"Grundwassersysteme und Numerik"

Veranstaltung im Modul Hydrosystemanalyse

- Übung: Simulation und Postprozessierung

Prof. Dr. Olaf Kolditz Dr. Erik Nixdorf

22.07.2021

Einleitung

- Die Übung soll Ihnen einen Eindruck bekommen, wie die Simulation mit OpenGeoSys abläuft und wie ein zunehmender Grad an Komplexität die Simulationsergebnisse beeinflusst
- 2 Übungsteile: 1) Simulation der Grundwasserdynamik im Selkeeinzugsgebiet
 2) Visualisierung der Ergebnisse
- Die Daten liegen wie immer auf der Cloud
- <u>https://nc.ufz.de/s/9WyZYSokq8Y2q3m</u> (pw: grundwasser)
- Wir rechnen mit den Originaldaten die wir im Laufe der Übungen Ü9 und Ü10 erstellt haben

ModelInutzung: Kurz

OpenGeoSys Kontrolstruktur

- Zentraler Teil vom (kompilierten OGS) ist das Kommandozeilentool (ogs.exe)
- Gegenwärtig ist es in der Version 6.4.x verfügbar (bitte runterladen auf <u>https://www.opengeosys.org/releases/</u>)
- OGS muss grundsätzlich 3 Dinge wissen um eine Simulation zu starten:
 - 1. Eine Beschreibung des Problems
 - 2. Ein FEM Netz auf dem das Problem gelöst wird
 - 3. Eine geometrische und mathematische Beschreibung der Randbedingungen

Kommandozeilen-Tool

OGS Kontrollstruktur

	<pre><?xml version="1.0" encoding="ISO-8859-1"?></pre>
曱	<opengeosysproject></opengeosysproject>
申	<meshes></meshes>
申	<processes></processes>
申	<media></media>
申	<time_loop></time_loop>
¢	<pre><parameters></parameters></pre>
申	<process_variables></process_variables>
¢	<nonlinear_solvers></nonlinear_solvers>
申	linear_solvers>
L	

Projektdatei zur Problembeschreibung ParaView

<?xml version="1.0"?> <VTKFile type="UnstructuredGrid" 0.1" <UnstructuredGrid> erOfCells=' <Piece NumberOfPoints="97 <PointData> </PointData> <CellData> Name="CellEntity <DataArray type= </CellData> <Points> </Un </VTKFil VTU Datei di as FEM Netz und die Geometrie beschreibt

> GML Datei zur Geometriebescheibung (outdated)

Kommandozeilentool

Unstrukturierte Gitter als VTU Dateien die

Simulationsergebnisse als Data-Array enthalten

1. Beispiel: Nur Dirichlet Randbedingungen

- Für die erste Simulation werden nur zeit-invariante Dirichlet Randbedingungen und ein homogener, isotroper und gespannter Aquifer berücksichtigt
- Da die Prozess Variable des LIQUID_FLOW der Druck ist, wird das Pascal'sches Gesetz angewandt
- Näherungsweise entspricht das hydraulische Potential an einem Knoten der zu einem Fluss gehört dem Wasserstand ~~DEM Altitude
- Initialbedingung ist p0=100m=981000 Pa
- FEM Domänennetz ist Selke_Basin_Domain_homo.vtu
- Ausgabe erfolgt auf dem Domänennetz und dem VTK der GWMS (Selke_Basin_Pnt_Wells.vtu)

Randgeometrie	Randwerte		
Selke_Basin_PL_Bode	p=p*g*z		
Selke_Basin_PL_Wipper	p=p*g*z		
Selke_Basin_PL_Selke	p=p*g*z		
Selke_Basin_PG_Concordia	p=p*g*84.5m		
Selke_Basin_PG_Wilsleber	p=p*g*106m		
Selke_Basin_PG_Koenigsauer	p=p*g*102.2m		

1. Beispiel: Nur Dirichlet Randbedingungen

- Die Materialparameter orientieren sich an gemessenen Größen im Modellgebiet
- Der Speicherkoeffizient kann 0 gesetzt werden, da die Simulation keine transienten Randbedingungen enthält.
- Je größer S gewählt wird, desto länger wird die Einschwingzeit des Modells bis zur stationären Lösung
- Das Modell ist 2D planar, also entspricht der Parameter *Permeabilität* der tatsächlichen Permeabilität * Mächtigkeit des Aquifers

Materialkonstante	Wert/Einheit
Dynamische Viskosität	0.0011373 kg/m.s
Fluiddichte	1000 kg/m³
Permeabilität	5.8E-10 m ² = 0.005 m/s
Aquifermächtigkeit	1m
Temperatur	288.15 K
Porosität	0.17
Storage	0

1. Beispiel: Nur Dirichlet Randbedingungen

- Füllen sie die entsprechenden Platzhalter (!--??--) in der Selke_Basin.prj Datei aus
- Externe Software kann genutzt werden ob die ausgefüllt prj Datei dem formalen xml Schema entspricht (z.B. <u>https://www.xmlvalidation.com/?L=1</u>)
- Alle vtu Dateien, die prj Datei in einen zu erstellenden
 Ordner Selke_Dirichlet_2D kopieren
- ogs.exe in den Ordner kopieren und in ein Terminal schreiben: ogs.exe Selke_Basin.pri –I debug

Für debug Modus

🔤 Eingabeaufforderung

icrosoft Windows [Version 10.0.18363.900]
c) 2019 Microsoft Corporation. Alle Rechte vorbehalten.

\Users\nixdorf>E:

:\>cd E:\UFZ\012020\Lehre\Kurs_Beijing_2020\datasets\Extra_Task_PEST\selke_run_01

\UFZ\012020\Lehre\Kurs_Beijing_2020\datasets\Extra_Task_PEST\selke_run_01>ogs.exe Selke_Basin.prj

www.ufz.de

 Laden sie die Selke_Basin_Domain_homo.pvd in ParaView

Time: 0 🔹 0 🌲 (max is 1)

- Mit Hilfe des Time Sliders
 können sie durch die Ergebnisse der Zeitschritte gehen → Stationäre Lösung wird nach einem Zeitschritt (1/10 Jahr) erreicht
- Druck in Hydraulisches Potential über Calculator umrechnen (h=p/(rho*g)
- Geschwindigkeitsvektor über zweiten Calculator erstellen
- Glyph und Countour Filter f
 ür Geschwindigkeitsrichtungen einsetzen

Properties	Information					Glyph Sou
roperties					C	Glyph Type
🕼 Appl		ØReset	tt De	lete	?	Tip Resoluti
Search (us	e Esc to clear t	ext)				Tip Radius
- Proper	ties (Calcula	tor2)				Tip Length
Attribute Type	• Poin	t Data			•	Shaft Resol
Coordinate	e Results					Shaft Radiu
Result Nor	mals					Invert
Result TCo	ords					
Result Array N	lame gw_velo	city				Orientatio
0.17*(iHat*v_	_X+jHat*v_Y)					Orientation
Clear	()	iHat	jHat	kHat	C - 1
sin	cos	tan	abs	sqrt	+	Scale
asin	acos	atan	ceil	floor	•	Scale Array
sinh	cosh	tanh	х^у	exp	*	Scale Facto
v1.v2	mag	norm	In	log 10	1	
	Scalars	*		Vectors	*	Gluph Tra

- Was fällt Ihnen auf?
- Was widerspricht ihrer Intuition als (fast) fertig ausgebildete Hydrologen?

- Was fällt Ihnen auf?
- Was widerspricht ihrer Intuition als (fast) fertig ausgebildete Hydrologen?
- Falscher Höhenwert für einen Wipperknoten (DEM Fehler in Ortschaft Aschersleben???)
- Höhenzug Hakel keine Grundwasserscheide (Fehlende Grundwasserneubildung)
- Regionale Grundwasserströmung von der Selke zur Bode (Fehlende Grundwasserströmung aus dem oberen Einzugsgebiet)

- Die Sekundärvariable velocity des LIQUID_FLOW Prozesses beschreibt <u>nicht</u> die Fließgeschwindigkeit des Wassers im porösen Medium
- Stattdessen stellt sie das Produkt aus hydraulischem Gradienten und Permeabilität dar
- $q = -Ki = -\kappa \frac{\rho_F}{\mu_F} g \nabla H = -\frac{\kappa}{\mu_F} \nabla p$
- Die Grundwassergeschwindigkeit kann über $v_f = \phi q$ berechnet werden

ipeline Browser		0 ×		
builtin:				
🐌 💼 Selke_Basin_D	omain_homo.pvd			
Properties Informa	ition			
Properties Informa	tion	@ 8		
Properties Informa roperties	ition	© 8		
Properties Informa roperties Properties Apply Search (use Esc to c	tion Reset Delete clear text)	@ X ? [@]		
Properties Informa roperties Properties Search (use Esc to co Properties (Cal	tion Reset Delete :lear text) Image: Comparison of the second se	0x ? 0x		
Properties Informa roperties Apply Search (use Esc to o Properties (Cal Attribute Type	ition Reset Delete :lear text) Image: Comparison of the second s			
Properties Informa roperties Apply Search (use Esc to o Properties (Cal Attribute Type Coordinate Results	tion Reset Delete Lear text) culator1) Point Data			
Properties Informa roperties Properties Cal Attribute Type Coordinate Results Result Normals	ition Reset Delete :lear text) Image: Comparison of the second s			
Properties Informa roperties Properties Properties (Cal Attribute Type Coordinate Results Result Normals Result TCoords	ition Reset Delete dear text) Image: Constraint of the second se			

2. Grundwasserneubildung

- Kopieren sie alle Input Dateien und die pri in einen neuen Ordner 1_homogenoeus
- Grundwasserneubildung wird als Source_Term zugewiesen
- Die Werte entsprechen der Neubildungsrate in m^3/s
- Fügen Sie einen neuen Parameter hinzu, der durch das <field_name> recharge im MeshElement des <mesh> Selke Basin PG Recharge beschrieben wird
- Fügen Sie einen Block <source_terms> hinzu, um **OGS** mitzuteilen, wie der neue Parameter *q_recharge* verwendet werden soll

2. Randbedingung Oberstromig

- Der Verlauf der oberstromige Randbedingung entspricht keiner Hydrographischen Entität
- Liegt in der Nähe des Übergangs vom harz zum Tiefland
- No-flow (bisher existierende Bedingungen) scheint unrealistisch zu sein, da es keine Einzugsgebietsgrenze ist
- Kann entweder als Neumann oder als Dirichlet Randbedingung beschrieben werden

Water Table Topography

2. Randbedingung Oberstromig: Neumann

- Ohne Messungen oder messgestützte Modellierung kann der Zufluss an Grundwasser aus dem oberen Einzugsgebiet nur geschätzt werden
- Grundwassergeschwindigkeiten (und Durchflussraten) können eine hohe Bandbreite aufweisen (Darcy Gesetz)
- In erster N\u00e4herung sch\u00e4tzen wir die Grundwasserflie\u00dfgeschwindigkeit auf 0.1 m/d, daraus folgt ein Darcy-Flux als Neumann-Randbedingung von:

$$q_D = \phi v_f = 2.0E - 7 \ \frac{m}{s}$$

```
<boundary_condition>
<type>Neumann</type>
<mesh>Selke_Basin_PL_Upstream</mesh>
<parameter>q_upstream</parameter>
</boundary_condition>
```

 Da die Schätzung so grob ist, sollte q_D über Kalibrierung optimiert und die Sensitivität des Parameters bestimmt werden

2. Randbedingung Oberstromig: Alternative Dirichlet

- Der Verlauf der Grundwasserspiegellage spiegelt die Topografie wieder, jedoch mit weniger Gefälle
- In einem Einzugsgebiet haben höher gelegene Bereiche eine größere Tiefe zum Grundwasser
- Eine einfache (N\u00e4herungs)M\u00f6glichkeit w\u00e4re es das oberstromig hydraulische Potential \u00fcber eine Wurzelfunktion in Abh\u00e4ngigkeit der Gel\u00e4ndeh\u00f6he zu beschreiben:

```
<parameter>
<parameter>
<parameter>
<parameter>

chield_name>g_recharge</name>
chield_name>g_recharge</mesh>
chield_name>recharge</field_name>
</parameter>
<parameter>
<parameter>

chield_name>p_upstream</name>

chield_name>number
```

```
</boundary_condition>
<boundary_condition>
<type>Dirichlet</type>
<mesh>Selke_Basin_PL_Upstream</mesh>
<parameter>p_upstream</parameter>
</boundary_condition>
</boundary_conditions>
<source_terms>
```

2. Beispiel: Dirichlet und Neumann Randbedingungen

- Zuletzt muss die Fehlerhafte Höhenkoordinate in der Datei Selke_Basin_PL_Wipper.vtu geändert werden
- ParaView öffnen und die zugehörige Node_ID suchen
- Manuell den Eintrag in der Datei auf 125 (Mittelwert der Nachbarknoten) ändern
- ogs.exe in den Ordner kopieren und in ein Terminal schreiben: ogs.exe Selke_Basin.prj –I debug

101100
<dataarray 1<="" name="Points" numberofcomponents="3" th="" type="Float64"></dataarray>
4457642 5727081 179 4457887.5 5727466 172
4469858 5736555.5 86 4470204.5 5736757 87
4468030 5735621.5 92 4468475.5 5735712 91
4468921 5735802.5 92 4473883 5745138.5 68
4473485.5 5745840.5 65 4460441.5 5730449.5 145
4460472.5 5730897.5 147 4473088 5746542.5 64
4461259.5 5735853 122 4461668 5735829 131
4470403 5737107.5 85 4470601.5 5737458 84
4460619 5732146 136 4460709 5732501 136
4459604.5 5728917 160 4459877.5 5729225.5 156
4471932 5738488.5 80 4472057 5738953 78
4471196.5 5738038.5 82 4471564.5 5738263.5 80
4461372.5 5733347.5 131 4461431 5733779 130
4461317.5 5735424.5 125 4473260 5742545.5 70
4473506 5742958 70 4460503.5 5731346 147
4462454 5735550 111 4462832 5735295.5 108
4461376 5734996 128 4 <u>462076.5 5735805 120</u>

2. Modell Vergleich

Dirichlet+Neumann

Dirichlet

- Dadurch dass wir jedem FEM Knoten eine Z-Koordinate zugeordnet haben, kann der Grundwasserflurabstand berechnet werden
- In ParaView einen Calculator öffnen und das Hydraulische Potential von der CoordZ abziehen
- Color Map Editor öffnen und die Visualisierung so anpassen, dass alle überfluteten Flächen bläulich gefärbt sind

Properties	Information
Properties	Ø
App	Reset X Delete
Search (us	e Esc to clear text)
- Proper	ies (Cakulator1)
Attribute Type	Point Data
Coordinat	Results
Result No	mals
Result TC	ords
Result Array I	ame Grundwasserflurabstand
coordsZ-(pre	sure/9.81/1000)

- Was fällt Ihnen auf?
- Was widerspricht ihrer Intuition als (fast) fertig ausgebildete Hydrologen?

- Was fällt Ihnen auf?
- Was widerspricht ihrer Intuition als (fast) fertig ausgebildete Hydrologen?
- Sehr hoher Grundwasserflurabstand im Hakel und im Harz
- Deutliche Überflutungen im Bereich Cochstedt/Schneidlingen

- Die Simulation kann weiter verbessert werden durch z.B.:
- Berücksichtigung der Aquiferheterogenität
- Robin Randbedingung in der Selke
- 3D
- Ungespannter Aquifer
- Transiente Simulation

3. Aquiferheterogenität

- Erstellen sie einen neuen Ordner Selke_Dirichlet_Neumann_2D_heterogeneous und kopieren sie alle Dateien aus dem vorherigen Simulationsordner
- 8 verschiedene Materialgruppen sind auf dem Originalnetz Selke_Basin_Domain.vtu abgebildet
- Die MaterialIDs 0-5 gehören zu quartären Materialien (glaziale Serie), 6 zu tertiären Materialien und 7 zu prätertiären MaterialienE
- Erhöhung der Modellkomplexität durch Einführung von Materialheterogenität, zunächst durch Verwendung von zwei MaterialIDs (quartär und nicht quartär)
- Laden Sie Selke_Basin_Domain.vtu in ParaView

3. Aquiferheterogenität

- Verwenden Sie den Calculator, um die MaterialIDs zu reduzieren (ein einfacher Weg ist die Verwendung der Eigenschaft, dass Gleitkommazahlen auf die nächste Ganzzahl gerundet werden
- Ergebnis als Selke_Basin_Domain_2ids.vtu in dem neuen Simulationsordner

builtin:							
Selke Bas	in Domain.vl	hu					
Calculator	1	-					
Properties Inf	ormation						
roperties							
💕 Apply		Reset # Delete			?		
Search (use Esc	to clear text	t)			1		
Properties	(Calculator:	1)		P			
Attribute Type	💋 Cell Da	ita			-		
Coordinate Res	ults						
Result Normals							
Regult TCoords							
Result Array Name							
	MaterialDs	•					
MaterialIDs/5				r			
Clear	()	iHat	jHat	kHat		
sin	COS	tan	abs	sqrt	+		
asin	acos	atan	ceil	floor	-		
sinh	cosh	tanh	х^у	exp	•		
v1.v2	mag	norm	In	l log10	/		
	Scalars	*		Vectors	*		
 Replace Invalid 	Results						
Replacement Value	0						
Result Array Type Int					•		
	Display (InstructuredGridPenresentation)						

3. Aquiferheterogenität

- In der Projektdatei das Input Mesh ändern und die Ausgabe auch entsprechend anpassen
- Einen zweiten Block <medium id=1> einfügen
- Die Permabilität der Quartäraquifere auf 5.0E-9 m² und die der Nicht-Quartärquifere auf 9.5E-11 setzen
- Porosität des Nichtquartärs auf 0.05 reduzieren
- Alle anderen Eigenschaften übernehmen


```
<medium id="1">
    <phases>
        <phase>
            <type>AqueousLiquid</type>
            <properties>
                 <property>
                     <name>viscositv</name>
                     <tvpe>Constant</tvpe>
                     <value>0.0011373</value>
                </property>
                 <property>
                     <name>density</name>
                     <type>Constant</type>
                     <value>1000</value>
                </propertv>
            </properties>
        </phase>
    </phases>
    <properties>
        <property>
            <name>permeability</name>
            <type>Constant</type>
            <value>9.5E-11</value>
        </propertv>
        <property>
            <name>reference temperature</name>
            <type>Constant</type>
            <value>288.15</value>
        </property>
        <property>
            <name>porositv</name>
            <type>Constant</type>
            <value>0.05</value>
        </propertv>
        <property></property>
            <name>storage</name>
            <type>Constant</type>
            <value>0</value>
        </propertv>
    </properties>
</medium>
```

3. Robin

- Der aktuelle BC vom Dirichlet-Typ f
 ür die Flussknoten kann die GW-Werte
 überbewerten
- Besser ist es, beide Bereiche durch einen zu koppeln (robin BC) zu koppeln → Siehe Vorlesung 6 für Details

$$Q_{ex} = K \cdot W \cdot L \cdot \frac{\left(H_{SW} - H_{GW}\right)}{M}$$

 In OGS werden die vier konstanten Parameter K, W, L, M zu einem Parameter bed_conductance zusammengefasst

River Package

3. Robin

 Definieren Sie im Parameterbereich einen neuen Parameter bed_conductance

 Ersetzen Sie f
ür die Fl
üsse Selke, Bode und Wipper Randbedingungen vom Typ Dirichlet durch <Typ>Robin</typ>

Führen Sie das Modell erneut aus


```
>parametersp_rame_roenrysauer> parameters
</boundary condition>
<boundary condition>
    <type>Dirichlet</type>
    <mesh>Selke Basin PG Wilsleber</mesh>
    <parameter>p lake wilsleber</parameter>
</boundary condition>
<boundary condition>
    <type>Robin</type>
    <mesh>Selke Basin PL Selke</mesh>
    < u 0 > p river selke < / u 0 >
    <alpha>bed conductance</alpha>
</boundary condition>
<boundary condition>
    <type>Robin</type>
    <mesh>Selke Basin PL Bode</mesh>
    <u 0>p river bode</u 0>
    <alpha>bed conductance</alpha>
</boundary condition>
<boundary condition>
    <type>Robin</type>
    <mesh>Selke Basin PL Wipper</mesh>
    <u 0>p river wipper</u 0>
    <alpha>bed conductance</alpha>
</boundary condition>
```

3. Results Gradienten und Fließverhalten

Dirichlet +Neumann

Dirichlet+Neumann+Hetero+Robin

3. Results Grundwasserflurabstand

3. Robin

- Ergänzen sie die Teilnetze Selke_Basin_PL_Selke und Selke_Basin_PG_Concordia zum <output>
- <timesteps> auf 1 setzen
- Starten sie die Simulation und laden sie die PVD Dateien
- Laden sie die Ergebnisdateien in ParaView
- Vergleichen sie modelliertes und gemessenes hydraulischen Potential in den Grundwassermessstellen
- ParaView Filter PlotData

4. Postprozessierung→ Fluxes

- Wir erreichen mit unserer bisherigen Modellierung eine sehr gute Übereinstimmung in den Messstellen: R² = 0.99665
- Weitere Kalibriermöglichkeiten:

