

"Regionale Grundwassersysteme" Veranstaltung im Modul Hydrosystemanalyse

Einführung /Grundwasserströmungsgleichung

Dr. Erik Nixdorf

24.06.2022

Dozent

Arbeitsschwerpunkte

- Strömung und Transport in gekoppelten hydrologischen Systemen
- Analyse von Grundwasserströmungsprozessen auf der Einzugsgebietsskala mittels numerischer Prozessmodellierung
- Regionalisierung von hydrogeologischen Parametern mit Methoden des Maschinellen Lernens
- GIS-Analysen und -Workflowprogrammierung
- Konzipierung und Durchführung hydrologischer/hydrogeologischer Feldversuche und Messkampagnen

Lehrveranstaltungen

Aktuelle Lehrveranstaltungen

Hydrosystemanalyse (TU Dresden)

Catchment Scale Groundwater Modelling (CRAES, Peking)

Vergangene Lehrveranstaltungen

Hydrological and Hydrogeological Field Methods (Graduiertenschule HIGRADE)

Hauptberufliche Anstellung: Bundesanstalt für Geowissenschaften und Rohstoffe Forschungs- und Entwicklungszentrum Bergbaufolgen (*FEZB*)

Gastanstellung:

Helmholtzzentrum für Umweltforschung Department Umweltinformatik Kontakt: erik.nixdorf@ufz.de

Regionale Grundwassersysteme

Datum	B2	Thema	Format
27.05.2022	B2-T1.0	Einführung in die Veranstaltung (B2) (Kolditz)	Online
27.05.2022	B2-T1.1	Hydromechanik und Numerische Methoden (Kolditz)	Online
27.05.2022	B2-T1.2	Grundwasserhydraulik und Prinzipbeispiel (Kolditz)	Online
03.06.2022	B2-T3.1	Stofftransport in Hydrosystemen (Shao)	Präsenz
03.06.2022	B2-T3.2	Stofftransport in Hydrosystemen (Shao)	Präsenz
10.06.2022	-	Vorlesungsfrei (Pfingsten)	
17.06.2022	B2-T2.1	Regionale Grundwassersysteme (Nixdorf)	Präsenz
17.06.2022	B2-T2.2	Regionale Grundwassersysteme (Nixdorf)	Präsenz
17.06.2022	B2-T2.3	Regionale Grundwassersysteme (Nixdorf): Übung	Präsenz
24.06.2022	B2-T4.1	Virtuelle VISLAB Tour - Vorlesung (Rink/Bilke)	Online
24.06.2022	B2-T4.2	Virtuelle VISLAB Tour - Demo (Rink/Bilke)	Online
01.07.2022	B2-T1.3	Finite-Differenzen-Methode: Explizit (Kolditz)	Präsenz
01.07.2022	B2-T1.4	Finite-Differenzen-Methode: Implizit (Kolditz)	Präsenz
01.07.2022	B2-T1.5	Finite-Differenzen-Methode: Übungen (Kolditz)	Präsenz
08.07.2022	B2-T3.3	Stofftransport in Hydrosystemen (Shao)	Präsenz
08.07.2022	B2-T3.4	Stofftransport in Hydrosystemen (Shao)	Präsenz
15.07.2022	B2-T1.6	Zusammenfassung der Veranstaltung (Hartmann/Kolditz)	Präsenz
15.07.2022	B2-T1.7	Vorbereitung Klausur (Hartmann/Kolditz)	Präsenz

- Was wissen Sie schon aus den vergangenen Veranstaltungen?
 - Modellierungskonzepte, Modellkalibrierung, evaluierung, Sensitivitätsanalyse (Block I)
 - Strömungsgleichungen und Numerische Lösungsverfahren (FDM und FEM)
 - Advektiv-dispersiver Transport
 - Eingabe/Ausgabe f
 ür Simulationen mit OpenGeoSys 6
 - Vieles mehr aus anderen Lehrveranstaltungen I

Die Unterlagen zum Kurs finden sie auf Nextcloud: link: https://nc.ufz.de/s/gm7RJ9JEnbb5y73 pw: grundwasser_2022

Regionale Grundwassersysteme - Aufbau

- 3 Teile, 2mal Vorlesung und 1mal Übung, Ende gegen 18:10
- a. V1: Grundwasserströmungsgleichung
 - I. Herleitung der Grundwassergleichung in der Potentialform
 - II. Diskussion der Parameter des Grundwasserleiters
 - III. Analytische Lösungen
- b. V2: Grundwassermodellierung auf der Einzugsgebietsskala
 - I. GIS in der Grundwassermodellierung
 - II. Initial und Randbedingungen
 - III. Das Grundwasserströmungsmodell Selke
- c. Übung mit OpenGeoSys und ParaView
 - I. Analytische Lösungen vs. OpenGeoSys
 - II. Grundwasserströmungsmodell Selke: Bewertung der Modellergebnisse und der Randbedingungen
- d. Klausurfragen...

Prozessmodellierung im Untergrund

 Welche Prozesse soll das Modell abbilden (Überlegung Konzeptionelles Modell, kann eine Auswahl getroffen werden:

Modelauswahl: Prozesse II

• Je nach Prozessauswahl ergeben sich verschiedene Zielgrößen und Unterprozesse

	Hauptprozess	Abhängige Variable	Anwendungsabhängige Komponenten
	Strömung	Fluiddruck, Standrohrspiegelhöhe, Grundwasserflurabstand Sättigung,	Poren/Kluft/Karstaquifere Teilsättigung Einphasen/zweiphasen Strömung Ungespannt/gespannte GWL
	Wärmetransport	Temperatur, Enthalpie, Innere Energie	Dieselben wie Strömung + Konvektion Wärmeleitung Strahlung
	Stofftransport	Konzentration	Dieselben wie Strömung + Konvektion Dispersion Reaktion
	Mechanik	Verformung Spannung	Elastische Medien Plastische Medien Viskoelastische Medien

Erhaltungsgesetze (Wdh von Shao)

 Numerischen Grundwassermodelle basieren auf der Zerlegung eines Systems in Teilgebiete und der Aufstellung von Bilanzgleichungen (partielle Differentialgleichungen) f
ür jedes Gebiet

Die Kontinuitätsgleichung kann mit dem Gaußschen Integralsatz hergeleitet werden:

$$\frac{\partial \rho}{\partial t} + div[\rho v] - Q_m = 0$$
 mit $S = \rho(x, t, p, X, T)$

Massenerhaltungsgesetz für ein Kontrollvolumen

High hydraulic-conductivity aquifer

Low hydraulic-conductivity confining unit

Very low hydraulic-conductivity bedrock

Direction of ground-water flow

https://tinyurl.com/veafz3ch

 $\vec{v} = (v)$

Änderung der Masse in einem Volumenelement über die Zeit =Σ des einströmenden Massenstroms in das Volumenelement - Σ des ausströmenden Massenstroms aus dem Volumenelement

Schauen wir uns das ganze Element mit den Kantenlängen dx, dy and dz and dem Volumen dV= dx*dy*dz an

Massenbilanz in einem Kontrollvolumen

mathematischen Ausdruck f
 "ur die zeitliche "Anderung der Masse im Volumenelement

$$\frac{\partial \rho}{\partial t} \cdot dx \cdot dy \cdot dz = \left(\rho \cdot u - \left(\rho \cdot u + \frac{\partial(\rho \cdot u)}{\partial x} \cdot dx\right)\right) \cdot dy \cdot dz + \left(\rho \cdot v - \left(\rho \cdot v + \frac{\partial(\rho \cdot v)}{\partial y} \cdot dy\right)\right) \cdot dx \cdot dz + \left(\rho \cdot w - \left(\rho \cdot w + \frac{\partial(\rho \cdot w)}{\partial z} \cdot dz\right)\right) \cdot dx \cdot dy$$

• Resultiert in:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \cdot u)}{\partial x} + \frac{\partial (\rho \cdot v)}{\partial y} + \frac{\partial (\rho \cdot w)}{\partial z} = 0$$

• Umschreiben und Quellterme:

$$\frac{\partial \rho}{\partial t} + div[\rho \boldsymbol{v}] - Q_m = 0$$

(1) $\frac{\partial \rho_f}{\partial t} + div [\rho_f v_f] - Q_m = 0$

- Wie definieren wir die Druckabhängigtkeiten
- Wie hängt die Geschwindigkeit vom Druck ab?
- Welche Geschwindigkeit meinen wir hier? Relativ-Fluid
- (2) $\frac{\partial(\phi\rho_f)}{\partial t} + div[\phi\rho_f v_f] Q_m = 0$ Wie ist die Eigenschaften des Korngerüsts und der Körner zu betrachten? \rightarrow Nur der Porenraumanteil ϕ
- Anwendung der Ketten- und Produktregel auf den ersten Term:

(3)
$$\frac{\partial(\phi\rho_f)}{\partial t} = \left(\rho_f \frac{\partial\phi}{\partial p} + \phi \frac{\partial\rho_f}{\partial p}\right) \frac{\partial p}{\partial t}$$

Massenänderungsrate durch
Porenraumveränderung

• (3) in (2)

$$\left(\frac{\partial\phi}{\partial p} + \frac{\phi}{\rho_f}\frac{\partial\rho_f}{\partial p}\right)\frac{\partial p}{\partial t} + div[\phi v_f] - \frac{Q_m}{\rho_f} = 0$$

 Der Term in den Klammern wird (in der oberflächennahen Hydrogeologie) oft als Summe zweier Konstanten, der Matrixkompressibilität und der Fluidkompressibilität, gesehen:

Rocks	Porosity (%)	
Fractured basalt	0.05 - 0.50	
Karst limestone	0.05 - 0.50	
Sandstone	0.05 - 0.30	
Limestone, dolomite	0.00 - 0.20	
Shale	0.00 - 0.10	
Fractured crystalline rock	0.00 - 0.10	
Dense crystalline rock	0.00 - 0.05	
Unconsolidated Deposits		
Gravel	0.25 - 0.40	
Sand	0.25 - 0.50	
Silt	0.35 - 0.50	
Clay	0.40 - 0.70	

From groundwatergeek.com

$$((1-\phi)\beta_m + \phi\beta_f)\frac{\partial p}{\partial t} + div[\phi v_f] - \frac{Q_m}{\rho_f} = 0 \qquad \qquad \beta_f = \rho_f^{-1}\delta\rho_f/\delta p.$$

$$\left((1-\phi)\beta_m + \phi\beta_f\right)\frac{\partial p}{\partial t} + div[\phi v_f] - \frac{Q_m}{\rho_f} = 0$$

 Der Term in den Klammern ist gleich dem Speicherkoeffizienten geteilt durch die Fluiddichte und die Erdbeschleunigung, die zu einer neuen Konstante S' zusammengefasst werden kann:

$$\hat{S}\frac{\partial p}{\partial t} + div[\phi v_f] - Q_V$$

Schließlich können wir das Darcy-Gesetz anwenden:

$$\phi(v_f - v_s) = -\frac{\kappa}{\mu} \nabla \left(p + \rho_f g z \right)$$

$$\Psi = p + \rho_f g_z z_z$$

• Mit *v*_s=0 erhalten wir:

$$\delta \frac{\partial p}{\partial t} - div \left[\frac{\kappa}{\mu} grad \left(p + \rho_f gz \right) \right] - \frac{Q_V}{\rho_f} = 0$$

- Zwei Fluideigenschaften ρ_f , die Fluiddichte und μ , die dynamische Viskosität
- κ ist die intrinsische Permeabilität des porösen Mediums
- S' ist der zuvor eingeführte Speicherterm
- Die einzelnen Terme können Funktionen von Raum und Zeit sein
- Die druckbasierten Grundwassergleichung können für die numerische Modellierung unter hinzuziehen von Rand- und Anfangsbedingungen (nächster Vorlesungsblock) genutzt werden

Speicherkoeffizient

Values of specific yield, from Johnson (1967)

Material	Specific Yield (%)		
Material	min	avg	max
Unconsolidated deposits			
Clay	0	2	5
Sandy clay (mud)	3	7	12
Silt	3	18	19
Fine sand	10	21	28
Medium sand	15	26	32
Coarse sand	20	27	35
Gravelly sand	20	25	35
Fine gravel	21	25	35
Medium gravel	13	23	26
Coarse gravel	12	22	26

Table 4 Values of specific storage for given values of aquifer compressibility assuming porosity equal to 15 % (After Younger, 1993)

Typical Lithologies	Aquifer Comp- ressibility (ms²/kg)	Specific Storage (m ⁻¹
Clay	10-6	9.81x10 ⁻³
Silt, fine sand	10'7	9.82x10 ⁻⁴
Medium sand, fine gravel	10-8	9.87x10 ⁻⁵
Coarse sand, medium gravel, highly fissured rock	10.9	1.05x10 ⁻⁵
Coarse gravel, moderately fissured rock	10-19	1.63x10 ⁻⁶
Unfissured rock	10-11	7.46x10 ⁻⁷

ungespannt

gespannt

Koeffizientendiskussion

Temperaturabhängigkeit der Wasserdichte (Wikipedia)

Druckabhängikeit der Porosität in Sandstein (Hassan et al, 2014)

GSF code	Porosity model	Matrix compressibility
FEHM (Zyvoloski et al., 2011)	$\phi = \phi_0 + \beta_m^* (P - P_0)$	$\beta_m^* = d\phi/dP$
PFLOTRAN (Lichtner et al., 2015)	$\phi = 1 - (1 - \phi_0) e^{-\beta_m (P - P_0)}$	$\beta_m = (1-\phi)^{-1} (d\phi/dP)$
STOMP ^a (White & Oostrom, 2000)	$\phi = 1 - (1 - \phi_0)e^{-\beta_m(P - P_0)}$	$\beta_m = (1-\phi)^{-1} (d\phi/dP)$
ECLIPSE ^b (Espevold, 2015; Pettersen, 2006)	$\phi = \phi_0 e^{\beta'_m(\rho - \rho_0)}$	$\beta'_m = \phi^{-1} (d\phi/dP)$
BOAST ^e (Fanchi et al., 1982)	$\phi = \phi_0 e^{\beta'_m(\rho - \rho_0)}$	$\beta'_m = \phi^{-1} (d\phi/dP)$
TOUGH2 ^{b,d} (Pruess et al., 1999)	$\phi = \phi_0 e^{\beta_m(\rho - \rho_0)}$	$\beta'_m = \phi^{-1} (d\phi/dP)$

Implementation im Code (Birdsell et al, 2014)

Vertical, drained compressibilities^[5]

		•
	Material	β (m ² /N or Pa ⁻¹)
	Plastic clay	2 × 10 ⁻⁶ – 2.6 × 10 ⁻⁷
	Stiff clay	$2.6 \times 10^{-7} - 1.3 \times 10^{-7}$
	Medium-hard clay	1.3 × 10 ⁻⁷ – 6.9 × 10 ⁻⁸
_	Loose sand	$1 \times 10^{-7} - 5.2 \times 10^{-8}$
	Dense sand	2 × 10 ⁻⁸ – 1.3 × 10 ⁻⁸
	Dense, sandy gravel	1 × 10 ⁻⁸ – 5.2 × 10 ⁻⁹
	Ethyl alcohol ^[6]	1.1 × 10 ⁻⁹
	Carbon disulfide ^[6]	9.3 × 10 ⁻¹⁰
	Rock, fissured	6.9 × 10 ⁻¹⁰ – 3.3 × 10 ⁻¹⁰
	Water at 25 °C (undrained) ^[7]	4.6 × 10 ⁻¹⁰
	Rock, sound	< 3.3 × 10 ⁻¹⁰
è	Glycerine ^[6]	2.1 × 10 ⁻¹⁰
	Mercury ^[6]	3.7 × 10 ⁻¹¹

Druckabhängighkeit der Wasserdichte

Potentialbasierte Form

Hydraulisches Potential:

 $H = \frac{p}{\rho_f g} + z$

Hydraulische Leitfähigkeit:

 $K = \frac{\kappa g \rho_f}{\mu}$

• spezfische Speicherkoeffizient $\hat{S} =$

$$=\frac{3}{g\rho_f}$$

C

Potential-basierte Form f
ür Strömung durch ein anisotropes ges
ättigtes por
öses Medium:

$$S\frac{\partial H}{\partial t} - div[Kgrad H] - Q_V = 0$$

Hydraulische Leitfähigkeit

- Hydraulische Leitfähigkeit ist abhängig von Strömungsrichtung, Aquifertyp und Sättigung
- Für isotrope, homogene Bedigungen gilt:

$$S\frac{\partial H}{\partial t} - K\Delta H - Q_V = 0$$

Lösungen mit reduzierter Dimensionalität

3D Fließfeld in einem regionalen Aquifer (Hajtema, 2006)

Querschnitt A-A' maßstabsgetreu

- Oftmals ist Strömung im Grundwasser weitestgehend horizontal (Länge Fließpfad >> Aquifermächtigkeit)
- → Dupuit-Forchheimer Annahme: Grundwasserpotentiale ändern sich nicht über die Tiefe
- Reduktion eines 3D Problems zu einem 2D Problem ©

Lösungen mit reduzierter Dimensionalität

- - -

Integration über die Tiefe (z-Richtung) führt zur zweidimensionalen Grundwassergleichung (δh/ δz=0, q_z =0)

$$S\frac{\partial H}{\partial t} - div[KMgrad H] - Q_V = 0$$
 Gespannt, linear
$$S_y\frac{\partial H}{\partial t} - div[KHgrad H] - Q_V = 0$$
 Ungespannt, nichtlinear

- Das Produkt aus Hydraulischer Leitfähigkeit (K) und Aquifermächtigkeit (M) wird auch als Transmissivität (T) bezeichnet
- Beachten sie, S, ist der spezifische Speicherkoeffizient und Sy der "specific yield", ~ effektive Porosität

Hajtema et al, 2006

- Grundwasserströmung zwischen zwei Flüssen in Kontakt mit einem gespannten Aquifer
- Annahme: Die Strömung durch einen Querschnitte repräsentiert das regionale Fließverhalten
- Die Dupuit-Forchheimer Annahme gilt
- Wir erhalten ein 1D Problem

Aber was ist mit dem spezifischen Durchfluss:

$$q_x = -K\frac{\partial H}{\partial x} = -K\frac{h_D - h_0}{D}$$

- Ungespannter Aquifer mit Grundwasserneubildung
- Annahmen: Die teilgesättigte Zone ist dünn und hat eine geringe Leitfähigkeit → Vernachlässigbar

www.ufz.de

Gespannter 2D Aquifer zwischen zwei Wasserscheiden (Toth Strömung)

Handkalkulationen im 21. Jahrhundert, wozu?

- Benchmarking von numerischen mathematischen Modellen
- Vermeidung unnötiger Komplexität (Transient, 3D, etc)
- Abschätzung Parametersensitivitäten und Unsicherheiten
- Schärfen der "Modellierintuition" (Haitjema, 2006)

A homogeneous aquifer with constant thickness (*H*), and porosity (ϕ), and uniform recharge rate (*r*) has the following depth-dependent age relation (Vogel, 1967):

$$T(z) = -\frac{H\phi}{r} \ln\left(\frac{H-z}{H}\right)$$
(3)

$$\tau_s = \tau_{aq} = \left(\frac{H\phi}{r}\right)$$

Jurgens et al 2016; Vogel 1967

Faustregeln numerische Modellierung

• Finnemore and Hantzche (1983)

$$z_m = IC \left(\frac{L}{4}\right)^n \left(\frac{1}{K\overline{h}}\right)^{0.5n} \left(\frac{t}{S_y}\right)^{1-0.5n}$$

Haitjema (1995)

$$\Delta h = \frac{NL^2}{8\bar{T}}$$

- Erkenntnis für die Modellierung:
 - Kalibrierung auf Wasserstände ergibt nur Aussagen übe das Verhältnis Neubildung/Transmissivität
 - Kalibrierung ist insensitive f
 ür hohe Transmissivit
 äten und im Umfeld von Randbedingungen
- Viele Weitere "Faustregeln" sind ableitbar!!!

