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Summary

 

• The relative frequencies of functional traits of plant species show notable spatial
variation, which is often related to environmental factors. Pollination type (insect-,
wind- or self-pollination) is a critical trait for plant reproduction and provision of eco-
system services.
• Here, we mapped the distribution of pollination types across Germany by com-
bining databases on plant distribution and plant pollination types. Applying a new
method, we modelled the composition of pollination types using a set of 12 envi-
ronmental variables as predictors within a Bayesian framework which allows for the
analysis of compositional data in the presence of spatial autocorrelation.
• A clear biogeographical pattern in the distribution of pollination types was revealed
which was adequately captured by our model. The most striking relationship was a
relative increase in insect-pollination and a corresponding decrease of selfing with
increasing altitude. Further important factors were wind speed, geology and land use.
• We present a powerful tool to analyse the distribution patterns of plant functional
types such as pollination types and their relationship with environmental parameters
in a spatially explicit framework.
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Introduction

 

Traits of plant species have been used in numerous studies
to reveal general ecological patterns irrespective of species
identity (McIntyre 

 

et al

 

., 1999; Rusch 

 

et al

 

., 2003). The
relationship between plant functional traits and the
environment at large geographic scales has recently received
considerable attention (MacGillivray 

 

et al

 

., 1995; Skarpe,
1996; Díaz 

 

et al

 

., 1999; Wright 

 

et al

 

., 2004; Traiser 

 

et al

 

.,
2005; Wright 

 

et al

 

., 2005; Mayfield 

 

et al

 

., 2006). Although
pollination is a key process in ecosystem functioning, as it
plays an important role in plant reproduction, it is often

neglected (e.g. Weiher 

 

et al

 

., 1999). There are three pollination
types which account for the majority of plant species in
temperate ecosystems: wind pollination (anemophily), insect
pollination (entomophily) and self pollination (autogamy).

Many studies focused on the relationships among dif-
ferent pollination types, mainly from an evolutionary view-
point, albeit often in an ecological context (Midgley &
Bond, 1991a, 1991b; Kevan 

 

et al

 

., 1993). Often, such studies
focused on either few species within a genus or family (Berry
& Calvo, 1989; Tamura & Kudo, 2000; Dupont, 2002;
Kalisz & Vogler, 2003) or specific groups of plants such as
trees and shrubs (Regal, 1982). Some studies investigated
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biogeographic trends or relationships between specific polli-
nation types and environmental parameters. In moist tem-
perate forests wind pollination has been found to increase
with latitude and altitude and to decrease with plant species
richness (Regal, 1982; Whitehead, 1983). Wind pollination
also depends on factors other than just wind, such as humid-
ity, rainfall and temperature (Culley 

 

et al

 

., 2002). Rainfall has
a negative effect as it washes the pollen away (Regal, 1982).
The optimum conditions for wind pollination are low to
moderate wind speed, low humidity and infrequent precipi-
tation (Whitehead, 1983; Culley 

 

et al

 

., 2002). Too high wind
speeds may hinder stigmatic pollen capture (Niklas, 1985).
Insect pollination is typically associated with zero to low wind
speed, medium to high humidity and infrequent to common
precipitation (Regal, 1982). Obviously, insect pollination is
restricted to regions where insects could thrive. However, it is
difficult to get data on insect abundance on biogeographic
scales. Furthermore, entomophily increases with plant species
richness (Whitehead, 1968; Regal, 1982).

Selfing is regarded as a method of reproductive assurance
(Baker, 1955; Schoen 

 

et al

 

., 1996; Kalisz 

 

et al

 

., 2004). Selfing
should be especially favoured under variable pollination
environments (Kalisz 

 

et al

 

., 2004) or poor climatic conditions
where pollinators or mates are absent (Baker, 1955).

There are other factors in addition to climatic variables or
the direct physical environment that may have an influence
on the composition of pollination types. Wind pollination is
favoured by open vegetation while insect pollination occurs in
open to closed vegetation (Culley 

 

et al

 

., 2002). Conversely,
many tree species of temperate forests are wind pollinated
(Regal, 1982).

The relationships and biogeographic trends reported in
these studies suggest that pollination types are differentially
selected for by different ecological and environmental condi-
tions. If this is a general rule, one would expect to find differ-
ent pollination types displaying different spatial patterns,
based on the geographical variation of the underlying
environmental factors. This in turn should allow the variation
in pollination types not only to be mapped and their spatial
structure to be analysed, but also to develop proper statistical
models that could explain and predict such patterns. Such an
approach, which aims at identifying the underlying environ-
mental drivers of the geographic distribution of traits, is
different from the approach generally applied in studies of
functional traits (i.e. focusing on dynamic processes such as
responses of trait composition to management). Hitherto, actual
geographical distribution of selected traits was taken rarely
into account (e.g. Traiser 

 

et al

 

., 2005) and we are not aware of
any such analysis on the distribution of pollination types.

Here, we used a biogeographic approach and analysed the
distribution patterns of a trait (pollination) that we derived
from a comprehensive mapping scheme and which can
be related to environmental data at the same spatial scale.
The scale of our study is different from previous analyses of

pollination types (Regal, 1982; Whitehead, 1983) because
our analysis is based on a greater number of species (several
thousand species) and their occurrence patterns over a large
geographical extent and at a coarse spatial resolution. We
analysed the distribution patterns of the relative frequencies of
different pollination types in Germany at a 10

 

′

 

 longitude 

 

×

 

 6

 

′

 

latitude resolution (

 

c

 

. 130 km

 

2

 

) in a spatially explicit statistical
framework.

Analysing spatial maps of relative frequencies (composi-
tions) of species or traits poses certain critical statistical chal-
lenges. First, the proportions of traits or species in different
groups add up to 100% (unit sum constraint of composi-
tions). Therefore, an increase in relative frequency of one
group results in the decrease in relative frequency of one or
more other groups (Aitchison, 1982, 1986; Billheimer &
Guttorp, 1995; Billheimer 

 

et al

 

., 2001). A second statistical
challenge is to deal with the potential spatial autocorrelation
structure in the data or model residuals. The presence of spa-
tial autocorrelation in a data set may lead to several problems.
In the presence of positive spatial autocorrelation, errors are
not independently distributed, which violates the basic
assumption of usual linear modelling techniques (Haining,
2003). This will lead to an overestimation of degrees of free-
dom and Type I errors may strongly be inflated (Legendre,
1993). Furthermore, the effects of the explanatory variables
may be estimated incorrectly (Cressie, 1993; Anselin & Bera,
1998). In this paper we present a novel statistical approach
that enables us to relate maps of trait compositions with maps
of the environment, based upon the breaking of the unit sum
constraint using log-ratios of proportions. Equally impor-
tantly, the approach applied here enables us also to account for
the potential biases in the pollination traits models stemming
from spatial autocorrelation by the spatial smoothing of
model residuals using a conditional autoregressive model.
While a similar methodology was introduced by Billheimer

 

et al

 

. (2001) for the modelling of species composition data
gathered at a number of sampling stations, this is to our
knowledge the first application of these techniques in the
analysis of geographical maps of species’ trait compositions.
Such maps will become more commonly available as species
atlases are coupled with databases of species traits.

The aims of this study can be summarized as (1) exploring
whether pollination types will yield spatially structured distri-
bution patterns; and (2) testing whether mapped environ-
mental variables can account for those patterns by modelling
the distribution of distribution of pollination type composi-
tion using a Bayesian framework in the presence of spatial
autocorrelation.

As suggested by other studies (Whitehead, 1968, 1983;
Regal, 1982; Niklas, 1985; Culley 

 

et al

 

., 2002; see earlier) we
expect that altitude, temperature, precipitation, wind speed
and specific geological substrates associated with species rich-
ness (Kühn 

 

et al

 

., 2003) may influence the composition of
pollination types. Specifically, we hypothesize that: (1) the
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proportion of insect-pollination increases with increasing
temperature and area of lime and loess subsoil, and decreases
with increasing precipitation and wind speed; and (2) the
proportion of wind pollination increases with altitude, open
vegetation (e.g. grasslands and arable fields) and moderately
with wind speed, and decreases with increasing precipitation.
We expect that (3) the spatial variation in the proportion of
self-pollination will be least well explained, because selfing
results from a lack of other opportunities of pollination or as
a reaction to unpredictable or highly varying environmental
conditions, (i.e. it should increase with altitude and in
disturbed regions).

 

Materials and Methods

 

Data sources

 

Data on plant species distribution was taken from the
database FLORKART provided by the German Federal
Agency for Nature Conservation. The data in this database
was collated with the help of thousands of volunteers. The
spatial resolution is defined by grid cells with a size of 10

 

′

 

longitude 

 

×

 

 6

 

′

 

 latitude (

 

c

 

. 130 km

 

2

 

), totalling 2995 cells for
Germany. Mapping was organized at a regional level, which
resulted in areas that were very well mapped and those that
were insufficiently mapped. To correct for heterogeneity in
mapping intensity throughout Germany, we designated
50 ‘control species’. These are the 45 most frequent species
according to Krause (1998) plus five species that are either
inconspicuous or taxonomically difficult. We could reason-
ably assume that the control species should occur in every
grid cell in Germany. Having > 15 yr experience with vol-
unteer botanists (I.K. and S.K.), we were aware of the fact that
some species that are considered to be ‘difficult’ were often
overlooked or mapped at a higher aggregate level by less
experienced botanists or in less frequently mapped cells. This
knowledge is used here to identify such less well mapped
regions. Therefore, only grid cells having at least 45 of the 50
control species were analysed. Borderline cells (with parts in
other countries or the sea) had > 50% of their area inside
Germany (

 

n

 

 

 

=

 

 176 out of 394 borderline cells). This resulted
in 2733 grid cells for analysis.

Pollination types were taken from the ‘floral biology’ chap-
ter (Durka, 2002) of the BiolFlor database on biological and
ecological traits of the German flora (Klotz 

 

et al

 

., 2002; Kühn

 

et al

 

., 2004; http://www.ufz.de/biolflor). We restricted the
analyses to the major pollination types ‘wind-pollination’,
‘insect-pollination’ and ‘self-pollination’ which account for 

 

c

 

.
95–98% of each grid cell’s species with known pollination
types. Pollination modes were considered if reported to be
‘always’, ‘the rule’ or ‘often’ but not if reported as ‘rare’ or ‘pos-
sible’ (see Durka, 2002).

Pollination types were available for 3503 species (95.7% of
all German species). In total, we had information on the

required pollination type and on distribution for 2678 species
(73.2%) in 2733 grid cells totalling to two million records for
our analyses. Of these species, 1571 species (58.7%) were
insect-pollinated, 541 spp. (20.2%) were wind-pollinated,
397 spp. (14.8%) were self-pollinated, 133 spp. (5%) were
insect- or self-pollinated, 33 spp. (1.2%) were wind- or self-
pollinated, 2 spp. (0.001%) were insect- or wind-pollinated
and one species was recorded as being pollinated by all three
vectors. The proportion of each of the pollination types of
the total flora with information on pollination available was
calculated per grid cell. Here, we were primarily interested in
trait compositions, and therefore computed the frequencies of
the occurrences of the three main pollination types (wind,
selfing and insect-pollination) in each grid cell. For example,
the total number of the pollination state ‘insect-pollination’ in
a grid cell was computed as the sum of the number of insect
pollinated and insect-or self-pollinated plant species. We
therefore have, per grid cell, a composition consisting of the
relative proportions of the three pollination types out of the
total number of pollination types recorded in that grid cell.
Relative proportions, as used in this analysis, however, do not
provide any information on absolute frequencies. An increase
(e.g. in the proportion of traits in one group) does not tell us
whether the absolute number of plants in this group tended
to increase.

For each cell, we compiled data on altitude, geology, land
use, and climate. Information on relief was derived from the
ARCDeutschland500 dataset from ESRI (ESRI Geoinfor-
matik GmbH, Kranzberg, Germany) and we calculated the
average altitude per grid cell. Geological data was aggregated
from the Geological Survey Map of Germany (Bundesanstalt
für Geowissenschaften & Rohstoffe, 1993). We used the area of
geological substrate classes lime, sand and loess per grid cell. We
provided the following land use data as explanatory variables:
area of agricultural fields, agricultural grasslands (semi)natural
grasslands and deciduous forests, as provided by the Corine
Land Cover data sets (Statistisches Bundesamt, 1997). For
climate data, we used the mean annual temperature (1960–90),
mean annual precipitation (1950–80) and mean wind speed
(10 m above ground, 1960–90) provided by the German
Meteorological Service (Deutscher Wetterdienst, Department
Klima und Umwelt, Offenbach, Germany). We intentionally
did not use latitude as an independent predictor, because it is
known that there is a south–north gradient (in the northern
hemisphere) in species richness (Francis & Currie, 2003;
Hawkins 

 

et al

 

., 2003; Kier 

 

et al

 

., 2005). However, this is caused
by a number of underlying physical and climatic parameters
that covary with latitude which are included in our data set.

 

Modeling spatially referenced compositional data

 

A general introduction to the statistical framework

 

A gen-
erally suitable statistical method for handling compositional
data is to ‘break’ the unit sum constraint by replacing the
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observed proportions by the logarithms of ratios of proportions
(log-ratios hereafter) (Aitchison, 1986). Log-ratios have
some desirable properties, most importantly the invariance
property, which ensures that the choice of numerator and
denominator in forming the ratios is unimportant. Moreover,
a version of the central limit theorem exists which provides an
explanation of why random variation in log-ratios can often
be assumed to be normally distributed (Aitchison, 1982).
Aitchison (1982, 1986) models the log-ratios using the
multivariate normal distribution:
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×
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−

 

 1) variance–covariance matrix. The key benefits of assum-
ing multivariate normality are that inference tools developed
for the multivariate normal can be applied, and that its covariance
structure can be used to model the dependencies between the
components of the composition (Billheimer 

 

et al

 

., 2001). The
estimated parameters 

 

5

 

 can be back-transformed to propor-
tions using the inverse of the additive log-ratio transform:

It is possible to interpret 

 

φ

 

−

 

1

 

(

 

5

 

) as a point estimate of the
multivariate median for the composition (Billheimer & Guttorp,
1995; Billheimer 

 

et al

 

., 2001). Within a linear (regression)
framework, 

 

5

 

, may be related to covariates (i.e. explanatory
variables) using a vector of 

 

k

 

 

 

− 

 

1 slopes (

 

Å

 

) and intercepts (

 

Å

 

0

 

):

(

 

5

 

0) = Å0 + Å1(xi – Hi)

(xi is a covariate, indexed by i = 1,2, ... , n observations; H is
the mean of the observed covariate values).

Spatial dependence of the compositions can be incorpo-
rated into the modelling structure using a conditional auto-
regressive model (CAR) (Besag, 1974; Billheimer et al., 1997).
Here, we use an intrinsic version of the CAR, as proposed by
Besag et al. (1991). Assume a set of multivariate spatially
correlated Gaussian random effects ,
where k is the number of components in the composition, and
i = 1,2, ... , N, and N is the number of grid cells. We model the
distribution of these random effects as multivariate normal,

with conditional location vector given by the vector of average
values of random effects in the neighbourhood (denoted
by δi) of grid cell i, , and conditional covariance matrix
inversely proportional to the number of grid cells contained
in this neighbourhood, ni: , where

and Ω is a (k − 1) × (k − 1) variance-covariance matrix. The
neighbourhood δi is defined as the grid cells directly adjacent
and diagonal to grid cell i. The random effects are restricted
to have zero mean, such that  = 0 for all components
l = (1,2, ... , k − 1) (Besag & Kooperberg, 1995).

Modelling pollination types

Let  denote the composition of pollination
types in grid cell i, with , the relative
proportions of the occurrences of the trait-states insect-,
wind- and self-pollination, respectively. Here, we have chosen
to use the proportion of trait-state wind-pollination as the
denominator in the log-ratios (the choice of the denominator
is irrelevant as described above). As described above, we model
the log-ratios of pollination types in grid cell i,

using the bivariate normal distribution, with multivariate
mean Ui, and variance–covariance matrix

where σ1 and σ2 are the variances of the log-ratios, and ρ is
the correlation between the log-ratios. We model 5i as a linear
function of covariates and account for spatial autocorrelation
using the CAR model as described above:

5i = Å0 + Å1x1j + Å2x2j + ... + Ånxnj + Si Eqn 1

where Å0 are the intercepts, Å1, Å2, ... , Ån vectors for the slopes
for the effect of covariates, and Si spatial random effects drawn
from a bivariate normal distribution with location vector
(0,0) and variance–covariance matrix

(with ν1 and ν2 the variances of the spatial random effects and
κ the correlation between the spatial random effects of the
different log-ratio components).
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Estimation of the model parameters using WinBugs

Because the model is high-dimensional, i.e. has many
parameters (including the elements of two 2 × 2 variance-
covariance matrices), we chose to use Markov chain Monte
Carlo (McMC) methods for model fitting (Gilks et al., 1996;
Brooks & Roberts, 1998). We used the GeoBugs module
(Thomas et al., 2004) of the WINBUGS package to implement
the model. The multivariate conditional autoregressive model,
as described above, is available in GeoBugs, which greatly
facilitates the implementation of the model.

The model (Eqn 1) must be completed by specifying prior
distributions for the parameters. For all parameters, we chose
uninformative (vague) priors, indicating that we assumed no
knowledge on the parameters prior to fitting the model to the
data. We used location invariant uniform distributions U(–∞,
+∞) for both components of the location parameter vector
Å0, as required in the implementation of the multivariate CAR
in GeoBugs (Thomas et al., 2004). As prior distributions for
the components of all parameter vectors of slopes Å1, Å2, … ,
Ån we used normal distributions centred on zero and with a
variance of 100. As priors for the inverses of the variance-
covariance matrices Σ and Ω (WinBugs typically para-
meterizes normal distributions in terms of precisions, not
variances) we used Wishart distributions Σ−1 ∼ Wishart(A,h),
and Ω−1 ∼ Wishart(B,h), with degrees of freedom h = 2, and

 with a = 0.01. The specification of the pre-

vious distributions for the precision of the spatial random
effect may be influential. We checked this by using different
sets of prior values of a set to 0.1 and 0.005. The estimated
means and standard deviations of the variances and covari-
ances of the spatial random effects and all other model para-
meters were similar for the different prior specifications.
Therefore, we report results here only from the fitting of the
model with a prior set to a = 0.01.

When using McMC to estimate model parameters, one has
to determine if the Markov chains have settled to stationary
behaviour (convergence), and how many iterations the
McMC algorithm have to be run for, before it is safe to assume
that the set of samples can be used to represent the posterior
distribution of model parameters. Many diagnostic and
graphical techniques are available to do this, but experience
and a good understanding of McMC techniques remains
crucial (Gilks et al., 1996; Brooks & Roberts, 1998). We
initialized several independent Markov chains with widely
dispersed starting values for the parameters Å0, Å1, Å2, … , Ån,
Ω and Σ (initial values for the spatial random effects were
always initialised at Si = 0). Convergence of these Markov
chains was assumed when the obtained medians and the
2.5% and 97.5% quantiles of the posterior distributions of
the individual chains were similar. Furthermore, we checked
convergence of the Markov chains using visual inspection
of time-series of Markov chains, autocorrelations of these

time-series, and the Brooks–Gelman–Rubin statistic (Brooks
& Gelman, 1998). We ran our MCMC chains for 200.000
iterations, discarded the first 20.000 as burn-in, and
saved one in every 10 simulated values of the remaining
chains to reduce computational overheads. We based our
inferences on the remaining 18.000 draws of the posterior
distribution.

Assessing the significance of covariates

Initial graphical investigation indicated that altitude and
temperature were strongly correlated with proportions of
pollination types. Furthermore, these covariates were strongly
correlated themselves, which was to be expected given
the physical relationship between them. In addition, the
relationship between altitude and temperature and the
proportions was nonlinear. In comparison, proportions
appeared to be weakly and linearly related to the other
variables. Variable selection is impractical using the Bayesian
CAR model because of the long computing times involved in
estimating the parameters of these models. We therefore build
up a picture of the importance of the covariates in two steps.
First, we modelled each of the log-ratios of pollination types
independently within a linear regression framework. Within
this framework, models can be fitted quickly at the expense of
ignoring dependencies between the log-ratios and potential
spatial autocorrelation. For each of the log-ratios, a subset
of the variables from a full model including all variables as
regressors (and second- and third-order polynomials for
altitude and temperature to allow for nonlinearities) was
chosen using backwards stepwise selection based on AIC
values, as implemented by the stepAIC function in R
(Venables & Ripley, 2002; R Development Core Team,
2004). Second, all covariates that were selected in the final
models of at least one of the log-ratios were chosen as
covariates in the Bayesian CAR model, where their
significance was further assessed. The expected effect of
ignoring spatial autocorrelation and dependencies between
log-ratios is that we are likely to pick up on more variables that
are deemed to be important in the Bayesian CAR model, for
the following reasons: (1) the effect of covariates tends to
be overestimated when spatial autocorrelation is ignored
(Anselin & Bera, 1998), and (2) the effect of ignoring
correlations between log-ratios will be that explanatory
variables that are significantly related to one of the log-ratios,
but not the other, may be found not to be important in
explaining the composition as a whole.

Results

Overview on trait composition and spatial distribution

The proportions of each of the pollination types are
depicted in a ternary plot (Fig. 1). On average (± 1 SD),

A B    = = 





a
a
0

0
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insect-pollination made up 53.7% (± 3.1%) of all pollination
types present in a grid cell, wind-pollination 22.7% (± 2.3%)
and selfing 23.6% (± 1.6%). This resulted from an average
species number per grid cell of 395.1 (± 91.1) species that can
be insect pollinated, 164.9 (± 31.9) species that can be wind
pollinated and 172 (± 37.8) species that can be self pollinated.
The geographical distribution of the different pollination
types is given in Fig. 2(a–c). Insect pollination is less frequent
in northern Germany, especially along the coasts and the river
valleys of Elbe and Ems, the Upper Rhine valley and the
Danube valley. Insect pollination is most frequent in the mid
to high altitude mountain ranges of central and southern
Germany. Wind pollination is most frequent in the northern
German lowlands (where the highest wind speeds occur) and
the Alpine upland in southern Germany; it is least frequent
along the mid-altitude mountain ranges. Selfing is most
frequent along the North Sea coast, the Elbe and North-
western Rhine valley and least frequent in southern Germany.
However, the general pattern of proportions of selfing is much
more scattered than that of insect- or wind-pollination.

Modelling trait composition and environmental 
predictors

Visual comparison of the distribution of pollination type
compositions with physical properties of Germany, suggests a
relationship with altitude (Fig. 2d) and wind speed (Fig. 2e),
but this requires a formal statistical test. The following
set of variables was retained as predictors for the log-ratios
using the stepwise backwards regression: altitude, altitude2,
area of lime subsoil, area of sand subsoil, area of loess subsoil,
area of deciduous forest, wind speed, area of agricultural fields
and area of agricultural grassland. The following variables
were excluded: altitude3, precipitation, precipitation2, tem-
perature, temperature2 and area of natural grassland.

The 95% credible intervals (the Bayesian equivalent of
confidence intervals) of the estimated regression coefficients
of the log ratio analyses (Table 1) revealed that the estimated
posterior distributions of the intercepts, and parameters for
the slopes of altitude2, area of agricultural grasslands, area of
agricultural land (i.e. arable fields), area of lime, area of sand
and wind speed did not include zero (i.e. they could be
regarded as significant).

The deviations of the proportions of pollination types
from the mean composition along the observed gradients of
the environmental predictors in Germany, as predicted by the
model, are visualized in Fig. 3. The largest gradient in the
composition of pollination types was predicted by the covari-
ate altitude (Fig. 3a). The second largest gradient was pre-
dicted by the estimated slope for the covariate wind speed
(Fig. 3b). In comparison, the predicted gradients using the
estimated slopes for the covariates lime, sand, grassland and
agricultural land were relatively small (Fig. 3c–f).

The predicted shifts in the compositions of pollination
types along the observed gradients in the environmental pre-
dictors in Germany were different for each pollination type
(Fig. 3). The relative proportions of insect pollination were
nonlinearly related to altitude, increasing sharply from low to
mid-altitudes, and remained relatively constant from mid to
high altitudes. Furthermore the proportions of insect pollina-
tion increased with increasing area of lime and arable fields
and decreased with increasing wind speed and area of sand
and grasslands. Almost the opposite pattern could be observed
for wind pollination, with the smallest proportions at mid-
altitudes, and higher proportions in the lowlands and at
higher altitudes. The relative proportions of wind pollination
increased with increasing wind speed and (to a lesser degree)
areas of sand and grassland. The proportions of wind-pollination
decreased with increasing area of lime and arable fields. The
proportions of self-pollination increased with increasing
altitude and to a lesser degree with increasing wind speed.

We compared the observed log-ratios with the log-ratios as
predicted using the estimated means of the model parameters
Å0, Å1, … , Ån (predictions without the spatial random effect)
to compute an estimate of the amount of variation explained.
This can be compared with the conventional R2 statistic in
classical statistical methods, and may be used as an indication
of the amount of variability explained by the environmental
predictors. With an R2 of 34.5% for the complete model
(46.7% for log(entomophily/anemophily), and 22% for
log(autogamy/anemophily)), the spatial variation in the envi-
ronmental predictors explained a considerable amount of the
spatial variation in the composition of pollination types.

Nevertheless, the fit of the model without a conditional auto-
regressive term for the spatial smoothing of residuals was inad-
equate because of the large spatial autocorrelation in residuals
(Fig. 4a,b). The predicted 95% credible intervals of the predicted
log-ratios made without the spatial random effects were too
narrow, and only contained 50% of the data points (Fig. 4a,b).

Fig. 1 Ternary plot of proportions of pollination types in Germany. 
The asterisk marks the average (gravity centre) of the pollination type 
proportions.
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Fig. 2 Distribution of proportions of pollination types throughout Germany. (a) Insect pollination, range 41.9–63.1%; (b) wind pollination, 
range 15.5–32.7%; (c) self pollination, range 16.1–29.9%; (d) an overview over the topography of Germany; (e) wind speed, range 1.85–
8.89 m s−1. For proportions of pollination types see also Fig. 1. To better compare the maps, classes for proportions of pollination types and wind 
speed are decantiles (i.e. 10 classes of equal size with different class limits for each map). Cells not used for modelling (borderline cells and cells 
regarded as insufficiently mapped) are marked by an ‘x’. Legends for pollination distribution and wind speed are in the Supplementary material 
Fig. S1.

Table 1 Estimates of the model parameters (the mean and 95% credible interval (c.i.) of the posterior distributions of the parameters)

Log(entomophily/
anemophily)

Log(autogamy/
anemophily)

Mean 95% c.i Mean 95% c.i.

Intercept 0.85 0.84 0.85 0.05 0.04 0.05
Altitude (×10−5) 1.88 1.16 2.64 −2.25 −9.00 4.10
Altitude2 (×10−7) −−−−1.62 −−−−2.78 −−−−4.91 −−−−1.85 −−−−2.82 −−−−8.31
Forest 0.07 −0.005 0.14 −0.07 −0.14 −0.01
Grassland −−−−0.12 −−−−0.17 −−−−0.07 −−−−0.15 −−−−0.20 −−−−0.11
Loess 0.07 −0.03 0.12 0.10 0.05 0.14
Lime 0.17 0.12 0.21 0.09 0.03 0.13
Sand −−−−0.07 −−−−0.09 −−−−0.05 −−−−0.05 −−−−0.06 −−−−0.03
Wind −−−−0.05 −−−−0.07 −−−−0.04 −−−−0.02 −−−−0.03 −−−−0.01
Agriculture 0.21 0.13 0.28 0.10 0.03 0.17

Parameters that are significantly different from zero are given in bold type.
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The presence of strong spatial autocorrelation in the model
residuals was reflected by the small estimated values (mean ±
SD) of the variances of the spatial random effects, with  =
0.027 (± 0.0014) and  = 0.018 (± 0.0013), indicating that
residuals were restricted to vary smoothly over the grid. The
model residuals of the log-ratios in the same grid cells were
estimated to be strongly correlated (κ = 0.72 (± 0.02)). Ignoring
spatial autocorrelation resulted in unrealistically small con-
fidence bounds on the estimates of the model parameters.
Furthermore, predictions of the model without spatial smoothing
were biased with small and large values of log-ratios over- and
under-estimated, respectively. The use of a conditional auto-
regressive term resulted in an adequate fit of the model to the
data, with wider predicted credible intervals that reflected the
uncertainty in model predictions more realistically (Fig. 4c,d).
The complete model with autoregressive term had an R2 of
95% (97.3% for log(entomophily/anemophily), and 92.7%
for log(autogamy/anemophily)). The proportion of data points
contained by the 95% credible intervals of log-ratios as fitted
by the model with spatial smoothing was 98% (Fig. 4c,d).
Predictions of this model appeared only slightly biased.

The large improvement in fit by including a spatial term,
Si, in the model indicates that there are spatial patterns that

are not captured by the covariates. This is reflected by the
patterns in the maps of the spatial random effects (Supple-
mentary material Fig. S2) which indicate the existence of
gradients in the composition of pollination types that are not
captured by the environmental predictors in our model. This
can be seen by a pattern of positive values of Si along the
Swabian-Frankonian Alb (in the south of Germany), the
mid-German hills and the very eastern Valley of the Oder
River and negative values of Si in the Alpine uplands (Fig. S2).
These regions are characterized by specific geological or
climatic conditions that were not explicitly incorporated into
the model. The maps of the spatial random effects can thus be
used to highlight such unexplained spatial patterns, and sug-
gest potential environmental predictors that may be included
into the model.

Discussion

The modelling approach

There are several methods to analytically combine data
on species distributions, traits and the environment. The
combinations of these three elements are the classical domain

Fig. 3 The estimated deviations in the composition of pollination types from the mean composition, along the gradients in environmental 
predictors as observed in Germany. Gradients in the percentages of insect pollination (solid lines; left axis), self pollination (dashed lines; right 
axis) and wind-pollination (dotted lines; right axis) are shown for the six covariates regarded as significant: (a) altitude, (b) wind speed, (c) 
proportion of lime subsoil, (d) proportion of sand subsoil, (e) proportion of grassland and (f) proportion of agricultural land. The thick lines are 
the medians and the thin lines the 2.5% and 97.5% quantiles, of the predictions made using 5000 draws of the posterior distributions of the 
parameters. The predicted gradients of proportions of pollination types were predicted separately for each covariate, with the value of the other 
covariates set at their mean values.

ν1
2

ν2
2
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of ‘4th corner problems’ (Legendre et al., 1997; Legendre &
Legendre, 1998), where an environment by trait matrix (the
fourth corner) is estimated by three other matrices: (1) a
species-by-locality matrix, (2) a species-by-traits matrix and
(3) an environment-by-locality matrix. Legendre et al. (1997)
solve the problem by combining these three matrices through
multiplication. Other possibilities are, for example, the
combination of the three matrices through multivariate
approaches such as coinertia analysis (Dray et al., 2003) or the
use of linear models with traits as explanatory variables to
explain species niche breadth (Thuiller et al., 2004) or species
responses (Lososova et al., 2004) of prior multivariate
analyses. However, we analysed the spatial distribution of the
relative frequencies of traits, and thus have to: (1) treat the
grid cells as the unit of observation, since the composition in
each grid cell is one observation on the relative frequencies of
the pollination types; (2) allow for the unit sum constraint of
compositional data; (3) allow for spatial autocorrelation in
model residuals, since the trait compositions vary smoothly
over space. The statistical framework as proposed in this paper
meets the above requirements.

Allowing for the spatial dependency of the compositions by
means of a conditional autoregressive model proved necessary
to obtain an adequate fit of the model to the data. Models that

did not allow for spatial autocorrelation in the compositions
proved too optimistic in the uncertainty of the model predic-
tions, as reflected by the narrow credible intervals that
excluded most of the observed data points. This illustrates the
fact that models that ignore spatial autocorrelation are suscep-
tible to type I errors because they are overoptimistic about the
precision of the estimated values of the parameters (Cressie,
1993; Legendre, 1993; Anselin & Bera, 1998). By contrast,
the estimated uncertainty in the parameter estimates and
predictions from the model with spatial smoothing were
realistic, making any inferences on the effect of covariates on
the composition of plant communities more credible. The
composition of plant assemblages, as derived from species
atlases with a coarse spatial resolution, will often vary
smoothly over large geographical areas. However, since the
spatial distribution of most covariates and the response variable
will not overlap entirely, allowing for spatial autocorrelation
in the model residuals is crucial when modelling plant
community compositions. Few examples exist in the literature
on applications of statistical methods that are suitable for
spatially correlated compositional data, except the work by
Billheimer et al. (1998) and Billheimer et al. (2001). In this
paper we demonstrate the application of these methods in the
analysis of community composition data as derived from

Fig. 4 Observed values of log-ratios (x-axes) against predicted 95% credible intervals of log-ratios (y-axes). Predictions were made using the 
covariates only (leaving the spatial random effect out) (a,b) and with the full model with both covariates and spatial random effect (c,d). (a,c) 
log(p1/p2) (i.e. log(entomophily/anemophily)); (b,c) log(p3/p2), (i.e. log(selfing/anemophily)).The log-ratios have been sorted from their 
smallest to largest observed values along the x-axes, and their corresponding 95% credible intervals are indicated by the vertical segments. The 
straight lines through the origin indicate a perfect fit where predictions equal observations. The proportion of data points that fall outside of 
their corresponding 95% predicted credible intervals, p, are given for each log-ratio. In addition, as an indication of the amount of variation 
explained by the full model (with random effect: c,d) and the covariates only (a,b), R2 values have been computed using the means of the 
predicted intervals.
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species atlases on a coarse spatial grid. In addition, our study
demonstrates the usefulness of GeoBugs (Thomas et al.,
2004), which greatly facilitates the implementation of these
relatively nonstandard geostatistical models.

Biogeographic patterns of pollination types on 
meso-scale

The shifts in compositions of pollination types revealed in our
study were rather small across Germany (Fig. 1). In addition,
the resolution of our analysis was rather coarse (c. 130 km2)
and pollination effects are most likely to operate on small
scales (Kunin, 1992). Nevertheless, we still were able to detect
a clear distributional pattern of pollination types and a response
to environmental factors. Though the pattern is striking, it is
worthwhile to note that across Germany entomophily is still
almost twice as frequent as anemophily or autogamy; there is
only a relative shift of the pollination types in space.

At this spatial scale and resolution, many of the previously
published results on relationships between the spatial distri-
bution of the environment and pollination types cannot be
confirmed. The estimated increase in insect pollination, and
decrease in wind and self-pollination, from low to high altitudes
is even the complete opposite of earlier hypotheses or observa-
tions (Regal, 1982; Whitehead, 1983; Richards, 1997).

A number of processes may be involved in determining
the distribution of pollination types: evolution, weather and
climate, physical properties of vegetation types, species inter-
actions and history including human influence. We will not
discuss the evolution of pollination modes since most of the
German flora evolved outside of the area and colonized it after
the last glaciation.

Insect pollination is typically associated with zero to low
wind speed, medium to high humidity and infrequent to
common precipitation (Regal, 1982). In our model, distribu-
tion of entomophily may best be explained by human land use
as a consequence of topography, geology and the absence of
strong winds. The most species-rich areas, with a high number
of colourful flowering entomophilous species, are calcareous
pastures and meadows which are extensively used in mid-
altitudes and naturally open vegetation above the timberline
in the Alps (Ellenberg, 1996). Thus they are situated in the
mid- to high-altitude mountain areas (Ssymank et al., 1998)
where agriculture could not be intensified as much as in the
lowlands or is characterized by extensively used seasonal
mountain pastures. Unfortunately, only proxy variables are
available, but the combination of altitude and area of
limestone support the ideas mentioned above, as does the
distribution of the respective habitats (see Ssymank et al.,
1998). Clearly, because high wind speeds impede insect
flight, this covariate is negative correlated with insect pollina-
tion. It is not easy to explain the positive relationship between
the area of arable fields (which are usually species poor) with
proportion of insect pollination, as many weed species of

fields are self- or wind-pollinated (Baker, 1974). However, the
predicted gradient is small with relatively large uncertainty.

One of the best predictors for the spatial distribution of
proportions of wind pollination is wind speed, although it is
known that the optimum for wind-pollination is at low to
moderate wind speed (Whitehead, 1983). Terminal velocities
of pollen for most anemophilous species range from 0.02 to
0.06 m s−1 (Whitehead, 1968). Wind speed in the studied
area ranges from 1.8 to 8.9 m s−1 at 10 m above ground level.
The average wind speed within plant communities is about
the same as those in our data at 10 m above ground level (1–
10 m s−1, Whitehead, 1983 citing Tauber, 1965, Geiger,
1966). Wind speeds are therefore c. 100 times faster than
needed for pollen dispersal and should not be a limiting fac-
tor. However, pollinators do have difficulties in flying from
flower to flower and pollinating when wind speed is high, so
that the observed pattern could result from a decrease in insect
pollination. Furthermore, it seems that the distribution of
anemophilous plant species may also be explained by factors
(covarying) other than just wind. An altitudinal increase in
anemophily seems to be a wide spread pattern across many
regions of the world and across several taxa, as a result of
low pollinator availability (Regal, 1982; Berry & Calvo, 1989;
Anderson et al., 2001). In Germany, however, there is also an
increase of anemophily in the lowest areas which are the
northernmost ones. Although this seems to fit in with the
latitudinal trend of increase in anemophily (Regal, 1982),
which is understood as a result of unfavourable climatic con-
ditions, the climatic variables – when exchanging altitude
with temperature in our model – do not support this idea.

Wind pollination is facilitated by open vegetation (Culley
et al., 2002). Thus, broader-scale vegetation patterns may also
influence trait composition, especially if open, graminoid-
dominated vegetation types exist. Most of Germany is part of
the temperate forest biome, particularly beech forest. How-
ever, grasslands of various types exist mainly as secondary
anthropogenic vegetation throughout the country. The most
species-rich types of grassland on limestone occur mainly in
the mid-altitudinal ranges of Central and Southern Germany.
These grasslands are, however, especially rich in insect-
pollinated species, which may partly account for the high
level of insect pollination at mid- to high-altitude ranges
found in our analyses (see above). Vegetation types which
strongly differ in their abundance across Germany are bogs
and fens that occur both in the climatically humid areas in the
northern lowlands and in the South in the peri-alpine and
alpine zone but are rare or absent in the central mid elevation
parts (Ellenberg, 1996; Succow & Joosten, 2001). In bogs,
a high species richness of mostly wind-pollinated Cyperaceae
is found, at least part of which are biogeographically restricted
within Germany to these two areas and thus may contribute
to the relative minimum of wind-pollination in the central,
mid-altitude parts of Germany. In addition, the distribution
of these bogs across Germany is partly caused by and partly
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covaries with the last Pleistocene glaciation (Liedtke &
Marcinek, 2002). This historical factor can potentially
contribute to the mid-altitude minimum of wind-pollination
as both glaciated regions (the northern lowlands and southern
alpine areas) still may have imprints on trait composition
owing to glacial relict species.

Self pollination is the pollination mode that was most scat-
tered across Germany, only being less frequent in the south-
east. The reproductive assurance hypothesis (Baker, 1955)
states that selfing is a selective advantage when pollinators are
absent (e.g. owing to poor or unpredictable climatic condi-
tions, frequent disturbance or during colonization; see also
Schoen et al., 1996; Kalisz & Vogler, 2003; Kalisz et al.,
2004). The areas of highest selfing frequencies are along the
North Sea coast, the Pleistocene lake areas in the north-east
and some parts of the Elbe and Rhine valley. All these are
regions where natural disturbance is high (e.g. owing to flood-
ing events and/or storms). The large river valleys are also
known to be especially rich in alien species (Planty-Tabacchi
et al., 1996; Deutschewitz et al., 2003) which are more fre-
quently self-pollinated than native species (Klotz et al., 2002).

The percentage of self-pollination was clearly found to
decline with increasing altitude (Fig. 3a). This finding strongly
contrasts with the classical expectation based on the reproduc-
tive assurance hypothesis that selfing should be selected for
under unfavourable environmental conditions such as high
altitudes or latitudes in which pollinator service may be uncer-
tain (Bliss, 1962; Richards, 1997). This view, however, seems
to have been based on the premature adoption for alpine flo-
ras of the suggested role of autogamy and apomixis in arctic
floras (Packer, 1974). Empirical evidence for a declining role
of insect pollination may be biased towards particularly sensi-
tive and taxonomically narrow groups of insect pollinated
species, like orchids pollinated mainly by Lepidoptera
(Jacquemyn et al., 2005). The decline of selfing species with
increasing altitude may not be related to the breeding system
itself, but may result from the predominant annual life cycle of
selfing species. Thus, they depend on the successful completion
of the life cycle within one season. This makes them more sus-
ceptible to unfavourable and variable climatic conditions than
the preferentially outcrossing perennials which can accumulate
scarce resources over time and endure unfavourable conditions.

Indeed, a number of studies point to the maintenance or
predominance of outcrossing breeding systems at high alti-
tudes of temperate regions (Gugerli, 1998; Körner, 2003).
Unlike selfing, outcrossing breeding systems ensure the main-
tenance of high genetic variability at population level which
is considered a prerequisite for long-term persistence in
stochastic environments (Lande & Shannon, 1996). Indeed,
many high-elevation plants combine outcrossing breeding
systems that ensure the maintenance of genetic variability
with clonal propagation, allowing persistence and reproduc-
tion of successful genotypes under harsh environmental
conditions. Selfing was also negatively affected by percentage

grassland. Species-rich grasslands are characterized by strong
competition among species resulting in low numbers of weak
competitors like annuals which mostly are selfing species
(Aarssen, 2000). Wind speed was weakly positively correlated
with selfing. This, however, is probably a result of the strong
decrease of insect pollination.

A number of factors and processes that may influence the
distributional patterns of pollination modes cannot be tackled
by our analysis. First, pollination is not static within a species
but may vary both in space and time in adaptation to local
conditions. Thus there is not only a shift between species and
in species composition but also a shift within species and
populations from outcrossing to selfing under adverse envi-
ronmental conditions (Kalisz et al., 2004); this is also known
for a number of European species (Couderc, 1978). However,
such processes could not be recognized at the scale of our ana-
lysis and the species data at hand. Second, pollination is not
necessarily needed for reproduction if species can reproduce
clonally. Thus, despite having a specific pollination mode and
breeding system, the distribution of clonal species may be
independent of functioning of their sexual system (Hollings-
worth et al., 1998). Third, and most important, the patterns
of pollination type distribution may be biased by phyloge-
netic effects (i.e. closely related species of one grid cell may
dominate a pattern against species from distant clades of a
phylogeny). Unfortunately, we are not aware of any way of
incorporating comparative methods (Harvey & Pagel, 1991)
for compositional data in our context and that could be
applied to > 2700 ‘samples’.

There was some caution raised by Quinn et al. (1994)
when interpreting spatial patterns in the abundance of
pollination types that are extrapolated to larger scales (e.g.
10 × 10 km resolution). Nevertheless, at a scale of 10′
longitude × 6′ latitude, we were successfully able to show a
distinct pattern in the spatial distribution of the composition
of pollination types across Germany, which we were able to
explain using a set of environmental variables by effectively
employing a novel statistical method which is applied (to our
knowledge) for the first time to species distribution atlases.
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