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ABSTRACT

Aim To analyse the effects of simultaneously using spatial and phylogenetic infor-
mation in removing spatial autocorrelation of residuals within a multiple regres-
sion framework of trait analysis.

Location Switzerland, Europe.

Methods We used an eigenvector filtering approach to analyse the relationship
between spatial distribution of a trait (flowering phenology) and environmental
covariates in a multiple regression framework. Eigenvector filters were calculated
from ordinations of distance matrices. Distance matrices were either based on pure
spatial information, pure phylogenetic information or spatially structured phylo-
genetic information. In the multiple regression, those filters were selected which
best reduced Moran’s I coefficient of residual autocorrelation. These were added as
covariates to a regression model of environmental variables explaining trait
distribution.

Results The simultaneous provision of spatial and phylogenetic information was
effectively able to remove residual autocorrelation in the analysis. Adding phyloge-
netic information was superior to adding purely spatial information. Applying
filters showed altered results, i.e. different environmental predictors were seen to be
significant. Nevertheless, mean annual temperature and calcareous substrate
remained the most important predictors to explain the onset of flowering in
Switzerland; namely, the warmer the temperature and the more calcareous the
substrate, the earlier the onset of flowering. A sequential approach, i.e. first remov-
ing the phylogenetic signal from traits and then applying a spatial analysis, did
not provide more information or yield less autocorrelation than simple or purely
spatial models.

Main conclusions The combination of spatial and spatio-phylogenetic informa-
tion is recommended in the analysis of trait distribution data in a multiple regres-
sion framework. This approach is an efficient means for reducing residual
autocorrelation and for testing the robustness of results, including the indication of
incomplete parameterizations, and can facilitate ecological interpretation.
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INTRODUCTION

Traditionally, ecological studies have focused on the analysis of

species and their environment to unravel a variety of ecological

problems. As such analyses are often done in a spatial context,

they are frequently influenced by the presence of spatial auto-

correlation (SAC). This well-known phenomenon, i.e. when the

values of variables sampled at nearby locations are not indepen-

dent of each other, has recently gained much attention at the

level of communities or assemblages (e.g. Legendre, 1993;

Lennon, 2000; Diniz-Filho et al., 2003; Dormann, 2007;

Hawkins et al., 2007; Kühn, 2007). While there is not necessarily
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a bias in using non-spatial techniques in a spatial context, the

presence of SAC can have severe effects on parameter estimates

(Kühn, 2007) and this is only known after applying adequate

spatial methods which reduce residual autocorrelation. Spatial

autocorrelation is often regarded as ‘nuisance’ since the specific

process that leads to SAC is often unknown because usually only

the spatial structure is considered. In addition this can be dis-

torted by artefactual delimitation of study regions, for example

by political rather than ‘natural’ boundaries. Further reasons for

SAC (see, for example, Legendre, 1993, and Dormann et al.,

2007, for details) might be of a biological nature (e.g. distance-

related biological processes such as speciation, extinction, dis-

persal or species interactions) as well as of an environmental

nature (environmental determinants, which in themselves are

spatially structured and thus cause spatial structuring of biologi-

cal response) or incorrect parameterizations. Anyhow, rigorous

analyses of the biological reasons behind SAC are so far lacking.

Recently, the importance of analysing trait compositions of

communities or assemblages came into focus (Kühn et al., 2006;

McGill et al., 2006). Analyses of traits are often used across

species, i.e. in a taxonomic or more general phylogenetic

context. As with spatial autocorrelation, phylogenetic data are

not independent of each other; the more phylogenetic informa-

tion species share, the more closely they are related. Therefore,

the use of phylogenetic methods was recommended for com-

parative analyses of communities or assemblages a while ago

(Harvey & Pagel, 1991). However, in contrast to SAC, with its

often ‘technical’ characteristics, phylogenetic autocorrelation

(PAC) is a result of evolutionary history, common adaptations

and common selection pressure or niche conservatism (Diniz-

Filho & Bini, 2008; Freckleton & Jetz, 2009). Therefore, PAC is

often better understood in biological patterns and processes.

The need for joint consideration of space and phylogeny in

comparative analyses was recently recognized for the first time

(as far as we are aware) by Diniz-Filho et al. (2007) and summa-

rized by Freckleton & Jetz (2009): both spatially structured

environmental factors and phylogenetic processes may cause

variations in traits. Species that live in similar environments may

have common adaptations, which should be correlated with

spatial proximity. Additionally, closely related species show high

similarity because they share a common evolutionary history.

This means that species traits can be conserved across space and

phylogeny as a consequence of ecological adaptation and evolu-

tionary history. Therefore, it is advisable to disentangle the roles

of phylogenetic and spatial processes in the relationship between

traits and their environment (Diniz-Filho et al., 2007; Freckleton

& Jetz, 2009). Knapp et al. (2008) showed that some commu-

nities or localities may, for example, be dominated by specific

evolutionary lineages while other can be phylogenetically more

diverse. In Germany, for example, the northern lowlands are

characterized by wind-pollinated grasslands while southern

uplands are good habitats for a wide range of insect-pollinated

species (Kühn et al., 2006). While the former are dominated by

closely related grass species (the species are pseudoreplicated in a

single family), the latter are made up of a wider range of families

(and hence are true replicates across families). Besides the bio-

logical reasons, it is therefore clear that it is important to consider

phylogenetic structure in space in statistical analyses, and this is

more biologically sensible than using pure spatial information.

Structurally, the problem to be solved here looks similar to the

classical ‘fourth-corner problem’ (Dolédec et al., 1996; Legendre

et al., 1997). In this problem three corners are represented by

three matrices: one with species at sites, one with environmental

characteristics per site and one with traits of species. The fourth

corner is the one to be constructed: the trait by environment

matrix. In principle, we also have these three matrices. However,

Legendre et al. (1997) explicitly state that their fourth-corner

method is not a modelling technique and, for example, does not

take spatial structure of environmental variation into account.

They continue that a multiple interaction form (e.g. multiple

regression) remains to be developed. This also holds true for the

complementary approach of Dolédec et al. (1996). The fourth-

corner approach was recently improved by Dray & Legendre

(2008). Still the method cannot take into account autocorrela-

tion between species and between sites. Dray & Legendre (2008)

claimed this to be an objective of prime interest. We are therefore

unable to use this tool but needed to extend some techniques in

which accounting for autocorrelation is already implemented.

As we are unable to use the fourth-corner approach, the joint

analysis of spatial and phylogenetic information poses prob-

lems: spatial analyses have replicates in space (locations) while

analyses with phylogenetic information have replicates across

species. A method capable of incorporating spatial as well as

phylogenetic information is of advantage, as one cannot know a

priori whether SAC or PAC or both are present. Recently, new

methods were suggested which combine spatial and phyloge-

netic information: Diniz-Filho et al. (2007) used so-called

‘phylogenetic eigenvector filtering’ (Diniz-Filho et al., 1998) to

partition the phylogenetic and ecological components across

species and subsequently explain these signals by environmental

variables across Europe by using simultaneous autoregressive

models. Freckleton & Jetz (2009) extended the use of phylo-

genetic independent contrasts (PICs) to incorporate spatial

distances for trait analyses across species. Here, we use a com-

plementary approach and extend the eigenvector approach since

it is available in both a phylogenetic context and a spatial context

(Diniz-Filho & Bini, 2005; Tiefelsdorf & Griffith, 2007). This

method can be considered as a unifying strategy for such prob-

lems (Peres-Neto, 2006). This approach seemed especially suit-

able for us, since the calculation of eigenvectors from any kind of

information is straightforward. By using simple matrix opera-

tions, we can easily transform one kind of information in a way

that makes both groups of variables comparable. Furthermore,

spatial filtering is among the methods recommended in a recent

review (Dormann et al., 2007). Hence we present a new method

for the analysis of traits in environmental space, jointly account-

ing for spatial and spatially structured phylogenetic non-

independence of trait distribution and based on eigenvector

filtering. In a phylogenetic context, this method is considered to

have some advantages over the often-used phylogenetic inde-

pendent contrasts (PIC; Harvey & Pagel, 1991). PIC analyses

have been intensely discussed (see Westoby et al., 1995, and the
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following debate). One of the arguments was that PICs do not

only remove a pure phylogenetic part of variation but also the

variation that covaries with ecological processes. Due to the

possibility of partialling out these two effects into pure phylo-

genetic, pure ecological and joint effects (Desdevises et al.,

2003), eigenvector filtering is preferred here. Hence, we extend

the method already established by Desdevises et al. (2003) by

spatial components.

One of the traits that has recently gained increased attention

in temporal analyses is flowering phenology of vascular plants,

especially in the context of climate warming (e.g. Fitter & Fitter,

2002; Badeck et al., 2004). It has been known for a long time that

phenology also differs spatially (e.g. south versus north or low-

lands versus mountains; Defila & Clot, 2005) with some limited

plasticity within species among populations (e.g. Menzel et al.,

2001) but also among communities in different regions defined

by different environments (e.g. Defila & Clot, 2005; Menzel

et al., 2006). It has been shown repeatedly that the evolution of

flowering time may be constrained within certain lineages

(Levin, 2006). Thus, phenological patterns at the community or

landscape level may be affected by phylogeny (e.g. Johnson,

1993), underlining the importance of phylogenetic relationships

in analysing macroecological patterns.

To give an example of the new method we analysed the spatial

distribution of flowering phenology, i.e. the average onset of

flowering in Switzerland, asking the following questions: (1)

which environmental gradients can explain macroecological

patterns of phenology, (2) what is the effect of spatial autocor-

relation, (3) what is the effect of spatially structured phyloge-

netic autocorrelation, and (4) what is more important in

reducing autocorrelation in our analysis, pure spatial informa-

tion or phylogenetic information in space?

METHODS

Data sources

Plant distribution data

Distribution data for vascular plants were derived from the gov-

ernmental ‘Biodiversity Monitoring’ (BDM) programme of

Switzerland. This programme was launched by the Federal

Office for the Environment (FOEN) in 2001 to monitor Swiss

biological diversity (Weber et al., 2004). One of the central indi-

cators of the BDM focuses on surveying the ‘species richness in

landscapes’ (Z7 indicator). In a systematic national grid, 520

plots of 1 km2 are surveyed by standardized transect sampling

providing a species list for each plot (Plattner et al., 2004). For

our study we used species lists of 471 plots recorded between

2001 and 2005 (Fig. 1). Eleven plots near to the border of Swit-

zerland had to be excluded because of missing environmental

data. While the average number of species per plot was 220.7 �

66.7 (mean � SD), one plot with very low species richness (n =
3) and an outlying average onset of flowering was excluded from

further analyses. Additionally, three isolated plots with missing

neighbours in the later applied spatial context were excluded to

provide a consistent data basis for all analyses. The final dataset

for model selection contained 456 plots with 103,665 occur-

rences of 1740 vascular plant species.
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Figure 1 Location of sample plots of vascular plants on the landscape scale (1 km2) within the framework of Switzerland’s Federal
Biodiversity Monitoring Programme (n = 471) and the six biogeographical regions of Switzerland (1, Jura; 2, Central Plateau; 3, Northern
Prealps; 4, Western Central Alps; 5, Eastern Central Alps; 6, Southern Alps) following Gonseth et al. (2001). Black squares, used sites; open
squares, discarded (marginal) sites.
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Trait data (flowering phenology)

For a species trait, we analysed the onset of flowering. For each

species, the month of first flowering was taken from Landolt

et al. (2009). For each plot, the average onset of flowering was

calculated and transformed into the number of days since the

beginning of the year. One species (Helleborus niger) already

started flowering in December (with two locations). We coded

this as -1 instead of 12 as the mean of, for example, December

and February is in January and not in July. Our recoding pro-

vides the same results as using the mean of circular statistics.

Environmental data

All environmental predictors used in this study are available as

1-ha GIS grids and average values were calculated for the each

plot of area 1 km2. We included seven predictors (Table 1),

which are known – at least on the level of single species – to have

an impact on the flowering phenology (Roetzer et al., 2000;

Defila & Clot, 2005), i.e. mean annual temperature (TY), three

land-cover classes, namely forest (L.forest), agricultural areas of

the lowlands (L.agrilow) and urban areas (L.urban), calcareous

substrate (CALC), mean annual precipitation (PY) and the

water balance for July (WB7).

Phylogenetic data

Phylogenetic data were taken from a phylogenetic supertree for

the plant species of Germany collated by Durka (2002) in the

BiolFlor database. The phylogeny was updated with more recent

published data and missing Swiss species were added manually.

The phylogeny was purely topological with equal branch lengths

and was resolved 78.5%, with 89% of the polytomies at the

intrageneric level. Phylogenetic data are provided in compara-

tive analysis by independent contrasts (CAIC) format (Purvis &

Rambaut, 1995) by BiolFlor.

Computation

Different filtering approaches

When analysing distribution data, replicates were our spatial

locations (i.e. grid cells or plots are rows and species or envi-

ronmental variables are columns in a matrix) while for phylo-

genetic analyses, replicates were the species (i.e. species were

rows and trait or phylogenetic information were columns in a

matrix). Therefore matrix multiplication was used to combine

the different sets of matrices (i.e. have trait information or phy-

logenetic information per location). In doing so, we used four

different approaches (Fig. 2): (1) spatial filtering, (2) spatio-

phylogenetic filtering, (3) a simultaneous combination of both

(all Fig. 2a), and (4) a sequential approach by first using

phylogenetic filtering to account for the phylogenetic autocor-

relation and then spatial filtering to account for spatial auto-

correlation (Fig. 2b). All these approaches will be described in

more detail after introducing the basic conventions used. T is

the species by trait matrix, S is the site by species matrix, P is

the species by phylogeny matrix, C denotes the matrix of coor-

dinates per site and E the environmental variables per site.

To construct P, the phylogeny was transformed into a species

by phylogenetic branch matrix, recording only presence or

absence of a branch per species (see Fig. S1 in Supporting

Information). For all analyses (1–3) mentioned above (Fig. 2a),

the site by species matrix S was combined with T, resulting in

matrix U, such that it contains the information of average trait

values per site. The further steps of the three calculations are

similar but not equal.

1. In spatial filtering, the coordinates of the sites were trans-

formed into a geographical distance matrix, which then was

subjected to a principal coordinates analysis (PCoA) to yield a

set of spatial filters (the principal coordinates of the eigenvec-

tors). These spatial filters were then used in a filtering algorithm

to reduce spatial autocorrelation (Diniz-Filho & Bini, 2005;

Tiefelsdorf & Griffith, 2007) when modelling the relationship

between average trait value (i.e. average onset of flowering) per

site U and environmental matrix E.

2. In spatio-phylogenetic filtering, S was multiplied with P,

resulting in a site by phylogenetic branch matrix M. Thus, the

product of the two matrices yielded the phylogenetic branches

within each site. This matrix was then subject to a PCoA on a

chi-square distance matrix (in fact, we used the computation-

ally faster equivalent, which is a correspondence analysis)

to avoid the so-called ‘double-zero problem’ (Legendre &

Legendre, 1998). The resulting eigenvectors represent the

spatial structure of the phylogenetic information, called for

short spatio-phylogenetic filters. We only entered those

with positive eigenvalues into a filtering algorithm (Diniz-

Filho et al., 1998; Diniz-Filho & Bini, 2005) to reduce phylo-

genetic autocorrelation when modelling the relationship

between average trait value per site U and environmental

matrix E.

3. When simultaneously combining ‘both’ approaches

described above, we used the first half of the spatial eigenvectors

Table 1 Environmental variables per 1 km2 used for models and
corresponding to Wohlgemuth et al. (2008).

Variable Description Derivation

TY Temperature, mean average (°C) Zimmermann &

Kienast (1999)

PY Precipitation, mean sum (mm) ditto

WB7 Water balance, July; sum of

precipitation minus potential

evapotranspiration

ditto

L.forest Land cover, closed forest (%) Bundesamt für

Statistik (2001)

L.agrilow Land cover, agricultural lowlands (%) ditto

L.urban Land cover, urban areas (%) ditto

CALC Calcareous substrate (%) De Quervain et al.

(1963–1967)

I. Kühn et al.
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and the first half of the spatio-phylogenetic eigenvectors (so that

the number of eigenvectors did not exceed the number of cases)

as the initial set of filters to remove autocorrelation when mod-

elling the relationship between U and E. We also checked that

pure spatial or spatio-phylogenetic eigenvector filtering did not

yield relevant eigenvectors from the latter half of the vectors.

Theoretical considerations, however, suggest that information

which is relevant for autocorrelation is only represented by the

first eigenvectors, whereas the latter eigenvectors represent idio-

syncratic information (or noise) of the elements in the analysis.

Note that within one group (spatial or spatio-phylogenetic) all

filters are orthogonal to each other. In the combined analysis,

however, spatial filters are to be correlated with selected spatio-

phylogenetic filters (Tables S1 & S2).

4. Additionally, we used a sequential approach to first remove

the phylogenetic signal from the data and then use spatial filter-

ing (Fig. 2b). We calculated the patristic distance (Desdevises

et al., 2003) from the species by phylogeny matrix P (see

Fig. S1). This is a triangular matrix adding up pairwise all

branches between two species. This distance matrix was sub-

jected to a PCoA and the positive eigenvectors were regressed on

the trait value (onset of flowering) per species to reduce phylo-

genetic autocorrelation (Diniz-Filho et al., 1998; Desdevises

et al., 2003). The residuals of this regression (matrix R) were

combined with matrix S to yield average trait values, corrected

for phylogeny (matrix V). The computation of spatial eigenvec-

tors is equal to a purely spatial filtering (approach 1). These

spatial filters were then used in a filtering algorithm to reduce
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spatial autocorrelation (Diniz-Filho & Bini, 2005; Tiefelsdorf &

Griffith, 2007) when modelling the relationship between V and

environmental matrix E.

Reducing autocorrelation by filter selection

To reduce residual autocorrelation in all of the approaches men-

tioned above we used Moran eigenvector filtering (Dray et al.,

2006; Griffith & Peres-Neto, 2006). This approach is roughly

comparable to the third variant of spatial eigenvector mapping

used by Bini et al. (2009), which was one of the most robust

methods in their comparison. The eigenvectors to be included in

the regression models are chosen by calculating the empirical

Moran’s I values for the initial model. Subsequently, all eigen-

vectors are scrutinized and the first eigenvector is chosen as that

with the lowest Moran’s I value. This procedure is repeated to

find sequentially the best set of eigenvectors to reduce residual

autocorrelation below the a = 0.05 level of significance. All

probability values used (for predictors as well as Moran’s I) are

based on using the z statistics calculated from the mean and

standard deviation of 999 permutations. Calculations were per-

formed using a modification of the R function ME (originally

written by Bivand & Peres-Neto in ‘spdep’; Bivand et al., 2006).

For this approach, it is necessary to define a neighbourhood

matrix, i.e. to define which spatial locations or taxa are in a given

neighbourhood and which ones are not. A heuristic approach

using several neighbourhood distances was used. For purely

phylogenetic eigenvectors, we used distances of 2, 3, 5, 7, 10 and

25 unit branch lengths. Species in a neighbourhood up to 3 unit

branch lengths yielded the best results [lowest Moran’s I and

lowest Akaike information criterion (AIC)]. For eigenvectors

with a spatial component (purely spatial eigenvectors and spa-

tially structured phylogenetic eigenvectors) we used maximum

distances of 10, 15, 25 and 100 km. In accordance with previous

analyses on comparable scales (Koellner et al., 2004; Kühn, 2007;

Tautenhahn et al., 2008), lag distances above 25 km were not

relevant in removing spatial autocorrelation. Best results (i.e. the

lowest Moran’s I and lowest AIC; Kissling & Carl, 2008) were

yielded for the 10 km distance. Hence we used a lag distance of

10 km for all further analyses, i.e. all plots up to 10 km distance

are included as neighbours.

Model selection in multiple linear regression

To set up our initial model we used seven environmental variables

for which we assumed a strong influence on the trait pattern.

Starting with the full model of all environmental predictors

considered as linear terms in multiple linear regression, variable

selection was carried out by backward selection based on the AIC.

The non-filtering approach left six variables in the minimum

adequate model – all of them being significant (P < 0.05). Since

autocorrelation usually causes further variables to become in-

significant but not insignificant variables to become significant,

these six variables were entered into the filtering approaches.

Influential plots and outliers were tested by examining regression

diagnostics (residuals versus fitted values, normal Q–Q plots, and

Cook’s distance plots). All analyses were performed using R

version 2.6.2 (R Development Core Team, 2008).

Partitioning the variation

We partitioned the variation in the final models among envi-

ronmental information, eigenvectors accounting for spatial

autocorrelation and eigenvectors accounting for autocorrelation

of spatio-phylogenetic information by using hierarchical parti-

tioning (Chevan & Sutherland, 1991) in R using ‘hier.part’ (Mac

Nally & Walsh, 2004). In this method the explained variance is

calculated for generalized linear models using all possible com-

binations of independent variables. From this, we calculated

the proportions of the variance which could exclusively be

explained by a particular variable (or group of variables, such as

spatial or spatio-phylogenetic eigenvectors, respectively).

Figure 2 General overview on the methodological approaches used in this study. Panel (a) summarizes the first three approaches, namely
‘spatial filtering’, ‘spatio-phylogenetic filtering’ and simultaneously filtering ‘both’ spatial and spatio-phylogenetic information. The matrices
and pathways used by each of the approaches are headed by a bold bar on top. In all three approaches, the trait per species matrix T and
the species per site matrix S are combined so that the resulting matrix U averages trait values (onset of flowering) per grid cell. In ‘spatial
filtering’ the site coordinates are transformed into a distance matrix which then is subjected to a principal coordinates analysis (PCoA) to
receive the spatial filters (i.e. the principal coordinates or eigenvectors of the PCoA). In ‘spatio-phylogenetic filtering’, the species per site
matrix S and the phylogeny per species matrix P are multiplied to receive a matrix M of phylogenetic information per site which is
transformed into a distance matrix and subjected to a PCoA to receive spatio-phylogenetic filters. In the approach using both types of
filters, the first half of each of the sets was combined. The resulting filters are used as covariates in modelling the relationship between trait
distribution and environmental variation so that the selected filters reduce the autocorrelation to a non-significant level (see methods for
details). Panel (b) summarizes the fourth approach, which is a sequential filtering of phylogenetic and spatial information. In the first step,
pure phylogenetic information from matrix P is transformed into a patristic distance matrix and then subjected to a PCoA to receive
phylogenetic filters (analogous to the spatial filters). These phylogenetic filters are then used to remove phylogenetic information form the
trait (onset of flowering) per species matrix T in a multiple regression framework. The residuals matrix R is then multiplied with the
species per sites matrix S to bring the residual information of onset of flowering excluding phylogenetic signals into space (matrix V). From
matrix C spatial filters are computed as depicted in panel (a). Similarly to the other approaches, these are used as covariates in modelling
the relationship between residual trait distribution and environmental variation so that the selected filters reduce the autocorrelation to a
non-significant level (see methods for details).
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RESULTS

As expected, there is a clear spatial structure of the average onset

of flowering across Switzerland (Fig. 3) with a strong gradient of

early flowering in the lowlands and a retarded average onset of

flowering by up to as much as 6 weeks in the Alps.

Stepwise regression during model selection excluded one

land-cover variable for agricultural areas in the lowlands

(L.agrilow). All other predictor variables remained significant in

the non-filtering model (Table 2) and no outlier or highly influ-

ential plot was detected.

All models have quite a high proportion of variation

explained. Ignoring the effect of autocorrelation, the most

important factors influencing the beginning of flowering were

mean annual temperature (negative), the proportion of calcar-

eous substrate (negative) and the proportion of closed forests

(negative) (Fig. 4a, Table 2). Spatial autocorrelation in the first

lag distance was considerable (Fig. S2a). The inclusion of spatial

filters increased the fit and variance explained and reduced auto-

correlation significantly (Table 2, Fig. S2b), but had substantial

effects on parameter estimates with mean annual precipitation

and July water balance becoming insignificant (Table 2). The

inclusion of spatio-phylogenetic instead of spatial filters

increased model fit and explained variance further and reduced

global autocorrelation. Compared with the non-filtering model,

proportions of closed forests and urban areas became insignifi-

cant (Table 2). The independent effect of each of the filters was

relatively small (Fig. 4c). In the simultaneous model, annual

Average Onset of Flowering

1 - 3 May

4 - 7 May

8 - 9 May

10 - 11 May

12 - 14 May

15 - 19 May

20 - 29 May

30 May - 12 June

Figure 3 Spatial distribution of average
onset of flowering of vascular plant
species in Swiss floristic sample locations
(n = 456).

Table 2 Model coefficients of the relationship between average onset of flowering and environmental predictors in Switzerland: no
additional filters (Non), spatial filters (Spatial), spatially structured phylogenetic filters (Spatio-phylo), both filters (Both), as well as the
residuals of pure phylogenetic filters on the traits (Filtering (residuals)) without further spatial filtering (Non) and with sequential
phylogenetic and spatial filtering (Spatial).

Coefficients

Filtering Filtering (residuals)

Non Spatial Spatio-phylo Both Non Spatial

Intercept 131.22*** 131.22*** 131.22*** 131.22*** -5.61*** -5.61***

Annual temperature -7.81*** -8.00*** -8.92*** -8.13*** -5.31*** -5.48***

Calcareous substrate -3.04*** -2.40*** -0.69* -2.51*** -2.22*** -1.74***

Closed forest -0.52* -0.52* 0.05 ns -0.29 ns -0.27 ns -0.28 ns

Urban areas 0.82** 0.94*** -0.05 ns 1.15*** 0.62** 0.62**

Annual precipitation -0.69* -0.16 ns -0.97*** -0.58(*) -0.67** -0.32 ns

July water balance 0.63* -0.16 ns 1.44*** 0.45 ns 0.52* -0.11 ns

Global Moran’s I 0.160*** 0.050 ns 0.049 ns 0.045 ns 0.136*** 0.042 ns

Filters selected S3, S49, S8, S35, S57,

S10, S40, S51, S17

P4, P27, P3, P5,

P94, P147

S3, P32, S35,

P45, P4, P27

S3, S10, S18,

S57, S49, S8

AIC 2642.4 2586.6 2518.3 2584.5 2413.9 2370.0

R2 0.819 0.846 0.866 0.845 0.775 0.801

R2 crossvalidated 0.812 0.833 0.837 0.821 0.767 0.789

MAE 3.342 3.138 2.795 3.038 2.601 2.472

Filter were selected according their ability to reduce Moran’s I coefficient of autocorrelation significantly (a = 0.05); neighbourhood distance �10 km;
see methods for details. AIC, Akaike information criterion; MAE, mean absolute error.
(*)0.05 < P � 0.1, *0.01 < P � 0.05, **0.001 < P � 0.01, ***P � 0.001; ns, not significant.
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precipitation became marginally significant and closed forests as

well as water balance became insignificant (Table 2).

The explained variation of the pure phylogenetic model (i.e.

regressing filters on traits) was 46.8% (R2
adj = 0.435). Using the

residuals of this model without further filtering, results and

autocorrelation were comparable with those of the simple

model without any filters. The sequential approach yielded

results comparable to pure spatial filtering, but in addition pro-

portions of closed forests were insignificant. Explained variance

is considerably lower than in any of the first three filtering

approaches (Table 2). However, the order and effect size of the

environmental predictors is remarkably robust among all

models (Fig. 4).

To test how the method performs when ignoring an impor-

tant environmental predictor, we excluded the proportion of

calcareous substrate. This had an effect not only on parameter

estimates (Table 3) but especially on the autocorrelation struc-

ture, largely expanding the lag distance (Fig. S3a,e), with the

choice of filters (the first spatio-phylogenetic filter becoming

important) and spatio-phylogenetic filters as such becoming

much more important (Fig. 5c,d). This, however, is an effect

of some high degree of collinearity between the spatio-

phylogenetic filters and the proportion of calcareous substrate.

In both cases, including or ignoring calcareous substrate,

more spatial filters (n = 9 vs. n = 15, respectively) were necessary

to reduce Moran’s I below the specified level of significance than

when using spatio-phylogenetic filters (n = 6 vs. n = 4) or

both simultaneously (n = 6 vs. n = 4). The highest eigenvectors

included in the spatial analysis was no. 57 vs. no. 62, the highest

eigenvector of the spatio-phylogenetic analysis was no. 147 vs.

no. 22, and for the simultaneous analysis S35 and P45 vs. S1 and

P22, respectively. At the same time, global Moran’s I was better

reduced with simultaneous use of spatial and spatio-

phylogenetic filters. Furthermore, the selected filters of the

simultaneous approach were usually of lower dimensions than

the other ones. The sequential filtering approach needed 101

phylogenetic eigenvectors, with the first selected being P2 and

finishing with P570, and six spatial eigenvectors.

There is some correlation between the spatial filter S3 and

spatio-phylogenetic filter P5 (Table S1). All correlation coeffi-
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Figure 4 Hierarchical partitioning of the independent effects of environmental variables as well as spatial and phylogenetic filters (being
abbreviated S or P, respectively, with the number of filters in parenthesis) of the full set of environmental predictors explaining the variance
in average onset of flowering in Switzerland: simple model without filtering (a); spatial filtering (b); spatio-phylogenetic filtering (c);
simultaneous filtering of spatial and spatio-phylogenetic filters (d); sequential filtering by first removing the phylogenetic effect of the trait
and then apply a spatial filtering approach (e); bars of environmental variables, spatial and phylogenetic filters are shown in grey, white and
black, respectively. For abbreviations of environmental variables see Table 1.
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cients are, however, below r = 0.3. Combining both filters in one

model resulted in the selection of negligible correlation between

spatial and spatio-phylogenetic filters (Table S2).

The distribution of the first selected spatial and spatio-

phylogenetic filters in Switzerland is quite interesting (Fig. 6).

Spatial filters exhibit a regular wave-like distribution (Fig. 6a–c)

with the lower dimensions (S3, S8; Fig. 6a,c) having lower reso-

lution (longer wavelength) and the higher dimension (S49;

Fig. 6b) having higher resolution (shorter wavelength, like

rolling hills). Spatio-phylogenetic filters yielded a clear spatial

pattern (Fig. 6d–f) which – in contrast to spatial filters –

strongly reflects the biogeographical zonation of Switzerland

(Fig. 1). Here, the higher dimension (P27) subdivides the

regions identified by P3/P4 with an indicated east–west gradient

for the Central Plateau and Jura.

DISCUSSION

The key results were: (1) all the methods used were able to

reduce spatial autocorrelations and modify the results of the

regression analysis compared with a non-filtering approach; (2)

spatio-phylogenetic eigenvectors provided more information in

terms of explained variation and reduced spatial autocorrelation

more efficiently than spatial eigenvectors; (3) sequential filtering

provided the least insight into ecological processes and required

a large number of phylogenetic filters to remove phylogenetic

autocorrelation from the traits; and (4) the spatio-phylogenetic

eigenvectors were best for interpreting data in an ecological and

biogeographical context.

Spatial phylogenetic filtering

Prior to the discussion of the results, the question is whether our

proposed new method is mathematically sound. There is a math-

ematical foundation for the use eigenvectors of (1) geographical

distances (for spatial analyses) (Diniz-Filho & Bini, 2005; Tief-

elsdorf & Griffith, 2007) or (2) patristic distance (for phyloge-

netic analyses) (Diniz-Filho et al., 1998; Desdevises et al., 2003)

for filtering approaches. We combined the approaches by multi-

plying the phylogeny per species matrix with the species per site

matrix. The resulting distance matrix provides spatially struc-

tured phylogenetic information. Unlike a true spatial distance

matrix, in which distance is based on Euclidean (= geographical)

distance, distance among objects in our approach is based on

the phylogenetic distance among spatial locations. Thus, the

approach is conceptually comparable to both strict phylogenetic

eigenvector filtering and strict spatial eigenvector filtering.

Tiefelsdorf & Griffith (2007) showed how their spatial filter-

ing approach is mathematically related to genuine autoregres-

sive methods. Hence, their approach is not only capable of

reducing Moran’s I effectively, but is also mathematically valid.

However, spatial and spatio-phylogenetic eigenvectors are not

orthogonal to each other, therefore there is the potential for

some collinearity to occur. It is therefore advisable to test for

collinearity among the filters first to avoid problems caused by

multicollinearity (Graham, 2003). Because all eigenvectors are

screened sequentially for their ability to reduce Moran’s I (and

not according to their explained variance or statistical signifi-

cance), multicollinearity should hence not cause any problem in

Table 3 Model coefficients of the relationship between average onset of flowering and environmental predictors in Switzerland but
excluding calcareous substrate: no additional filters (Non), spatial filters (Spatial), spatially structured phylogenetic filters (Spatio-phylo),
both filters (Both), as well as the residuals of pure phylogenetic filters on the traits (Filtering (residuals)) without further spatial filtering
(Non) and with sequential phylogenetic and spatial filtering (Spatial).

Coefficients

Filtering Filtering (residuals)

Non Spatial Spatio-phylo Both Non Spatial

Intercept 131.22*** 131.22*** 131.22*** 131.22*** -5.61*** -5.61***

Annual temperature -8.57*** -9.03*** 2.56*** 2.68*** -5.87*** -6.12***

Closed forest -0.81** -0.65** 0.31* 0.26(*) -0.49* -0.40*

Urban areas 0.67* 0.85*** 0.53*** 0.56*** 0.52* 0.55**

Annual precipitation -0.47 ns -0.72* -0.19 ns -0.22 ns 0.17 ns -1.08***

July water balance -0.19 ns -0.24 ns 0.20 ns 0.34(*) 0.09 ns -0.28 ns

Global Moran’s I 0.395*** 0.045 ns 0.052 ns 0.049 ns 0.346*** 0.050 ns

Filters selected S3, S4, S8, S9, S57, S35,

S5, S51, S22, S49, S62,

S18, S13, S26, S52

P1, P3, P22, P18 P1, P3, P22, S1 S3, S4, S8, S9, S18,

S57, S5, S11

AIC 2792.7 2596.5 2129.0 2140.0 2548.5 2377.3

R2 0.747 0.846 0.942 0.941 0.697 0.799

R2 crossvalidated 0.740 0.830 0.934 0.932 0.687 0.784

MAE 4.080 3.129 1.816 1.861 3.061 2.486

Filter were selected according their ability to reduce Moran’s I coefficient of autocorrelation significantly (a = 0.05); neighbourhood distance �10 km;
see methods for details. AIC, Akaike information criterion; MAE, mean absolute error.
(*)0.05 < P � 0.1, *0.01 < P � 0.05, **0.001 < P � 0.01, ***P � 0.001; ns, not significant.
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our type of analysis. Although there was some degree correlation

between spatial and spatio-phylogenetic filters, only filters

which were hardly correlated were selected in the combined

analysis. However, though spatial and spatio-phylogenetic filters

were slightly correlated, adding the spatio-phylogenetic context

yielded a better statistical model (better fit, fewer filters selected,

less residual autocorrelation) and provided more ecological rel-

evant information for the interpretation of the analysis than

only the spatial model.

Recently, Freckleton & Jetz (2009) also used a method to

simultaneously account for spatial and phylogenetic effects in

trait analyses. Their approach is based on the use of phylogenetic

contrasts implemented through a generalized least squares

(GLS) approach, while we used eigenvector filtering. Both

approaches are extensions of conventional methods, yet their

approach is based on species as replicates in the analysis while

ours is based on using spatial samples as replicates. Their

approach averages trait variation within species and environ-

mental variation across sites to a mean value. It is hence unable

to account for spatial variation in traits and in environmental

factors. In a stepwise approach, Diniz-Filho et al. (2007) first

used eigenvector filtering to partition phylogenetic and ecologi-

cal components. Environmental information per species was

therefore averaged for each of the environmental predictors

across as in Freckleton & Jetz (2009). Secondly, they averaged the

ecological and phylogenetic components again across space, in a

similar way to our approach, and explained them in a spatial

simultaneous autoregressive model. All three approaches are

complementary and designed to answer different questions.

Using the approach of Diniz-Filho et al. (2007) might poten-

tially result in some tautology, as environmental predictors

are used in both steps. However, unlike our approach, their

approach clearly distinguishes between purely phylogenetic and

purely spatial effects. The approach of Freckleton & Jetz (2009)

can help to disentangle whether evolutionary history or envi-

ronment are more important in determining trait variation

across species. Our spatio-phylogenetic filtering approach

allows one to account for the role of phylogeny when unravelling

the relationship between trait variation and spatially structured,

heterogeneous environments. Therefore, it is possible to account

for the fact that species which are closely related often share

similar environments in a joint analysis of environmental pre-
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Figure 5 Hierarchical partitioning of the independent effects of environmental variables as well as spatial and phylogenetic filters (being
abbreviated S or P, respectively, with the number of filters in parenthesis) of the reduced set of environmental predictors (excluding
calcareous substrate) explaining the variance in average onset of flowering in Switzerland: simple model without filtering (a); spatial
filtering (b); spatio-phylogenetic filtering (c); simultaneous filtering of spatial and spatio-phylogenetic filters (d); sequential filtering by first
removing the phylogenetic effect of the trait and then apply a spatial filtering approach (e); bars of environmental variables, spatial and
phylogenetic filters are shown in grey, white and black, respectively. For abbreviations of environmental variables see Table 1.
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dictors. Unlike Diniz-Filho et al. (2007), we combine phyloge-

netic information and spatial information jointly. Our fourth

(sequential) approach, however, is very similar to the one used

by Diniz-Filho et al. (2007) but only using the equivalent of

their ecological components (ignoring environmental predic-

tors, however, at that stage).

Basing analyses on trait variation in space without accounting

for phylogenetic effects can be potentially misleading in the

interpretation of results, for example by assuming that specific

relationships are caused by a response of a species’ trait to the

environment whereas in fact this signal might only result from

the common evolutionary history of many species at sites with

similar environmental conditions.

Spatio-phylogenetic filters unravel ecological
patterns of flowering phenology

Flowering phenology and its relationships to the environment

are well documented (e.g. Menzel et al., 2001, 2006; Badeck

et al., 2004; Defila & Clot, 2005) and we did not intend to

(a) S3 (d) P4

(b) S49 (e) P27

(c) S8 (f ) P3

Figure 6 Distribution of the first three selected filters using only spatial filters (a–c) and spatially structured phylogenetic filters (d–f).
Cold (blue) to warm (red) colours represent negative to positive axis scores of the plots. Class limits were chosen according ‘Natural Breaks
(Jenks)’ in ArcMap 9.2.
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unravel new relationships. The relationship with temperature is

obvious. Specific land use and soil characteristics were included

due to their straightforward and known relationships with

microclimate (open calcareous habitats are usually warmer and

many arable weeds need to flower before the crops grow tall or

before disturbance occurs).

The selected spatially structured phylogenetic eigenvectors,

however, provided ecologically meaningful information, as they

mirrored the biogeographical units of Switzerland. These units

are defined by their characteristic species inventories, although

some regions are also different in the density of sampling loca-

tions. Nevertheless, even in regions with the same sampling plot

density, the selected spatio-phylogenetic filters capture the tran-

sition between biogeographical regions (e.g. Central Plateau and

Jura or Northern Prealps). The spatio-phylogenetic eigenvectors

hence capture the phylogenetic differences of the different

species inventories which are relevant for the species trait under

consideration. Furthermore, due to niche conservatism (e.g.

Prinzing et al., 2001), phylogenetically related species not only

share similar traits with a higher probability but are also more

likely to respond in a similar way to environmental pressures.

Hence, spatially structured environmental variables will lead to

spatially structured species assemblages (or communities) as

well as trait assemblages (Kühn et al., 2006; Tautenhahn et al.,

2008) sharing a common phylogenetic history. Due to this rela-

tionship, spatio-phylogenetic filters can make up for some of

the environmental information missing in an analysis in an

ecologically sensible way. Therefore, spatio-phylogenetic filters

(although selected according to their ability to reduce residual

autocorrelation) account for more information than their

strictly spatial counterparts and increase even more in explained

variability when important key variables (such as calcareous

substrate in our example) are missing. This approach can there-

fore help us to better realize whether important predictors are

missed from a parameterized model.

Phylogenetic incomplete knowledge

One problem might be the lack of branch lengths in our phy-

logeny. Of course, the use of branch lengths is preferred over

measures relying solely on topology. However, as in our case,

proper branch lengths are often not available, but (super)tree

topologies mostly are. Under these circumstances, substituting

branch lengths by the number of nodes (i.e. setting branch

lengths to unity) can be a fruitful alternative (Schweiger et al.,

2008). In principle, the chosen methods would work just the

same with correct branch lengths and obviously would provide

better (i.e. more realistic) and more differentiated results. Still,

incorporating even suboptimal phylogenetic information is

better than ignoring such information (Schweiger et al., 2008).

CONCLUSIONS

When analysing traits in spatial context it might be better to use

spatially structured phylogenetic information to account for

autocorrelation than pure spatial information. The sequential

approach as implemented here, however, is not recommended

because: (1) it removes the complete phylogenetic signal before

being applied in spatial context and related to environmental

predictors, and (2) it requires much more phylogenetic infor-

mation than the simultaneous approach due to the lack of

appropriate ecological predictors. An alternative option would

be the related approach of Diniz-Filho et al. (2007). Eigenvector

filtering may also be a way to solve the remaining challenge and

account for spatial and phylogenetic autocorrelation in the

fourth-corner problem (Dray & Legendre, 2008). A tangible

implementation, however, needs to be elaborated. Overall, we

were able to show that a combination of spatial and spatio-

phylogenetic eigenvector filters is an effective and efficient tool

in trait analyses to reduce unwanted spatial autocorrelation, to

indicate the absence of important environmental covariates and

to provide aids in interpreting the results of trait–environment

relationships.

ACKNOWLEDGEMENTS

We thank the Swiss Federal Office for the Environment FOEN

and BDM Coordination Office (Hintermann & Weber AG,

Reinach) for providing the data set of the ‘Biodiversity Moni-

toring’ programme of Switzerland. We are grateful to Felix

Kienast, Niklaus Zimmermann and Thomas Wohlgemuth for

preparing environmental data and the following persons for

their help with field work in the monitoring programme: Alain

Jotterand, Andrea Persico, Barbara Berner, Christian Hadorn,

Christoph Bühler, Christoph Käsermann, Daniel Knecht, David

Galeuchet, Dunja Al-Jabaji, Elisabeth Danner, Gabriele Carraro,

Jean-François Burri, Jens Paulsen, Karin Marti, Markus Bichsel,

Martin Camenisch, Martin Frei, Martin Valencak, Matthias

Vust, Michael Ryf, Nils Tonascia, Philippe Druart, Regula Lan-

genauer, Sabine Joss, Stefan Birrer, Thomas Breunig, Urs Weber,

Ursula Bollens and Ursula Kradolfer. I.K. acknowledges support

from the ‘Virtual Institute Macroecology’ (Kühn et al., 2008).

REFERENCES

Badeck, F.W., Bondeau, A., Bottcher, K., Doktor, D., Lucht, W.,

Schaber, J. & Sitch, S. (2004) Responses of spring phenology

to climate change. New Phytologist, 162, 295–309.

Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V., Akre, T.S.B.,

Albaladejo, R.G., Albuquerque, F.S., Aparicio, A., Araújo,

M.B., Baselga, A., Beck, J., Bellocq, M.I., Böhning-Gaese, K.,

Borges, P.A.V., Castro-Parga, I., Chey, V.K., Chown, S.L., de

Marco, P., Dobkin, D.S., Ferrer-Castán, D., Field, R., Filloy, J.,

Fleishman, E., Gómez, J.F., Hortal, J., Iverson, J.B., Kerr, J.T.,

Kissling, W.D., Kitching, I.J., León-Cortés, J.L., Lobo, J.M.,

Montoya, D., Morales-Castilla, I., Moreno, J.C., Oberdorff, T.,

Olalla-Tárraga, M.Á., Pausas, J.G., Qian, H., Rahbek, C.,

Rodríguez, M.Á., Rueda, M., Ruggiero, A., Sackmann, P.,

Sanders, N.J., Terribile, L.C., Vetaas, O.R. & Hawkins, B.A.

(2009) Coefficient shifts in geographical ecology: an empirical

evaluation of spatial and non-spatial regression. Ecography,

32, 193–204.

I. Kühn et al.

Global Ecology and Biogeography, 18, 745–758, © 2009 Blackwell Publishing Ltd756



Bivand, R., Anselin, L., Berke, O., Bernat, A., Carvalho, M.,

Chun, Y., Dormann, C., Dray, S., Halbersma, R., Lewin-Koh,

N., Ono, H., Peres-Neto, P., Tiefelsdorf, M. & Yu, D. (2006)

spdep: spatial dependence: weighting schemes, statistics and

models. R package version 0.3-22. http://cran.r-project.org.

Bundesamt für Statistik (2001) GEOSTAT Benutzerhandbuch.

Bundesamt für Statistik, Neuchâtel, Switzerland.

Chevan, A. & Sutherland, M. (1991) Hierarchical partitioning.

American Statistician, 45, 90–96.

Defila, C. & Clot, B. (2005) Phytophenological trends in the Swiss

Alps, 1951–2002. Meteorologische Zeitschrift, 14, 191–196.

De Quervain, F., Hofmänner, F., Jenny, V., Köppel, V. & Frey, D.

(1963–1967) Geotechnische Karte der Schweiz, 1 : 200 000, 2nd

edn. Kümmerly & Frei, Bern, Switzerland.

Desdevises, Y., Legendre, P., Azouzi, L. & Morand, S. (2003)

Quantifying phylogenetically structured environmental

variation. Evolution, 57, 2647–2652.

Diniz-Filho, J.A.F. & Bini, L.M. (2005) Modelling geographical

patterns in species richness using eigenvector-based spatial

filters. Global Ecology and Biogeography, 14, 177–185.

Diniz-Filho, J.A.F. & Bini, L.M. (2008) Macroecology, global

change and the shadow of forgotten ancestors. Global Ecology

and Biogeography, 17, 11–17.

Diniz-Filho, J.A.F., De Sant’ana, C.E.R. & Bini, L.M. (1998) An

eigenvector method for estimating phylogenetic inertia. Evo-

lution, 52, 1247–1262.

Diniz-Filho, J.A.F., Bini, L.M. & Hawkins, B.A. (2003) Spatial

autocorrelation and red herrings in geographical ecology.

Global Ecology and Biogeography, 12, 53–64.

Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Rangel, T.F.L.V.

& Hawkins, B.A. (2007) Seeing the forest for the trees: parti-

tioning ecological and phylogenetic components of Berg-

mann’s rule in European Carnivora. Ecography, 30, 598–608.

Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S. (1996)

Matching species traits to environmental variables: a new

three-table ordination method. Environmental and Ecological

Statistics, 3, 143–166.

Dormann, C.F. (2007) Effects of incorporating spatial autocor-

relation into the analysis of species distribution data. Global

Change Biology, 16, 129–138.

Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bol-

liger, J., Carl, G., Davies, R.G., Hirzel, A.H., Jetz, W., Kissling,

W.D., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, B.,

Schröder, B., Schurr, F. & Wilson, R. (2007) Methods to

account for spatial autocorrelation in the analysis of species

distributional data: a review. Ecography, 30, 609–628.

Dray, S. & Legendre, P. (2008) Testing the species traits–

environment relationships: the fourth-corner problem revis-

ited. Ecology, 89, 3400–3412.

Dray, S., Legendre, P. & Peres-Neto, P.R. (2006) Spatial model-

ling: a comprehensive framework for principal coordinate

analysis of neighbour matrices (PCNM). Ecological Modelling,

196, 483–493.

Durka, W. (2002) Phylogenie der Farn- und Blütenpflanzen

Deutschlands. BIOLFLOR – eine Datenbank zu biologisch-

ökologischen Merkmalen der Gefäßpflanzen in Deutschland

(ed. by S. Klotz, I. Kühn and W. Durka), Schriftenreihe für

Vegetationskunde, Vol. 38, pp. 75–91. Bundesamt für Natur-

schutz, Bonn, Germany.

Fitter, A.H. & Fitter, R.S.R. (2002) Rapid changes in flowering

time in British plants. Science, 296, 1689–1691.

Freckleton, R.P. & Jetz, W. (2009) Space versus phylogeny: dis-

entangling phylogenetic and spatial signals in comparative

data. Proceedings of the Royal Society B: Biological Sciences, 276,

21–30.

Gonseth, Y., Wohlgemuth, T., Sansonnens, B. & Buttler, A.

(2001) Die biogeographischen Regionen der Schweiz. Erläute-

rungen und Einteilungsstandard/Les régions biogéographiques

de la Suisse. Explications et division standard, Vol. 137. Bun-

desamt für Umwelt, Wald und Landschaft BUWAL, Bern,

Switzerland.

Graham, M.H. (2003) Confronting multicollinearity in ecologi-

cal multiple regression. Ecology, 84, 2809–2815.

Griffith, D.A. & Peres-Neto, P.R. (2006) Spatial modeling in

ecology: the flexibility of eigenfunction spatial analyses.

Ecology, 87, 2603–2613.

Harvey, P.H. & Pagel, M.D. (1991) The comparative method in

evolutionary biology. Oxford University Press, Oxford.

Hawkins, B.A., Diniz-Filho, J.A.F., Bini, L.M., De Marco, P. &

Blackburn, T.M. (2007) Red herrings revisited: spatial auto-

correlation and parameter estimation in geographical

ecology. Ecography, 30, 375–384.

Johnson, S.D. (1993) Climatic and phylogenetic determinants of

flowering seasonality in the Cape flora. Journal of Ecology, 81,

567–572.

Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and

the selection of simultaneous autoregressive models. Global

Ecology and Biogeography, 17, 59–71.

Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. (2008) Challenging

urban species diversity: contrasting phylogenetic patterns

across plant functional groups in Germany. Ecology Letters,

11, 1054–1064.

Koellner, T., Hersperger, A.M. & Wohlgemuth, T. (2004) Rar-

efaction method for assessing plant species diversity on a

regional scale. Ecography, 27, 532–544.

Kühn, I. (2007) Incorporating spatial autocorrelation may invert

observed patterns. Diversity and Distributions, 13, 66–69.

Kühn, I., Bierman, S.M., Durka, W. & Klotz, S. (2006) Relating

geographical variation in pollination types to environmental

and spatial factors using novel statistical methods. New Phy-

tologist, 172, 127–139.

Kühn, I., Böhning-Gaese, K., Cramer, W. & Klotz, S. (2008)

Macroecology meets global change research. Global Ecology

and Biogeography, 17, 3–4.

Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F.,

Lämmler, W., Nobis, M., Rudmann-Maurer, K., Schweingru-

ber, F.H., Theurillat, J.-P., Urmi, E., Vust, M. & Wohlgemuth,

T. (2009) Flora indicativa – Ecological indicator values and

biological attributes of the flora of Switzerland and the Alps.

Haupt, Bern, Switzerland.

Legendre, P. (1993) Spatial autocorrelation – trouble or new

paradigm. Ecology, 74, 1659–1673.

Spatial and phylogenetic filtering in trait analyses

Global Ecology and Biogeography, 18, 745–758, © 2009 Blackwell Publishing Ltd 757



Legendre, P. & Legendre, L. (1998) Numerical ecology. Deve-

lopments in environmental modelling, Vol. 20. Elsevier,

Amsterdam.

Legendre, P., Galzin, R. & Harmelin-Vivien, M.L. (1997) Relat-

ing behaviour to habitat: solutions to the fourth-corner

problem. Ecology, 78, 547–562.

Lennon, J.J. (2000) Red-shifts and red herrings in geographical

ecology. Ecography, 23, 101–113.

Levin, D.A. (2006) Flowering phenology in relation to adaptive

radiation. Systematic Botany, 31, 239–246.

McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006)

Rebuilding community ecology from functional traits. Trends

in Ecology and Evolution, 21, 178–185.

Mac Nally, R. & Walsh, C.J. (2004) Hierarchical partitioning

public-domain software. Biodiversity and Conservation, 13,

659–660.

Menzel, A., Estrella, N. & Fabian, P. (2001) Spatial and temporal

variability of the phenological seasons in Germany from 1951

to 1996. Global Change Biology, 7, 657–666.

Menzel, A., Sparks, T.H., Estrella, N. & Roy, D.B. (2006) Altered

geographic and temporal variability in phenology in response

to climate change. Global Ecology and Biogeography, 15, 498–

504.

Peres-Neto, P.R. (2006) A unified strategy for estimating and

controlling spatial, temporal and phylogenetic autocorrela-

tion in ecological models. Oecologia Brasiliensis, 10, 105–119.

Plattner, M., Birrer, S. & Weber, D. (2004) Data quality in

monitoring plant species richness in Switzerland. Community

Ecology, 5, 135–143.

Prinzing, A., Durka, W., Klotz, S. & Brandl, R. (2001) The niche

of higher plants: evidence for phylogenetic conservatism. Pro-

ceedings of the Royal Society B: Biological Sciences, 268, 2383–

2389.

Purvis, A. & Rambaut, A. (1995) Comparative analysis by inde-

pendent contrasts (CAIC): an Apple Macintosh application

for analysing comparative data. CABIOS, 11, 247–251.

R Development Core Team (2008) R: a language and environ-

ment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria.

Roetzer, T., Wittenzeller, M., Haeckel, H. & Nekovar, J. (2000)

Phenology in central Europe – differences and trends of

spring phenophases in urban and rural areas. International

Journal of Biometeorology, 44, 60–66.

Schweiger, O., Klotz, S., Durka, W. & Kühn, I. (2008) A test of

phylogenetic diversity indices. Oecologia, 157, 485–495.

Tautenhahn, S., Heilmeier, H., Götzenberger, L., Klotz, S., Wirth,

C. & Kühn, I. (2008) On the biogeography of seed mass in

Germany – distribution patterns and environmental corre-

lates. Ecography, 31, 457–468.

Tiefelsdorf, M. & Griffith, D.A. (2007) Semiparametric filtering

of spatial autocorrelation: the eigenvector approach. Environ-

ment and Planning A, 39, 1193–1221.

Weber, D., Hintermann, U. & Zangger, A. (2004) Scale and

trends in species richness: considerations for monitoring bio-

logical diversity for political purposes. Global Ecology and Bio-

geography, 13, 97–104.

Westoby, M., Leishman, M.R. & Lord, J.M. (1995) On misinter-

preting the ‘phylogenetic correction’. Journal of Ecology, 83,

531–534.

Wohlgemuth, T., Nobis, M.P., Kienast, F. & Plattner, M. (2008)

Modelling vascular plant diversity at the landscape scale using

systematic samples. Journal of Biogeography, 35, 1226–1240.

Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of

alpine grasslands in Switzerland: species versus community

approach. Journal of Vegetation Science, 10, 469–482.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Figure S1 Representation of a binary phylogenetic tree in a

species by a phylogenetic branch matrix, using phylogenies in the

comparative analysis by independent contrasts (CAIC) format.

Figure S2 Moran’s I correlograms of residual autocorrelation of

the different models explaining average onset of flowering in

Switzerland.

Figure S3 Moran’s I correlograms of residual autocorrelation of

the different models explaining average onset of flowering in

Switzerland excluding calcareous substrate.

Table S1 Correlation matrix of eigenvectors selected by spatial

and spatially structured phylogenetic (spatio-phylo) filtering.

Table S2 Correlation matrix of eigenvectors for combining

spatial and spatially structured phylogenetic (spatio-phylo)

filters in one model (both).

As a service to our authors and readers, this journal provides

supporting information supplied by the authors. Such materials

are peer-reviewed and may be re-organized for online delivery,

but are not copy-edited or typeset. Technical support issues

arising from supporting information (other than missing files)

should be addressed to the authors.

BIOSKETCHES

Ingolf Kühn is a senior scientist at the Helmholtz

Centre for Environmental Research – UFZ and is

interested in spatial analyses of plant species and their

traits especially in the context of climate change or

biological invasions.

Michael P. Nobis heads the spatial ecology group at

the Swiss Federal Research Institute WSL. His research

concentrates on spatial analyses of species distributions

and biodiversity patterns.

Walter Durka is a senior scientist at the Helmholtz

Centre for Environmental Research – UFZ. He works

on plant population genetics and is interested in traits

affecting plant reproduction and in plant phylogeny

and their effect on population structure under habitat

and global change.

Editor: José Alexandre F. Diniz-Filho

I. Kühn et al.

Global Ecology and Biogeography, 18, 745–758, © 2009 Blackwell Publishing Ltd758


