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Modelling biome shifts and tree cover
change for 2050 in West Africa

Jonathan Heubes1*, Ingolf Kühn2, Konstantin König1,3, Rüdiger Wittig1,4,

Georg Zizka1,4,5 and Karen Hahn1,4

INTRODUCTION

Africa is expected to face severe changes in climatic conditions

this century (IPCC, 2007), which will affect the spatial

distribution of biomes and vegetation characteristics (e.g. tree

cover). The continent is also characterized by a fast growing

human population (up to 3% year)1; FAO, 2007), which is

imposing an increased pressure upon ecosystems ranging from

tropical evergreen forest to deciduous forest, savanna and

grassland. Yet the lives and livelihoods of local people are
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ABSTRACT

Aim Africa is expected to face severe changes in climatic conditions. Our

objectives are: (1) to model trends and the extent of future biome shifts that may

occur by 2050, (2) to model a trend in tree cover change, while accounting for

human impact, and (3) to evaluate uncertainty in future climate projections.

Location West Africa.

Methods We modelled the potential future spatial distribution of desert,

grassland, savanna, deciduous and evergreen forest in West Africa using six

bioclimatic models. Future tree cover change was analysed with generalized

additive models (GAMs). We used climate data from 17 general circulation

models (GCMs) and included human population density and fire intensity to

model tree cover. Consensus projections were derived via weighted averages to:

(1) reduce inter-model variability, and (2) describe trends extracted from

different GCM projections.

Results The strongest predicted effect of climate change was on desert and

grasslands, where the bioclimatic envelope of grassland is projected to expand

into the desert by an area of 2 million km2. While savannas are predicted to

contract in the south (by 54 ± 22 · 104 km2), deciduous and evergreen forest

biomes are expected to expand (64 ± 13 · 104 km2 and 77 ± 26 · 104 km2).

However, uncertainty due to different GCMs was particularly high for the

grassland and the evergreen biome shift. Increasing tree cover (1–10%) was

projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo,

but a decrease was projected for coastal areas (1–20%). Furthermore, human

impact negatively affected tree cover and partly changed the direction of the

projected change from increase to decrease.

Main conclusions Considering climate change alone, the model results of

potential vegetation (biomes) show a ‘greening’ trend by 2050. However, the

modelled effects of human impact suggest future forest degradation. Thus, it is

essential to consider both climate change and human impact in order to generate

realistic future tree cover projections.
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intimately linked with these biomes as they provide food, fuel,

fibre and a range of other ecosystem services (Norris et al.,

2010). The Sahel drought, which began in the 1970s, drew the

attention of the public when a million people starved

(Nicholson et al., 1998) and there were widespread reports

of tree mortality (Maranz, 2009). Possible explanations for the

drought are land degradation and sea surface temperature

anomalies, which triggered the system to shift from ‘wet’ to

‘dry’ through strong non-linear vegetation–atmosphere feed-

backs (Zeng et al., 1999; Foley et al., 2003; Herrmann &

Hutchinson, 2005). Currently, there is disagreement about

West African vegetation dynamics. Local studies in West Africa

have shown a ‘drying out’ which has caused plant species and

vegetation zones to shift southwards (Gonzalez, 2001; Wezel &

Lykke, 2006; Wittig et al., 2007). In contrast, long-term

satellite data have not shown a southern spread of the Sahara

in the 1980–1997 period (Tucker et al., 1991; Tucker &

Nicholson, 1999). Hickler et al. (2005) even found a greening

trend [increasing normalized difference vegetation index

(NDVI)] in the Sahel owing to increasing precipitation.

Besides climate, human pressure is an influential factor that

causes tropical forest loss and degradation (Geist & Lambin,

2002), and so contributes to tropical biodiversity loss (Sala

et al., 2000; Gardner et al., 2010). But other factors, such as fire

and herbivory, can also strongly influence tree cover, partic-

ularly in savanna ecosystems (Jeltsch et al., 2000; House et al.,

2003; Sankaran et al., 2004). Even though it is assumed that

both climate and human impact will substantially affect

African ecosystems, there are only a few studies that have

assessed future climate effects on vegetation in West Africa

(but see Hély et al., 2006; Delire et al., 2008), and even fewer

studies specifically considering future human impact [see

Broennimann et al. (2006) for an example from South Africa].

Predictive modelling has become a frequently used tool for

exploring future unknown states of the Earth’s system. Both

correlative and process-based models are used (Shugart, 1998),

and these mainly differ in their complexity. Correlative

models, also known as ‘bioclimatic envelope models’ or

‘species distribution models’, rely on the niche concept

(Guisan & Zimmermann, 2000) and have become central to

both fundamental and applied research in biogeography

(Araújo & Guisan, 2006). They are simplistic compared with

process-based models and they relate the spatial distribution of

biotic objects (e.g. species, biomes) to environmental variables.

Several techniques have been used which differ mathematically

(e.g. see Breiman et al., 1984; Yee & Mitchell, 1991; Thuiller,

2003; Elith et al., 2006). In contrast, process-based models

explicitly include a wide range of processes and their interac-

tions. Large-scale future vegetation dynamics are commonly

assessed by dynamic global vegetation models (DGVMs) (Sitch

et al., 2003; Woodward et al., 2004). However, most DGVMs

are unable to adequately represent certain tropical vegetation

zones such as savannas (Hély et al., 2006; Schaphoff et al.,

2006; Sato et al., 2007). Furthermore, they are highly sensitive

to demanding parameterizations (Clark et al., 2001; Scheiter &

Higgins, 2009) which might reduce tractability (Thuiller et al.,

2008). Thus, less complex correlative models provide an

alternative for predicting potential biome shifts and tree cover

change in West Africa.

The prediction of future vegetation change is based on

climate projections which are generated by general circulation

models (GCMs). However, there is extremely high variability

in GCM projections over the African continent (IPCC, 2007).

This was identified as a major source of uncertainty in

predictive vegetation modelling (Scheiter & Higgins, 2009).

Uncertainty is particularly high for precipitation, the most

limiting factor in this region (Scholes, 1997; FAO, 2001). So

far, most studies that have specifically assessed future vegeta-

tion dynamics in Africa have not considered more than one or

two GCMs (Delire et al., 2008; Scheiter & Higgins, 2009),

while global studies with more GCMs are conducted at coarse

resolutions (c. 1.5�, e.g. Scholze et al., 2006). Our objective in

this study is to use a variety of state-of-the-art correlative

models and climate projections to examine the effects of both

climate and human impact on future vegetation patterns in

West Africa. In particular we wanted to: (1) model trends and

the extent of future biome shifts by 2050, (2) model trends in

tree cover change, while accounting for human impact, and (3)

evaluate uncertainty in future climate projections.

MATERIALS AND METHODS

Study area and environmental coverages

Five main biomes can be found in our study area of West

Africa: evergreen forest, deciduous forest, savanna, grassland

and desert. The spatial distribution of the vegetation zones is

based on the GLC 2000 Global Land Cover dataset, which

combines satellite information with local knowledge (Mayaux

et al., 2004). Cultivated or managed areas were assigned to the

above mentioned biomes using the potential vegetation map of

White (1983). The qualitative data were transformed to

presence/absence data, i.e. each biome was modelled sepa-

rately. We excluded ‘desert’ from the modelling procedure,

assuming that a northern expansion of grassland would result

in a southern contraction of desert (and vice versa).

Tree cover data (http://www.landcover.org), i.e. the propor-

tion of each pixel covered by trees, were derived from all seven

bands of the MODerate-resolution Imaging Spectroradiometer

(MODIS) sensor on board NASA’s Terra satellite (Hansen

et al., 2003) with a resolution of 500 m. We used bilinear

interpolation (ArcGIS 9.3, http://www.esri-germany.de/) to

match the target resolution of 0.1� (c. 10 km · 10 km).

Predictive biome modelling was performed with climate

data, as climate is the major driver for biome distributions at

the continental scale. We used the WorldClim database

(Hijmans et al., 2005; http://www.worldclim.org), which pro-

vides 19 climatic variables describing trends, seasonality and

extremes. To account for multicollinearity we performed

hierarchical variable clustering using complete linkage with

squared Spearman’s rank correlation coefficients as a similarity

measure (Harrell, 2001). We defined clusters of correlated
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variables as those with a similarity level of ‡ 0.4. From each of

the three resulting clusters, we selected the biologically most

meaningful variable. As water availability is the most critical

and limiting factor for ecosystem dynamics in Africa (Scholes,

1997; FAO, 2001), annual mean precipitation was selected from

the first cluster and precipitation of the driest quarter from the

second cluster. Minimum temperature of the coldest month

was selected from the third cluster. This variable is assumed to

describe the overall temperature increase, because flattening of

the temperature profile is not expected in Africa (Hulme et al.,

2001). Two variables outside the defined clusters were excluded

from the final variable set as single predictor generalized

additive models suggested that they had a poor fit to the data.

Future climate projections (2050) were taken from 17

GCMs, based on scenario A2a from the 4th Assessment Report

of the IPCC (2007), and downscaled to 0.1� (Ramirez & Jarvis,

2008). The IPCC SRES A2 storyline describes a heterogeneous

world with continuously increasing global population and

regionally oriented economic growth that is more fragmented

and slower than in other storylines. To describe the distur-

bance regime in modelling current and future tree cover, we

included fire intensity and human population density along-

side the extracted climate parameters. Human population

density is a proxy for human activity while fire intensity is a

crucial factor in reducing seedling establishment, particularly

in the savanna biome (Higgins et al., 2000). Current and

future fire intensity were described by the average for the

1961–1990 and 2041–2060 periods, respectively, extracted from

an adaptive DGVM (aDGVM; Scheiter & Higgins, 2009), with

future projections being based on ECHAM5 (Roeckner et al.,

2003). Human population density (inhabitants km)2) was

taken from LandSHIFT (Schaldach & Koch, 2009) and log-

transformed due to extreme outliers. LandSHIFT uses different

driving forces describing the socioeconomic and agricultural

development of a country, and was run with model drivers

from the UNEP Global Environmental Outlook-4 (Rothman

et al., 2007). LandSHIFT simulations are provided at a spatial

resolution of 5 arc minutes (c. 0.1�), the aDGVM output

(1� grid cell size) was downscaled to the target resolution.

Biome modelling

Ensemble forecasting is a relatively new approach to ecology

and biogeography, allowing the consensus among several

projections to be calculated (REFS) (Araújo & New, 2007;

Thuiller, 2007). Principal components analysis-consensus

approaches have been shown to produce superior predictions,

compared with individual model projections or averages of

them (Araújo et al., 2005). Here we used weighted averaging

(WA, e.g. Marmion et al., 2009) to build consensus models.

Unless having real independent data to test transferability in

time (Araújo et al., 2005), however, there is no guarantee of

getting superior predictions by WA. We calibrated six different

algorithms for each biome (Fig. 1), implemented in the

Future projections using 17 GCMs

Calibration data set (70 %) Validation data set (30 %)

Regression methods
GLM, GAM

Machine learning methods
ANN, GBM

Classification methods
CTA, FDA

Standard deviation of 17
projected probabilities

Current consensus projection
Weighted average (AUC)

Future consensus projection
Weighted average

(1
st

PCA axis loadings)

Trend Uncertainty

Multiple cross-
validation 3x

BCCR-BCM2.0 CCCMA-CGCM3.1-T47 CCCMA-CGCM3.1-T63 CNRM-CM3 CSIRO-MK3.0 GFDL-CM2.0

GFDL-CM2.1 GISS-AOM UKMO-HADCM3 IAP-FGOALS1.0 IPSL-CM4 MIROC3.2-HIRES

MIROC3.2-MEDRES MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2.3.2A NCAR-PCM1

Figure 1 Analytical framework of the biome modelling. Six different models were used (from left to right): generalized linear models

(GLMs), generalized additive models (GAMs), artificial neural networks (ANNs), generalized boosting models (GBMs), classification tree

analysis (CTA), flexible discriminant analysis (FDA). Models are weighted according to the values obtained from the area under the curve

(AUC) of a receiver operating characteristic plot (sensitivity against 1 – specificity). General circulation models (GCMs) are weighted

according to the first principal components analysis (PCA) axis loadings. Consensus projections are derived by weighted averaging.
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BIOMOD framework (Thuiller et al., 2009): two regression

methods (GAM – generalized additive models, GLM –

generalized linear models), two classification methods (CTA

– classification tree analysis, FDA – flexible discriminant

analysis) and two machine learning methods (GBM – gener-

alized boosting models, ANN – artificial neural networks). For

this purpose the data were split into training and testing data.

Threshold independent area under the receiver operating

characteristic curve (AUC) values (Fielding & Bell, 1997) were

calculated in a 3-fold cross-validation on 30% test data, while

models were calibrated on the 70% training data. We then

applied weights to the models according to their AUC values

(models revealing high AUC values are given high weights and

vice versa). Projected occurrence probabilities of biomes

(continuous scale) are weighted averages of all six model

simulations and were transformed into presence/absence using

a threshold maximizing the percentage of presence and absence

correctly predicted (Pearce & Ferrier, 2000). Final accuracy of

the simulated biomes was assessed using receiver operating

characteristic (ROC) curves (e.g. Thuiller et al., 2009).

Tree cover modelling

We used GAMs (Hastie & Tibshirani, 1986) to model tree

cover, as this approach has been shown to perform best

compared with other techniques (Moisen & Frescino, 2002).

Dealing with proportional data, we fitted GAMs with a

binomial error distribution and logit-link function. Residual

deviance was smaller than the residual degrees of freedom,

indicating no overdispersion. A generalized cross-validation

procedure was used for smoothing parameter estimation

(Wood, 2008), but it was restricted so as not to exceed 4

degrees of freedom to maintain generalization in predictive

modelling. The analysis was performed using the R package

‘mgcv’ (Wood, 2006).

Future consensus projections and uncertainty

Climate data from the 17 GCMs resulted in different

projections of the future spatial distribution of biomes and

tree cover by 2050. Principal components analysis (PCA) was

used to derive consensus projections (Thuiller, 2004), resulting

in a single future projection for the biomes and tree cover,

thereby describing the future trend. However, the PCA-

consensus approach can be used in several ways. Here, PCA

was run with the 17 projected occurrence probabilities of

biomes and tree cover in 2050, respectively. Weights were

applied to the projections according to the first PCA axis

loadings (Fig. 1). Thus, GCMs showing a common future

climate trend are weighted up while the others are weighted

down by maintaining all climate information. To obtain the

ensemble mean, weighted averaging was applied across the

projected future biome probabilities and tree cover values.

Uncertainty was calculated as standard deviation (SD) from

the same future projections for 2050. In summary, weighted

averages were used twice, firstly to reduce inter-model

variability (only biome approach) and secondly to extract

trends derived from the GCMs (Fig. 1). All statistical analyses

were calculated using the free software environment R,

v. 2.10.1 (R Development Core Team, 2010).

RESULTS

AUC values were above 0.9 for the consensus projections

(Fig. 2) and the single models (see Appendix S1 in Supporting

Information), indicating a very good model performance. Our

results show considerable biome shifts by 2050 (Fig. 2). There

is a northern expansion of grassland (203 ± 55 · 104 km2)

and evergreen forest (77 ± 26 · 104 km2; Fig. 3). Deciduous

forest is projected to expand northwards and southwards

(overall gain: 64 ± 13 · 104 km2) while savannas mainly lose

area in the south (54 ± 22 · 104 km2). Shifts in deciduous and

evergreen forests show somewhat contradictory results due to

current and future projected biome overlap (Fig. 2c,d). The

more reliable trend (as indicated by higher AUC values) is

given by the northern expansion of evergreen forest (Fig. 2c,d,

see Appendix S1). Note that the potential distribution of

biomes was calculated, and observed shifts are merely caused

by altered climate variables (i.e. ignoring CO2 effects).

According to our results, grassland and desert are the biomes

most affected by climate change. However, the northern

expansion of grassland is associated with high GCM-based

uncertainty, similar to the northern spread of evergreen forest

(Fig. 2e,h). Thus, discrepancies among underlying GCM

projections are highest at both ends of the bioclimatic gradient,

with standard deviations of the projected biome occurrence

probabilities up to 0.5 (Fig. 2e,h). Considering uncertainty

after the binary transformation of the probabilities, relatively

high SD values are detected for the projected gain of savanna

areas and loss of deciduous forest (Fig. 3). Significant changes

in biome area were detected for all biomes (i.e. P £ 0.05, two-

sided t-test), except for savanna.

Tree cover projections (continuous scale) provide informa-

tion about changes within the biomes. Opposing trends are

observed within the evergreen biome, where tree cover

decreases in coastal areas in the south but largely increases at

the transition to deciduous forests in the north (Fig. 4b). Our

findings of tree cover change give a more realistic picture of

projected vegetation change because ‘real’ instead of potential

vegetation was modelled. The trend derived from 17 GCMs

highlights an increase in canopy cover of a magnitude of

1–10% for northern Côte d’Ivoire, Ghana, Togo, Benin,

southern Burkina Faso and western Mauritania (Fig. 4b). In

contrast, decreasing tree cover is projected for almost all

coastal areas of West Africa (c. 1–20%; Fig. 4b). The results are

concordant with decreasing occurrence probability of the

evergreen biome in coastal areas (only binary values are shown

in Fig. 2). However, human impact strongly modifies the

climate-driven trend by negatively affecting tree cover (Fig. 4b

vs. 4c, see Appendix S2). Increasing coverage is attenuated

while decreasing coverage is accelerated. The projected

responsibility of humans in reducing canopy cover is in the

Biome shifts and tree cover change in West Africa
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magnitude of 1–6%. Incorporating human impact into the

models even changed the direction of the projected tree cover

change from increase to decrease (e.g. northern Nigeria and

Liberia; Fig. 4b,c). Large parts of Nigeria are expected to lose

1–5% tree cover by 2050 (Fig. 4c). Low uncertainty (SD 0–10)

is given for areas that show decreasing canopy cover (Fig. 4d).

In contrast, there is spatial congruence of areas with high GCM

based uncertainty (SD 5–20) and areas with projected increase

of canopy cover (e.g. north-western Mauritania).

DISCUSSION

We used bioclimatic models to demonstrate potential future

biome shifts while highlighting the interplay of climatic and

human effects in modifying canopy cover. Furthermore, we

presented a way of dealing with the high uncertainty in future

climate projections for West Africa. While our results indicate

a climate-driven greening trend, we also showed that human

impact negatively affects tree cover in the simulations.

Biome shifts

With only three climatic variables the models yielded

extremely good fits (AUC > 0.9), indicating excellent model

performance (Swets, 1988). This suggests that, at the scale

analysed, spatial distributions and transitions of biomes are

governed by climate. The expected northward spread of

grassland into the Sahara and the replacement of savannas

by deciduous forest are concordant with results from Cramer

et al. (2001), Scholze et al. (2006) and Scheiter & Higgins

(2009), who attributed the greening to increased CO2 levels

(higher water-use efficiency, fertilization effect). Our models

indicate that climatic change alone can yield this pattern. The

expected ‘greening’ of the Sahara is primarily driven by

Figure 2 Projected biome shifts in West

Africa for 2050: (a) grassland, (b) savanna,

(c) deciduous forest, and (d) evergreen forest.

Consensus projections (a–d) represent trends

derived from 17 general circulation models

(GCMs). The area under the receiver oper-

ating characteristic curve (AUC) value, indi-

cates model performance and is given for the

consensus projection for each biome. GCM

based uncertainty (e–h) is shown for pro-

jected gain and loss of biome area. Uncer-

tainty is expressed as standard deviation (SD)

of future biome occurrence probability.

J. Heubes et al.
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increasing precipitation (see also Hickler et al., 2005). While

Scholze et al. (2006) found that monsoon-influenced tropical

rain forest might regionally be transformed to non-forest area,

we, however, were only able to find this effect when

incorporating human influence into the model.

Our results showed spatial overlap of current evergreen and

deciduous forest and ambiguous results concerning the future

projected evergreen–deciduous forest transition. Despite very

good model performance for both biomes, there might be

difficulties in defining this transition zone using climate, as

herbivory and fire are also influential factors. On the other

hand, the biome transition is a mosaic of both forest types

rather than a sharp border and so this results in overlapping

projections. According to the model performances, northern

expansion of the evergreen biome seems to be more certain

than the southern expansion of deciduous forest. This is in

contrast to simulations from Delire et al. (2008), who found

evergreen forest types switching to deciduous forest types.

However, comparing modelling results from different studies

is hampered by the use of dissimilar predictor variables.

Hély et al. (2006) investigated the sensitivity of African

biomes to changes in precipitation regimes (using the LPJ-

GUESS model) but could not identify biome shifts at their

investigated sites, which were situated at similar latitudes but

further east. The authors used simulated precipitation data,

assuming an increase of 5 to 20%, based on IPCC (2001)

statements. On the one hand, the authors may underestimate

climate impact on biomes by ignoring temperature effects,

which play a crucial role, particularly in Central and West

Africa (Delire et al., 2008). On the other hand, we might

Figure 3 Projected future gain and loss of biome area in West

Africa for 2050 compared to 2000 (grey bars). Calculations are

based on consensus projections (trend) derived from 17 general

circulation models (GCMs). Probability values of biome occur-

rence were transformed into presence/absence using a threshold

maximizing the percentage of presence and absence correctly

predicted. Uncertainty (black line) is given by the standard devi-

ation (SD) of gain and loss using different GCMs. SD values are

drawn from zero-point because they are calculated from the mean

rather than the displayed weighted mean. Note that ‘desert’ was

not explicitly modelled, but it was assumed that a northern

expansion of grassland would result in southern contraction of

desert.

Figure 4 (a) West African percentage tree

cover and projected tree cover change (%) for

2050 (b) ignoring human population growth

and (c) incorporating human population

growth. Consensus projections (b, c) repre-

sent trends derived from 17 general circula-

tion models (GCMs). Uncertainty due to

GCM-based variability is given as standard

deviation (SD) of the projected tree cover in

(d). Explained deviance of the full model is

90.1.

Biome shifts and tree cover change in West Africa
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overestimate the rate of biome shift, because terrestrial

vegetation response to altered climate conditions can be slow

(Woodward et al., 2004). However, because current vegetation

patterns in Africa are highly correlated with precipitation

(Foley et al., 2003), we assume that the biomes and tree cover

will follow shifting rainfall patterns caused by climate change.

The expected rainfall for the desert biome is far above the

natural precipitation variability (see Appendix S3), supporting

modelling results of desert greening. Increasing rainfall pro-

jections for the other biomes are within the natural variability,

but long-term climate patterns, as used in our study (30 years

mean), rather than short-term annual fluctuations in rainfall,

influence vegetation types and canopy cover (Fuller & Ottke,

2002).

Limitations and climate uncertainty

We used bioclimatic models, which are particularly suitable in

our study because we focused on the macro-scale where

climate factors (e.g. precipitation) become dominant drivers

(Pearson & Dawson, 2003). We focused on climate uncertainty

and inter-model variability, without explicitly exploring the

latter effect. However, bioclimatic models are not without

limitations. Conceptual ambiguities as well as biotic and

algorithmic uncertainties are associated with these models

(Araújo & Guisan, 2006).

Modelling entire biomes corresponds to the Clementsian

view of biomes as ‘organisms’ (Clements, 1936). However,

biomes, similar to habitats or vegetation units (see Pompe

et al., 2010), are not expected to respond to climate change as

intact units due to the individualistic nature of the response of

plant species (e.g. Ferrier & Guisan, 2006). Midgley et al.

(2002) showed that such a coarse biome approach underes-

timates the threats of both species loss and within-species

genetic diversity loss considering the ‘Fynbos’ in South Africa.

Among different community-level modelling approaches, our

approach corresponds to the ‘assemble first, model later’

strategy (Ferrier & Guisan, 2006) and this might help to

explain the biome overlap that we found for the evergreen and

deciduous forest biome (Baselga & Araújo, 2010).

Bioclimatic models do not take into account increasing CO2

levels (Midgley et al., 2002; but see Rickebusch et al., 2008)

and the possible adaptation of vegetation to altered climate

conditions [e.g. reduced leaf area index (LAI) values]. Both

factors influence water availability for plants. Furthermore, we

assume no dispersal limitation of the species our biomes

consist of. This might be a crude assumption, except for wind-

dispersed grassland species. However, species-specific knowl-

edge about dispersal ability is lacking in West Africa. More

critical remarks on bioclimatic models can be found, for

example in Dormann (2007). Despite these shortcomings, the

top-down approach is powerful in regions like West Africa,

firstly with regard to the sparse species distribution data, in

practice more complete satellite-based information is available

at the community level (Franklin, 1995; Austin, 1998; Ferrier &

Guisan, 2006). Secondly, the correlative approach is useful,

given the limited application of DGVMs in savanna regions

(Hickler et al., 2006; Sato et al., 2007). However, considering

the sources of uncertainty, we can only provide a coarse

estimate of future vegetation change.

A specific problem for climate impact research in Africa is

the exceptionally high uncertainty in future climate projections

that may be related to GCM biases. GCMs project an annual

mean temperature increase for West Africa, where the Sahara

Desert will warm up more strongly (+2–4 �C) than the tropical

regions (+1.5–3 �C) with one GCM projecting a 5 �C increase

(NCAR-PCM1). More than 50 % of the climate models show

an increase of annual mean precipitation (see Appendix S3)

for desert ()5 to +550 mm), grassland ()30 to +150 mm),

savanna ()6 to +250 mm), deciduous forest ()90 to

+330 mm) and evergreen forest ()130 to +300 mm). The

differences between GCM projections may be because of either

an unclear relationship between Gulf of Guinea and Indian

Ocean warming, or uncertainty about the relationship between

land use change and the West African monsoon (IPCC, 2007).

There is a need to improve and harmonize climate models, e.g.

by integrating strong non-linear climate-vegetation feedbacks.

The next IPCC report with a focus on Africa is expected to

shed light on this.

In this study we used statistically downscaled GCM projec-

tions (c. 10 km). Downscaling can be applied to make use of

the coarse GCM projections (100–200 km) for regional climate

impact research, however, there are limitations (Wilby &

Wigley, 1997). This method is based on the assumptions

that firstly, changes in climates vary only over large distances

(i.e. GCM cell size) and secondly, relationships between

variables in the baseline (‘current climates’) are maintained

in the future. These assumptions might not hold true in

mountainous areas where topography can cause strong vari-

ations in anomalies, but are considered as valid for homoge-

neous areas like the Sahara (Ramirez & Jarvis, 2010).

Tree cover change and human influence

We highlighted the importance of considering tree cover

(modelled as a continuous response) rather than only

presence/absence biome distributions (binary data) to describe

future vegetation change. Again, the important environmental

drivers were incorporated (explained 90% of the deviance),

with annual mean precipitation being by far the most

important variable. With the use of satellite images, reflecting

the current vegetation state, we modelled ‘real’ rather than

potential vegetation. We could clearly show effects of human

activity negatively affecting tree cover (see Appendix S2), as

also demonstrated by other case studies, e.g. in Senegal (Vincke

et al., 2010) and Mali (Ruelland et al., 2010). Moreover, we

highlighted the relevance of human activity in reducing tree

cover in the future (2050). Thus, it is essential to consider both

climate change and direct human impact to generate realistic

future tree cover projections. The use of human population

density as a proxy for human impact subsumes many human

activities and consequently does not allow the identification of
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proximate causes of tree cover reduction. In West Africa,

agricultural expansion, sometimes facilitated by other human

activities such as wood extraction, has been identified as major

drivers of forest loss and degradation (Norris et al., 2010). In

the Sahel, however, where trees are replaced by annual

vegetation, it seems more difficult to assert that human

pressure causes degradation (Seaquist et al., 2009).

High uncertainty is associated with the simulations for

increasing canopy cover (e.g. western Mauritania) due to

differences in GCM projections. Thus, the tree cover increase

remains speculative. In contrast, low uncertainty is indicated

for the projected decrease of tree cover: this should be cause for

concern, even assuming an unrealistic scenario of constant

human population. The 5% decrease in tree cover until 2050

that is projected for large parts of West Africa, corresponds to

a 0.13% decrease in tree cover annually. Given the current

deforestation rate of 1.17% year)1 for West Africa (FAO, 2007)

we are probably underestimating future forest degradation that

might trigger desertification processes. Furthermore, one

factor of human activity, tropical rain forest logging, causes

drying of fuels and allows severe fires (Franklin & Forman,

1987), which again consume large parts of the biomass (Bond

& Keeley, 2005; Higgins et al., 2007). Our analysis does not

incorporate such processes. The decreasing canopy cover may

even result in positive feedbacks because of reduced monsoon

rainfall due to higher albedo and decreased ability to recycle

water back to the atmosphere through evapotranspiration

(Eltahir, 1996). Increased atmospheric dust loading, caused by

emerging bare soils, may further suppress rainfall due to a

coalescence-suppressing effect (Rosenfeld et al., 2001). Thus,

such positive feedbacks might enforce forest degradation and

desertification processes in West Africa.

CONCLUSIONS

Considering climate change alone, our model results of the

potential vegetation (biomes) show a ‘greening’, even though

the magnitude may be overestimated by our models. The

consideration of tree cover was important to detect changes

within the biomes. Furthermore, we highlighted the impor-

tance of the interplay between climate change and human

activity. Incorporating human impact in our models showed

that forest degradation, a trigger for desertification processes,

might play a crucial role in the future. Thus, it is essential to

consider both climate change and direct human impact to

generate realistic future tree cover projections, and both should

generally be considered in predictive vegetation modelling.
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