

Landscape Visualization in High Resolution Stereoscopic Visualization Environments, Dr. Björn Zehner

Given at the "Digital Design in Landscape Architecture 2008" Conference in Dessau, Germany, May 2008 bjoern.zehner@ufz.de, bzehner@gmx.de HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Motivation

Evaluation of the user's preferences regarding the Placement of wind-turbines using choice experiments. Example: What do you prefer for getting a certain Amount of energy ?

- 20 80m high wind-turbines or 10 120m high ?
- Place them in the forest or on open field ?

UFZ's Visualization Center

UFZ's Visualization Center

Different options to run such a system

Page 5

OpenSG against Chromium

Chromium

Pros:

+ Transparent for application
+ Use of existing applications
possible

Cons:

- Sending the OpenGL stream from the master to all slave nodes generates high network traffic

OpenSG

Pros:

+ After scenegraph has been send to all slave nodes low network traffic

Cons:

-Rendering backend of software needs to be reimplemented

-Size of scene is limited by main memory of the computer

UFZ's Visualization Center

Main contents required

- Terrain with texture to represent the ground
- Trees in very large numbers (XFrogPlants libraries)
- Geometric models, e.g. houses, wind-turbines ...

Initial assumption for the workflow

CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Final workflow

Page 10

Processing single trees (LOD etc.)

Page 11

XFrogTune, LOD generation for trunk and branches

XFrogTune, LOD generation for leaves

With increasing viewer-to-leaf distance the screenspace of the leaves becomes smaller and OpenGL must downsample (filter) the images.

If no series of images is provided this is done automatically, making the leaves more and more transparent.

Tree becomes translucent at a distance

Tree stays opaque at a distance

Assembling the terrain (ground) Greenworks Plant Library Database Geometry Leaf texture Tree texture ArcGIS Usage Terrain **XFrogTune** Gimp Gimp (texture) (TIN) Multiple geo-Gimp Nvidia tex-Nvidia texmetries ture tools ure tools Cinema4D VRED or VRED Leaf texture Tree texture LOD geometry Terrain with usage coded as color Vred Images represen-Vre Further geometry **OpenSG** file OpenSG file with ting the ground (e.g. Houses, wind turbines) with LOD tree texture terrain

Shapefiles

Shader code

OpenSG based rendering application

Application generating the scene -

OpenSG file: Full scene

Problems with areal image as ground

In forest regions the floor would show trees from topLow resolution in the near field

2925 x 2775 Meter 1625 x 1544 Pixel => One Pixel ~ 1.8 Meter

Forest with areal image as ground

Forest with perlin noise image as ground

Terrain with image containing usage

Combining different Images in a shader

color.rgb = code.rgb

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Terrain with areal image

Combining different Images in a shader

color.rgb = (code.r + code.g + code.b + code.a) * areal.rgb

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Using a noise image as forest ground

Combining different Images in a shader

color.rgb = (code.r + code.a) * areal.rgb + (code.g + code.b) * forestground.rgb

Using a noise image as lawn

Combining different Images in a shader

> color.rgb = (code.a) * areal.rgb + (code.g + code.b) * forestground.rgb + code.r * lawnground.rgb

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Adding the geometry

Assembling the scene

Scenegraph-structure for a forest

Page 40

From billboards to geometry (shematic)

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Page 42

Björn Zehner, Digital Design in Landscape Architecture 2008, Dessau, Germany

Page 43

Final scene

~ 20.000 Trees

~ 1 GByte

~ 15-20 frames/second

The Assessment of the State of the State of the