H21A-1018: The role of temporal disaggregation and land surface initial conditions for hydrological forecasting

1. Introduction

Hydrological extremes like floods and droughts are causing severe socioeconomic damages. Hydrological models allow to forecast state variables and fluxes of the hydrological cycle, providing a tool for decision makers to mitigate damages. This study aims to gain a better understanding of how land surface initial conditions and temporal disaggregation of meteorological forcings are impacting hydrological forecasts.

2.1 Stochastic Weather Generator (WG)

locations (a) Berlin and (b) Feldberg for different precipitation intensities (colored lines)

A multiplicative cascade approach [2] (Fig. 1) is employed to stochastically disaggregate monthly to daily precipitation via

> $P_i^{(k)}(2t) = w_1^{(k)} \cdot P_i^{(2k)}$ $1 = w_1^{(k)} + w_2^{(l)}$ $w_1^{(k)} = \mathcal{F}_i^{-1}(N(\epsilon))$ $\epsilon(t) \sim N(0, \mathbf{C}),$

where $P^{(k)}$ denotes precipitation at scale k, \mathcal{F} the distribution function of the weights w (Fig. 2), N the standard normal distribution function, and C a cross covariance matrix calculated from the observations. This Fig. 2: distribution functions of weights w at two approach generates the weights as random number.

(1)

A sequential Gaussian sampling algorithm is used for assuring numerical stability in the calculation of ϵ on spatial grids of any size.

2.2 Historic Rescaling (ESP)

A historic rescaling approach [3] to generate an ensemble of forcings is used. The detailed steps Ξ_{12} are as follows:

1. Determine historic weights $w_{\scriptscriptstyle h}^y$ via

$$P_d^y(t) = w_h^y(t) \cdot P_m^y,$$

for a given monthly value P_m^y and the corresponding daily values P_d^y in a given year y.

2. Substitute P_m^y with a monthly observation of precipitation (black line) and its sum (black another year in eq. 1 to generate a new daily multiplied with a new 10 day precipitation value (blue dashed line) to derive new daily time series P_d^{y*} , keeping the weights w_h^y fixed.

precipitation (blue line).

Stephan Thober, Matthias Zink, Rohini Kumar, and Luis Samaniego Helmholtz Centre for Environmental Research - UFZ, Leipzig stephan.thober@ufz.de

$${}^{(k)}(t), \ {}^{(k)}(t), \ {}^{$$

- observed precipitation forcing
- (e.g., WG and ESP)

References

[1] L. Samaniego, R. Kumar, and S. Attinger, "Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale," Water Resources Research, vol. 46, no. 5, 2010. [Online]. Available: http://dx.doi.org/10.1029/2008WR007327 [2] S. Thober, J. Mai, L. Samaniego, and A. Bárdossy, "Multi-scale Precipitation Generator for Regional Gridded Data Sets," in prep.

Research: Atmospheres, vol. 107, no. D20, pp. ACL 6–1–ACL 6–15, 2002. [Online]. Available: http://dx.doi.org/10.1029/2001JD000659

