HS7.4/AS4.9/CL3.4: Weather Generators: Reviewing the State of the Art Stephan Thober, Luis Samaniego, Sabine Attinger

1. Abstract

Algorithms for generating synthetic weather time series, especially precipitation, are important tools for hydrological modelling as well as for civil and agricultural engineering. They provide time series of a variable of interest of needed length, which preserve the statistical properties of observations, most importantly to note the spatial and temporal structure. There are numerous techniques and methodologies for Weather-Generators (WG) involving times series models (ARMA), Poisson processes, fuzzy rules, copulas and Markov chains among others.

2. Research Questions

- 1. How well can a WG reproduce site properties like monthly and annual totals, length of wet and dry spells, autocorrelation functions, etc.?
- 2. How well can a WG capture the spatial structure of precipitation (e.g. the variability of the first principal components or correlation coefficients of site properties)?
- 3. How well can a WG capture the extremes (e.g. 95 percentile of precipitation intensity and dry spell length)?

3. Study Area and Data

- **Domain**: Harz Mountain Region, Germany, approx. 10.000 km 2
- **Period**: 1961-1990

• Observations:

- -20 stations provided by German Meteorological Service [2, DWD]
- Daily precipitation

4.1. Weather Generator A

WG A generates precipitation occurence and intensity seperately. It is based on the method of [1, Brisette].

The occurence process is modelled via a Markov chain $X_s(t)$ of order one

$$X_s(t) = \begin{cases} 1, & \text{if day t at station s is wet} \\ 0, & \text{if day t at station s is dry.} \end{cases}$$

The Markov chains $X_s(t)$ are drawn via a serially independent, but spatially correlated standard normal multivariate. If $X_s(t)$ is a rainy day, then the intensity is drawn analogously with a multivariate Y(t). $Y_s(t)$ denotes the standard normal variate for station s, which is transformed into the precipitation intensity $pr_s(t)$ via

$$N_{(0,1)}(Y_s(t)) = F(pr_s(t)),$$

(2)where $N_{(0,1)}$ denotes the standard normal cumulative distribution function (cdf) and F the fitted mixed exponential distribution (eq. 3).

$$F(x) = \sum_{i} \alpha_i (1 - e^{-\lambda_i x})$$

where i is the occurence class index, which is the ratio of wet neighbouring stations to dry neighbouring stations weighted by their correlation.

Location of precipitation stations (blue) operated by DWD 1961-2010 in Germany (right) and used for this study (left)

UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany (stephan.thober@ufz.de)

(3)

$$W(t) = R \cdot W(t-1) + C \cdot \Phi(t), \qquad (4)$$

$$N_{(0,1)}(W_s(t)) = \frac{F(pr_s(t)) - (1 - p_w(t))}{p_w(t)},$$
(5)

$$f(x) = \frac{g(x) \cdot m(x) + h(x) \cdot (1 - m(x))}{K},$$
(6)

red - Observed, blue - WG A median with 95 % confidence interval, green - one WG B realisation

