
CB	Chenopodium bonus-henricus	Chenopodiaceae	Saponines
СМ	Conium maculatum	Apiaceae	Alkaloids (e.g. coniin)* [0.4–2.0%]
DP	Digitalis purpurea	Scrophulariaceae	Glucosides [0.2–0.4%]
LP	Lolium perenne	Poaceae	None
LA	Lupinus angustifolius	Fabaceae	Alkaloids*
LL	Lupinus luteus	Fabaceae	None (low-alkaloid line) [<0.04%]
NT	Nicotiana tabacum	Solanaceae	Alkaloids (nicotin)* [0.05–4.0%]
RA	Rumex acetosella	Polygonaceae	Oxalate [0.05–1.5%]
SJ	Senecio jacobea	Asteraceae	Pyrrolizidine alkaloids* [0.2%]
SA	Sinapis alba	Brassicaceae	Glucosinolates (sinalbin)* [2.5%]
TP	Trifolium pratense	Fabaceae	Cyanogenic glucosides*

Taxonomy of plants follows Schmeil & Fitschen (1996) and Roth *et al.* (1994). Species are in alphabetical order. *Nitrogen-containing compounds.