Nine polymorphic microsatellite loci for the parasitic wasp Neotyphus melanocephalus (Hymenoptera: Ichneumonidae)

CHRISTIAN ANTON, JOSEF SETTELE and WALTER DURKA
UFZ — Centre for Environmental Research Leipzig-Halle, Department of Community Ecology, Theodor-Lieser-Straße 4, D-06120 Halle, Germany

Abstract
Nine polymorphic microsatellite loci were isolated from Neotyphus melanocephalus (Gmelin), a parasitoid of the parasitic large blue butterfly Maculinea nausithous. Allelic diversity and heterozygosity were quantified in samples from the Upper Rhine valley in Southwest Germany.

Keywords: contemporary gene flow, Maculinea, microsatellite, Neotyphus, population genetics

Received 15 October 2005; revision accepted 14 November 2005

Neotyphus melanocephalus (Gmelin 1790, Hymenoptera: Ichneumonidae) is a solitary endoparasitoid of the predatory large blue Maculinea nausithous (Lepidoptera: Lycaenidae). Butterflies of the genus Maculinea have an extraordinary life history as the parasites of Myrmica ants (Thomas & Settele 2004). After feeding for 2–3 weeks inside the flower heads of specific host plants, larvae leave the flower heads and are adopted by workers of their host ant. During the short period of phytophagy, some M. nausithous larvae are attacked by N. melanocephalus inside the flower heads of the host plant Sanguisorba officinalis. In such instances, the parasitoid follows its butterfly host by developing inside the ants’ nest.

Most species live in patchy environments. In order to persist they must be able to disperse between populations and colonize empty habitat patches. Dispersal is usually measured by either marking individuals directly or indirectly by measuring gene flow. Highly polymorphic genetic markers like microsatellites in conjunction with new statistical methods can be a powerful tool for the analysis of contemporary gene flow (e.g. Berry et al. 2004).

For the DNA extraction, 20 adult wasps excluding heads and wings were used. Samples were homogenized in 350 µL cetyltrimethyl ammonium bromide (CTAB) buffer (Doyle & Doyle 1990) and digested with 20 µL proteinase K for 60 min. Three hundred and fifty microlitres chloroform/isoamylalcohol (1:24) was added, shaken for 2 min and spun at 13 000 r.p.m. xg for 10 min. The supernatant was precipitated using 900 µL of freezing cold ethanol and stored for 12 h at –20 °C. After centrifugation for 25 min at 13 000 r.p.m. xg, the pellet was washed three times with 100 µL 95% ethanol. The dry DNA was dissolved in pure water. An enriched library was made by ECOCENICS GmbH from size-selected genomic DNA ligated into SAULA/SAULB-linker (5′-GCGGTACCGGAAGCTTGG/5′-GATCCCAAGCTTCCCGGGTACCGC) (Armour et al. 1994) and enriched by magnetic bead selection with biotin-labelled (CA)13 and (GA)13 oligonucleotide repeats (Gautschie et al. 2000a, b). Of 192 recombinant colonies screened, 116 gave positive signals after hybridization. Plasmids from 73 positive clones were sequenced and analysed using the program BIODIT (URL: http://www.mbio.ncsu.edu/BioEdit/). The software PRIMER 3 was used to design 18 oligonucleotide primers (Rozen & Skaletsky 2000). One primer from each pair was end-labelled with fluorescent dyes (FAM, JOE, TAMRA).

Allelic variability was tested with N. melanocephalus larvae from one site close to Landau in southwest Germany. For the DNA extraction, the very small-sized larvae were incubated for 10 min at 95 °C in 100 µL 5% Chelex-100 (10 mM Tris, pH 7.5). Before using the DNA, the tissue was spun. For the polymerase chain reaction (PCR), 2 µL of the supernatant was used in 8 µL reaction volumes containing 2 pmol of each forward and reverse primer and 4 µL of multiplex PCR kit (QIAGEN Multiplex PCR Kit). Multiplex PCR was performed with loci Neo35 and Neo42 (label: FAM), Neo34 (JOE) and Neo39 (TAMRA) in the first reaction, Neo40 (FAM), Neo37 and Neo09 (JOE) in a second reaction, and Neo02 (FAM) and Neo10 (JOE) in a third reaction. All PCR amplifications were conducted with a Primus-96
thermocycler (MWG) using a denaturation step at 95 °C for 15 min, followed by 35 cycles of 30 s at 94 °C, 60 s at 57 °C, 1 min 30 s at 72 °C, and then a final extension step of 30 min at 60 °C. Reactions were held at 4 °C before separation. Fragments were separated on an ABI PRISM 310 Genetic Analyzer (Applied Biosystems) with internal size standard GeneScan-500 ROX (Applied Biosystems). Because of the haplodiploid nature of inheritance of Hymenoptera such as N. melanocephalus, only the data for 33 females were used to determine the allelic diversity and to calculate the observed number of heterozygotes. Individuals that were homozygous across all loci were considered as male larvae and excluded from the analysis. Nine loci were polymorphic with the number of heterozygotes. Individuals that were homozygous for the analysis of population genetic structure of the highly endangered parasitoid N. melanocephalus. Because immigration and emigration are key population parameters, genotypic analyses could give valuable information about the intensity of contemporary gene flow in N. melanocephalus metapopulations.

Acknowledgements

We thank Martin Musche and Sarah Gwillym for collecting parasitoids in the field and for comments on the manuscript. Many thanks also to Palle Villesen for giving advice on DNA extraction methods and to Klaus Horstmann, who identified the specimens. Holger Loritz helped to find this parasitoid species in the Queich valley in Rhineland-Palatinate. Research was funded by the EC within the RTD project ‘MacMan’ (EVK2-CT-2001–00126).

References


